
Noname manuscript No.
(will be inserted by the editor)

Inferring Visual Contracts from Java Programs

Abdullah Alshanqiti · Reiko Heckel ·
Timo Kehrer

Received: date / Accepted: date

Abstract Visual contracts model the operation of components or services by
pre- and post-conditions formalised as graph transformation rules. They pro-
vide a precise intuitive notation to support testing, understanding and analysis
of software. Their detailed specification of internal data states and transfor-
mations, referred to as deep behavioural modelling, is an error-prone activity.
In this paper we propose a dynamic approach to reverse engineering visual
contracts from Java based on tracing the execution of Java operations. The
resulting contracts give an accurate description of the observed object trans-
formations, their effects and preconditions in terms of object structures, pa-
rameter and attribute values, and their generalised specification by universally
quantified (multi) objects, patterns, and invariants. While this paper focusses
on the fundamental technique rather than a particular application, we explore
potential uses in our evaluation, including in program understanding, review
of test reports and debugging.

Keywords Visual contracts · graph transformation · model extraction ·
dynamic analysis · reverse engineering · specification mining

Abdullah Alshanqiti
Department of Computer Sciences, University of Leicester, UK
E-mail: a.m.alshanqiti@gmail.com

Reiko Heckel
Department of Computer Sciences, University of Leicester, UK
E-mail: reiko@mcs.le.ac.uk

Timo Kehrer
Institut für Informatik, Humboldt-Universität zu Berlin
E-mail: timo.kehrer@informatik.hu-berlin.de



2 Abdullah Alshanqiti et al.

1 Introduction

Visual Contracts (VCs) provide a precise high-level specification of the object
graph transformations caused by invocations of operations on a component or
service. They link static models (e.g., class diagrams describing object struc-
tures) and behavioural models (e.g., state machines specifying the order oper-
ations are invoked in) by capturing the preconditions and effects of operations
on a system’s objects.

Visual contracts differ from contracts embedded with code, such as JML
in Java or Contracts in Eiffel, as well as from model-level contracts in OCL.
They are

– visual: using UML notation to model complex patterns and transforma-
tions intuitively and concisely,

– abstract: providing a specification of object transformations at a high level
of granularity to aid readability and scalability,

– deep: capturing the transformation of internal object structures besides
input / output behaviour,

– executable: based on graph transformation they support model-based oracle
and test case generation [31,39], run-time monitoring [17], service specifi-
cation and matching [23], state space analysis and verification.

However, creating a detailed behavioural model in any language is error-
prone. Visual contracts are no exception, and their specification of internal
object states and transformations requires a deeper understanding of a system
than models of externally visible behaviour. This limits their applicability in
testing, verification and program understanding in general.

In this paper we propose a dynamic approach to reverse engineering vi-
sual contracts from sequential Java programs based on tracing the execution
of Java operations. The resulting contracts give accurate descriptions of the
observed object transformations, their effects and preconditions in terms of
object structures, parameter and attribute values, and allow generalisation by
multi objects and patterns and general invariants. The restriction to sequen-
tial Java is due to the need to associate each access to a unique operation
invocation.

Given a Java application, the process starts by selecting the classes and op-
erations within the scope of extraction and providing test cases for the relevant
operations. We proceed by (A) observing the behaviour under these tests using
AspectJ instrumentation and synthesising rule instances as pre/post snapshot
graphs of individual invocations; (B) combining the instances into higher-level
rules by abstracting from non-essential context; (C) generalising further by
introducing multi objects and patterns; (D) deriving logical constraints and
assignments over attribute and parameter values; and (E) identifying univer-
sally shared conditions and structures as invariants captured separately.

First solutions to variants of (A) and (B) were reported in [4,2], respec-
tively, extended and elaborated in [1,3] which also provided performance im-
provements of the algorithms and their integration in a prototype tool. In this



Inferring Visual Contracts from Java Programs 3

paper, we raise further the level of abstraction by supporting, in addition to
previous work, the inference of multi patterns in (C), attribute assignments
in (D) and universal context in (E), and exploiting subtyping throughout the
process. We support the use of visual contracts as deep oracles by exporting
contracts to the model transformation tool Henshin and controlling the (oth-
erwise non-deterministic) model execution by comparing the effect of each
test invocation with the rules in the operation’s contracts. This technology is
used in a new evaluation of completeness (recall) and correctness (precision)
of extracted contracts. Finally, we report on improved tool support.

Following a general presentation of the notions and techniques of the ap-
proach in section 2, section 3 describes the Visual Contract Extractor tool
implementing them. The evaluation in section 4 discusses the scalability of
the extraction as well as the validity of the resulting models and their utility
in program understanding in the context of testing and debugging. Apart from
their use in validation, case studies and experiments are chosen to exemplify
potential applications in this area without claiming that the present tool could
support real-world use. In section 5, we discuss two further application scenar-
ios for our approach and tool in the field of model-based software engineering,
namely the use of visual contracts for model-based (or visual) debugging as
well as the automated learning of complex model editing operations by ex-
amples. After discussing related work in section 6, section 7 concludes the
paper.

2 Deep Behaviour Modelling and Extraction

This section gives an overview of our approach using the simple case study of
a Car Rental Service designed to represent a range of preconditions and effects
for operations over a complex object structure. These include the creation of
objects, the creation and deletion of links, attribute updates and constraints.
First, visual contracts and their semantic foundations in graph transformation
are introduced, following [16].

2.1 Visual Contracts

A visual contract describes an operation by means of a set of rules, each rep-
resenting the pre- and postcondition of a possible behaviour. Imagine a simple
operation that can execute along one of three behaviours: success, handled
failure (returning an error code) or exception, chosen according to the state
in which the operation is invoked. Then, the first two are represented by in-
dividual rules capturing their respective conditions and effects. The exception
behaviour corresponds to the absence of a suitable rule, i.e., the failure to
satisfy any of the existing rule’s preconditions. We will use the term behaviour
to refer to the set of actions and conditions executed along a path or a set
of paths through the control flow graph of the system, to be captured in the
contract by a single rule.



4 Abdullah Alshanqiti et al.

public interface IRental extends Serializable{
public String registerClient(String city, String clientName);
public String makeCarReservation(String ClientID, String pick−up, String drop−off);
public String makeVanReservation(String ClientID, String branch);
public void cancelReservation(String Reference);
public void cancelClientReservation(String clientID);
public void pickupVeh(String Reference);
public void pickupFleet(String branch, String ClientID);
public void dropoffVeh(String Reference);
public Reservation[] showClientReservations(String clientID);
public Client[] showClients (String city);
public Car[] showCars (String city);

}

Listing 1: Interface of a Car Rental Service

Contracts are based on a class diagram and operation signatures. An inter-
face with operation signatures is given in Listing 1. The class diagram in the
top left of Figure 1 shows the classes whose instances are considered within
the scope of the specification. Classes and data-valued attributes in the dia-
gram map to classes and attributes in Java. Associations with cardinality 0..1
at the target end represent object-valued attributes in their source class and
associations with cardinality ∗ are implemented by containers.

Formally, a class diagram is represented as an attributed type graph TG: a
distinguished graph defining node, edge, attribute and data types over which
instance graphs can be formed. An instance graph over TG is a graph G
equipped with a structure-preserving mapping G → TG assigning every el-
ement in G its type in TG. We allow type graphs with inheritance, which
specify a subtype relation between node types. Instance graphs are to type
graphs with inheritance as object diagrams are to class diagrams, and adopt
the same notation.

Our aim is to derive rules of the form r : L⇒ R. Graphs L and R, called
the left- and right-hand side of the rule, provide a declarative specification of
pre- and postconditions (effects), where L \R, L ∩R and R \ L represent the
elements to be deleted, preserved and created by an operation.

Formally, a rule according to [16] is a span of graph homomorphisms L←
K → R, where we think of K as representing L∩R, the structures read but not
consumed by an application of a rule. Rules can be augmented by conditions
on attributes and input parameters and they can specify attribute updates and
return values. If the left-hand side Lr of rule r finds an occurrence in graph
G, formally expressed as a type-compatible injective graph homomorphism

o : L→ G, it can be applied to this graph leading to a transformation G
r,o

=⇒ H.
In the presence of subtyping, the types of rule elements in L or R must be
equal to or more general than the types of their corresponding graph elements
in G or H.

We use rule schemata for the concise specification of transformations over
recurring model patterns. A rule schema (s,M) consists of a kernel rule s
and a set M of multi rules. Each multi-rule m ∈ M is an extension of s by
additional preconditions and effects. Each multi rule m specifies a multi pattern
Lm \ Ls and its transformation into Rm \Rs. When a rule schema is applied,



Inferring Visual Contracts from Java Programs 5

kernel rule s is executed once like a “normal” rule while each multi rule m is
applied to all distinct occurrences of its multi pattern simultaneously.

In summary, given an attributed type graph TG with inheritance and an
operation signature op(x1 : T1 . . . , xn : Tn) : (y : T ), a visual contract vc for
op is a set of rules r : L⇒ R over TG such that parameters x1, . . . , xn occur
in L and the return y occurs in R.

2.2 Observing Object Access and Synthesising Rule Instances

Visual contracts are inferred by observing executions of Java methods. For
each operation invocation we extract a rule instance capturing the recorded
behaviour. Observations are made by weaving instrumentation code using As-
pectJ. This results in a trace recording object creation, read and write access
to objects and attributes caused by the invocation.

In a sequential execution all actions observed between the start and the
return of the method can be attributed to one invocation. Concurrent in-
vocations make it more difficult to identify the relevant invocation for each
action and are therefore not considered. We aggregate all observations into a
rule instance capturing the overall precondition and effect of the invocation
(see [2] for more details). Along with the instance we collect traceability data
for its elements, such as the line numbers of corresponding statements in the
code. This is used later to validate the extraction, e.g., to assess which code
fragments are captured by which contracts.

Consider the rule instances in Figure 1. Instance registerClient creates a
new client object, registers it with the branch at city, and updates attribute
branch.cMax. Instance makeCarReservation books a car for a client by creat-
ing a new reservation object r with links pickup, dropoff, made and for. Links
of and at indicate that a client reserves a car from the pickup branch they
are registered with, but with a different dropoff branch. Instance makeVan-
Reservation performs a similar operation for vans, where pickup and dropoff
are the same. Rule instances for pickupVeh and dropoffVeh record the move-
ment of a car from the pickup to the dropoff branch. Note that while these
two operations are defined for the abstract class Veh, these instances use Car
objects.

As can be seen in the example, a rule instance consists of a pair of object
graphs representing the situation before and after the operation. We write
b = op(a1, . . . , an) : G ⇒ H to indicate the invocation op(a1, . . . , an) of an
operation with signature op(x1 : T1 . . . , xn : Tn) : (y : T ) leading to a transfor-
mation of G into H. We assume that G,H live in a common name space given
by unique object identities, so the elements deleted, preserved and created by
the transformation are G \H,G ∩H and H \G, respectively.



