
Noname manuscript No.
(will be inserted by the editor)

A Model-Driven Framework for Developing
Android-based Classic Multiplayer 2D Board Games

Mohammad Derakhshandi · Shekoufeh
Kolahdouz-Rahimi · Javier Troya ·
Kevin Lano

Received: date / Accepted: date

Abstract Mobile applications and game development are attractive fields
in software engineering. Despite the advancement of programming languages
and integrated development environments, there have always been many chal-
lenges for software and mobile game developers. Model-Driven Engineering
(MDE) is a software engineering methodology that applies software modeling
languages for modeling the problem domain. In this paradigm, the code is
to be automatically generated from the models by applying different model
transformations. Besides, manipulating models instead of code facilitates the
discovery and resolution of errors due to the high level of abstraction. This
study presents an approach and framework, called MAndroid, that generates
Android-based classic multiplayer 2D board games in a fully automated fash-
ion, relying on the concepts of MDE. Structural and behavioral dimensions
of the game are first modeled in MAndroid. Models are then automatically
transformed to code that can be run on any mobile phone and tablet run-
ning Android 4.4 or higher. In order to evaluate the proposed approach, three
board games are fully implemented. Additionally, applicability, developer per-
formance, simplicity and attractiveness of MAndroid are evaluated through
a set of questionnaires. MAndroid is also evaluated technically by comparing

M. Derakhshandi and Shekoufeh Kolahdouz Rahimi
MDSE Research Group,
Dept. of Software Engineering,
University of Isfahan, Isfahan, Iran
E-mail: m.derakhshandi71@gmail.com, E-mail: sh.rahimi@eng.ui.ac.ir

Javier Troya
SCORE Lab, I3US Institute
Universidad de Sevilla, Seville, Spain
E-mail: jtroya@us.es

Kevin Lano
Department of Informatics,
King’s College London, UK
E-mail: kevin.lano@kcl.ac.uk

The final version is published on Springer's website:
https://link.springer.com/article/10.1007/s10515-021-00282-1



2 Mohammad Derakhshandi et al.

it to other Android game-development frameworks. Results demonstrate the
benefits of using MAndroid.

Keywords Model Driven · Android · 2D Games · Board Games · Multiplayer
Games.

1 Introduction

The mobile software development industry has been experiencing a significant
growth since the increasing demand in using smartphones [1]. Due to the ex-
istence of different platforms and devices, the industry has faced a variety of
challenges, such as time constraints in releasing smartphones applications in
the market [2]. The mobile game industry is one of the most popular sectors in
software industry, which typically requires large teams composed of members
with different specializations for developing sophisticated games [3]. Although
game engines have been able to reduce some of their complexities, game devel-
opment continues to be a complex and time-consuming process that requires
many resources [4].

Model-Driven Engineering (MDE) is a methodology targeting at dealing
with the system at a high level of abstraction by using models and domain-
specific modeling languages and automatically generating code by applying
different model transformations [5]. Models can be reused across similar prob-
lems by only applying slight changes [5]. Applying model-driven techniques
reduces the complexity in game development by setting the focus at a higher
level of abstraction than when programming the game [6].

Android is an open-source operating system for mobile phones, developed
by Google [7], which has become the most popular mobile platform nowa-
days [8]. In this paper, a comprehensive approach for automatic generation of
Android-based classic multiplayer 2D board games is presented. The domain
of board games is widespread nowadays, and it is not trivial to set its bound-
aries. In this research we focus on classic board games, understood as those
that exist for a long time and are played on wooden (or similar materials)
boards with beads and dice [9]. Additionally, we focus on multiplayer games
that are run on a single mobile phone—a classification of multiplayer games
is provided in the background section. In this type of games, two-dimensional
graphics are used to represent images and animations. Narrowing the type of
game allows to generate 100% correct code by applying an MDE methodology.
Our approach is supported by a framework called MAndroid. The approach
is divided into two general stages. The first stage deals with the modeling of
the menu and user interface (UI) of the game, while in the second stage the
structure and behavior of the game are modeled. The game menu is a set of
graphic elements that build the UI without considering the type and style of
game. It is created from a set of pages and every page contains a set of graphic
elements. Our approach proposes a novel method for designing these pages.
Arrangement possibilities of graphic elements provide a convenient way for
designing the UI by considering the concepts related to UI design in Android,



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 3

such as layouts. The structural properties of the games have been defined in
a so-called structural metamodel, by considering different elements such as
board, tile, dice and player. This is followed by establishing the behavioral
properties, in which the rules and methods for the interaction between players
and the structural properties of the game are defined.

The metamodeling language Ecore has been used to build the metamod-
els in our approach. Ecore is integrated in the Eclipse Modeling Framework,
which makes it possible to use any Eclipse-based tool [10]. For instance, the
Acceleo model-to-text transformation language has been used for the auto-
matic transformation of Ecore models to Android code [11]. As a final step
of the process, the generated code can be compiled in an Integrated Devel-
opment Environment such as Android Studio to build an executable Android
application.

The MAndroid approach and framework are evaluated from different per-
spectives. First, three classic multiplayer 2D board games, namely Backgam-
mon, Othello and Tic-Tac-Toe, have been fully implemented using the frame-
work. Also, a practical workshop was conducted, in which Tic-Tac-Toe was
developed by a number of graduate and post-graduate students using our
MAndroid platform. Some questionnaire forms were designed so that students
and some Android experienced programmers could evaluate the advantages
and disadvantages of the provided framework in comparison to other game
development frameworks. The Spearman’s correlation coefficient is applied to
measure the linear relationship between variables. This indicates the positive
or negative effect of two variables on each other. Results of the evaluation show
the effectiveness of MAndroid in developing Android-based classic multiplayer
2D board games.

The remaining of this paper is organized as follows. Section 2 sets the
context of this research by presenting its background. Section 3 compares our
proposal with several related works. Then, Section 4 explains the proposed
MAndroid approach and framework. The evaluation of MAndroid is explained
in Section 5, while Section 6 presents its results. Finally, Section 7 concludes
the paper and describes future works.

2 Background

This section provides a general overview and sets the context of our approach.
First, a general description of video games is provided, followed by a summary
of Android concepts. The section ends with an introduction to MDE and its
main concepts.



4 Mohammad Derakhshandi et al.

2.1 Video Games

A game is a physical or mental competition, which is based on the sets of
rules for achieving a specific goal [12]. Video games1 are applications devel-
oped for personal entertainment that are based on the interaction of one or
more persons with electronic devices such as personal computers, mobiles or
game consoles. In most cases, computer games provide virtual environments,
which enable players to control one or more characters based on the game
goal [2]. Due to the existence of different platforms, programming languages
and technologies, developing video games is a complicated task [13]. For game
development, it is essential to count on people with different background and
expertise in the teams, including designers of game story, graphic designers,
stage designers and, of course, programmers. It would be a challenging task to
develop a game if there was not a consistent and close collaboration between
team members [14]. Therefore, to enable convenient ways of game develop-
ment, different tools like game creation tools and game engines have been
created and put available in the market. These tools enable to design games
for different platforms. Some popular engines are GameSalad, GameMaker,
Unity and Unreal [15].

Despite these game tools provide some facilities to users, they also have
some limitations. In most cases it is not a trivial task to learn to work with such
engines, specially for elementary users [15]. Additionally, the code generated
by such engines is very generic and the user needs to change some parts of the
code to make it applicable for a particular game and platform [16]. The main
focus of these engines is on characters and game stages, while they do not
concentrate on other parts of the game such as the menu. Therefore, in most
cases the games follow the same structure in terms of menu and appearance if
they are developed with such engines [15].

2.1.1 Classification of Video Games

In most related works, video games are classified according to their style and
graphics. However, in this paper, apart from the style and graphics, the number
of players is also considered. In the following, three different dimensions for
video games are described:

– Classification based on game graphics. In this classification games are
categorized into two dimensions (2D) and three dimensions (3D). 2D games
have length and width as physical dimensions, which lie on the flat surface.
3D games, in turn, have weight or height as a third dimension. Applying
an additional dimension to present elements in 3D games provides more
realistic and natural presentation of the elements [17].

– Classification based on game style. In this category, games are divided
into different parts based on their goal, the type of interaction of players

1 Throughout this paper, we refer to video games also as computer games or simply games



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 5

with the game and the angle of player vision. Some of the most popu-
lar game styles for players are Role Playing, Shooter, Board, Simulation,
Adventure, Educational based, Platform and Strategic [17,4].

– Classification based on the number of players. In this category,
games are classified according to the number of players that can com-
pete or collaborate in the game at the same time. Games are classified as
one-player or multiplayer. Multiplayer games are typically divided in two
types. While some games are run on a single device, some others are run
on a network [17,4].

In this paper we concentrate on classic multiplayer 2D board games that are
run on the same device with a shared screen page. By limiting the research to
one category of classic board game, it will be possible to generate 100% correct
code by using an MDE approach. The investigation of other multiplayer games
is left as future work.

2.1.2 Board Games

A classic board game or a table game is a type of game played on a board. This
kind of games has been designed since the ancient time. With the advent of
computers and computing platforms, board games started to have their virtual
version as computer games, and they started to get popular among different
types of players. With the advances in computing technologies and the creation
of new platforms, these virtual board computer games implementations spread
across different platforms, reaching inevitably mobile platforms as well [9].

In this type of virtual games, pieces are placed on a board based on a
predefined set of rules. Game rules define the goals that players must achieve,
such as defeating the opponents, wining a physical position or earning points.
Although simple rules are commonly defined for this type of games, users
require thoughtful strategies to win the game. Board and pieces are the main
elements of any classic board game. Additionally, dice and cards are typically
used to provide games with randomness and are important. Also, players in
board games get to take their turn [9].

Three different categories have been defined for classic board games. War
type is the first category, in which the main goal is to reach the opponent
or destroy the opponent’s pieces. Popular games in this category are Chess
and Go. In the second category, named race games, the goal is to reach a
specific position on the board, such as in Backgammon and Marpele games. In
the third category, so-called alignment category, players focus on generating a
particular pattern on a board. Tic-Tac-Toe is one of the most-played games
in this category [9]. Our approach considers these three categories of classic
board games.

Please note there are many more board game categories other than the ones
considered in this approach. For instance, we do not consider games such as
Monopoly, where cards are used, or games like Carcassonne, where the board
construction is an integrated part of the game. In this paper we only focus on
classic board games.



6 Mohammad Derakhshandi et al.

2.2 Android Overview

Android is an open-software stack system based on a Linux Kernel, which is
primarily designed for portable devices like smartphones and tablets. Nowa-
days, it is getting more popular and is being applied in different devices such
as smart TVs, automobiles and smart watches. Android is an operating sys-
tem very popular in the market, with 29 different versions as of 2015 [18]. This
paper is focused on the automatic generation of code for classic multiplayer
2D board games in the Android platform.

The Android architecture includes the Linux kernel, Hardware Abstrac-
tion Layer, Android Runtime, Native C/C++ Libraries, Java API Framework
and the applications layer, which is on top of all those layers. The layers are
integrated to provide application development and execution environment on
mobile devices [18,19]. There are five fundamental elements for development
of Android applications [19]:

– Management of Activity and Fragment. These two elements are used for
developing application user interfaces. The application life cycle is related
to the life cycle of Activity and Fragment.

– View. This element is used for creation of user interface component in the
page.

– Notification Management. This element manages notifications, which are
sent from the application to the users.

– Content provider. It enables different applications to share their data.
– Resource management. This element enables to apply other resources to

code, such as graphics and strings.
– Intent. It presents a mechanism to transform data between applications

and components.

2.3 Model-Driven Engineering

Model-driven engineering (MDE) is a revolutionary paradigm for development
of software engineering artifacts. The main artifact in this methodology is the
model. A model is a representation of the system at a right level of abstraction.
Using models and focusing on a higher level of abstraction than the code
provides a better understanding in the stages of design and implementation [5].
Additionally, the number of faults, development time and costs are decreased
using this paradigm [15].

Figure 1 presents the common MDE methodology in which the Computa-
tional Independent Model (CIM) of the system is firstly defined. This model
is designed by domain experts and modelers after analyzing the system re-
quirements. Following this stage, the Platform Independent Model (PIM) with
more details is generated by applying corresponding model-to-model transfor-
mations. This model requires to be refined for the later generation of the
appropriate code. With this aim, by applying different transformations to this
model, the Platform Specific Model (PSM) is generated, which contains details



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 7

Computation 
Independent 

Model

Model-To-Model 
Platform 

Independent 
Model

Platform 
Specific Model

Platform 
Executable 

Code

Model-To-Model Model-To-Code

Transformation Transformation Transformation

Fig. 1: Architecture of MDE [5]

of the implementation platform. Finally, it is possible to generate code from
this model by applying different model-to-text transformations [15].

2.3.1 DSLs vs GPLs in MDE

It is possible to model a system using general purpose languages (GPL) like
UML or domain-specific languages (DSL), which are targeted at specific do-
mains.

DSLs are closer to the problem domain and designed for particular purposes
at a high level of abstraction. With the advent of MDE technologies, DSLs
are developed in industrial and academic organizations for tackling specific
issues [20]. For instance, in [21] a DSL for automatic generation of Android
location-based applications is developed. It is less productive for a novice user
to use a GPL like UML for modeling Android location-based concepts, since
they need to spend more time to get domain-specific knowledge. DSLs have
three main parts, namely abstract syntax, concrete syntax and semantics.
The abstract syntax identifies the language concepts and the relation between
them, they are expressed through metamodels. The concrete syntax defines
sets of rules for presentation of the abstract syntax. Finally, semantics provide
an understanding and appropriate meaning of the language [22], and a way to
express it is by means of model transformations.

2.3.2 Metamodels in MDE

As in programming languages each program follows the grammar of the lan-
guage, in MDE a model needs to follow the rules and constrains of a meta-
model, which defines the abstract syntax of the language. A model must con-
form to a metamodel, which has higher abstraction level than the model [15].
Eclipse Modeling Framework (EMF) is a commonly used modeling framework
for definition of metamodels [23], and it is the one used in our approach.

2.3.3 Model Transformations in MDE

A model transformation is a mapping from an input artifact to an output
artifact considering sets of predefined rules. Four types of transformation are
defined in MDE, which include model-to-model, model-to-text, text-to-model
and text-to-text transformations [24]. Transformations play a cornerstone role



8 Mohammad Derakhshandi et al.

in MDE, since the correctness of the software artifacts produced by model
transformations depends on the correctness of model transformations them-
selves.

In a model-to-model transformation process, one or more input models,
which conform to one or more input metamodels, are transformed to one or
more target models that conform to one or more target metamodels. Trans-
formation rules are executed by a transformation engine and need to conform
to the model transformation language [25]. Regarding model-to-text transfor-
mations, they take one or more models as input and generate one or more text
artefacts. They are typically based on the use of templates [26].

2.3.4 Acceleo Framework

Acceleo is an open-source technology and a practical implementation of the
MOFM2T model-to-text transformation language. This technology provides
a pattern-based language for defining patterns and code generation environ-
ments. Acceleo has a text editor, which is added as an Eclipse plugin to enable
functionality for instruction highlighting, error discovering, content assist and
code completion, among others. Profiler is an alternative feature in Acceleo,
which presents the number and time of executed instructions within a trans-
formation [27]. Acceleo is the technology used in our approach to define and
execute model-to-text tranformations.

3 Related Work

Before presenting our approach, let us present some related works. We divide
them in two blocks. The first one includes works related to the application
of MDE for development of Android applications, while the second block de-
scribes works that apply MDE for the development of 2D games.

3.1 Applying MDE for development of Android applications

After the release of the first official Android operating system, several papers
have been published for applying MDE in the design and implementation of
Android applications. In [28], 30 studies that applied MDE for development of
mobile application are investigated. Among these studies, 11 MDE techniques,
21 tools and 8 modeling languages are identified. The authors classified the se-
lected studies based on different criteria, including mobile platform supporting,
modelling and transformation technologies. The paper identifies the potential
application of MDE for automatic generation of Android-based applications
in different domains. Usman et al. [29] introduced a method for automatic
development of cross-platform mobile phone applications. In this paper, each
application is modeled both statically and dynamically. In the static vision, the
structural features of the system are emphasised using class diagrams, while



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 9

in the dynamic vision, dynamic behaviors of the system by using state ma-
chines are modeled. Heitkotter et al. [30] proposed the MD2 approach, which
provides an automatic generation of Android applications for different plat-
forms. In this approach, the application is modeled using a DSL, and then the
code is generated automatically for the corresponding target platform. In [31]
an automatic approach is proposed for modeling the application’s structure
and behavior using class and sequence diagrams, respectively. GenCode [32] is
applied for the generation of Android code.

The Applang DSL for description of features in Android applications is
presented in [33]. Additionally, Ko et al. [34] extended the UML standard to
support modeling features of Android applications. However, code generation
is not the main focus in these two papers. Automatic generation of user inter-
faces for Android applications by focusing on object diagrams using platform-
independent models (PIM) is presented in [35]. The PIM is transformed to
the platform-specific model (PSM) and then, by using different model-to-text
transformations, the graphical user interface of the Android application is gen-
erated automatically. A DSL for automatic generation of GUI independent of
the target platform is introduced in [36]. However, the approach is limited
to support GUI features and currently supports Android platform. Lachgar
and Abdali [37] introduced a new approach for modeling and automatically
generating sensor-based mobile phone applications. A metamodel specific to
this domain is developed. In [21] a model-driven framework for automatic
generation of location-based application is developed. It allows novice users
to develop an application and customize it according to their specific require-
ments. The framework is equipped with a DSML, graphical editor and eclipse
plugin for generation of final application from models. The generalizability of
the framework is presented by developing four industrial location-based ap-
plications. Additionally, the usability of the approach is proved through three
experiments.

In [38], the authors propose a model-driven framework of MAML in a
platform-agnostic fashion with the aim of simplifying the technical complexity
by introducing a graphical-domain specific language. This framework enables
automatic generation of code for different platforms including Android. The
provided functionalities of this framework are limited and further extensions
are required for it to become more applicable. A modeling language is in-
troduced in [39] to enable automatic generation of native Android and iOS
applications. In this approach it is possible to model the layout and behav-
ior of applications. However, the proposed metamodels are limited and some
features are not supported. In [40] an MDA approach for development of mo-
bile application by focusing on data access design is presented. The concepts
of data persistence are considered in this research to achieve an offline ap-
plication. Transformation rules provide automatic generation of Android and
Windows phone applications with respect to data persistence and provider
metamodels.



10 Mohammad Derakhshandi et al.

3.2 Applying MDE for development of 2D games

In [2] an MDE approach for the automatic generation of 2D games in dif-
ferent platforms by considering five different styles is proposed. The Gade4all
graphical tool is developed to provide a user friendly environment that enables
users to implement features and rules of the game without writing any line
of code. Additionally, it is possible to edit and change the generated code.
However, there is no evaluation in this paper to reflect the effectiveness of the
proposed approach. Additionally, it does not consider multiplayer games and
the provided metamodel is specific to five particular types of games. Some
issues are addressed in [15], where the architectural concepts of MDE are con-
sidered deeply and a graphical DSL is developed. More information about the
transformations is provided, and the evaluation identifies the positive features
of this approach. However, this research is also limited to five specific styles
and a single-player game.

Sanchez at al. [16] used MDE and DSL techniques for automatic generation
of cross-platform applications for tower defense games. In this approach, the
dynamic and structural behavior of the system are separated and implemented
using a textual DSL. The structural and behavioural models are merged and
the architecture model of the system is generated. The code is then provided
using model-to-text transformations. ATL, EGL and Xtext languages are used
as model transformation languages. The evaluation is based on the portability
and productivity of the approach. However, in this approach a graphical DSL
is not provided, which may make it difficult for some users to use it. Sup-
porting a single style of the game is an alternative limitation in this research.
Additionally, the metamodel is not complete and it is not possible for the
user to add new constraints in the game. Considering test cases with different
constraints would enhance the applicability of this approach.

PhyDSL, for designing 2D physics-based games, is developed in [41]. It is
possible to generate semi-automatic Android code in this platform. This ap-
proach enables the user to create a prototype of the game before delivering
the product to the market. However, a graphical user interface is not provided
for this approach, which makes it difficult for the users to work with it. Addi-
tionally, supporting different event controlling for touching screen pages such
as Long Touch, Double Tap and Swipe are not provided. It only covers one
style of game and a comprehensive evaluation to highlight the strength of the
approach is not provided. This is a semi-automated approach and does not
provide enough test cases. Marques et al. [42] proposed an approach for the
generation of the RPG games for mobile phones. The game is developed by
domain analysis, design and implementation in this approach. The proposed
metamodel is based on the concept and logic of the games. Additionally, ap-
propriate model-to-model and model-to-text transformations using ATL and
Xpand are provided. However, there is no case study in this research to eval-
uate the effectiveness of the approach. Furthermore, this approach does not
cover multiplayer games. Finally, it is a semi-automatic approach and the
complete code is not generated.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 11

Table 1: Comparing MAndroid with other approaches

Paper DSL Case 100% Android Board Multiplayer Evaluation
study code support games game

generation support support

[2] 7 3 3 3 7 7 7
[6] 3 3 7 7 7 7 3
[15] 3 3 3 3 7 7 3
[16] 7 7 3 3 7 7 3
[41] 7 7 7 3 7 7 3
[42] 3 7 7 3 7 7 7
[43] 3 7 7 7 3 7 7
[44] 3 7 7 7 7 7 3
MAndroid 3 3 3 3 3 3 3

A simple DSL for 2D games is proposed by Hernandez and Ortega [6]. A
graphical tool is generated in this approach. It is evaluated using time and
LOC features. However, no particular style is selected in this approach, there-
fore the generated code is not complete and it needs some modifications for
completion. Altunbay et al. [43] applied MDE for generating 2D board games.
The modeling language and model-to-text transformations are provided in this
research. The chess game is implemented and sets of patterns are applied to
provide the code automatically. However, the provided metamodel is not spe-
cific to the mobile domain. Therefore, the generated code is not complete and
it requires some changes to be adapted to a particular domain. The evaluation
is a bit incomplete, with only one case study provided.

Reyno and Cubel [44] proposed a new approach for developing 2D games
using MDE techniques. In this approach, first the PIM of the game is de-
veloped, which abstracts structure and behavior of the game. Then the PIM
is transformed to a PSM. Following this, a prototype of the game is created
and finally the C++ code is generated semi-automatically. The structure of
the game is modeled with class diagrams, while the behavior is modeled with
state machines. Two instances of a game are implemented using this approach.
However, the provided graphical tool in this approach does not cover the be-
havior of the game. This approach is not specific to mobile platforms and
therefore the code requires modification. Additionally, it only supports single-
player games.

In summary, although different approaches have been proposed for applying
MDE concepts in the development of 2D games, the proposed metamodels are
typically not comprehensive and therefore the generated code is not complete
[16] [41] [42] [6] [43] [44]. Additionally, in some cases the approach is not
limited particularly to Android [43] [44] [6]. Only in [44] the board game is the
main focus of the research, but only from a structural dimension. The provided
evaluations in most of the approaches are not comprehensive and do not reflect
their effectiveness [16] [41] [42] [2]. None of the aforementioned approaches
focus on multiplayer games. Furthermore, the graphical user interface is not
provided in [42] [2] [43], which makes it difficult for users to work with the



12 Mohammad Derakhshandi et al.

Fig. 2: The Process of game development with MAndroid Approach

approach. Additionally, the behavioral part of the game is not considered in
most approaches [44].

Table 1 compares the related works which use MDE for the development
of 2D games in terms of whether they propose a DSL, any case study for
evaluation, they generate 100% correct code, they support multiplayer games
and whether they evaluate the approach. The last row of the table identifies
the MAndroid framework, which covers all aspects. As we describe in the
following section, in this research we focus on both behavioral and structural
dimensions of classic multiplayer 2D board games. The metamodels are not
specific to a particular game and cover all the aspects of classic board games.
The provided graphical metamodel enables the user to work conveniently with
this framework. Additionally, three different board games have been modeled
and their code obtained automatically. The generated code is 100% correct
and does not require any modification.

4 Approach and Framework

This section presents the model-driven engineering (MDE) methodology and
approach for the generation of Android-based classic multiplayer 2D board
games. We limited this research to classic board games, which exist from a
long time ago and are played on a typically wooden (or made of similar ma-
terials) board with beads and dice. Limiting the domain is essential in order
to generate functional code automatically [5]. Figure 2 displays an overview
of the approach. It can be generally divided in two stages. The first stage
applies model-driven techniques, comprising (meta)modeling and transforma-



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 13

tion tasks, and is carried out on the eclipse modeling framework (EMF)2. The
second stage involves compilation and building of the final Android code and
creation of executable Android APK files, which is carried out in Android
Studio.

In the following, the first stage is described in detail. The presentation is
divided in three parts. First, the metamodels for user menu, game structure
and game behavior are partially shown and explained—a detailed explana-
tion of the metamodels is available in Appendix A. Then, instances of these
metamodels are defined. Finally, it is explained how models are transformed
to Android executable code by means of model transformations, which are
defined and executed in the Acceleo engine3.

4.1 Metamodels

The definition of games with MAndroid covers the definition of the user in-
teractive menu as well as the game structure and behavior. Two metamodels
have been defined for these tasks. First, a metamodel encompasses all neces-
sary concepts for building the game menu. A different metamodel is used to
define all concepts and features needed for defining the structure and behavior
of the games. Please note both metamodels are independent and not coupled.
This means that the game menu is defined without taking into account the
game structure and behavior, and the other way around. This simplifies the
game modeling process. Besides, user menu and game structure and behav-
ior configurations can be reused across different games. Both metamodels can
also evolve independently from each other, since it may be needed to add some
extensions in either of them for future versions of Android. Both metamod-
els are summarized in the following, and a detailed explanation is given in
Appendix A.

4.1.1 Game Menu Metamodel

All concepts needed to build a game menu are defined in this metamodel.
These concepts and parameters are independent of the nature of the game
and can be reused for different Android-based games. Figure 3 displays the
menu metamodel, where all attributes have been removed for simplicity. The
complete metamodel is shown in Figure 21.