6 Abdullah Alshanqiti et al.

Fig. 1: Type graph and rule instances, extracted from car rental service

2.3 Deriving Minimal Contracts and Shared Context

Each rule instance only represents one invocation. Our aim is to derive a small
set of rules that describe the overall behaviour of the operation, i.e., the opera-
tion’s contract. Thus, a contract is a set of parametrised rules op(x1, . . . , xn) =
y : L⇒ R over the same operation signature with graphs L and R, called the
left- and right-hand side of the rule, expressing the pre- and postconditions of
the operation. As before L\R, L∩R and R\L represent the elements deleted,
preserved and created by the rule.



Inferring Visual Contracts from Java Programs 7

To infer a general specification we consider all instances representing ex-
ecutions of the same operation. First, we generate a minimal rule for each
instance, i.e., the smallest rule containing all objects referred to by the opera-
tion’s parameters and able to perform the observed object transformation. The
construction has been first formalised in [11] and implemented (without con-
sidering parameters) in [4]: Given a rule instance b = op(a1, . . . , an) : G⇒ H
its minimal rule is the smallest rule L ⇒ R such that L ⊆ G,R ⊆ H with
a1, . . . , an ∈ L and b ∈ R as well as G \H = L \ R and H \G = R \ L. That
means, the rule is obtained from the instance by cutting all context not needed
to achieve the observed changes nor required as input or return. In [11] this
is expressed more abstractly using category theory. Specifically the notion of
initial pushout allows us to capture the differences of graphs G\H as the part
deleted and H \ G as the part created by the transformation, which is then
extended by the necessary context to form a rule. The implementation in [4]
identifies elements shared between G and H by their object identities.

The result is a classification of instances by effect: All instances with the
same minimal rule have the same effect, but possibly different preconditions.
These are in turn generalised by one so called maximal rule which extends the
minimal rule by all the context that is present in all instances, essentially the
intersection of all its instances’ preconditions. Figure 2 shows an example of
this generalisation where maximal rule (C) results from instances (A) and (B)
of cancelClientReservation(..). The shared effect in both cases is the deletion of
the Reservation object connected to the Client and the minimal rule is identical
to (B). The isolated r1:Reservation object in (A) arises from an unsuccessful
test on r1 when searching for the reservation object to be cancelled.

Fig. 2: Extracting maximal rules from rule instances

But minimal or maximal rules are not just generalisations of instances.
They provide an executable specification: Given an object graph G, a rule
can be applied if there is a match m : L → G, such that L is (isomorphic
to) a subgraph of G and removing (an image of) L \ R from G, the resulting
structure is a graph. The derived object graph H is obtained by adding a
copy of R \ L. Unsurprisingly, applying a rule extracted from a rule instance



8 Abdullah Alshanqiti et al.

Fig. 3: Inferring MOs from rule instances

b = op(a1, . . . , an) : G ⇒ H to the pre-graph G of that instance, we obtain
its post-graph H, but we can also apply the same rule to other given graphs
deriving transformations not previously observed.

2.4 Introducing Universally Quantified Rule Schemata

The contracts extracted so far may use many rules to describe a single opera-
tion. In the case of iteration over containers, for example, the set of minimal
rules is potentially unbounded, but some only differ in the number of objects
manipulated while performing the same actions on all of them. Rule schemata
use multi objects (MO) or multi patterns (MP) as a concise way to specify
constraints and actions across sets of similar structures.

For example, node Reservation in Figure 3 (C) is an MO node (shown with
a 3D shadow) with cardinality 1..2, applicable to object graphs with 1 or 2
Reservation nodes connected to the Client. Rule instances of two correspond-
ing transformations are shown in Figure 3 (A) and (B).

2.4.1 Multi Object Inference

To extract MO rules from such instances we have to discover sets of nodes
that have the same structure and behaviour, then represent them by a sin-
gle multi-object node. We only consider multi-object nodes that are part of
the minimal rule because their typical use is to describe universally quantified
effects (rather than preconditions). In the rule instance Figure 3 (B), for ex-
ample, both Reservation nodes have the same context, i.e., they both point to
the same Client node by a made edge, and they are both connected to return:
Collection on the right-hand side, so share the same behaviour. Therefore they
are substituted by one multi-object, as shown in Figure 3 (C), which also gen-
eralises Figure 3 (A) with only one occurrence. After inferring multi objects



Inferring Visual Contracts from Java Programs 9

within individual rules, if two MO rules are isomorphic, the two original rules
can be replaced by a single MO rule with appropriate cardinalities reflecting
the generalised cases.

Two objects are equivalent if they are (1) of the same type; (2) part of the
minimal rule; and (3) have the same context (incident edges of the same type
connected to the same nodes) in the pre- and postcondition (thus specify the
same actions). Assuming for every operation op a set of maximal rules R(op)
as constructed in subsection 2.3, we derive MO rules in two steps.
Merge equivalent objects: For each rule m ∈ R(op) and each non-trivial equiv-
alence class of objects in m, one object is chosen as the representative for that
class and added to the set of MO nodes for m, while all other objects of that
class are deleted with their incident edges. The cardinality of the MO node is
defined to be the cardinality of its equivalence class (the number of objects it
represents). The resulting set of MO rules is MOR(op).
Combine isomorphic rules: A maximal set of structurally equivalent rules in
MOR(op), differing only in their object identities and cardinalities of their
MO nodes, forms an isomorphism class. For each such class we derive a single
rule by selecting a representative MO rule and assigning to each of its MO
nodes the union of cardinalities of corresponding nodes in all the rules in the
class. The resulting set of combined MO rules is CMOR(op).

Consider again the example in Figure 3. The rule in (C) is a combination
of the basic rule in (A) with the MO rule derived from (B) whose cardinalities
of 1 and 2 for the Reservation node are merged to 1..2. In rule (B) we identify
Reservation objects r2 and r3 as equivalent. Merging them leads to a rule
isomorphic to rule (A) so both are combined to one MO rule with multi-object
r.

Fig. 4: Rule with multi pattern

2.4.2 Multi Pattern Inference

Occasionally we require universal quantification not just on a single object but
on a more general structure. Multi patterns provide this extension. To derive
rules with multi patterns we discover graph fragments within a rule r that are
equivalent, having the same shape, connections and transformation behaviour,
and thus can be represented by a multi pattern. A graph fragment consists
of nodes and edges that do not necessarily form a graph themselves because



10 Abdullah Alshanqiti et al.

edges in the fragment maybe connected to nodes outside the fragment, called
boundary nodes.

Figure 4 shows how operation pickupFleet() is described as a rule with
multi pattern. The operation allows to pick up the set of all vehicles reserved
exactly once, by the client with id c1, deleting their at and pickup edges.

We formalise the notion of rule fragment and their equivalence. Let r :
L ⇒ R be a rule, e.g., as derived in step (2) as maximal rule. Let further
p = (FL,FR) be a pair of graph fragments with FL ⊆ L and FR ⊆ R
such that the effect described by p is included in that described by r. That
means, the rule fragment deletes and creates a subset of the objects deleted
and created by the rule; formally: FL \ FR ⊆ L \R and FR \ FL ⊆ R \ L.

In pickupFleet() the left- and right graph fragments FL and FR consist of
all nodes and edges inside the respective boxes, including the edges crossing
the boundaries. The boundary nodes of FL are the Branch and Client objects,
while FR’s boundary is just the Client object.

Two rule fragments p and p′ in r are equivalent if (i) their graph fragments
are isomorphic (share the same shape, typing and attributes), and (ii) they
have the same external connections within r (share the same boundary nodes).

A rule schema (s,M) consists of the kernel rule s and a set of multi-rules
M . The kernel rule is formed by removing from r all instances of the rule
fragments previously identified. That means, it contains only the elements
that are to occur exactly once in the transformation. For every rule fragment
p, rule m = s ∪ p forms a multi rule in M , extending the kernel rule by the
rule fragment. Analogous to multi-object rules, if there are isomorphic rule
fragments p and p′ in r, we select a representative p.

That means, pickupFleet() is a rule schema (s, {m}) consisting of a kernel
rule s, given by objects b: Branch, c: Client in both left- and right-hand side,
and a multi rule m as the complete rule, including the boxed multi pattern.

2.5 Deriving Conditions and Assignments on Attributes and Parameters

So far we have focussed on structural preconditions and effects, disregard-
ing the data held in objects’ attributes or passed as parameters. However, at
implementation level, manipulation of object structure and data are tightly
integrated. While we have seen that the structural view is naturally expressed
by graphical patters, constraints or assignments over basic data types are more
adequately expressed in terms of logical constraints and assignments.

The contract for cancelClientReservation(cid: String) describes the removal
of a Reservation object linked to the Client whose id matches the parameter
cid. In the contract this is expressed by the equality id = cid in the Client
object. Formally, c.id and cid, as well as the right-hand side counterpart c.id′

of c.id, are local variables of the contract that get instantiated by the match
as part of an application. In particular, given a graph object G and match
m : L → G, c.id is instantiated by the value of the id attribute of m(c), i.e.,
m(c.id) = m(c).id. In a similar way we can extend m to evaluate complex



Inferring Visual Contracts from Java Programs 11

expressions and use these in assignments to update attributes. The formalisa-
tion in attributed graph transformation assumes an abstract data type A as
attribute domain linking it to the structural part by attribution maps.

Let us consider how attribute constraints for contracts can be learned. Say,
an instance i = [b = op(a1, . . . , an) : Gi ⇒ Hi] has attribute and parameter
values Ai (i.e., these values were either read or written during the correspond-
ing invocation). A maximal rule r = [op(x1, . . . , xn) = y : L⇒ R] generalising
a number of instances with shared effects is given a set X of local variables
for all formal parameters x1, . . . , xn and all attributes read or accessed by all
its instances. Since maximal rule r is embedded by a match mi into every
instance i it subsumes, this extends to an assignment of the local variables
mi : X → Gi.

Fixing an order on the variables X, each mi becomes a vector of values to
be fed into a machine learning tool capable of driving logical constraints. We
use the Daikon tool [18] designed for the derivation of invariants over program
variables. From the assignments mi for all instances i that contributed to the
construction of rule r Daikon generates a set of constraints that are valid
for all assignments. These constraints are fed back into the graphical part of
the contract, where each becomes part of the pre- or postcondition (attribute
assignment) depending on wether the variables used occur only in L or in L,R
and the parameters. This approach allows the separation of structural and
constraint learning.