The Game is the root component of the metamodel. A Game contains
Variables, whose purpose is to give the user the ability to change desirable
components placed in the game, allowing to use not only predefined settings.
It can also contain a Resource that, in turn, can be composed of different re-
source types (images, sounds and XML files). All these resources must be later
materialized as separate files to be used to build the game menu. In the current

2 https://www.eclipse.org/modeling/emf
3 https://wiki.eclipse.org/Acceleo/Specification

https://www.eclipse.org/modeling/emf
https://wiki.eclipse.org/Acceleo/Specification


14 Mohammad Derakhshandi et al.

Fig. 3: Excerpt of the Menu Metamodel

version of the approach, the naming of these resources (see name attribute in
Figure 21) must follow Android OS rules for file naming. As a next step in
our implementation, we plan to automatically generate valid names from the
name introduced by the user. The Designer class stores basic information
about the game’s designer.

A Game also has a Menu , which is composed of a combination of pages.
A Menu always has one GamePage , a number of MenuPages, and it can
have a SplashPage . The SplashPage is an optional page that is displayed at
the beginning of the game, offering information such as name and version of
the game. MenuPages are like a canvas, where the user can apply different
graphical elements. Finally, the GamePage is the page where the board game
is played. Figure 4 shows all the pages of the Tic-Tac-Toe game developed
using MAndroid. As shown in the figure, the game is built using three pages,
including, from left to right, a SplashPage, a MenuPage and a GamePage.

Every MenuPage has a MainFrame , which acts as a horizontal or verti-
cal frame that holds all other components of the game menu, such as control
components. A MenuPage can have a number of Boxes. We introduce in
MAndroid a method called the “Box Design Method” to design the user inter-
face of every page. This enables the user to design the user interface of every
page without being involved in the technical details related to Android user
interface designing such as layouts. Most of the designs that are built using
LinearLayout, GridLayout and TableLayout in Android will be implementable
using this method. This method divides every page into a set of columns and
rows, which are placed together to build a game page. Then, a concept named
Box is used to place various graphic components in the page. Every box is in
fact a space in the page that can hold a graphic component. Adjusting the



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 15

Fig. 4: Pages used in the Tic-Tac-Toe game generated with MAndroid

Fig. 5: A design based on Boxes of a MenuPage in MAndroid

size of these boxes on each page is done in proportion to the display size, so
that the design can be properly displayed on devices of different sizes and
responsive designs can be created. Also, Boxes can contain other Boxes to
create more complex designs. Figure 5 shows how a MenuPage is displayed
using this method. The page is made up of 5 different rows and each row holds
a number of Boxes as well. For example, the second row from the top holds
three Boxes. The Boxes on the right and left are empty spaces that have been
placed on both sides to align the row. The Box in the middle has been placed
as a space to hold a button.

Each Box can be composed of Views, which represent the components
being displayed in the Box. Since the GameMenu does not require too many
View components, we have used and defined only a selected number of An-
droid Views in this metamodel, including Button for creation of buttons,



16 Mohammad Derakhshandi et al.

ImageButton for creation of images as a button, ImageView for showing
images, TextView for showing text, EditText for getting input data from
the user and Space to create blank areas inside a box.

In order to present visual features of Views, three different classes are
abstracted, namely DisplayStyle , PositionStyle and TextStyle . Each of
these is used for specifying properties of the different view components. For
instance, DisplayStyle allows setting features such as background image or
color, PositionStyle is used to specify properties related to physical position,
and TextStyle defines properties like color, font or size of text. Figure 21 dis-
plays the attributes of these classes.

Components with which the user is able to interact, such as pressing a
button, must have a Behavior associated. A Behavior, in turn, is specified
by a set of Actions. As examples of Actions, UpdateImageViewAction is
used to change the image of a display component, and SoundAction allows
to perform audio actions, such as reducing or increasing the volume and play-
ing/pausing music, while DialogAction is used to display an “about” window
or a message in the game menu. Regarding updating actions, UpdateVari-
ableAction is used to update and refresh the value of the variables defined in
the game menu, while UpdateTextViewAction may be used to change the
text displayed by a TextView component in the game page.

Finally, since this approach is based on a set of pages, it must be possible to
shift between pages. This can be a shift between the current page and the next
or previous ones, or to a specific page number, to the GamePage or exiting
the game. This is managed by the TransitionAction component.

4.1.2 Game Structure and Behavior Metamodel

In the game structure and behavior metamodel, the basic parts of the game
that include the behavior and structure of 2D board games are defined. As
opposed to the menu metamodel, this metamodel is completely related to the
domain of classic multiplayer 2D board games based on Android. Also, in the
menu metamodel, the gaming style was not of much importance and it was
possible to use the same menu for building other Android games. In contrast, in
the structure and behavior metamodel, structural features of 2D board games
such as the board display settings and game rules are abstracted. Figure 6
displays the metamodel proposed for the game behavior and structure, where
all attributes have been removed for simplicity. The complete metamodel is
shown in Figure 22.

Like in the previous metamodel, Game is the root class, it provides in-
tegration between the menu and game metamodels to have a uniform under-
standing between them. A Game has some general features stored in Game-
PlayFeatures, such as number of players or type of dice.

As mentioned earlier in the game menu metamodel, the declaration of a
user interface related to the process of a board game is performed in the
GamePage page. Because of the differences between the implementation tech-
niques in static and dynamic user interfaces, all the graphic coordinates in the



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 17

Fig. 6: Excerpt of the Game Structure and Behavior Metamodel

GamePage have to be drawn completely independent from other pages and
in a dynamic way using the graphic libraries of Android. However, the user
interface in the game menu pages are of a static form based on XML files. To
be able to create diverse GamePage pages, some features of this page are ab-
stracted and are placed in the UIFeatures component. This enables the user
to personalize the game page display by allocating desired quantities to these
features. For instance, Figure 7 represents the general pattern designed for the
GamePage in MAndroid. The design is made up of three parts or panels. Top
Panel contains the menu button and two spaces for displaying information of
the two players. These spaces are provided depending on the number of players
playing the game, and are called Player Box. The middle panel, declared as
the Board Panel, contains the required space to place the board component.
The Bottom Panel can contain the throw dice button and two other spaces to
display the information of two additional players, depending on the number
of players and game style. Every Player Box contains two different spaces to
accommodate desired texts, which might be the player’s name, points, turns,
etc. This space is separated by a line that passes through the box. Every Player
Box is made up of an internal and an external space, which may have different
backgrounds.

Despite the board view being square in MAndroid, we can model games
that have a non-square screen. In fact, the board in MAndroid is just a space
for placing tiles, and the arrangement and placement of the tiles determines
the appearance of the game screen, not particularly the board itself. Figure
8 presents the Ludo game, whose board never has a grid view, however, it is
trivial to model it in MAndroid. According to Figure 9, it is still possible to



18 Mohammad Derakhshandi et al.

Fig. 7: The general pattern for the GamePage in MAndroid

Fig. 8: The board of Ludo game

consider it on a square screen, and disable extra tiles. To disable additional
tiles, it is required to set their inEnable attribute to false. Figure 10 shows the
inactive tiles of the game, which are displayed in white, while the active tiles
have a black background.

Like in the previous metamodel, the Game contains GameVariables to
declare further variables. Obviously, a Game has a Board , which is the place
that accommodates all the components of the game. The Board is made up of
Tiles organized as a matrix (cf. Figure 9). These Tiles are locations in which
game elements can be allocated. Since the board has to be a rectangular or
square space, every Tile can be easily identified using its row and column
index number. The numbering of rows and columns is started from the top-
left corner with zero. The attribute number (cf. Figure 22) is used to calculate
the row and column of the Tile, which makes it simpler for the user.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 19

Fig. 9: The Ludo game in square board

Fig. 10: The Ludo game in square board with Deactivated tiles in white color

We consider that a Game is made up of up to four Players, since we
are considering multiplayer games. Every Player has a number of Elements,
which model the progression in a board game. Every Element must be in a
Tile, moves between Tiles, gets visible, hides, is added and removed from the
board, etc.—attributes of Element are shown in Figure 22. As an example,
in a chess game, Elements are the pawn, knight, bishop, etc. Generally, the
structure of board games in MAndroid is formed by the board, tiles and the
elements. Figure 11 shows the Othello game. In the figure, the board is made
up of 8 columns, 8 rows and therefore 64 tiles.

The most challenging part in designing a game is defining its rules, which
is defined by its Behavior . UML structural diagrams such as class diagrams
do not provide all necessary features to model the behavior and rules of the
game. Therefore it is necessary to use UML behavioral diagrams, such as
state machines. For this purpose, a new method has been proposed in the
MAndroid framework that combines the concepts used in class diagrams and
state machines in order to model the game behavior using Ecore diagrams.
The game behavior in MAndroid is made up of three components including
Condition , Action and Event . Events are executed by the Player during
the game. For example, throwing the dice is an Event that is called by pressing
on the dice icon. If an Event is reached during the game flow, the flow will



20 Mohammad Derakhshandi et al.

Fig. 11: Structure of the Othello game in MAndroid

be stopped until the Event is finished. Condition is another component of the
game used to check the correctness of statements and, in turn, to decide on
the continuation of the game. For example, after an Action by the user, in
case the element lands on a Tile with even number, the game will continue
on path A; and if the element lands on an odd number tile, it will continue
on path B. Action is a component used to perform several actions that have
been defined under the domain of the game. For example, deleting an element
from the board when hit by an enemy element is an Action. Figure 12 displays
the principles of behavioral modeling in MAndroid. According to the figure,
the game starts at a singular point and ends in another point. After the game
starts, at every point of time, it is at a specific point called State , which can be
either an Event, Action or Condition. A concept named Sequence is used to
ease the modeling and prevent the implementation of repetitive States. Every
Sequence is made up of a set of States and does not perform any change in
the game by itself; instead, it is used to organize and keep in order the States
to be used. In case the need to use a Sequence more than once arises, the
RepeatingSequence component can be used. Figure 12 shows a game that
uses 3 Sequences and 12 different States. The game enters a State in the form
of an Event. The flow of the game stops until the intended Event is called by
the user. Then the game reaches a State or Condition where the game can be
either directed to the right or left. Finally, if the game is directed towards its
ending point, it will end. All behavioral states and rules of the game can be
modeled using this method.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 21

Fig. 12: Principles of behavioral modeling in MAndroid

Actions are used to undertake an action in the game. The actions have
been designed by considering the domain of classic 2D board games, so that
that all needed actions are possible. For instance, StartGame is used to
start the game showing a welcome message to the users, NextTurn shifts the
turn to the next player in the queue, MoveElementToTile is used to move
an element from a Tile to another, and ShowDialog and ShowMessage
are in charge of displaying dialogs and messages to the user (cf. Figure 13).
All Actions and a detailed description of all components in the metamodel,
together with the full metamodel, are available in Appendix A.

4.2 Modeling in MAndroid

Since our approach provides the menu and structure and behavior metamodels,
users of our framework can define models that conform to these metamodels.
Different tools available in the Eclipse framework can be used to define these
models. We use the Exeed editor, which is a built-in graphical editor for the
Eclipse framework based on Ecore. It allows to build models using a tree
pattern. In MAdroid, users need to define a model that conforms to the menu
metamodel and another model that conforms to the structure and behavior



22 Mohammad Derakhshandi et al.

Fig. 13: Example of a dialog window and a message window in MAndroid

metamodel. Both models serve as input to the transformation engine that
generates the final code.

Figure 14 displays a model conforming to the structure and behavior meta-
model in the left-hand side, and a model conformig to the menu metamodel in
the right-hand side. We can see that the top-most component in both models
is the Game component (in this case we are modeling the Tic-Tac-Toe game).
All remaining components are added following the structure provided by the
metamodels.

4.3 Model Transformation in MAndroid

The last step is to apply the model-to-text transformation that generates the
final code. For this, the models conforming to the metamodels described in the
previous section serve as input. The Acceleo transformation language has been
used for implementing the transformation. The model-to-text transformation
is divided in two main modules. First, the menu model serves as input of the
first main module of the transformation, and the AndroidManifest.xml file
is generated, in which essential variables are declared. Then, the model
conforming to the structure and behavior metamodel is used as input for the
second main module, whose output is a set of Java classes implementing the
logical functioning of the game. The model transformations are available
from [45].

The XML files and Java classes generated by the transformation need to be
transferred to the pre-generated project in Android Studio, which contains the
static parts of the game. Figure 15 presents the generated Java files for the Tic-
Tac-Toe game in the MAndroid framework after applying the transformations.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 23

Fig. 14: Menu, structure and behavior modeling of a board game in MAndroid

5 Evaluation

For the evaluation of our approach and framework, we have taken into consid-
eration three classic multiplayer 2D board games, namely Backgamon, Othello
and Tic-Tac-Toe. Out of the three categories of classic board games described
in Section 2.1.2, Backgammon is a race game, Othello is a war game and
Tic-Tac-Toe is an alignment game. As we explain later, we are confident these
three games cover all possible structural and behavioral features of classic mul-
tiplayer 2D board games, so implementing these games in MAndroid proves
the applicability of our framework. We also organized a workshop with 34
attendees who are graduate and undergraduate students in Computer Engi-
neering. The purpose of this workshop was to develop the Tic-Tac-Toe game
using MAndroid. Tic-Tac-Toe was selected because it is a popular board game,
so most people are familiar with the game and its rules. Besides, this game
can be developed within four hours, which is the time taken by the workshop.
After the workshop, students were asked to fill out a couple of questionnaires
with a comprehensive set of questions related to the use of MAndroid.

Additionally, in order to compare MAndroid with other game development
environments, 30 developers with expertise in Android game development were
asked to fill out another couple of questionnaires. It was not trivial to find de-
velopers who were expert in developing multiplayer 2D board games, therefore
we only selected participants with experience in game development in Android.
As in the workshop, we limited the focus of these questionnaires to the Tic-



24 Mohammad Derakhshandi et al.

Fig. 15: Generated code of the Backgammon game in the MAndroid framework

Tac-Toe game. This helped us compare MAndroid with existing frameworks
for Android game development.

Finally, some baseline implementations of the Tic-Tac-Toe game were se-
lected from Google Play for comparison with the version obtained with MAn-
droid. It is not trivial to find the games with identical features to the generated
game in this research. However, the games with more identical features have
been selected. We shall recall that the focus of this paper is on classic multi-
player 2D board games, so games such as Monopoly, where cards are used, or
games like Carcassonne, where the board construction is an integrated part
of the game, are not considered in this evaluation. In the remaining of this
section, we present the research questions and the experimental setup of our
evaluation.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 25

5.1 Research Questions

The research questions (RQs) that we want to answer in this paper and the
rationale for each RQ are the following:

– RQ1 - Applicability. Is it possible to build other classic multiplayer 2D
board games using MAndroid? Is it possible to extend the MAndroid frame-
work for other game styles and platforms? Since our MAndroid proposal
covers all behavioral and structural features of the games, we want to dis-
cover whether it would be possible to develop the structural and behavioral
features of any classic multiplayer 2D board game using MAndroid. Addi-
tionally, we want to determine whether it would be possible to extend the
MAndroid approach and framework for developing other styles of games
and with support for other mobile platforms.

– RQ2 - Development Performance. How fast can a developer imple-
ment a game using MAndroid? We specially focus on learning time, game
development time and time for discovering and solving errors found during
development. These three aspects are stated as sub-questions:
– RQ2.1 - Learning Time. To what extend does game development

with MAndroid reduce learning time? This learning time involves prin-
ciples and concepts needed for game development.

– RQ2.2 - Development Time. To what extend does game develop-
ment with MAndroid reduce development time? To answer this, we mea-
sure the development time4 of the Tic-Tac-Toe game in the workshop
(cf. Section 5.2.2) from beginning to end.

– RQ2.3 - Time for Discovering and Solving Errors. Is our frame-
work able to reduce the time for discovering and solving semantic er-
rors? The amount of time for solving particular issues in the process
of game development with MAndroid is compared to other approaches
and frameworks.

– RQ3 - Simplicity. How simple is the development of games using MAn-
droid? We want to investigate to what extend the level of knowledge of
the participants in software engineering, MDE, Android and game devel-
opment influence the simplicity of the approach. Additionally, the number
of questions that may raise during game development, i.e. how often the
workshop participants approached the organizers to ask questions related
to the framework, is used as an indicator of the simplicity of the approach.

– RQ4 - Attractiveness. How attractive is the MAndroid framework? Hav-
ing workshop participants from different levels and expertise, we want to
study the evaluation of the attractiveness of the framework/approach after
developing the game. Questions 11, 13 and 14 in Table 4 are used to eval-
uate this RQ. In particular, we measure how attracted the user is, after
attending the workshop, to (i) MAndroid, (ii) MDE methodology and (iii)
game development.

4 By development time in MAndroid, we really refer to modeling time



26 Mohammad Derakhshandi et al.

– RQ5 - Technical Evaluation. How does the game generated with MAn-
droid result in terms of technical criteria—such as number of generated
APK files, memory occupation and CPU usage—compared to similar games?
We want to compare the Tic-Tac-Toe game that is generated using the
MAndroid framework to other Tic-Tac-Toe implementations available in
the market, which were developed using different frameworks. The com-
pared games may be similar in terms of general game features and style,
but are likely to have some technical differences. The latter are subject of
study in this RQ.

5.2 Experimental Setup

5.2.1 Case studies

Three games are used as case studies, namely Backgammon, Othello and Tic-
Tac-Toe. Despite questionnaires (cf. Sections 5.2.2 and 5.2.3) are focused on
the Tic-Tac-Toe game, the other two games have also been implemented using
MAndroid, which helps demonstrate its applicability. Figure 16 displays the
interfaces of the three games as generated with MAndroid. The description of
these games are as follows:

– Backgammon is one of the oldest well-known board games in the com-
munity. In this game, the turn of players is identified by rolling a die and
the player with the higher roll starts the game. A player is allowed to roll
both dice in each turn. If the same number shows on both dice, the player
is able to play again with the same number. It is a two-player game in
which the first player moves counterclockwise from the upper right, while
the opponent’s moves are clockwise from the bottom right. It is also possi-
ble to change the direction. In this game each player has 15 pieces that can
be moved between twenty-four triangles of the board. The winner of the
game is the one who first moves all 15 pieces off the board. For each move,
a player moves the piece off a triangle on the board that contains no pieces,
the player’s own pieces or a single opposing piece. The opposing piece gets
removed if other player moves a piece onto that point. In this case the
owner of the piece requires to return it back to the board and starts from
the beginning. In this game the player starts the process of removing pieces
from the board, after all pieces are moved on to the board. Each piece is
removed if the player rolls a number corresponds to the specific point that
piece is resisted. If there is no piece on that point then the player is able
to remove other piece with less value than the value presented on the die.
The winner of this game is the player who bears off all the pieces first [46].

– Otello is an alternative board game, in which a color is assigned to each
player. In this game the rule is to capture opponents’ pieces and flip them
over to turn them to your color. It is possible to have a horizontal, vertical
or diagonal line of pieces to enclose opponents’ pieces. The game is finished



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 27

Fig. 16: The Backgammon, Othello and Tic-Tac-Toe games developed by
MAndroid

Table 2: Structural features of classic board games

Structural Feature C
h
e
s
s

B
a
c
k
g
a
m

m
o
n

O
t
h
e
ll
o

L
u
d
o

S
n
a
k
e
s

-L
a
d
d
e
r
s

T
ic
-T

a
c
-T

o
e

C
h
e
c
k
e
r
s

G
o

Board � � � � � � � �
Tile � � � � � � � �
Element � � � � � � � �
Dice � � �
Two/More players � � � � � � � �

when the board is full. The winner of this game is the one who gets more
pieces on the board [47].

– Tic-Tac-Toe is a game for two players, one with X pieces and the other
with O pieces. The rule of this game is to arrange 3 pieces in a row. Players
place their pieces (X or O) on a 3x3 square board. The winner is the one
who first places 3 pieces vertically, horizontally, or diagonally. The players
tie if the board is full and none of the participants manages to generate 3
of their pieces in a row [46].

Tables 2 and 3 horizontally present all structural and behavioral features,
respectively, that need to be taken into account for developing classic multi-
player 2D board games in Android. In Table 3 arbitrary, game features are
those features that are not essential for developing the game. For instance,
audio or vibration are arbitrary features of the game and it is still possible
to run the game without these features. On the contrary, compulsory game
features are essential for the game and without these features the game is
not completed. For instance, moving the elements is essential in Chess game,
but not compulsory for Tic-Tac-Toe game as the elements of this game can



28 Mohammad Derakhshandi et al.

Table 3: Behavioral features of classic board games

Behavior Feature C
h
e
s
s

B
a
c
k
g
a
m

m
o
n

O
t
h
e
ll
o

L
u
d
o

S
n
a
k
e
s

-L
a
d
d
e
r
s

T
ic
-T

a
c
-T

o
e

C
h
e
c
k
e
r
s

G
o

Moving element � � � � �

Hitting element � � � �

Creating new element � � � � �

Hiding the element 2� 2� 2� 2� 2� 2� 2� 2�

Changing element’s appearance 2� 2� 2� 2� 2� 2� 2� 2�

Throwing the dice � � �

Changing turn � � � � � � � �

Increase or decrease player points �

Performing process on touched elements 2� 2� 2� 2� 2�

Performing process on clicked elements 2� 2� 2� 2� 2�

Performing process on moved elements � � � � �

Performing process on clicked Tile 2� 2� � 2� 2� � 2� �

Performing process on the value � � �
of throwing dices

Presentation of name and points of players 2� 2� 2� 2� 2� 2� 2� 2�

Showing message to players 2� 2� 2� 2� 2� 2� 2� 2�

Playing sound and vibration 2� 2� 2� 2� 2� 2� 2� 2�

�Compulsory game feature. 2�Arbitrary game feature.

not be moved after placing them on the game board. The columns represent
how many of these features are covered by seven different games. Having a
look at Table 3, we can see that there is no game in this domain that sup-
ports all behavioral features. We can also see that the three games developed
with MAndroid—Othello, Backgammon and Tic-Tac-Toe—cover together all
structural and behavioral features.

As mentioned, for the purpose of the evaluation, in the questionnaires we
selected the Tic-Tac-Toe game. We can see in Tables 2 and 3 that this game
covers most of the structural and behavioral features. It is assumed most of the
workshop’s participants were familiar with this game and it would be possible
to implement the rules and constraints of this game in the time allocated for
the workshop.

5.2.2 Workshop and Participants

A practical workshop was organised in the Department of Computer Engineer-
ing at the University of Isfahan. In this workshop, 4 PhD, 5 Master and 15
Undergraduate students participated. A master student and a PhD student
were expert in the domain of MDE and had previous experience in generat-
ing domain-specific modeling languages with MDE concepts. The remaining



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 29

graduate participants were familiar with MDE concepts from the material of
a Model-Driven Software Engineering course, although they had not devel-
oped any practical project using MDE. All selected undergraduate students
were in the last year of their degree and ranked top-10 scores during their
studies. They were all familiar with software engineering and programming
concepts, and they had different expertise. The purpose of the workshop was
to develop the Tic-Tac-Toe game using the MAndroid framework. Before the
workshop, participants were provided with four videos (they are available from
https://shorturl.at/evzFW5):

– The first video explains the Tic-Tac-Toe game and its rules. To have con-
sistent implementations of the game, its requirements for the purpose of
the workshop were explained.

– The second video introduces the general concepts of this research, including
MDE, model transformations, metamodeling, modeling and board games.
Additionally, the introduction to the structure of board games was provided
in this video.

– The third video explains the behavior of board games.
– The forth video describes EMF and Ecore concepts and provides an intro-

duction to the creation of the project, metamodels and models.

The workshop took 4 hours, including 90 minutes for training at the begin-
ning of the workshop. During the training part, the same materials that had
been given to the participants before the workshop in video format were ex-
plained to all participants. This helped ensure that everything was understood
by everyone.

Some participants managed to finish the implementation of the game in
less than 4 hours. The behavior of the participants during the workshop was
analysed. Development time, number of questions asked during the workshop
and the number of errors during implementation and time for solving them
were recorded. Participants also filled out a couple of questionnaires after the
workshop based on their experience on modeling and developing the Tic-Tac-
Toe game with MAndroid. The answers in the questionnaire forms were used
to evaluate the MAndroid approach from different perspectives.

Additionally, in order to compare MAndroid with other game development
frameworks (code-centred, game engines, game creation tools), another couple
of questionnaires were designed. To fill them out, 30 experts in Android game
development were selected. As in the workshop explained above, the Tic-Tac-
Toe game was selected as classic multiplayer 2D board game under study. The
requirements of this game were explained to the experts to have a consistent
idea of the structural and behavioral features of the game. They were also
provided with screenshots of the Tic-Tac-Toe game. The answers to these
questionnaires were used to compare MAndroid with other game development
frameworks. All four questionnaires are detailed next.

5 Please note, videos are in Farsi

https://shorturl.at/evzFW


30 Mohammad Derakhshandi et al.

5.2.3 Questionnaires

A comprehensive set of questions were asked in the questionnaire forms to pro-
vide appropriate answers to the RQs (cf. Section 5.1). Tables 4 and 5 present
the questionnaire forms of the workshop (cf. Section 5.2.2). Answers to ques-
tions in the first questionnaire were encoded using a Likert scale [48] with
values Very much, Much, Average, Low or Very Low. The main advantage
of using a Likert scale is that the questions involve use a similar method of
collecting the data, which makes them easy to understand and answer, and
students do not feel forced to express their opinion, allowing them to stay
neutral. Additionally, the use of a Likert scale eases the joint analysis of the
questionnaires.

In Table 4, questions 1 to 5 relate to the knowledge of the workshop’s
participants. We asked about the participants knowledge in different aspects,
namely software modeling and MDE, Android development, 2D game develop-
ment, EMF and Ecore. In questions 6 and 7, the applicability of MAndroid for
the development of structural and behavioral features of the Tic-Tac-Toe game
was asked (RQ1). Also regarding applicability, questions 8 and 9 correspond
to the applicability of MAndroid in developing board games, and applicability
is further measured with the replies to questions 15 to 18. Question 10 is used
for evaluating the simplicity of MAndroid (RQ3). Additionally, the results of
the workshop are used for measuring this criteria. Questions 11, 13 and 14
evaluate the attractiveness of MAndroid (RQ4). Question 12 relates to the
developer performance and measures the time for solving errors in MAndroid
(RQ2.3). The results of the workshop were also used for evaluating this crite-
ria. Question number 19 in the second questionnaire asked for the time needed
for learning provided materials and concepts before the workshop (RQ2.1).
The second column of Table 4 presents the relation between the questions in
the questionnaires and the RQs formulated in Section 5.1. Apart from these
two questionnaires, participants’ behavior in terms of time for watching video
tutorials, development time of the game, number of questions made during
development, number of semantic errors discovered and time for solving and
discovering these semantic errors were recorded during the workshop (RQ2,
cf. Table 9 and Section 6.2).