2.6 Derivation of Universal Context

Preconditions present in all rules are candidates for invariants. For example,
the Rental object representing the rental agency is present in all preconditions,
and therefore in all observed states, and is considered as an invariant that
can be specified once and for all in the class diagram. To extract and cut
such invariant context, we employ a similar procedure as for the derivation of
maximal rules. That is, we compare the preconditions of all maximal rules to
identify structures that are universally present. Universal context presented
as global invariant can reduce the size of rules, make them more concise and
readable.

Figure 5 shows the end result of the process for the pickup and dropoff rules.
Note how attributes and parameter values are replaced by variables, with a
condition {rid = ref} to map the parameter to the reservation’s reference,
while Car objects are replaced by objects of class Veh, and the Rental objects
linked to the branches are removed as universal context.

3 The Visual Contract Extractor (VCE) Tool

We developed a proof-of-concept tool to evaluate the approach and experiment
with its use in different application scenarios. The components of the VCE tool
are shown in Figure 6.



12 Abdullah Alshanqiti et al.

Fig. 5: Final pickup and dropoff rule

– (A) The Tracer observing the behaviour of selected classes using AspectJ
and constructing contract instances (cf. subsection 2.2);

– (B) the Generaliser for generalising contract instances to minimal and
maximal rules (cf. subsection 2.3) ;

– (C) the Inferencer for learning MO rules and rule schemata (cf. subsec-
tion 2.4), attribute conditions and assignments using Daikon (cf. subsec-
tion 2.5), as well as universal contexts (cf. subsection 2.6).

– (D) the Visualiser for selective display and analysis of contracts; and
– (E) an Export and Model Control facility, particularly to the model trans-

formation tool Henshin [5,42] for generating executable contracts and con-
trolling their execution as oracles alongside testing.

VCE is implemented in Java and relies on a MySQL database as back-end
to efficiently handle large (numbers of) contracts. Screenshots in this section
are taken by applying the tool to two further case studies NanoXML and
JHotDraw1, both popular benchmarks for software testing and analysis, and
representative of the kind of system our method would be appropriate for,
i.e., with significant and dynamic object structures in their core model. In
NanoXML this is the object representation of the XML tree, for JHotDraw
that of graphics’ objects. They are also used for performance evaluation in sec-
tion 4.

3.1 Tracer

To selectively trace large Java programs, the Tracer can be configured i) by
selecting the relevant classes to define the scope of object types, and ii) by
identifying methods of interest as each invocation of these methods will pro-
duce a single contract instance, covering those objects which are typed over
the selected classes.

3.2 Generaliser and Inferencer

Figure 7 (a) shows a maximal rule based on the NanoXML case study. The
operation addChildren() adds a set of XMLElement instances as children to

1 See http://nanoxml.sourceforge.net/orig/ and www.jhotdraw.org/

http://nanoxml.sourceforge.net/orig/
www.jhotdraw.org/


Inferring Visual Contracts from Java Programs 13

AspectJ

Back-end database

Extracting 
Contract instances

Generalising contracts
Min & Max rules

Inferring features
Multi objects/patterns
Universal context
Attribute/parameter
conditions

Visualiser

Generaliser

Graph Matching Algorithm 

Inferencer

MO Algorithm and Daikon

Process of extracting and inferring visual contracts

Observe

Extract infer inferStep 1 Step 3Step 2

(A) (B) (C)

(D)

Tracer

Existing system

Generate 
executable 
contracts

(E)

Henshin

Fig. 6: Overview of the VCE tool

the element it is invoked on. The top left shows a list of rules organised by
operation signatures. When selecting, e.g., a maximal rule, all its rule instances
will appear in the table at the top right. The lower part of (a) shows the
inferred maximal rule, which has 6 equivalent XMLElement instances. These
are combined in a multi object in Figure 7 (b). The rules also show the Vector
container used to store child elements, which can be visualised more abstractly
by a direct to-∗ association between the element and its children.

Figure 8 shows a maximal rule with inferred attribute conditions extracted
for addFigure(..) from the JHotDraw case study. Attribute conditions are
shown in a separate dialogue window for selected nodes. For example, in the
popup window for the selected LHS node of type BouncingDrawing the two
top constraint express preconditions (P3) while the 4th constraint is part of
the postcondition (P4) stating that the value of its attribute theQuadTee must
remain unchanged in the post graph.

3.3 Visualiser

The role of the visualiser, see Figure 7 and Figure 9, is to organise, browse
and display extracted contracts. We support:

– i) The distinction in colour and style between elements of the minimal and
maximal rule; dotted edges and nodes with coloured background (green
for creation, red for deletion and light-golden for nodes with updated at-
tribute values) represent elements of minimal rules, while nodes with white
background and solid edges are context elements;



14 Abdullah Alshanqiti et al.

(a) Maximal rule

(b) Rule with multi object

Fig. 7: Generalisation of rules



Inferring Visual Contracts from Java Programs 15

Fig. 8: A rule with attribute conditions.



16 Abdullah Alshanqiti et al.

– ii) the alternative display of collections as to-* associations or using explicit
collection objects;

– iii) the selective visualisation of rules, e.g. the minimal rule or the pre-
condition only, with the flexibility to change graph layouts; and

– iv) user interaction to confirm if inferred features are correct.

Figure 9 shows partial screenshots of the main interface. In (a), we present an
instance extracted from a test as part of the JHotDraw case study. The upper
part of (a) gives information on the operation signature, actual parameters and
statistics on the extraction process. The lower part shows a contract instance,
focussing on a fragment of the left-hand side. As reported, the rule has 214
objects obtained after analysing and filtering 21419 Java objects. By selecting
an object such as the instance of UndoableCommand a popup menu shows
tracing information with corresponding code locations.

The VCE tool provides visualisation options that may be employed to view
complex contracts. As an example, consider Figure 9 (b) which shows for the
same operation DeleteFigure(..) how inferring a rule with multi-objects and
displaying its minimal rule, hiding all elements of the precondition that do not
contribute to state changes, we obtain a much more readable presentation.

3.4 Export to Henshin

To interface with the tool, contracts can be exported to standard formats
such as GXL or DOT graphs. Most notably, however, VCE supports the ex-
port of generalised rules to Henshin [5,42], a model transformation language
and system which is based on graph transformation concepts [16] and allows
to execute rules on (model representations of) object graphs. This allows to
use visual contracts as test oracles, which is interesting in itself but also es-
sential for the evaluation of inferred contracts as in the experiment presented
in subsection 4.2.

The transformation of the structural parts of a contract is straightforward.
Pre- and post graphs of a contract rule are mapped to the left- and right-
hand sides of a Henshin rule, equipped with a mapping that signifies the
corresponding rule nodes. For example, Figure 10 shows three generalised rules
extracted from an experiment with NanoXML exported into Henshin. This
notation shows transformation rules in an integrated form, the left- and right-
hand sides of a rule merged into a single graph, following the concrete syntax of
the Henshin transformation language. The left-hand side (LHS) comprises all
model elements stereotyped by delete and preserve, the right-hand side (RHS)
contains all model elements annotated by preserve and create. The rule in
Figure 10 (a) corresponds to the maximal rule shown in Figure 7 (a). Another
exported maximal rule for the same system operation addChildren(..) is shown
Figure 10 (b). In Figure 10 (c), a Henshin rule scheme which generalises over
both maximal rules is shown, it is exported from the contract with multi object
shown in Figure 7 (b).



Inferring Visual Contracts from Java Programs 17

(a) Large rule instance with trace information

(b) Selective display of a generalised rule

Fig. 9: Large rule instance and generalised rule extracted from DeleteFigure(..).



18 Abdullah Alshanqiti et al.

(a) Henshin rule corresponding to maximal rule in Figure 7.

(b) Another exported maximal rule for the same operation.

(c) Henshin rule scheme generalising over both maximal rules.

Fig. 10: Export of generalised rules to Henshin.



Inferring Visual Contracts from Java Programs 19

For transforming the constraints learned by Daikon into Henshin, we define
five profiles which can be used to configure our Henshin export facility, i.e.,
the behaviour of the exporter is defined by selecting one of these profiles:

– P1 (None): The constraints learned by Daikon shall be ignored by the
exported Henshin rules (as in the examples shown in Figure 10).

– P2 (Parameters): Constraints over contract rule parameters are used to
bind the corresponding Henshin rule parameters to rule node attributes.
The Henshin rule parameters are derived from the constraints on-the-fly.
This profile is useful when concrete parameter values shall be passed to
Henshin rule applications.

– P3 (Pre.Attributes): In addition to P2, in this profile we also export con-
straints which are preconditions over attributes and in which no parameters
are involved. The the three top constraint in the popup window shown in
Figure 8 are examples of this kind of constraints. In the exported Henshin
rules, such constraints are represented as attribute conditions which are
checked by the Henshin interpreter before a rule is applied and which thus
may restrict the applicability of a rule.

– P4 (Post.Attributes): In addition to the preconditions over parameters and
attributes addressed by P2 and P3, respectively, in this profile we also
translate postconditions over attributes and parameters. The the 4th con-
straint in the popup window shown in Figure 8 is an example of this. Such
postconditions declaratively specify the effect of a rule on rule node at-
tributes. They are transformed into assignments of attribute values in the
exported Henshin rule. This is necessary in all use cases where the model
state shall be changed in order to correctly represent the corresponding
system state after a rule application.

– P5 (Returns): In addition to the constraints handled by P2, P3 and P4,
respectively, in this profile we also export constraints defined over return
values. In the exported Henshin rule, such a return constraint is represented
by an assignments to a dedicated rule parameter which is declared as out
parameter (note that all parameters addressed in P2 are in parameters).

The integration with Henshin allows i) to evaluate and execute extracted
contracts, and ii) to use the tool more widely in the context of model-based
engineering.

3.5 Henshin Control Integration and Deep Oracle

When evaluating the execution of a test case against a model, we have to
judge if the behaviour observed is consistent with the model’s prescription.
Normally this comparison is limited to input-output behaviour observable at
the interface of the object or component. Using the Visual Contract Extractor
we can implement a deep oracle which also detects deviations of the execu-
tion’s effect on the internal object structure. To this end, we first observe the
execution, extract the rule instance and derive the minimal rule as described



20 Abdullah Alshanqiti et al.

in Sect. 2. The minimal rule now provides a concise description of the effect
of the execution, which can be compared to the minimal rules of the relevant
visual contract. If an equivalent minimal rule is found, we have identified a
case with the same effect to the one observed. The corresponding maximal
rule of the visual contract is therefore the one to judge the overall correctness
of the test execution.

This is done by attempting to apply the selected rule to a model represen-
tation of the object state using the same invocation and actual parameters as
the test execution. If the application succeeds, i.e., the rule finds an occurrence
compatible with the parameter assignment such that all attribute conditions
are satisfied, the test case has passed. Otherwise, if either no similar minimal
rule can be found matching the effect of the test execution, or the precondition
of the corresponding contract rule is not applicable, the test case has failed.
Either outcome provides evidence of behaviour implemented, but not specified
by the contract.

The application of a contract rule on a model state requires the export
of extracted contracts to Henshin and the creation of an initial model state
representing the initial object state of the system under test. Once the model
state is initialised, it will be updated in synchronisation with the SUT’s object
state. The application of the model rules to the model states is controlled
through a test adapter presenting the API of Henshin as a clone of the SUT’s
interface.

4 Evaluation

In this section, we discuss the correctness and completeness of extracted con-
tracts, cross-validate them against additional test cases and report on ex-
periments to assess the utility of visual contracts and the scalability of the
extraction as implemented by the prototype.

4.1 Correctness and Completeness

In order to establish to which extent the contracts extracted provide an ac-
curate description of the software’s behaviour we consider two directions, the
correctness and completeness of the contracts. For every state s in the im-
plementation there exists a corresponding object graph G(s) at model level
obtained by representing all objects in the scope of observation (i.e., that
are instances of the classes selected for tracing, cf. start of section 2) as
nodes, object-valued attributes as edges and data-valued attributes as node
attributes. Then, a model is correct if for every valid state s and invocation
in, a step in : G(s) ⇒ H in the model implies a step in the implementation
from state s to a new state s′ such that H = G(s′). That means, the model
does not allow behaviour that is not implemented by the system. Conversely,
completeness means that for each valid state s, a step caused by an invocation



Inferring Visual Contracts from Java Programs 21

in of the implementation leading to a state s′ must be matched by a step
in : G(s)⇒ G(s′) in the model, i.e., all the system’s behaviour is captured by
the model.

In general, the models extracted will be neither correct nor complete. Cor-
rectness fails because the model is extracted for a certain part of the system
only as identified by the implementation classes selected for tracing. Anything
outside this scope of observation is not recorded and therefore not represented
by the model. That means, if the implementation checks a condition on the
state of an object outside scope, this check is not reflected in the precondition
of the contract. If this check fails, a step in the model may not be reflected
by a step in the implementation. However, we can expect that whenever both
implementation and model preconditions are satisfied, the observable effect of
the implementation-level step matches the effect of the model-level step. The
comparison is moderated via the the mapping G( ) of implementation states
to object graphs, which also takes account of the scope.

Completeness fails for the same reason that test cases cannot prove the
correctness of a system. The dynamic approach to extracting contracts is in-
herently dependent on the range of behaviours observed, and behaviours that
have not been observed will not be reflected in the model. So what can we
realistically hope to achieve? A minimal notion of completeness should require
that all observed behaviours are represented in the model, i.e., when executing
the tests the model was extracted from, all steps in the implementation should
be matched by the model.

We used manual inspection on the Car Rental Service case study to validate
if the models extracted by the tool satisfy the baseline notions of correctness
and completeness. The limited amount of code and our familiarity with the
application allow us to perform a detailed review for every method in the
interface, validating for all execution paths that there exists a rule in the
corresponding contract capturing the path’s combined precondition and effect,
and vice versa for every rule that the behaviour described is fully implemented.
This process was aided by the export of extracted contracts to the Henshin
model transformation tool [6], which provides a facility to simulate contracts
based on their operational semantics as graph transformation rules.

Consider the source code fragment in Listing 2 implementing the dropoff-
Car() method. There are three possible paths leading to at least three different
contracts, depending on the evaluation of the two if statements in lines 4 and
10. When executing this method by three test cases that cover all statements,
the extracted rules reflect the expected behaviours. This is confirmed by trac-
ing the line numbers in the code responsible for the access to objects in the
contracts.

Figure 11 shows the left-hand sides of the three rules extracted from dropof-
fCar(). For example, (a) reflects the behaviours of statements 1-6 as we pass an
invalid reservation id and, accordingly, the execution breaks at line 5. The rule
correctly describes the access to this:Rental and the Reservation container. In
(b) the parameter is valid, i.e., the Reservation object Leicester 12 exists, but
the execution breaks at line 11 since the car has not been picked up yet. This



22 Abdullah Alshanqiti et al.

can be seen from the pickup link which would have been deleted otherwise.
The rule in (c) reflects correctly the third path, i.e., the conditions in 4 and
10 are false so there is no return from the method there.

1 public void dropoffCar(String Reference){
2
3 int iIndex = getReservationIndex(Reference);
4 if (iIndex==−1){
5 return;
6 }
7
8 Reservation getReservation = this.reservations.get(iIndex);
9 // check if reserved car has been picked up already

10 if (getReservation.pickup!=null){
11 return;
12 }
13
14 // return reserved car to the drop−off branch
15 getReservation.dropoff.at.add(getReservation.for);
16 // remove reservation object
17 this.reservations.remove(iIndex);
18 }

Listing 2: Implementation of dropoffCar() method

More generally, due to the method of model extraction (and assuming it
was correctly implemented in our prototype tool) we can assert that model
and implementation should show the same behaviour at least for the test cases
used. In particular

– rule instances capture precisely the preconditions and effects relevant to
the invocation they are derived from, within the scope of observation;

– minimal rules capture exactly the effect of rule instances they are extracted
from;

– maximal rules subsume all rule instances they derive from, i.e., every rule
instance can be replicated as an application of the maximal rule;

– rules with multi objects and multi patterns are (more concise, but) equiv-
alent to the sets of maximal rules they derive from, i.e., by retaining the
original rules’ cardinality information they describe exactly the same set
of transformations;

– the parameter and attribute constraints derived do not invalidate any of
the rule instances their maximal rule originates from.

The fact that, in general, models are only representative of the behaviour
they were extracted from is an obstacle to some applications, such as their
use in automated verification, where contract extraction has to be followed
by a manual review and completion. In subsection 4.3 we demonstrate an
application to program understanding in the context of testing and debugging
that does not rely on completeness or correctness beyond the set of tests
executed.



Inferring Visual Contracts from Java Programs 23

(a) Rule instance extracted from lines (1-6)

(b) Rule instance extracted from lines (1-12) without line (5)

(c) Rule instance extracted from all lines except (5,11)

Fig. 11: Rule instances for dropOffCar()

4.2 Correlation between Model Accuracy and Code Coverage

In addition to the manual validation of correctness and completeness as pre-
sented in the previous section, we discuss an experiment to assess quantita-
tively the correlation between code coverage and accuracy of extracted con-
tracts. Given a test suite and system under test acting as system oracle, we



24 Abdullah Alshanqiti et al.

investigate to which extent the model oracle created by the extracted contracts
(cf. subsection 3.5) imitates the system oracle. Our hypothesis is that higher
code coverage during contract inference implies greater similarity between the
behaviours of the system and model oracles, i.e., higher accuracy of our reverse
engineered models. We use our Car Rental case study as the subject for this
experiment and present our setup and results in the remainder of this section.
Finally, threats to validity are discussed.

Experimental Setup and Results

To assess the accuracy of inferred models is a validation problem familiar in
machine learning, where models obtained from training data sets are applied
to independent validation data sets. Following a common strategy, we perform
a cross-validation using a set of system test cases and using the system itself
as a readily available test oracle. When a test case calls a system operation, we
have two kinds of expected behaviours: (i) the operation succeeds and updates
the system state or (ii) the operation is not possible in the given system state
and an exception is thrown. For the cross-validation, we split the set of test
cases into training and validation cases. Training cases are used to learn the
system model. After executing all training test cases, we extract contracts and
export the generalised rules to Henshin. Then, we set up the system state and
the corresponding model state and use the validation cases to investigate the
model. The idea is, for each test case, to classify the behaviour of the model
according to the four options of how the model oracle’s behaviour relates to
the system oracle’s behaviour:

– True Positive (TP): The system operation is possible in the given system
state (updating the system state) and the corresponding Henshin rule is
applicable on the corresponding model state.

– False Positive (FP): The system operation is not possible in the given
system state (an exception is thrown) but the corresponding Henshin rule
is applicable on the corresponding model state.

– True Negative (TN): The system operation is not possible in the given
system state (an exception is thrown) and the corresponding Henshin rule
is not applicable on the corresponding model state.

– False Negative (FN): The system operation is possible in the given system
state (updating the system state) but the corresponding Henshin rule is
not applicable on the corresponding model state.

Figure 12 illustrates the decision tree for the classification of validation
test cases. For each test case, if the test throws an exception, we check if there
is a Henshin rule modelling the system operation called by the test which is
applicable with the same actual parameters as in the test execution. If so,
the test case is classified a false positive, and as true negative otherwise. If
no exception is thrown by the test case, i.e., the system state is successfully
updated, we proceed as follows: We generate a rule instance by observing
the operation invoked by the test case and check if an equivalent minimal rule



Inferring Visual Contracts from Java Programs 25

Validation

decision

Does minimal rule exist 
in the inferred contracts

Is maximal rule 
applicable

TP (updating 
model state)

FN

FN

Is rule applicable (without 
updating model state)?

FP TN

failed (thrown an exception)successful

NoYesNo

NoYes

Yes

Fig. 12: Decision tree for the classification of validation test cases

exists in the inferred contract. If not, there is no corresponding model behavior
and the test case is classified as false negative. If there is an equivalent minimal
rule, we first identify the maximal rule corresponding to that minimal rule and
then use the Henshin rule corresponding to the identified maximal rule to apply
it with the same actual parameters as in the test execution. If the Henshin
rule is not applicable, the test case is classified as false negative. If the rule is
applicable, we update the model state by applying the rule and the test case
is classified as true positive.

To summarize the classification of all validation test cases, we calculate
precision (see Formula 1) and recall (see Formula 2) values as usual, thus
obtaining a quantitative measure of how well the model oracle imitates the
system oracle or, more generally, how accurate the generalized contracts model
the behavior of the system. A lack of precision (FPs) could be caused by non-
observed object types, missing or inadequate attribute conditions, etc., while
low recall values (FNs) could be caused by a lack of coverage of the training
test cases.

Precision :=
#TP

#TP + #FP
(1)

Recall :=
#TP

#TP + #FN
(2)

We performed the described experiment using our car rental case study.
In total we defined 120 test cases partitioned into five groups, referred to as
A-E in the sequel, where each group represents a concrete scenario of how
the system could be used. In contrast to classical k-fold cross-validation, our
groups of test cases are not of equal size because of dependencies between test
cases in the respective scenarios. We consider four splits: 1 out of 5, 2 out of
5, 3 out of 5, and 4 out of 5. For example, in the case “1 out of 5”, one group
of test cases is used as training test cases while those of the four remaining
groups are used as validation test cases. Since our test case groups are not
equally sized, each of the splits “k out of 5” is run in five rounds in which we



26 Abdullah Alshanqiti et al.

select k training test groups and use the remaining 5-k groups for validation.
To perform the experiments as described above, constraints learned by Daikon
for the generalised rules have been exported to Henshin using profile P2, i.e.,
constraints over rule parameters are used to bind the corresponding Henshin
rule parameters to rule node attributes such that concrete parameter values
can be passed to Henshin rule applications (cf. subsection 3.4).