Tables 6 and 7 present the questions corresponding to the experts’ question-
naires (cf. Section 5.2.2). It was not possible to organize a practical workshop
for this part of the evaluation as the participants would require different plat-
forms and environments for developing the game, so all questions were based
on the experts’ opinions regarding the development framework in which they
have expertise. We provided the participants with the structural and behav-
ioral requirements of Tic-Tac-Toe using the screenshots of different stages of
the game. It was assumed that all resources such as images and sounds would
be provided for developing the game. Seven questions were asked, from which
three questions were related to the required level of knowledge of developers
of Android, game development, 2D graphics and modeling with UML or other



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 31

Table 4: First workshop questionnaire

N
u
m

b
e
r

R
Q

Question V
e
r
y

m
u
c
h

M
u
c
h

A
v
e
r
a
g
e

L
o
w

V
e
r
y

L
o
w

1 3 To what extend are you familiar with
software modeling and MDE?

2 3 What is your level of knowledge in Android development?

3 3 What is your level of knowledge in 2D
game development?

4 3 To what extend are you familiar with EMF?

5 3 To what extend are you familiar with Ecore?

6 1 To what extend could you manage to model
the structure of the Tic-Tac-Toe game?

7 1 To what extend could you manage to model
the behavior and rules of the Tic-Tac-Toe game?

8 1 How applicable is MAndroid in the development
of the structure of board games?

9 1 How applicable is MAndroid in the development
of the behavior of board games?

10 3 How simple and understandable is the development
of the game using MAndroid?

11 4 How attractive is MAndroid for
developing the game?

12 2,3 How effective is MAndroid in detecting
and solving semantic errors in comparison

to code-centric approaches?

13 4 To what extend are you attracted to MDE methodology
after attending this workshop?

14 4 To what extend are you attracted to game development
after attending this workshop?

15 1 To what extend is MAndroid applicable
in the development of other 2D board games?

16 1 To what extend is MAndroid extensible
in the development of other styles of 2D games?

17 1 To what extend is MAndroid applicable
in the development of other classic multiplayer 2D games?

18 1 To what extend is MAndroid applicable
in the development of 2D board games for other

mobile platforms?

MDE approaches (Table 7). Answers to these questions were encoded using a
Likert scale [48] with values Very much, Much, Average, Low or Very Low.

Four questions were asked in the other set of questions (Table 6). The first
one was about the time that would be required to develop the Tic-Tac-Toe
game in the corresponding platform in which the respondent has expertise. The
second question was about the required time for learning different concepts for
developing the game according to its requirements. Question three was about
the number of questions that experts think they would need to perform while
developing the game. These refer to aspects that could not be solved based



32 Mohammad Derakhshandi et al.

Table 5: Second workshop questionnaire

Number RQ Question Answer

19 2 How much time did you spend before the workshop in learning
MAndriod concepts, using the provided video tutorials?

Table 6: First experts questionnaire

Number RQ Question Answer
1 2 How much time do you think is it required to develop

the Tic-Tac-Toe game based on the specified requirements?

2 2 How much time do you think it is required to learn different concepts
for developing the Tic-Tac-Toe game based on

the specified requirements?

3 3 Since you might face problems while developing the game,
how many questions do you think you would need to ask
or how many resources do you think you would need to

check in order to find the answer to your questions?

4 2 How much time do you think you would need in order to
to solve semantic errors during development of the game?

Table 7: Second experts questionnaire

Number RQ Question V
e
r
y

m
u
c
h

M
u
c
h

A
v
e
r
a
g
e

L
o
w

V
e
r
y

L
o
w

5 3 How much expertise in Android development is
required to develop this game?

6 3 How much expertise in game development and 2D
graphics are required to develop this game?

7 3 How much expertise in modeling with UML or
other MDE approaches are required to develop

this game?

only on experts’ knowledge. Finally, the time for solving hypothetical semantic
errors during game development from experts’ perspective was asked. The
idea with these questions is to compare experts’ opinions regarding developing
the Tic-Tac-Toe game using the platform in which they are expert with the
answers from the participants in the workshop after developing the game with
MAndroid (cf. Section 5.2.2). The second column of tables 6 and 7 present the
relation between these seven questions and the research questions, where we
see that they help answer RQs one to three.

5.2.4 Baseline Implementations

For a technical evaluation of the Tic-Tac-Toe game developed with MAn-
droid, it is compared to seven other implementations available in the market.
The games are selected from Google Play, and they are highly similar to the
game obtained with MAndroid. The popularity and rating of the games were



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 33

Table 8: Tic-Tac-Toe game implementations available on Google Play

Game name Developer Number of Score Latest update Package
installations (0-5)

Tic Tac Toe Wintrino [49] 50,000,000+ 4.3 December 18 com.tictactoe.w+
2018

Tic Tac Toe Arclite [50] 10,000,000+ 3.9 May 20 com.arcsys.tict+
glow - Free Systems 2019
Puzzle Game

Tic Tac Toe AlmaTime 10,000,000+ 4.1 February 21 com.almatime.ti+
Classic 2020

Tic Tac Toe 2 BYRIL [51] 1,000,000+ 4.3 November 23 com.byril.ticta+
2018

Tic Tac Toe Fun Games 1,000,000+ 3.5 December 18 tic.tac.toe.gem+
free [52] 2018

Tic Tac Toe Big Brain 1,000,000+ 4.3 December 12 com.bigbrainkra+
Kraken [53] 2019

Tic Tac Toe Playzio [54] 100,000+ 3.4 September 14 com.playzio.tic+
Glow: 2017
Multiplayer!

also considered. Table 8 presents information about these games. Later (cf.
Section 6.5), the number of APK files generated, the percentage of memory
occupation and the percentage of CPU usage are used for comparing the Tic-
Tac-Toe game generated from MAndroid with these seven games. This allowed
answering RQ5.

6 Results

This section is devoted to answer all RQs formulated in Section 5.1. The an-
swers to the questions encoded using a Likert scale that workshop participants
submitted after the workshop (cf. Section 5.2.3 and Table 4) are displayed in
Figure 17. Regarding experts’ answers to the questions using a Likert scale
(cf. Section 5.2.3 and Table 7), they are displayed in Figure 18.

Correlation measures monotonic association between variables [55]. This
means a change in one variable may affect another variable in a positive or
negative way. In order to analyse the correlation between the different answers
in this research, the Spearman’s correlation is used to calculate the linear
relationship between variables [56]. A positive relationship between the metrics
implies a positive correlation, while a negative relation indicates a negative
correlation. The closer the coefficient is to either -1 or 1, the stronger the
correlation between the variables is. The strength of the correlation is classified
into five different ranges. The values in the range [0, 0.19] are very weak, in
[0.20, 0.39] are weak, in [0.40, 0.59] are moderate, in [0.60, 0.79] are strong
and in [0.80, 1.0] are very strong.



34 Mohammad Derakhshandi et al.

Fig. 17: Responses of workshop participants to the questions in Table 4

Fig. 18: Experts’ responses to the questions in Table 7

6.1 RQ1- Applicability

The applicability of our MAndroid approach and framework is evaluated both
theoretically and practically. Having a look at the structural and behavioral
features of the Tic-Tac-Toe, Othello and Backgammon games in Tables 2 and
3, we can appreciate the applicability of MAndroid in modeling and developing
all possible structural and behavioral features of multiplayer 2D board games.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 35

Therefore, the provided metamodels are complete and all the details for de-
veloping games in this domain are considered. Additionally, adequate sets of
model-to-text transformations have been implemented in the approach, which
allow to generate the games completely and automatically.

According to the answers of workshop participants to questions 6 and 7
(cf. Table 4 and Figure 17), 91% of participants believed they had to a very
large extent (53%) or to a large extent (38%) modeled the game structure,
while 88% of participants believed they had to a very large extent (38%) or
to a large extent (50%) modeled the game behavior. This goes in accordance
with the results analyzed after the workshop, where we observed that around
95% of game structure and 84% of game behavior had been successfully im-
plemented in the workshop. Additionally (questions 8 and 9), 88% of users
definitely approved (38%) or approved (50%) the applicability of MAndroid
in the development of the structure of board games, while 79% definitely ap-
proved (23%) or approved (56%) its applicability in the development of the
behavioral part. There are strong positive linear correlations among the an-
swers to questions 6 to 9 of the questionnaire, what indicate that participants
did not reply randomly.

The extensibility of the MAndroid approach is evaluated with questions
15 to 18. The results in Figure 17 show that only 12% of participants believe
in a low applicability of the MAndroid framework in terms of extensibility for
other styles of 2D games. This is 15% for multiplayer games and 6% for other
mobile platforms. A positive linear moderate and strong correlation results
between answers to questions 15 to 18 of questionnaire are reported. Therefore,
according to workshop participants, it can be concluded with confidence that
the MAdroid approach is extensible and it is possible to apply it to other styles
of 2D games and multiplayer games in other mobile platforms.

6.2 RQ2 - Developer Performance

Developer performance using MAndroid is evaluated in terms of learning time
of related concepts, development time of the Tic-Tac-Toe game and time for
solving semantic errors found during development. To measure this criteria,
we recorded participants’ interactions and results in the workshop.

The video watching time is the time each participant spent in investigating
and watching the provided materials before the workshop, which is the re-
sponse to Q19 in Table 5. Second column of Table 9 shows the watching time
for each participant. The time that each participant spent in modeling and
generating the Tic-Tac-Toe game using our MAndroid framework is displayed
in the third column. Participants also needed to approach workshop organizers
to ask some questions about the development. The number of questions asked
by the participants is shown in the fourth column. After participants finished
the modeling phase, MAndroid executes the model-to-text transformations
and generates the corresponding Android implementation. The generated code
was run on an Android emulator and, if there was any problem, the errors were



36 Mohammad Derakhshandi et al.

Table 9: Participants behavior in the workshop

ID Video Development # # Time for Time for
watching time Questions Errors solving solving

time errors each error

1 30 65 5 3 36 12
2 40 123 2 1 22 22
3 20 140 4 NA NA NA
4 30 166 2 2 40 20
5 20 105 3 1 36 36
6 15 90 4 2 39 19.5
7 30 122 2 2 22 11
8 40 115 2 4 48 12
9 45 90 1 1 13 13
10 15 74 1 NA NA NA
11 0 87 3 2 40 20
12 0 90 5 NA NA NA
13 0 90 6 2 35 17.5
14 60 90 0 1 4 4
15 0 120 3 1 10 10
16 15 103 1 1 9 9
17 30 90 0 1 27 27
18 0 114 3 2 35 17.5
19 0 87 2 NA NA NA
20 45 90 0 2 21 10.5
21 0 90 1 1 10 10
22 30 125 4 1 13 13
23 0 90 0 NA NA NA
24 30 132 2 4 35 8.75
25 0 105 3 2 15 7.5
26 0 80 1 3 45 15
27 0 105 4 1 20 20
28 15 112 3 1 18 18
29 0 145 2 0 0 0
30 30 75 5 2 20 10
31 30 68 6 1 10 10
32 0 134 2 4 60 15
33 10 170 3 2 46 23
34 10 60 1 1 9 9
AVG 17.35 104.17 2.52 1.75 25.44 14.49

displayed. The number of errors obtained and time for solving them are shown
in the fifth and sixth columns of the table, while the last column displays the
time for solving each error. Please note that five participants (with IDs 3, 10,
12, 19, 23) did not want to continue after the modeling phase, therefore the
number of errors and time for solving those errors were not recorded for them.
The reason was these participants felt tired and did not want to continue with
the implementation. For those participants, we included NotAvailable (NA) in
the corresponding table cell, and the value of such cells was not considered in
the analysis.

Regarding experts’ opinions on these matters under a hypothetical imple-
mentation of the Tic-Tac-Toe game using their platform of expertise, questions
were asked in the questionnaire of Table 6 (cf. Section 5.2.3). The answers are
presented in Table 10. With all this we can answer the three sub-questions.

We shall highlight that comparing the time spent by workshop participants
with the time experts think they would spend does not seem fair. However,
as mentioned earlier, it was very hard to prepare a workshop for experts to



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 37

Table 10: Evaluation results for questionnaires of Android experts

ID Concepts Development # Questions Time for
learning time solving

time errors

1 40 24 0 60
2 20 60 0 15
3 100 120 1 5
4 75 240 1 5
5 5 480 2 5
6 20 480 12 10
7 4 600 2 10
8 24 600 2 20
9 100 720 2 120
10 20 720 4 20
11 10 900 5 20
12 100 900 5 20
13 25 1050 5 20
14 24 960 10 20
15 40 1200 10 20
16 35 1500 10 25
17 30 1500 15 25
18 100 1800 3 25
19 50 270 4 30
20 40 2400 4 30
21 10 1200 20 30
22 50 600 5 30
23 55 330 7 60
24 40 3000 6 20
25 100 1800 10 10
26 120 120 12 30
27 200 90 5 15
28 24 1200 5 25
29 22 1200 8 25
30 10 300 6 15
Average 49.76 878.8 6.03 25.5

implement the games. For this reason, since experts’ numbers are not real, but
hypothetical, we describe a rough comparison.