Our results are summarised by the four tables presented in Figure 13. Each
of the tables refers to one of the “k out of 5” splits, starting with the “1 out 5
split” on top, down to the “4 out of 5” at the bottom. For each split, columns
2 to 6 show, for each of the five rounds of a split, which groups of test cases
have been selected for training and validation, respectively. In the first round
of the “1 out of 5” split, for instance, the test cases of group A have been
used for training, while those of the remaining groups have been used for
validation. The number of test cases comprised by each of the test case groups
is indicated in the respective column headers, e.g., test group A comprises 42
test cases. Precision and recall values are shown for each round in columns 7
and 8, average values aggregated for all five rounds of a split are shown in the
bottom line of the respective table. Columns 9 and 10 show the code coverage
achieved by the training cases2. Line coverage is presented in column 9, while
column 10 refers to branch coverage. Again, coverage measures are shown for
each of the five rounds of each split, summarised by an average value at the
bottom line of each table.

A first observation is that we have a constant precision of 1.0, i.e., no
false positives have been observed in our experiment which in turn means that
the generalised contracts behave correctly. Since we only exported Daikon con-
straints over parameters and attributes, we conclude that the context in which
a generalised contract rule may be correctly applied according to our test suite
is sufficiently determined by its structural precondition, restricted by actual
parameter values bound to node attributes. Indeed, reviewing the operations
of our Car Rental case study, application conditions are of structural nature
only. Taking this into account, the high precision score is not surprising, and
may not transfer to operations with complex conditions on attribute values.

A more interesting picture arises for the recall values. Average recall val-
ues for each of our four tables in Figure 13 show a strong correlation of recall
and branch coverage. We expected branch coverage to be a better indicator
for completeness of inferred contracts than line coverage. However, the fact
that both metrics show very similar measures was a positive surprise. Since
we know that a contract instance represents a path through the program, we
would have expected such a correlation for path coverage, which is generally
hard to achieve and measure. A qualitative explanation for the strong correla-
tion between completeness and branch coverage can be found by reviewing the
source code of our case study. Firstly, most operations are relatively simple,
so paths are short. Secondly, there is a small number of loops in the con-

2 We have used Cobertura, a code coverage utility for Java, to calculate the percentage of
the covered code by our tests. It is available at http://cobertura.github.io/cobertura/

http://cobertura.github.io/cobertura/


Inferring Visual Contracts from Java Programs 27

 Test group (no. of invocations) 
  

Training-test coverage 

1/5 Spilt A (42) B (22) C (22) D (18) E (16) Precision Recall Line coverage Branch coverage 

Round 1 T V V V V 1 0.32 47% 35% 

Round 2 V T V V V 1 0.47 60% 53% 

Round 3 V V T V V 1 0.71 82% 64% 

Round 4 V V V T V 1 0.71 75% 55% 

Round 5 V V V V T 1 0.55 74% 53% 
 

1 0.55 67% 52% 
 

 
Test group (no. of invocations) 

  
Training-test coverage 

2/5 Spilt A (42) B (22) C (22) D (18) E (16) Precision Recall Line coverage Branch coverage 

Round 1 T T V V V 1 0.4 68% 59% 

Round 2 V T T V V 1 0.7 87% 74% 

Round 3 V V T T V 1 0.9 87% 68% 

Round 4 V V V T T 1 0.75 76% 57% 

Round 5 T V V V T 1 0.53 87% 68% 
 

1 0.65 81% 65% 
 

 
Test group (no. of invocations) 

  
Training-test coverage 

3/5 Spilt A (42) B (22) C (22) D (18) E (16) Precision Recall Line coverage Branch coverage 

Round 1 T T T V V 1 0.62 88% 75% 

Round 2 V T T T V 1 0.83 93% 77% 

Round 3 V V T T T 1 0.78 87% 68% 

Round 4 T V V T T 1 0.82 88% 70% 

Round 5 T T V V T 1 0.55 88% 72% 
 

1 0.72 88% 72% 
 

 
Test group (no. of invocations) 

  
Training-test coverage 

4/5 Spilt A (42) B (22) C (22) D (18) E (16) Precision Recall Line coverage Branch coverage 

Round 1 T T T T V 1 0.75 94% 79% 

Round 2 T T T V T 1 0.5 94% 79% 

Round 3 T T V T T 1 0.71 88% 72% 

Round 4 T V T T T 1 1 94% 79% 

Round 5 V T T T T 1 0.8 93% 77% 
 

1 0.75 93% 77% 

T:  Training 

V:  Validation 

 

Fig. 13: Results of validation test cases, described in four tables

trol structure, i.e., a relaxed notion of path coverage based on a small upper
bound of loop executions is not very different from branch coverage. Thirdly,
for those loops that have been executed by our tests, the data operations per-
formed within are very schematic, such that extracted contract instances can
be generalised to rules with multi-objects or -patterns.

Threats to Validity

Concerning external validity, it is unclear how the results of our experiment will
translate to other applications. In particular, the source code of our case study



28 Abdullah Alshanqiti et al.

does not contain complex control structures, as they may occur in more algo-
rithmic software. In the latter case, branch coverage might be an insufficient
indicator for measuring the completeness of the (set of) extracted contracts.
However, one can argue that this problem pertains to the design of appropriate
test suites which in turn are used for learning visual contracts. In any case, we
believe that comparable results will be observed for similar applications based
on complex and dynamic object structures. Our ability to validate this claim
more widely, e.g., on the JHotDraw and NanoXML case studies, is currently
limited by the lack of test suites providing a similar level of coverage. This is
discussed further in the Conclusion.

Our results could be biased by our test setup which may threaten internal
validity. In order to execute both the training and the validation test cases,
small system states are initialised, only containing several dozens of runtime
objects which are artificially created to be appropriate for all of the tests that
will operate on them. Thus, our sample states could be too small to assess
precision. However, we confirmed our precision values by inspecting the nature
of our system operations whose preconditions are mostly of structural nature.
Thus, we are confident that similar precision values will be obtained for larger
system states.

Finally, construct validity may be affected by the way we measure the cor-
rectness of contracts, i.e., rules modelling successful operation invocations are
classified to be correct as long as they are applicable to the corresponding
model state when passing the same concrete parameters as the invocation. A
stronger notion of correctness would be that the resulting model state corre-
sponds to the altered system state obtained after executing the system oper-
ation. However, we achieve the same guarantee indirectly, by selecting a rule
from the contract that has the same effect (minimal rule) as observed during
the invocation of the operation. Assuming that minimal rules are computed
and matched correctly, this is sufficient to show that the resulting model and
system states are in correspondence.

4.3 Utility in Assessing Test Reports and Localising Faults

Using the Car Rental Service case study we conducted an experiment to eval-
uate the utility of visual contracts extracted from the execution of test cases
for analysing test reports and identifying faults. In this paper-based exercise
our hypothesis was that “visual contracts, rather than textual representations
of the same information, improve recall and accuracy of detecting faults in
test reports”. Generally, we wanted to find out how visual contracts help de-
velopers, and for which kinds of faults they are most effective.

To conduct the experiment, an implementation of the Rental Car Service
was documented in natural language, seeded with 8 faults, and provided with
several short test cases able to detect them. The documentation for two of the
operations is shown in Figure 14. Tests were executed and results recorded in
two different formats: (A) as sequences of invocations and returns of opera-



Inferring Visual Contracts from Java Programs 29

Fig. 14: Rental Car Service operations documented in natural language.

tions from the interface, with queries added to display details of the internal
state after each step (see Figure 15 (a)) and (B) as sequences of visual con-
tract instances extracted from the same invocations (see Figure 15 (b)). Both
representations are at the same level of abstraction and provide the same in-
formation, except for the last column of Figure 15 (b) referring to the lines of
code whose execution led to the presence of the objects of the contract. This
traceability data is produced and displayed also by the VCE tool.

Students were asked to (1) identify invocations where the observed be-
haviour deviated from the expected based on the documentation and (2) lo-
cate the faults responsible in the code provided. Both groups received reports
from 4 tests of up to 5 invocations each, containing a total of 20 failures to
be traced down to the 8 seeded faults. For example, the test case traced in
Figure 15 allows to detect 3 failures. In the first step, the client id returned is
incorrect (it should be Nottingham 1 ) and the cMax attribute is not increased
as required in the documentation of the operation in Figure 14. In the second
step, the Reservation reference recorded and returned should be Nottingham 3.

The 66 participating students were volunteers from an MSc module on
(UML-based design, implementation and testing of) Service-oriented Archi-
tectures running February-May 2015 at the University of Leicester. We used
data from previously submitted coursework, one on modelling and one on im-
plementation and testing, to check that the average level of qualification of
participants in both groups was comparable. The groups A and B were se-
lected randomly (handing out worksheets A and B alternatingly), resulting in
32 students in group A with an average coursework mark of 67.4% and 34 stu-



30 Abdullah Alshanqiti et al.

(a) Textual representation of test report

(b) Visual representation of test report

Fig. 15: An example of a test report used in the study, representing two similar test
invocations in different forms: textual and visual.

dents in group B with an average coursework mark of 68.1%. From the module,
and specifically the coursework on implementation and testing, students were
familiar with the concept of model-based testing of services as well as with
visual contracts as a means to specify service interfaces. The participation in
the experiment was voluntary. The Car Rental Service interface, its documen-
tation and the two types of assignments were introduced to all students in a
joint 50 min session prior to the experiment. This included running through an
example of the task in each representation. The participants then had 50 mins
under exam conditions to analyse test reports, detect and document failures
and locate the corresponding faults in the code provided.

As summarised in Table 1, Group A achieved an avg. recall of 0.215 (iden-
tifying 1.7 out of the 8 faults) and an avg. precision of 0.232 (with 1.7 correct
out of 7.4 responses). Group B had an avg. recall of 0.3 (correctly identi-



Inferring Visual Contracts from Java Programs 31

fying 2.41 out of 8) and an avg. precision of 0.35 (with 2.41 correct out of
6.88 responses). This represents a factor of improvement recall B / recall A
of 0.3/0.215 = 1.4 and precision B / precision A of 0.35/0.232 = 1.5. In both
cases, the t-test for independent two-sample experiments (for unequal vari-
ances and population sizes) showed that the results are statistically significant
with a probability (p-value) of 0.033 for recall and 0.013 for precision. The
p-value was calculated using an online tool3 for a degree of freedom of 64 (the
sum of population sizes −2), a significance level of 0.05, and a one-tailed hy-
pothesis (there is a reasonable expectation that group B would perform better
than group A). That means, assuming the null hypothesis that “the different
representations of test reports in both groups have no effect on the resulting
scores” is true, there is a 0.033 resp. 0.013 probability of observing the same
results due to random sampling error.