6.2.1 RQ2.1 - Learning Time

Without having any knowledge in the development of classic multiplayer 2D
board games for Android, developers would need to firstly learn many con-
cepts, such as game development on Android and 2D graphics. However, in
the case of MAndroid, users do not need to learn any of this, but they only
need to be able to model, i.e., to define models conforming to the provided
metamodels. This means MAndroid users only need to have modeling and
board games knowledge.

The time for teaching different MAndroid concepts to the participants at
the beginning of the workshop was 90 minutes. Additionally, before the work-
shop the participants were provided with four video tutorials. The times spent
watching these videos are presented in the second column of Table 9. Regard-
ing the time experts think they would need to spend learning all concepts
and acquaring all knowledge needed for implementing the game in their de-



38 Mohammad Derakhshandi et al.

velopment environment of expertise, these are shown in the second column of
Table 10.

We see that the average time to learn all concepts for working with MAn-
droid is approximately 107 minutes, plus 90 minutes allocated to explanations
in the workshop. According to experts’ opinions, this time should be around
2985 minutes when using other development frameworks. This seems to in-
dicate a likely significant time saving, although real experiments should be
undertaken with experts to confirm this. The time for watching video tutori-
als has a negative very weak correlation with the number of errors found (-0.1)
and weak negative correlation with the time for solving each error (-0.2). This
means that as the participants spent more time watching the provided mate-
rials, they faced less errors in the development with MAndroid. Also, as they
became more familiar with this modeling platform, they spent less time solving
each error.

6.2.2 RQ2.2 - Development Time

In order to determine which behavioral and structural parts were and were
not modeled by the workshop participants, we divided both parts in differ-
ent features. The structural part includes modeling of (i) board, (ii) tiles, (iii)
elements, (iv) players and (v) visual features of game page. The behavioral
part consists of (i) action modeling, (ii) appropriate definition of variables and
features, (iii) condition modeling, (iv) event modeling, (v) creation of states
and the relation between them and (vi) definition of sequences and their rep-
etition. Figures 19 and 20 present the percentage of structural and behavioral
features that were modeled by workshop participants, respectively. We can see
in Figure 19 that the board is the structural feature more participants mod-
eled, while the visual features of the game was the feature less participants
managed to model. Similarly, Figure 20 shows that creation and repetition of
sequences is the behavioral feature more participants modeled, while condi-
tions were the feature less participants managed to model.

In any case, the provided metamodels in this research are complete and
support all the behavioral and structural parts of classic multiplayer 2D board
games, as some of the participants managed to model Tic-Tac-Toe completely.
Additionally, we comprehensively modeled three different board games apply-
ing the proposed metamodels. However, we believe that it is possible to im-
prove understandability of the participants by providing more comprehensive
materials about the game, modeling and framework before and during the
workshop. This, together with an analysis on why participants did generally
not model certain parts, are subjects of future work.

The development time of the Tic-Tac-Toe game of each workshop partic-
ipant is shown in the third column of Table 9. Regarding the time experts
think they would need to develop the game in their development environment
of expertise, they are shown in the third column of Table 10. It was assumed
that they had access to all additional resources, such as images or sound, so
that they would not need to search for them.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 39

Fig. 19: The percentage of Structural features modeled in the workshop

Fig. 20: The percentage of Behavioural features modeled in the workshop

All in all, workshop participants managed to model 89.5% of the game
requirements (cf. Figures 19 and 20) in approximately 104 minutes. Therefore,
we can estimate that approximately 116 minutes are required to model 100%
of the game using MAndroid. On the other hand, according to the opinion
of experts, developing the Tic-Tac-Toe game using other frameworks would
take around 878 minutes. These results indicate a likely significant saving in
development time.

Very weak correlations are presented between game development time and
level of knowledge of workshop participants in software modeling, Android,
2D game development, EMF and Ecore (the relations are between 0.05 and
0.10). This means that the level of knowledge of participants does not have
a significant influence on game development time with MAndroid, which is



40 Mohammad Derakhshandi et al.

a point in favor of our approach. Additionally, very weak correlations are
reported between development time and questions 15 to 18 (cf. Section 6.1),
which refer to the extensibility of MAndroid. We can conclude that even those
participants who spent more time developing the game using MAndroid believe
in the extensibility of MAndroid.

6.2.3 RQ2.3 - Time for Solving Errors

After participants finished the modeling phase, the models were checked and
syntax errors were fixed and ignored. Then, the Android code was generated
automatically in the MAndroid framework by using different model-to-text
transformations. After this, the code was run on an Android emulator. If the
program did not run properly due to semantic issues, the participant was asked
to check the problems and solve them. With semantic errors, we refer to those
issues that occur when a statement is syntactically valid, but does not do what
the modeler intended [57]. In this evaluation we only focus on semantic errors.
For each problem encountered, the number of errors and solving time were
recorded (fifth and sixth columns in Table 9). The amount of time for solving
each error is shown in the last column of the table.

We found a moderate negative correlation between the time for solving
each error and the time spent watching the video tutorials. This means that
the longer time the participant spent watching the videos, the shorter time
was needed for solving the errors. Additionally, there were week or very week
correlations between the time for solving each error and the level of knowledge
of participants in software modeling, Android, 2D game, EMF and Ecore.
Therefore, the level of knowledge of participants did not influence the time for
solving the errors using MAndroid.

Regarding the time for solving each error, workshop participants took an
average of 14 minutes using MAndroid. As for experts’ opinions, they think
they would need around 25.5 minutes on average to solve errors when working
with other platforms, showing a likely moderate time saving when working
with MAndroid.

6.3 RQ3 - Simplicity

In order to measure the simpliticy of the MAndroid approach and frame-
work, we consider five aspects: (i) level of knowledge about software modeling,
(ii) level of expertise in Android programming, (iii) level of expertise in 2D
game development, (iv) number of questions asked during Tic-Tac-Toe game
development, and (v) simplicity of MAndroid according to the workshop par-
ticipants’ opinions.

According to the results of the first question in the questionnaire of Table 4
(cf. Figure 17), only 12% of participants were familiar with MDE regarding
software modeling, and no one was very familiar. Regarding the familiarity
with EMF and Ecore (questions 4 and 5), only 18% and 15% of participants



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 41

were familiar, respectively, and no one was very familiar. Therefore, it can
be concluded that it is not essential to have a high level of knowledge in the
domains of MDE, EMF and Ecore for using MAndroid. Indeed, workshop
participants did not have high expertise in these domains, but they managed
to generate approximately 89.5% of the game.

The second criterion (familiarity with Android programming) was asked
in question 2 of the same questionnaire. Results show (cf. Figure 17) that
the expertise in Android programming of around 71% of participants in the
workshop was low or very low. Therefore, it is not essential to have high
expertise in Android programming for using MAndroid. Third criterion reaches
a similar conclusion: it is not needed to have a high expertise in 2D game
development to use MAndroid. Indeed, the responses to question 3 show that
only 15% of participants had expertise. However, despite these conclusions,
we observed a strong and moderate positive correlations between the answers
to questions 3 and 5 and question 10. These relations indicate that the higher
the knowledge of participants in EMF and 2D game development, the higher
the simplicity of the framework for them.

The number of questions performed by each workshop participant during
game development (fourth criterion) is shown in the fourth column of Table 9.
Each participant asked an average of 2.5 questions. There is a negative cor-
relation between the number of questions asked and the time spent watching
video tutorials, which means that the longer time spent watching the pro-
vided videos, the less questions they needed to ask. The number of questions
is compared with the questions experts think they would need to ask when
implementing the game using other platforms, which are six. These conclu-
sions are complemented with participants’ opinions regarding simplicity of
using MAndroid. This was asked in question number 10 of questionnaire in
Table 4 (responses shown in Figure 17). Responses indicate that 68% of partic-
ipants strongly believe (27%) or believe (41%) in the simplicity of MAndroid
for developing this particular game. There are moderate and strong positive
correlations between the answers of participants to question number 10 and
questions number 11 to 18. This means that, according to participants’ opin-
ions, the higher the simplicity of MAndroid, the more attractive, effective
in detecting errors and extensible the MAndroid framework is. Additionally,
very weak and weak correlations are reported between question 10 and level
of knowledge of participants. This suggests that reasonable responses are re-
ceived from the workshop participants, which are in turn independent from
their level of knowledge.

To compare the simplicity criterion of MAndroid with other approaches,
different questions were asked to the experts (cf. Table 7). The responses in
Figure 18 indicate that approximately 67% of experts strongly believed (20%)
or believed (47%) that it is required to have a high level of knowledge in
Android programming. Additionally, 50% strongly believed (17%) or believed
(33%) that it is important to be expert in 2D game development. However,
only 3% thought is is important to have expertise in software modeling.



42 Mohammad Derakhshandi et al.

Overall, it can be concluded that for game development in MAndroid it is
not essential to have a high level of knowledge in Android development and 2D
game development. However, these aspects are important for developing this
kind of games using other platforms. Furthermore, using MAndroid we are
likely to face less issues, since the number of questions workshop participants
needed to ask was smaller than the number of questions experts think they
would have faced.

6.4 RQ4 - Attractiveness

We designed questions 11, 13 and 14 shown in Table 4 to measure how at-
tractive MAndroid was for workshop participants. Results in Figure 17 show
that more than half of the participants found MDE attractive (35%) or very
attractive (29%)—question 13—, and half of them found game development
attractive (38%) or very attractive (15%)—question 14. Additionally, 56%
of participants thought MAndroid was very attractive (12%) or attractive
(44%)—question 11. Strong and moderate correlations between questions 11
to 14 and questions 6 to 9 are observed. They indicate that the higher par-
ticipants think the applicability of MAndroid is, the more attractive they find
the approach. Similar strong positive correlations are found between answers
to questions 11 to 14 and questions 10 and 12. These suggest that the more
the participants believe in simplicity and effectiveness of MAndroid in finding
errors, the more attractive MAndroid for them is. Finally, we found strong cor-
relations between questions 11 to 14 and questions 15 to 18. This means that
the higher the attractiveness of MAndroid for the participants, the stronger
they believe in its extensbility.

6.5 RQ5 - Technical Evaluation

In order to answer this RQ, we compare the weight of APK files, memory occu-
pation and CPU usage of the final Tic-Tac-Toe game generated with MAndroid
with respect to seven state-of-the-art implementations of the game.

The compared games are similar for general features of the Tic-Tac-Toe
game and style, but have many differences in terms of technical features. There-
fore, the provided comparison is limited to the mentioned technical features
and not focused on any other detailed features. Considering all features in
depth is out of scope in this research. Furthermore, the games with which we
have compared our generated game might have more functionality other than
the functionality available in our generated game, which is a threat to the
validity of the following results.

The results are presented in Table 11, where the last row displays the infor-
mation of the game generated with MAndroid. We can see that the technical
details of the game obtained with MAndroid are satisfactory. First, it is the
game that weights the least, and the CPU usage is also very positive. The
worst feature is the memory occupation (8.1%), although it is not too bad.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 43

Table 11: Android technical evaluation for Tic-Tac-Toe game

Developer Volume Memory CPU
(MB) Usage Usage

Wintrino [49] 18.45 4.9% 8.7%
Arclite Systems [50] 50.08 5.9% 28.4 %
BYRIL [51] 29.17 6.2% 30.0%
Fun Games Free [52] 42.24 5.0% 55.0%
Big Brain Kraken [53] 13.25 7.6% 11.0%
Plauzio [54] 22.11 3.4% 38.6%
AlmaTime [58] 14.56 4.5% 46.6%
MAndroid 3.16 8.1% 6.6%

6.6 Discussion

A summary of the evaluation results is shown in Table 12. In terms of ap-
plicability, it has been demonstrated that it is possible to generate different
classic multiplayer 2D board games without the need of writing any piece of
code. Furthermore, it should be extensible for other multiplayer 2D games and
for different mobile platforms. Regarding developer performance, the time for
the different stages related to the game development are likely reduced. First,
the time for learning the necessary concepts for developing the game. Second,
the time for developing the game, which in case of MAndroid refers to time
for modeling the game. Third, the time for discovering and solving semantic
errors.

The approach offers a good level of simplicity, since it is not necessary to
have expertise in Android game development. This is because all configuration
files as well as the final code are automatically generated with a set of model-
to-text transformations. The MAndroid framework appears to be attractive for
the users, and they have managed to model a high percentage of the Tic-Tac-
Toe game structure and behavior. A study and analysis on the parts that most
participants did not manage to model is out of scope of this paper. However,
this is an interesting point and is subject of future study. Regarding the tech-
nical evaluation, the Tic-Tac-Toe game generated with MAndroid manages to
reduce the volume of APK files generated as well as the CPU usage, while it
occupies more memory. This is in comparison with other seven state-of-the-art
implementations of the game. Finally, despite energy efficiency is out of scope
of this paper, it is still interesting to discuss it. In mobile applications, energy
usage depends on the usage of CPU, memory, sensors and network. The games
we consider do not employ sensors and network, so energy consumption de-
pends on CPU and memory usage. While the game generated with MAndroid
uses less CPU than the other games, it uses more memory. For this reason, we
cannot predict with confidence improvements on energy efficiency, so a specific
study is needed.

In summary, from the provided evaluation, we can conclude that the MAn-
droid approach is applicable for the development of classic multiplayer 2D
board games, and it reduces the developer performance time. Additionally, it



44 Mohammad Derakhshandi et al.

Table 12: Summary of MAndroid evaluation

Research Question Result of MAndroid evaluation

RQ1 - Applicability Possibility for development of different kinds of
classic multiplayer 2D board Games with no need

for writing code
Extensible for other classic multiplayer 2D games and

for other mobile platforms (according to 88% participants)

RQ2 - Developer performance Time for learning concepts related to
game development is likely significantly reduced

Game development time is likely significantly reduced
Time for discovering and solving errors

is likely reduced

RQ3 - Simplicity It is not essential to have high expertise in game and
Android development (71% participants did not have it)

RQ4 - Attractiveness It is an attractive approach and enhances the interest
of users for this domain (according to 56% participants)

RQ5 - Technical Evaluation Reduces the volume of APK files and CPU usage

is simple, extensible and attractive. In terms of technical evaluation, it reduces
size of APK files and CPU usage.

However, despite being satisfied with the results, our approach is targeted
at games with specific features for the Android OS. Increasing the amount of
game features to consider in MAndroid is a challenge, and we hope to include
more features in the upcoming versions of our approach and tool.

6.7 Threats to Validity

In the following we describe the four types of threats that can affect the validity
of our study, according to Wohlin et al [59].

6.7.1 Construct validity threats

They are concerned with the relationship between theory and what is observed.
The comparison of the proposed framework with others is conducted with
different questionnaire forms. Therefore, a possible construct validity threat is
the fact that we have not considered the same users to evaluate MAndroid with
other approaches. However, it was not trivial to find appropriate participants
to accept participating in this type of evaluation. We plan to perform a more
detailed evaluation of MAndroid with other approaches as future work.

6.7.2 Conclusion validity threats

Threats to the conclusion validity are concerned with the issues that affect
the ability to draw correct conclusions from the data obtained from the ex-
periments. In our experiments, some of the participants did not complete the
workshop and did not continue with solving their errors. This may threat the



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 45

calculation of average time for solving errors in the workshop. To avoid this
threat we omitted those participants when measuring the average time for
solving errors.

6.7.3 Internal validity threats

Instrumental bias. It concerns the consistency of measures over the course of
the experiment. To ensure consistency, all the participants of the workshop
developed the Tic-Tac-Toe game according to the predefined specification.
Additionally, all measures taken during the workshop were recorded in the
same manner in order to ensure consistency.

Selection bias. Participants of the workshop were selected from different
graduate, master and PhD students. This means there might be a bias in our
participants with respect to the level of knowledge in MDE, Android and game
development.

6.7.4 External validity threats

These threats have to do with the extent to which it is possible to general-
ize the findings of the experiments. The first threat is that the framework is
evaluated with only three board games, which externally threatens the gen-
eralizability of our results. To mitigate this threat, the authors selected three
classic board games, such that all the structural and behavioral features of
classic multiplayer 2D board games are covered at least in one of these three
games (cf. Tables 2 and 3). We do believe that the provided metamodels in
this research are complete and generalizable to any classic board game and
the presented framework enables to generate 100% correct code for any board
game. Another threat is related to the fact that the technical comparison with
other developed games does not take into account extra features provided by
such games.

7 Conclusion and future work

This paper presents MAndroid, an approach and framework that applies an
MDE methodology for the development of classic multiplayer 2D board games
in Android. With different metamodels integrated in the framework, the user
does not need to implement the game, but to model it. Then, a predefined set
of model-to-text transformations deal with the generation of the final Android
code. This means that users do not need to have any Android knowledge.
Three different games have been implemented, demonstrating the applicabil-
ity of the approach. Furthermore, a workshop was organized in which different
users evaluated different dimensions of MAndroid. Its simplicity, extensibility
and attractiveness were positively evaluated. In particular, surveyed partic-
ipants believe the tool should be extensible for other multiplayer 2D games
and for different mobile platforms. Also, results suggest that development time



46 Mohammad Derakhshandi et al.

is reduced by using MAndroid, and it appears to be attractive for the users.
Regarding some technical aspects such as memory and CPU usage, the game
generated with MAndroid seems to consume less CPU than other implemen-
tations in the market, although it uses more memory.

There are some lines of future work that we would like to address next.
First of all, we want to study and analyse why most participants were not
able to model certain parts of the Tic-Tac-Toe game. Also, we would like to
extend the proposed framework for multiplayer games where players play on
different devices. Since we are following an MDE methodology, it is possible to
generate code for other platforms different than Android. For this, we would
need to develop new model-to-text transformations. We want to explore the
possibility to generate code for iOS devices. We would like to consider more
types of games in our framework, too. Finally, we plan to improve the graphical
editor environment, so that the framework usability is enhanced.

Verifiability

For the sake of verifiability, our MAndroid framework as well as the imple-
mentation of the three games (Tic-Tac-Toe, Othello and Backgammon) are
available on our GitLab website [45].

References

1. E. E. Thu and N. Nwe, “Model driven development of mobile applications using drools
knowledge-based rule,” in 2017 IEEE 15th International Conference on Software Engi-
neering Research, Management and Applications (SERA). IEEE, 2017, pp. 179–185.

2. E. R. N. Valdez, Ó. S. Mart́ınez, B. C. P. G. Bustelo, J. M. C. Lovelle, and G. I.
Hernandez, “Gade4all: developing multi-platform videogames based on domain specific
languages and model driven engineering,” IJIMAI, vol. 2, no. 2, pp. 33–42, 2013.

3. A. Rollings and E. Adams, Andrew Rollings and Ernest Adams on game design. New
Riders, 2003.

4. J. Novak, Game development essentials: an introduction. Cengage Learning, 2011.
5. M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software engineering in prac-

tice,” Synthesis lectures on software engineering, vol. 3, no. 1, pp. 1–207, 2017.
6. F. E. Hernandez and F. R. Ortega, “Eberos gml2d: a graphical domain-specific language

for modeling 2d video games,” in Proceedings of the 10th Workshop on Domain-Specific
Modeling. Citeseer, 2010, pp. 1–1.

7. “Android developers,” http://developer.android.com/index.html/, 2019.
8. “Smartphone market share,” http://www.idc.com/prodserv/

smartphone-os-market-share.jsp/, 2019.
9. J. P. Hinebaugh, A board game education. R&L Education, 2009.

10. F. Budinsky, D. Steinberg, R. Ellersick, T. J. Grose, and E. Merks, Eclipse modeling
framework: a developer’s guide. Addison-Wesley Professional, 2004.

11. “Eclipse acceleo project,” https://www.eclipse.org/acceleo/, 2019.
12. Merriam-Webster, “Definition of game by merriam-webster,” http://www.

merriam-webster.com/dictionary/game/, 2019.
13. F. T. Tschang, “Videogames as interactive experiential products and their manner of

development,” International Journal of Innovation Management, vol. 9, no. 01, pp.
103–131, 2005.

http://developer.android.com/index.html/
http://www.idc.com/prodserv/smartphone- os-market-share.jsp/
http://www.idc.com/prodserv/smartphone- os-market-share.jsp/
https://www.eclipse.org/acceleo/
http://www.merriam-webster.com/dictionary/game/
http://www.merriam-webster.com/dictionary/game/


A Model-Driven Framework for Android-based Multiplayer 2D Board Games 47

14. D. Callele, E. Neufeld, and K. Schneider, “Requirements engineering and the creative
process in the video game industry,” in 13th IEEE International Conference on Re-
quirements Engineering (RE’05). IEEE, 2005, pp. 240–250.

15. E. R. Núñez-Valdez, V. Garćıa-Dı́az, J. M. C. Lovelle, Y. S. Achaerandio, and
R. González-Crespo, “A model-driven approach to generate and deploy videogames
on multiple platforms,” Journal of Ambient Intelligence and Humanized Computing,
vol. 8, no. 3, pp. 435–447, 2017.

16. K. Sánchez, K. Garcés, and R. Casallas, “A dsl for rapid prototyping of cross-platform
tower defense games,” in 2015 10th Computing Colombian Conference (10CCC). IEEE,
2015, pp. 93–99.

17. C. Kelly, Programming 2D games. AK Peters/CRC Press, 2012.
18. A. Developer, “Android developer,” ĺınea]. Available: https://developer. android. com,

2015.
19. R. Meier and I. Lake, Professional Android. John Wiley & Sons, 2018.
20. U. Frank, “Domain-specific modeling languages: requirements analysis and design guide-

lines,” in Domain Engineering. Springer, 2013, pp. 133–157.
21. M. Gharaat, M. Sharbaf, B. Zamani, and A. Hamou-Lhadj, “Alba: A model-driven

framework for the automatic generation of android location-based apps,” Automated
Software Engineering.

22. A. Kleppe, Software language engineering: creating domain-specific languages using
metamodels. Pearson Education, 2008.

23. D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse modeling frame-
work. Pearson Education, 2008.

24. S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of model-
driven software development,” IEEE software, vol. 20, no. 5, pp. 42–45, 2003.

25. J. Bézivin, “In search of a basic principle for model driven engineering,” Novatica Jour-
nal, Special Issue, vol. 5, no. 2, pp. 21–24, 2004.

26. J. Oldevik, T. Neple, R. Grønmo, J. Aagedal, and A.-J. Berre, “Toward standardised
model to text transformations,” in European Conference on Model Driven Architecture-
Foundations and Applications. Springer, 2005, pp. 239–253.

27. J. Musset, É. Juliot, S. Lacrampe, W. Piers, C. Brun, L. Goubet, Y. Lussaud, and
F. Allilaire, “Acceleo user guide,” See also http://acceleo. org/doc/obeo/en/acceleo-
2.6-user-guide. pdf, vol. 2, p. 157, 2006.

28. H. Tufail, F. Azam, M. W. Anwar, and I. Qasim, “Model-driven development of mobile
applications: A systematic literature review,” in 2018 IEEE 9th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE,
2018, pp. 1165–1171.

29. M. Usman, M. Z. Iqbal, and M. U. Khan, “A model-driven approach to generate mobile
applications for multiple platforms,” in 2014 21st Asia-Pacific Software Engineering
Conference, vol. 1. IEEE, 2014, pp. 111–118.

30. H. Heitkötter, T. A. Majchrzak, and H. Kuchen, “Cross-platform model-driven devel-
opment of mobile applications with md2,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, 2013, pp. 526–533.

31. A. G. Parada and L. B. De Brisolara, “A model driven approach for android applications
development,” in 2012 Brazilian Symposium on Computing System Engineering. IEEE,
2012, pp. 192–197.

32. A. G. Parada, E. Siegert, and L. B. De Brisolara, “Generating java code from uml
class and sequence diagrams,” in 2011 Brazilian Symposium on Computing System
Engineering. IEEE, 2011, pp. 99–101.

33. M. Kosanović, I. Dejanović, and G. Milosavljević, “Applang–a dsl for specification of
mobile applications for android platform based on textx,” in AIP Conference Proceed-
ings, vol. 1738, no. 1. AIP Publishing LLC, 2016, p. 240003.

34. M. Ko, Y.-J. Seo, B.-K. Min, S. Kuk, and H. S. Kim, “Extending uml meta-model for
android application,” in 2012 IEEE/ACIS 11th International Conference on Computer
and Information Science. IEEE, 2012, pp. 669–674.

35. A. Sabraoui, M. El Koutbi, and I. Khriss, “Gui code generation for android applications
using a mda approach,” in 2012 IEEE International Conference on Complex Systems
(ICCS). IEEE, 2012, pp. 1–6.



48 Mohammad Derakhshandi et al.

36. A. Sabraoui, A. Abouzahra, K. Afdel, and M. Machkour, “Mdd approach for mobile
applications based on dsl,” in 2019 International Conference of Computer Science and
Renewable Energies (ICCSRE). IEEE, 2019, pp. 1–6.

37. M. Lachgar and A. Abdali, “Rapid mobile development: Build rich, sensor-based appli-
cations using a mda approach,” IJCSNS, vol. 17, no. 4, p. 274, 2017.

38. C. Rieger and H. Kuchen, “A process-oriented modeling approach for graphical devel-
opment of mobile business apps,” Computer Languages, Systems & Structures, vol. 53,
pp. 43–58, 2018.

39. S. Vaupel, G. Taentzer, R. Gerlach, and M. Guckert, “Model-driven development of
mobile applications for android and ios supporting role-based app variability,” Software
& Systems Modeling, vol. 17, no. 1, pp. 35–63, 2018.

40. M. Núñez, D. Bonhaure, M. González, and L. Cernuzzi, “A model-driven approach for
the development of native mobile applications focusing on the data layer,” Journal of
Systems and Software, vol. 161, p. 110489, 2020.

41. V. Guana and E. Stroulia, “Phydsl: A code-generation environment for 2d physics-based
games,” in 2014 IEEE Games, Entertainment, and Media Conference (IEEE GEM),
2014.

42. E. Marques, V. Balegas, B. F. Barroca, A. Barisic, and V. Amaral, “The rpg dsl: a case
study of language engineering using mdd for generating rpg games for mobile phones,”
in Proceedings of the 2012 workshop on Domain-specific modeling, 2012, pp. 13–18.

43. D. Altunbay, E. Cetinkaya, and M. Metin, “Model driven development of board games,”
in the First Turkish Symposium on Model-Driven Software Development (TMODELS),
2009.

44. E. M. Reyno and J. Á. Carśı Cubel, “Automatic prototyping in model-driven game
development,” Computers in Entertainment (CIE), vol. 7, no. 2, pp. 1–9, 2009.

45. M. Derakhsandi, “MAndroid Framework,” https://gitlab.com/mohammad71/
mandroid/, 2019.

46. “Gametable,” https://gametable.org.