The effect sizes of 0.452 for recall and 0.561 for precision have been cal-
culated using Cohen’s d measure using the same online tool. This measure is
commonly used for independent samples and similar standard deviations and
populations. Values around 0.5 are considered to indicate medium effects.3

Table 1: Statistical data for groups A and B

recall precision

A mean 0.215 0.232
A std dev. 0.196 0.212
B mean 0.3 0.35
B std dev. 0.18 0.209
t-test 1.875 2.284
p-value 0.033 0.013
effect size 0.452 0.561

We investigated more closely which faults in which operations were de-
tected more frequently by which group. The numbers are too low to have
statistical significance, but suggest that the differential benefit of using visual
contracts is greater with faults that involve structural features rather than
those that concern attributes and parameter values only, such as

– makeReservation() does not check the of link between Branch and Client
object;

– dropoffCar() does not remove the Reservation object.

The visual representation seems to be less effective for detecting faults in post-
conditions than in preconditions. In fact, there are two examples of structural
postcondition faults that were detected with higher frequency by group A than
B, i.e.,

– cancelReservation() deletes all reservations for the relevant client, rather
than only the one specified by the parameter;

3 Social Science Statistics, P Value from T Score Calculator, http://www.

socscistatistics.com/pvalues/tdistribution.aspx

http://www.socscistatistics.com/pvalues/tdistribution.aspx
http://www.socscistatistics.com/pvalues/tdistribution.aspx


32 Abdullah Alshanqiti et al.

– pickupCar() does not delete the pickup link.

Indeed to understand the structural effect of a rule we have to spot the dif-
ferences between its left- and right-hand side, which can be difficult if the
structure is complex and there are several changes. This could be addressed,
for example, by using different colours to highlight changes.

The highest relative benefit of visual contracts (13 discoveries in group B
vs. 1 in group A) was observed for registerClient() (see top right of Figure 1)
where according to the documentation, the client id returned should have been
formed as city + ” ” + Branch.cMax while in fact was computed as city +
” ” + Branch.of.size() using the size of the client list rather than the next
free client number cMax. To detect this problem requires matching informa-
tion from pre and postcondition, including the navigation of the link between
Client and Branch object, and the return value. Indeed, one advantage of vi-
sual representations is that they are not linear, and so able correlate items of
information across more than one dimension.

Threats to Validity

While it is unlikely (see above) that results are due to random error, the design
of the experiment itself could have biased the outcome. The (self) selection
of participants may have resulted in groups that are not representative of the
software developers normally concerned with testing tasks or could have pro-
vided an advantage to one of the groups. However, testing is often performed
by junior developers. Many of our MSc students, mostly international with a
broad range of backgrounds, would expect to go into entry level developer roles
after graduation. As stated earlier we checked that both groups were equally
capable based on their academic performance on a related MSc module that
matched well with the expertise required in this task.

The relatively poor performance overall is a cause for concern. We believe
this is due to the limited time to understand and perform a quite complex
task, and the lack of practical experience of the participants, but also caused
by the paper-based nature of the exercise, where a debugging tool providing
similar representations in a more interactive, navigable way could improve
outcomes. It is worth stressing, however, that the study does not claim the
visual approach to be effective in absolute terms, only that it works better
than the textual one in this artificial setting. This indicates that it might
provide advantages in related practical tasks as well, but this is yet to be
demonstrated.

There could be bias in the representation of information to both groups.
Of course, since the hypothesis claims that the visual representation is more
useful, this “unfair advantage” is intended. Apart from that the information
provided is equivalent: invocations with actual parameters and returns are
shown textually in both cases, only information on the internal state (object
structure and attribute values) is represented differently, in group A by query
operations listing all accessed objects and their state and in group B by visual
contracts extracted.



Inferring Visual Contracts from Java Programs 33

The choice of case study, with its dominance of structural features and their
manipulation rather than computations on data, limit the validity of results to
just such applications. This is justified by the fact that this is the natural do-
main for visual contracts. The NanoXML and JHotDraw case studies provide
further examples of that nature.

4.4 Scalability

We use two case studies to evaluate scalability to large numbers of invoca-
tions and large object graphs. The case studies are based on NanoXML and
JHotDraw4 , both popular benchmarks for software testing and analysis, and
representative of the kind of system our method would be appropriate for,
i.e., with significant and dynamic object structures in their core model. In
NanoXML this is the object representation of the XML tree, for JHotDraw
that of graphics’ objects.

NanoXML is a small non-validating XML parser for Java, which provides a
light-weight and standard way to manipulate XML documents. We use version
2.2.1 which consists of three packages and 24 Java classes. However, we are
not interested in how NanoXML is designed and implemented in general, but
instead focus on two classes, XMLElement and XMLAttribute, which provide
the functionality to manipulate XML documents. In particular, we monitor
all XMLElement methods, executing 5605 test cases in order to evaluate the
handling of large numbers of invocations.

While substantial tests are provided with the software, the majority is not
for the two classes of interest. We therefore choose to generate our own test
suite using the CodePro test case generator5. This creates JUnit templates
that we adapted and completed manually to improve coverage. These tests
cover 2099 out of 5836 instructions. In Figure 16 we plot the time taken to
execute different batch sizes of tests, from 59 to 2183. Each test generates a
single rule instance from which minimal and maximal rules, multi-objects and
constraints are extracted. Tracing, rule instance construction and extraction
of minimal rules are essentially linear, as is the derivation of constraints and
multi objects. The construction of maximal rules requires to compare all rule
instances with shared minimal rules, which is quadratic in the number of rule
instances that share the same effect.

JHotDraw is a Java GUI framework for technical and structured graph-
ics, developed as an exercise in good software design using patterns. We
used version 5.3 which has 243 classes, focussing on the top level methods
for the manipulation of graphs, such as *.addFigure(..), *.DeleteFigure(..),
*.copyFigure(..), *.DecoratorFigure(..) and all undoable actions in *.Com-

4 See http://nanoxml.sourceforge.net/orig/ and www.jhotdraw.org/
5 A JUnit test case generator https://developers.google.com/java-dev-tools/

codepro/doc/features/junit/test_case_generation

http://nanoxml.sourceforge.net/orig/
www.jhotdraw.org/
https://developers.google.com/java-dev-tools/codepro/doc/features/junit/test_case_generation
https://developers.google.com/java-dev-tools/codepro/doc/features/junit/test_case_generation


34 Abdullah Alshanqiti et al.

Fig. 16: Scalability for extracting contracts from NanoXML

mandMenu.actionPerformed(comExe). We use GUI testing using WindowTester6

to generate test cases by recording user interactions. We executed 405 test
cases that cover 9284 of 34710 instructions. Based on the recorded test cases,
the total runtime of the extraction is about 3 hours 15 mins. Scalability is
analogous to NanoXML, see Figure 17, but the quadratic component of maxi-
mal rule extraction is less significant due to the smaller overall number of rule
instances.

Fig. 17: Scalability for extracting contracts from JHotDraw

6 A tool to record GUI tests for Swing applications, https://developers.google.com/
java-dev-tools/wintester/html/gettingstarted/swing_sampletest

https://developers.google.com/java-dev-tools/wintester/html/gettingstarted/swing_sampletest
https://developers.google.com/java-dev-tools/wintester/html/gettingstarted/swing_sampletest


Inferring Visual Contracts from Java Programs 35

Unlike NanoXML where the number of invocations / rule instances is large
but the size of each rule instance small, JHotDraw produces rule instances up
to several hundreds of objects. Table 2 shows the number of objects accessed,
number of instances, maximal rules, and rules with MO created (with total
size in terms of numbers of objects).

Table 2: JHotDraw objects accessed and processed for construction of contracts

executed instance max MO
Executed method signature objects rules rules rules

CopyCommand.execute() 20150 16(400) 3(80) 0
add(Figure) 11106 24(332) 2(26) 0
DeleteCommand.execute() 494971 15(6259) 2(828) 1 (207)
DecoratorFigure.decorate(Figure) 2215 20(90) 2(10) 0
UndoableCommand.execute() 651671 60(19060) 10(2088) 1 (209)

number (and size) of rules

Based on these results we conclude that scalability may be acceptable for
batch processing moderately sized test suites, but not necessarily for interac-
tive testing. In applications to program understanding and debugging, how-
ever, where the human effort is significant, the time taken to prepare a more
effective representation for inspection is likely to pay off, and our user study
indicates that such benefits may be expected. The number of cases where multi
objects could be identified is relatively small (2 out of 19 maximal rules) but
they covered a large number of objects that may be hard to survey without
this added level of abstraction.

A potential threat to the external validity is that we have only considered
two systems, both stimulated using test suites focussing on dynamic object
structures which might not be representative for testing the full functionality
of these systems. While we may get different results for different test suites
(and different systems), we do not see serious theats to our key finding on how
the extraction of visual contracts scales with (a) an increasing number and (b)
an increasing size of rule instances.

4.5 Summary

The overall evaluation provides some confidence in the validity of the tech-
nology, the usefulness of the results and the scalability of the tool, but these
aspects were evaluated through separate experiments on a range of different
cases. There is no direct evaluation of the usability of the tool or of the ab-
solute effectiveness of the approach in applications to program understanding
and testing because such claims are beyond the scope of the paper.

5 Further Applications

So far we have illustrated how our approach and tool can be used to aid pro-
gram understanding and visualisation of behaviour. Moreover, the integration



36 Abdullah Alshanqiti et al.

with Henshin, turning visual contracts into executable transformation rules,
allows us to evaluate and apply contracts more widely, e.g., in the context of
model-based testing [24,31].

In this section, we sketch two additional application scenarios. In Sect. 5.1,
we discuss the usage of dynamically extracted visual contracts for a new debug-
ging paradigm which can be considered as visual or model-based debugging.
Sect. 5.2 proposes an approach to generate complex model editing operations
automatically from examples.

5.1 Visual Debugging

Traditional debugging, as supported by an IDE such as Eclipse, allows pro-
grammers to interactively inspect and trace the dynamic behaviour of a pro-
gram. It requires to define, in advance, breakpoints to hold execution at a
certain point, allowing to observe and investigate accessed objects, variables
and their actual values. To apply this technique for tasks such as localising
faults, it needs sufficient precision in identifying breakpoints, which may be
an intricate task. Defining many breakpoints or a breakpoint inside a loop is
usually not practical, as it may lead to either stopping the execution many
times or observing similar details with minor differences at each stop. In the
worst case, programmers single-step through instructions and observe changes
to the program state.

Extracted visual contract instances can serve as an alternative presentation
to support visual debugging. The idea is to exploit the debugging interface pro-
vided by the Java Virtual Machine to generate program snapshots which can
be visually inspected. This raises the level of abstraction from implementation-
based debugging to model-based debugging. Accompanying trace information
finally helps to localise faults in the source code.

The advantages of debugging at the model-level have been discussed in the
literature, e.g. in [37]. Existing approaches mainly focus on debugger frame-
works for dedicated domain-specific languages and are not applicable to main-
stream Java programs. The monitoring approach presented in [22] share the
approach of using models to detect faults in the behaviour of the software, but
does not address fault localisation.

The idea of using graphical representations of dynamic object structures
for program understanding and debugging has been realised in the eDOBS
Eclipse plug-in [21], a Java debugging add-on which allows developers to in-
teractively inspect and visualize (parts of) the current heap of a Java program
at run-time as a UML object diagram. However, while this approach raises the
level of abstraction from plain programming structures to the level of UML
object diagrams, extracting the object-level changes caused, e.g., by a method
invocation, remains a tedious task which involves the manual inspection of
a potentially large number of object graph snapshots. In contrast, using rule
instances we can present the effect of a method invocation in a single visual
representation.



Inferring Visual Contracts from Java Programs 37

5.2 Learning Model Editing Operations

Complex editing operations such as model refactorings are a valuable configu-
ration parameter for many tools in Model-driven Engineering (MDE), e.g. to
continuously improve model quality using refactoring tools [7], or to describe
the changes between two versions of a model in a meaningful way [28,14].
However, MDE platforms such as the Eclipse Modeling Framework offer only
a generic low-level API for model modification. Likewise, editing operations
generated from meta-models, e.g. as proposed in [30,29], are still primitive.
Complex operations can be implemented manually or by specifying their ef-
fect as a model transformation. Both approaches require a deep understanding
of the meta-model and its relation to the concrete syntax, thus being only ac-
cessible to tool developers and language designers.

Our approach can be used to learn complex editing operations automat-
ically from examples specified by domain experts. An example of a complex
editing operation, i.e. the model states before and after a model refactoring,
can be specified using standard model editors. Example models are trans-
formed into the graph representation of the VCE tool, generalised to trans-
formation rules and finally exported to Henshin. The exported transformation
rules can be integrated as complex editing operations in model editors.

In contrast to previous “model transformation by example” proposals re-
quiring manual processing or augmentation of generated operations at the
abstract syntax level [26], our aim is to stick entirely to the concrete syntax
notation domain experts are familiar with.

While it shares some of the fundamental technology, this application di-
verges from the one in this paper in important ways. It does not rely on
extraction of contract instances from Java executions, but works on a small,
manually produced set of model transformation examples, including negative
ones where no transformation should take place. As a consequence, in [27] we
have explored alternative solutions to inferring simple attribute conditions,
but also addressed the inference of negative application conditions.

6 Related Work

To the best of our knowledge, the work presented in this paper is the first
that presents an integrated tool for inferring visual contracts with advanced
features such as multi-objects and patterns, attribute conditions, etc. from
a test executions. From a broader perspective, related tools can be found in
the wide field of reverse engineering. Among them, we particularly have to
mention tools for extracting models from implementation artefacts, e.g., for
the reverse engineering of UML sequence diagrams [48], activity diagrams [35],
entity data models from databases [33], or graph grammars representing sets
of nested call graphs [46].

Reverse engineering visual contracts is a process of inferring rules from
transformations. This has been suggested in a number of areas, including the



38 Abdullah Alshanqiti et al.

modelling of real-word business processes [13], biochemical reactions [45] and
model transformations [15]. Although related in the aim of discovering rules,
the challenges vary based on the nature of the graphs considered, e.g., di-
rected, attributed or undirected graphs, the availability of typing or identity
information, etc. We organise the discussion in two levels: the extraction of
models from implementations in general and the inference of transformation
models in particular.

6.1 Reverse Engineering of Models

Automated reverse engineering is based on static or dynamic analysis. The
static approach, exemplified by [40,38,43], examines the source code only, with
the intention of extracting all possible behaviours. This is useful for incom-
plete systems, e.g., components that cannot be executed independently [38],
but limited in its ability to detect dynamic object-oriented behaviours such
as dynamic binding. The drawback of a dynamic approach, such as ours but
also [12,49,47], is that the extracted model represents only those behaviours
that are actually executed. In particular [47] uses AspectJ for extracting a
context-free graph grammar but their use of graph grammars is for represent-
ing nested hierarchical call graphs, not to model the behaviour of the system
in terms of transformations on objects.

Approaches for inferring invariants have been considered in component-
based verification [34] and software testing, e.g., to address the test oracle
problem [10] or to generate logical test inputs [8]. We share with them the
technique of using dynamic invariant detection by Daikon [19].

6.2 Inference of Transformation Models

The generalisation of contract instances is related to the task of semi-automatically
learning rules from model transformations [26]. We go beyond this by support-
ing inference of advanced rule features such as multi-objects and multi-patterns
as well as attribute conditions. Moreover, we support a fully automated in-
ference of transformation rules, while the process presented in [26] relies on
manual interventions, e.g., to adapt inferred pre- and post-conditions.

[13] propose mining algorithms for graph transformation systems from
transition systems. Their context algorithm provides similar outputs to our
inferred maximal rule, but we differ in the strategy used. Their construction
relies on extending the minimal rule by adding matched context elements. Our
approach is the opposite, based on cutting down unmatched contexts from a
chosen rule instance, which makes it easier to maintain the graph structure as
valid against the type-graph. To the best of our knowledge, no work has been
done on inferring multi-objects and -patterns for visual contracts.

In [45] source and target graphs represent networks of biomolecules. The
authors aim to discover rules modelling reactions. They extract the minimal



Inferring Visual Contracts from Java Programs 39

rule by best sub-graph matching and adopt a statistical approach to rate
context. Our approach is simpler in that the minimal rule is determined by
tracing and we do not deal with uncertainty of context.

Considering approaches to learning model transformations [25], we distin-
guish in-place where source and target have the same metamodel and out-
place transformations where the metamodels are different [36]. For learning
out-place transformations, [15] use input-output pairs representing the result
of a transformation process rather than a single step. [20,44,9] also address the
learning of out-place transformations, while our approach focusses on in-place
transformations.

[32] also addressing the learning of in-place transformations is interactive,
requiring confirmation of the rules proposed. Our approach does not rely on
direct user involvement and, significantly, is not based on a small number
of carefully hand-crafted examples, but on large numbers of observations ex-
tracted from a running system. Therefore, scalability and the ability to deal
with example sets providing incomplete coverage are important.

7 Conclusion and Future Work

We presented an integrated approach and tool for learning visual contracts,
from instrumentation of Java code and observation of tests to the derivation of
general rules with multi-objects and -patterns as well as attribute constraints.
It supports the analysis of tests based on a concise, visual and comprehensive
representation of operations’ behaviour. We have evaluated the validity of the
resulting models, usability and scalability in experiments on three case studies.

We also reported on the integration of our tool with the Henshin model
transformation tool to simulate extracted contracts. It remains to be seen if
visual contracts, that go beyond externally observable behaviour, can improve
fault localisation. Our hypothesis is that faults leading to incorrect internal ob-
ject states could be detected immediately as deviations between the specified
and the observed object transformation, rather than later when the incorrect
data is used by another operation, thus indicating the faulty invocation more
accurately. Another line of enquiry is the use of extracted models for vali-
dation and verification using Henshin’s suite of analysis tools, which include
state space exploration, validation of invariants and detection of conflicts and
dependencies between rules.

A current limitation of our approach is its reliance on tests that provide
good coverage of the behaviours to be represented as rules. We have found that
off-the-shelf test generation approaches are not suitable to create enough of
the deep test cases we need to exercise all behaviour (see a related discussion
in [41]) and are looking at bespoke integrations supporting a cycle of model-
based test generation, test execution, and model extraction in an adaptive
testing approach.



40 Abdullah Alshanqiti et al.

Finally, we plan to explore in more detail the applications discussed in sec-
tion 5, using contract extraction to support testing and debugging as well as
the inference of model transformations from examples.

Acknowledgements We would like to thank Michel Chaudron and Neil Walkinshaw for
the valuable advice and feedback on conducting user experiments.

References

1. Alshanqiti, A., Heckel, R.: Extracting visual contracts from java programs. In: Intl.
Conf. on Automated Software Engineering, pp. 104–114. ACM (2015)

2. Alshanqiti, A.M., Heckel, R.: Towards dynamic reverse engineering visual contracts from
java. Electronic Communications of the EASST 67 (2014). URL http://journal.ub.

tu-berlin.de/eceasst/article/view/940

3. Alshanqiti, A.M., Heckel, R., Kehrer, T.: Visual contract extractor: a tool for reverse en-
gineering visual contracts using dynamic analysis. In: D. Lo, S. Apel, S. Khurshid (eds.)
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, pp. 816–821. ACM (2016).
DOI 10.1145/2970276.2970287. URL http://doi.acm.org/10.1145/2970276.2970287

4. Alshanqiti, A.M., Heckel, R., Khan, T.: Learning minimal and maximal rules from
observations of graph transformations. Electronic Communications of the EASST 58
(2013)

5. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
concepts and tools for in-place EMF model transformations. In: Proc. 13th Intl. Conf.
on Model Driven Engineering Languages and Systems, pp. 121–135 (2010). DOI 10.
1007/978-3-642-16145-2 9. URL http://dx.doi.org/10.1007/978-3-642-16145-2_9

6. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced con-
cepts and tools for in-place EMF model transformations. In: D.C. Petriu, N. Rouquette,
Ø. Haugen (eds.) Model Driven Engineering Languages and Systems - 13th International
Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I, Lec-
ture Notes in Computer Science, vol. 6394, pp. 121–135. Springer (2010). DOI 10.1007/
978-3-642-16145-2 9. URL http://dx.doi.org/10.1007/978-3-642-16145-2_9

7. Arendt, T., Taentzer, G.: A tool environment for quality assurance based on the eclipse
modeling framework. Automated Software Engineering 20(2), 141–184 (2013)

8. Artzi, S., Ernst, M.D., Kieżun, A., Pacheco, C., Perkins, J.H.: Finding the needles in
the haystack: Generating legal test inputs for object-oriented programs. In: Proc. 1st
Workshop on Model-Based Testing and Object-Oriented Systems (2006)

9. Balogh, Z., Varr, D.: Model transformation by example using inductive logic program-
ming. International Journal - Software and Systems Modeling 8(3), 347–364 (2009)

10. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in
software testing: A survey. IEEE Trans. Software Eng. 41(5), 507–525 (2015). DOI
10.1109/TSE.2014.2372785

11. Bisztray, D., Heckel, R., Ehrig, H.: Verification of architectural refactorings: Rule ex-
traction and tool support. ECEASST 16 (2009)

12. Brito, H., Marques-Neto, H., Terra, R., Rocha, H., Valente, M.: On-the-fly extraction of
hierarchical object graphs. Journal of the Brazilian Computer Society pp. 1–13 (2012)

13. Bruggink, H.: Towards process mining with graph transformation systems. In: H. Giese,
B. Knig (eds.) Graph Transformation, Lecture Notes in Computer Science, vol. 8571, pp.
253–268. Springer International Publishing (2014). DOI 10.1007/978-3-319-09108-2 17.
URL http://dx.doi.org/10.1007/978-3-319-09108-2_17

14. Bürdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U., Schürr, A.: Reasoning about
product-line evolution using complex feature model differences. Automated Software
Engineering pp. 1–47 (2015)

http://journal.ub.tu-berlin.de/eceasst/article/view/940
http://journal.ub.tu-berlin.de/eceasst/article/view/940
http://doi.acm.org/10.1145/2970276.2970287
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-319-09108-2_17


Inferring Visual Contracts from Java Programs 41

15. Dolques, X., Dogui, A., Falleri, J.R., Huchard, M., Nebut, C., Pfister, F.: Easing model
transformation learning with automatically aligned examples. In: Proceedings of the
7th European conference on Modelling foundations and applications, ECMFA’11, pp.
189–204. Springer-Verlag, Berlin, Heidelberg (2011)

16. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-
formation. Springer (2006)

17. Engels, G., Lohmann, M., Sauer, S., Heckel, R.: Model-driven monitoring: An appli-
cation of graph transformation for design by contract. In: A. Corradini, H. Ehrig,
U. Montanari, L. Ribeiro, G. Rozenberg (eds.) Graph Transformations, Third Interna-
tional Conference, ICGT 2006, Natal, Rio Grande do Norte, Brazil, September 17-23,
2006, Proceedings, Lecture Notes in Computer Science, vol. 4178, pp. 336–350. Springer
(2006). DOI 10.1007/11841883 24. URL http://dx.doi.org/10.1007/11841883_24

18. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao,
C.: The daikon system for dynamic detection of likely invariants. Science of Computer
Programming 69(13), 35 – 45 (2007). DOI http://dx.doi.org/10.1016/j.scico.2007.01.
015. URL http://www.sciencedirect.com/science/article/pii/S016764230700161X.
Special issue on Experimental Software and Toolkits

19. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao,
C.: The daikon system for dynamic detection of likely invariants. Science of Computer
Programming 69(1-3), 35 – 45 (2007). DOI http://dx.doi.org/10.1016/j.scico.2007.01.
015. URL http://www.sciencedirect.com/science/article/pii/S016764230700161X

20. Faunes, M., Sahraoui, H., Boukadoum, M.: Generating model transformation rules from
examples using an evolutionary algorithm. In: Proceedings of the 27th IEEE/ACM Intl.
Conf. on Automated Software Engineering, pp. 250–253. ACM (2012)

21. Geiger, L., Zündorf, A.: edobs-graphical debugging for eclipse. Electronic Communica-
tions of the EASST 1 (2007)

22. Hamann, L., Hofrichter, O., Gogolla, M.: Ocl-based runtime monitoring of applications
with protocol state machines. In: Proc. 8th European conference on Modelling founda-
tions and applications, pp. 384–399 (2012). DOI 10.1007/978-3-642-31491-9 29. URL
http://dx.doi.org/10.1007/978-3-642-31491-9_29

23. Hausmann, J.H., Heckel, R., Lohmann, M.: Model-based development of web services
descriptions enabling a precise matching concept. Int. J. Web Service Res. 2(2), 67–
84 (2005). DOI 10.4018/jwsr.2005040104. URL http://dx.doi.org/10.4018/jwsr.

2005040104

24. Heckel, R., Lohmann, M.: Towards contract-based testing of web services. Electronic
Notes in Theoretical Computer Science 116, 145 – 156 (2005). DOI http://dx.doi.org/
10.1016/j.entcs.2004.02.073. URL http://www.sciencedirect.com/science/article/

pii/S1571066104052831

25. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Conceptual
modelling and its theoretical foundations. In: A. Düsterhöft, M. Klettke, K.D. Schewe
(eds.) Conceptual Modelling and Its Theoretical Foundations, chap. Model transfor-
mation by-example: a survey of the first wave, pp. 197–215. Springer-Verlag, Berlin,
Heidelberg (2012)

26. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model trans-
formation by-example: a survey of the first wave. In: Conceptual Modelling and its
Theoretical Foundations, pp. 197–215. Springer (2012)

27. Kehrer, T., Alshanqiti, A.M., Heckel, R.: Automatic inference of rule-based specifica-
tions of complex in-place model transformations. In: Theory and Practice of Model
Transformation - 10th International Conference, ICMT 2017, Held as Part of STAF
2017, Marburg, Germany, July 17-18, 2017, Proceedings, pp. 92–107 (2017). DOI
10.1007/978-3-319-61473-1 7. URL https://doi.org/10.1007/978-3-319-61473-1_7

28. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the semantic lifting of
model differences in the context of model versioning. In: 26th Intl. Conf. on Automated
Software Engineering, pp. 163–172 (2011)

29. Kehrer, T., Rindt, M., Pietsch, P., Kelter, U.: Generating edit operations for profiled
UML models. In: Proc. Intl. Workshop on Models and Evolution, CEUR Workshop
Proceedings, vol. 1090, pp. 30–39 (2013)

http://dx.doi.org/10.1007/11841883_24
http://www.sciencedirect.com/science/article/pii/S016764230700161X
http://www.sciencedirect.com/science/article/pii/S016764230700161X
http://dx.doi.org/10.1007/978-3-642-31491-9_29
http://dx.doi.org/10.4018/jwsr.2005040104
http://dx.doi.org/10.4018/jwsr.2005040104
http://www.sciencedirect.com/science/article/pii/S1571066104052831
http://www.sciencedirect.com/science/article/pii/S1571066104052831
https://doi.org/10.1007/978-3-319-61473-1_7


42 Abdullah Alshanqiti et al.

30. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the specification
of model editing operations from meta-models. In: Proc. 9th Intl. Conf. on Model
Transformations, pp. 173–188. Springer (2016)

31. Khan, T.A., Runge, O., Heckel, R.: Testing against visual contracts: Model-based cov-
erage. In: Proc. Intl. Conf. on Graph Transformation, pp. 279–293 (2012)

32. Langer, P., Wimmer, M., Kappel, G.: Model-to-model transformations by demonstra-
tion. In: L. Tratt, M. Gogolla (eds.) Proceedings of the Third international conference
on Theory and practice of model transformations, Lecture Notes in Computer Science,
vol. 6142, pp. 153–167. Springer Berlin Heidelberg (2010)

33. Malpani, A., Bernstein, P., Melnik, S., Terwilliger, J.: Reverse engineering models from
databases to bootstrap application development. In: Proc. 26th Intl. Conf. on Data
Engineering, pp. 1177–1180 (2010). DOI 10.1109/ICDE.2010.5447776

34. Mariani, L., Pezzè, M.: A technique for verifying component-based software. Electr.
Notes Theor. Comput. Sci. 116, 17–30 (2005). DOI 10.1016/j.entcs.2004.02.089. URL
http://dx.doi.org/10.1016/j.entcs.2004.02.089

35. Martinez, L., Pereira, C., Favre, L.: Recovering activity diagrams from object oriented
code: an mda-based approach. In: Proc. Intl. Conf. on Software Engineering Research
and Practice, vol. 1, pp. 58–64 (2011)

36. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes Theor.
Comput. Sci. 152, 125–142 (2006)

37. Pavletic, D., Voelter, M., Raza, S.A., Kolb, B., Kehrer, T.: Extensible debugger frame-
work for extensible languages. In: Reliable Software Technologies–Ada-Europe 2015,
pp. 33–49. Springer (2015)

38. Rountev, A., Volgin, O., Reddoch, M.: Static control-flow analysis for reverse engineering
of uml sequence diagrams. SIGSOFT Softw. Eng. Notes 31(1), 96–102 (2005)

39. Runge, O., Khan, T.A., Heckel, R.: Test case generation using visual contracts. ECE-
ASST 58 (2013)

40. Sarkar, M.K., Chatterjee, T., Mukherjee, D.: Reverse engineering: An analysis of static
behaviors of object oriented programs by extracting uml class diagram. International
Journal of Advanced Computer Research 3(3) (2013)

41. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do auto-
matically generated unit tests find real faults? an empirical study of effectiveness and
challenges (T). In: M.B. Cohen, L. Grunske, M. Whalen (eds.) 30th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2015, Lincoln, NE,
USA, November 9-13, 2015, pp. 201–211. IEEE Computer Society (2015). DOI
10.1109/ASE.2015.86. URL https://doi.org/10.1109/ASE.2015.86

42. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy, M.:
Henshin: A usability-focused framework for emf model transformation development.
ICGT (2017)

43. Tonella, P., Potrich, A.: Reverse engineering of the interaction diagrams from c++ code.
In: Software Maintenance, 2003. ICSM 2003. Proceedings. International Conference on,
pp. 159–168 (2003)

44. Varró, D.: Model transformation by example. In: Intl. Conf. on Model Driven Engineer-
ing Languages and Systems, pp. 410–424. Springer (2006)

45. You, C.h., Holder, L.B., Cook, D.J.: Learning patterns in the dynamics of biological
networks. In: Intl. Conf. on Knowledge Discovery and Data Mining, pp. 977–986. ACM
(2009)

46. Zhao, C., Kong, J., Zhang, K.: Program behavior discovery and verification: A graph
grammar approach. IEEE Trans. Software Eng. 36(3), 431–448 (2010)

47. Zhao, C., Kong, J., Zhang, K.: Program behavior discovery and verification: A graph
grammar approach. IEEE Transactions on Software Engineering 36(3), 431–448 (2010)

48. Ziadi, T., Da Silva, M.A.A., Hillah, L.M., Ziane, M.: A fully dynamic approach to the
reverse engineering of UML sequence diagrams. In: Proc. Intl. Conf. on Engineering of
Complex Computer Systems, pp. 107–116 (2011)

49. Ziadi, T., Da Silva, M.A.A., Hillah, L.M., Ziane, M.: A fully dynamic approach to the
reverse engineering of uml sequence diagrams. In: 16th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS), pp. 107–116. IEEE (2011)

http://dx.doi.org/10.1016/j.entcs.2004.02.089
https://doi.org/10.1109/ASE.2015.86