47. “Cardgames,” https://cardgames.io/reversi/.

48. G. Albaum, “The likert scale revisited,” Market Research Society. Journal., vol. 39,
no. 2, pp. 1–21, 1997.

49. “wintrino,” https://play.google.com/store/apps/details?id=com.tictactoe.wintrino/.

50. “Arcsys,” https://play.google.com/store/apps/details?id=com.arcsys.tictactoe.lite.
free.puzzle.games/.

51. “byril,” https://play.google.com/store/apps/details?id=com.byril.tictactoe2/.

52. “Fun games free,” https://play.google.com/store/apps/details?id=tic.tac.toe.games.
board.kids.tictactoe.free/.

53. “Big brain kraken,” https://play.google.com.bigbrainkraken.tictactoe/.

54. “Playzio,” https://play.google.com.playzio.tictactoefree/.

55. P. Schober, C. Boer, and L. A. Schwarte, “Correlation coefficients: appropriate use and
interpretation,” Anesthesia & Analgesia, vol. 126, no. 5, pp. 1763–1768, 2018.

56. H. Akoglu, “User’s guide to correlation coefficients,” Turkish journal of emergency
medicine, vol. 18, no. 3, pp. 91–93, 2018.

57. R. S. Pressman, Software engineering: a practitioner’s approach. Palgrave macmillan,
2005.

58. “almatime,” https://play.google.com/store/apps/details?id=com.almatime.tictactoe/.

59. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in software engineering. Springer Science & Business Media, 2012.

https://gitlab.com/mohammad71/mandroid/
https://gitlab.com/mohammad71/mandroid/
https://gametable.org
https://cardgames.io/reversi/
https://play.google.com/store/apps/details?id=com.tictactoe.wintrino/
https://play.google.com/store/apps/details?id=com.arcsys.tictactoe.lite. free.puzzle.games/
https://play.google.com/store/apps/details?id=com.arcsys.tictactoe.lite. free.puzzle.games/
https://play.google.com/store/apps/details?id=com.byril.tictactoe2/
https://play.google.com/store/apps/details?id=tic.tac.toe. games.board.kids.tictactoe.free/
https://play.google.com/store/apps/details?id=tic.tac.toe. games.board.kids.tictactoe.free/
https://play.google.com.bigbrainkraken.tictactoe/
https://play.google.com.playzio.tictactoefree/
https://play.google.com/store/apps/details?id=com.almatime.tictactoe/


A Model-Driven Framework for Android-based Multiplayer 2D Board Games 49

A Appendix

This Appendix presents the full version of the metamodels and describes them in detail.

A.1 Game Menu Metamodel

This section extends the explanations presented in Section 4.1.1. Figure 21 displays the
complete menu metamodel. The concepts that appear in the metamodel are presented next.

Game: It is the root of the metamodel, from which we start to build the game menu.
Designer : Every game normally keeps essential information on the game designer in

this component. Such information includes the designer’s name and contact information.
Although it is possible to add the name and details of the game designer as attributes in
the Game class, we emphasize its role creating the Designer class. Besides, this is more
convenient if we consider future extensions of our tool, such as the possibility of having
several designers.

Menu: The game menu is composed of a combination of pages in our MAndroid ap-
proach. A page can either be a MenuPage or a page where the main process of the game is
started.

MenuPage: Menu pages are like a canvas, so we can design their user interface by using
different graphical elements. Here, the user can build as many pages as desired. The order
of these pages is considered.

SplashPage: Most mobile phone games contain a page for some general information
such as name, version and developer. This page opens after entering the game environment
and, after a few seconds, it transfers the game execution to the next page. Such a page can
be placed in the game using the SplashPage component.

GamePage: There is always a page in the game for the main process. The main game
process in a board game takes place by throwing a die, or moving an element. This page
is built with the help of the GamePage class. For instance, Figure 4 shows all the pages of
the Tic-Tac-Toe game developed using MAndroid. As shown in the figure, the game is built
using three pages, including, from left to right, a SplashPage, a MenuPage and a GamePage.

Variable: Variables are used to give the user the ability to change desirable components
placed in the game, what allows to use not only predefined settings. A Variable needs a name,
a type and a desired value that could be later modified.

Resource: This component is used to add resources like images, sounds and XML files
to the game. All these resources must be later materialized as separate files to be used to
build the game menu. The file names are used to identify them. It is important to consider
the Android OS rules when naming these files as it does not allow using repetitive names
and capital letters. As future work, we plan to let the user specify any name for these files
and automatically convert these names to Android valid names.

MainFrame: Every menu page consists of a main frame. As its name suggests, it acts
as a frame that holds all other components of the game menu, such as control components.
This frame can be horizontal or vertical depending on the game implementation patterns.

Box : MAndroid introduces a method called the Box Design Method to design the user
interface of every page. This enables the user to design the user interface of every page
without being involved in the technical details related to Android user interface designing
such as layouts. Most of the designs that are built using LinearLayout, GridLayout and
TableLayout in Android will be implementable using this method. This method divides
every page into a set of columns and rows, which are placed together to build a game page.
Then, a concept named Box is used to place various graphic components in the page. Every
box is in fact a space in the page that can hold a graphic component. Adjusting the size of
these boxes on each page is done in proportion to the display size, so that the design can be
properly displayed on devices of different sizes and responsive designs can be created. Also,
boxes can contain other boxes with our approach to create more complex designs. Figure 5
shows how a MenuPage is displayed using this method. The page is made up of 5 different
rows and each row holds a number of boxes as well. For example, the second row from the
top holds three boxes. The boxes on the right and left are empty spaces that have been



50 Mohammad Derakhshandi et al.

Fig. 21: The Menu Metamodel for generation of 2D board game in MAndroid



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 51

placed on both sides to align the row. The box in the middle has been placed as a space to
hold a button.

View : This component is used to display the Android user interface components in a
page. Every view needs to have a unique identity in the model, which is used to identify it
in the entire model. To enhance the understandability of users, the real names of Android
components are used in the menu metamodel.

According to the concepts mentioned earlier, it is possible to define the relationship
between the game’s menu metamodel and the Game, Menu, MenuPage, MainFrame, Box
and View components so as to build the user interface. This approach makes it compulsory
for every game to have a Menu component that may contain one or more MenuPages. Every
MenuPage needs to have a main frame, represented by the MainFrame component. It is
possible to place as many Boxes as we want inside the frame. Additionally, every box can
contain a number of boxes or View type components. This provides a convenient way for
the user to generate the user interface for each page.

Since the game menu does not require too many View components, we have used and
defined only a selected number of Android Views in this metamodel, including Button for
creation of buttons, ImageButton for creation of images as a button, ImageView for showing
images, TextView for showing text, EditText for getting input data from the user and Space
to create blank areas inside a box.

Then, to present visual features in the metamodel, we have defined three classes, namely
DisplayStyle, TextStyle and PositionStyle. These classes are separated, as some Views may
not need all styles. The remaining metamodel components are defined next.

DisplayStyle: The display properties of every part of the user interface page can be
defined using the DisplayStyle component. Examples of these characteristics are the back-
ground image or color.

PositionStyle: This component is used to organize and align all properties related to
placing the boxes or other graphic coordinates like width, height, and margins, among others,
in the page.

TextStyle: In order to define properties like color, font or size, which are related to
displaying text in components such as EditText or TextView that use text, the TextStyle
component is used.

Behavior : It is possible to assign behavioral properties to graphical components in the
game menu metamodel so that the considered action is performed on user interaction, such
as pressing a key or a button. Executable behaviors are defined under the Action component.

Action: This component is used by a graphic component after an event is called in order
to define the needed behavior. For example, when a key on the menu is pressed, the “click-
ing” event is called and naturally the behavior defined to respond to this event is accrued. In
MAndroid, only very common actions in games have been defined. For instance, UpdateIm-
ageViewAction is used to change the image of a display component. SoundAction allows to
perform audio actions, such as reducing or increasing the volume and playing/pausing music,
while DialogAction is used to display an “about” window or a message in the game menu.
Regarding updating actions, UpdateVariableAction is used to update and refresh the value
of the variables defined in the game menu, for which it needs to receive the corresponding
updated value from the user using an EditText component, while UpdateTextViewAction
may be used to change the text displayed by a TextView component in the game page. Fi-
nally, since this approach is based on a set of pages, one of the most important requirements
is the possibility for shifting between pages. This can be a shift between the current page
and the next or previous ones, or to a specific page number, to the GamePage or exiting
the game. This is managed by the TransitionAction component.

A.2 Game Structure and Behavior Metamodel

This section extends the explanations given in Section 4.1.2. Figure 22 displays the com-
plete metamodel proposed for the game behavior and structure according to the MAndroid



52 Mohammad Derakhshandi et al.

approach. In the following, explanations for the different components of the metamodel are
provided.

Game: Similar to the game menu metamodel, modeling is started from the most basic
component, which is the game component. This component provides integration between
the menu and game metamodels to have a uniform understanding between them.

GamePlayFeatures: Some general features of the game, such as the number of players,
use of dice and the type of dice in the game are defined with the help of this component.

UIFeatures: As mentioned earlier in the game menu metamodel, the declaration of a
user interface related to the process of a board game is performed in the GamePage page.
Because of the differences between the implementation techniques in static and dynamic
user interfaces, all the graphic coordinates in the GamePage have to be drawn completely
independent from other pages and in a dynamic way using the graphic libraries of Android.
However, the user interface in the game menu pages are of a static form based on XML files.
To be able to create diverse GamePage pages, some features of this page are abstracted
and are placed in the UIFeatures component. This enables the user to personalize the game
page display by allocating desired quantities to these features.

For instance, Figure 7 represents the general pattern designed for the GamePage in MAn-
droid. The design is made up of three parts or panels. Top Panel contains the menu button
and two spaces for displaying information of the two players. These spaces are provided de-
pending on the number of players playing the game, and are called Player Box. The middle
panel, declared as the Board Panel, contains the required space to place the board compo-
nent. The Bottom Panel can contain the throw dice button and two other spaces to display
the information of two additional players, depending on the number of players and game
style. Every Player Box contains two different spaces to accommodate desired texts, which
might be the player’s name, points, turns, etc. This space is separated by a line that passes
through the box. Every Player Box is made up of an internal and an external space, which
may have different backgrounds.

GameVariable: Undoubtedly, designing a game requires declaration of many variables.
Although many of these variables are declared in our MAndroid approach as prerequisites,
the GameVariables component allows to declare further variables.

Board : The most important and basic concept in the structure of a board game is the
board. In board games, the board is the place that accommodates all the components of
the game. Naturally, every board game needs to have one board and the game cannot be
executed without it.

Tile: In the MAndroid approach, every board is made up of several matrix components
called tiles. These tiles are locations in which game elements can be allocated. Since the
board has to be a rectangular or square space, every tile can be easily identified using its
row and column index number. The numbering of rows and columns is started from the top
left corner with zero. The attribute number is used to calculate the row and column of tile,
which makes it more simpler for the user and also it is more dynamic in the process.

Player : Since MAndroid aims to generate multiplayer games, we need the concept of
player in our metamodel. It is not possible to declare more than four players in order to
consider only those games that can be displayed on a single screen. Additionally, by defining
more than four players, the displaying limitations for presenting all the details of the game
may happen.

Element: The element is an important component in board games. The progress of a
board game is highly dependent on the movement or position of elements. Every element
belongs to only one player and must always be in a tile. In every board game, players may
have multiple and different elements; for instance, in chess, a player may have elements like
the pawn, knight, bishop, etc. Generally, the structure of board games in MAndroid is formed
by the board, tiles and the elements. Figure 11 displays this concept in the Othello game.
In the figure, the board is made up of 8 columns, 8 rows and therefore 64 tiles.MAndroid
supports both structural and behavioral features. It is possible to assign any image to an
element, in terms of its structural aspect. Additionally, it is possible to modify the behavior
of the element. Thus, elements move between tiles, get visible and hide, and are added or
removed from the board. These are the required operations for an element in a real board
game.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 53

Fig. 22: The game Structure and behavior Metamodel in MAndroid



54 Mohammad Derakhshandi et al.

Behavior : The most challenging part in designing a game is defining its rules. UML
structural diagrams such as class diagrams do not provide all necessary features to model the
behavior and rules of the game. Therefore it is necessary to use UML behavioral diagrams,
such as state machines. For this purpose, a new method has been proposed in the MAndroid
framework that combines the concepts used in class diagrams and state machines in order
to model the game behavior using Ecore diagrams.

The game behavior in MAndroid is made up of three components including condition, action
and event. Events are executed by the player during the game. For example, throwing the
dice is an event that is called by pressing on the dice icon. If an event component is reached
during the game flow, the flow will be stopped until the event is called. Condition is another
component of the game used to check the correctness of statements and, in turn, decide on
the continuation of the game. For example, after an action by the user, in case the element
lands on a tile with even number, the game will continue on path A; and if the element lands
on an odd number tile, it will continue on path B. Action is another component used to
perform several actions that have been defined under the domain of the game. For example,
deleting an element from the board when hit by an enemy element is an action. Figure 12
displays the principles of behavioral modeling in MAndroid. According to the figure, the
game starts at a singular point and ends in another point. After the game starts, at every
point of time, it is at a specific point called State, which can be either an event, action or
condition component. A concept named Sequence has been used in this approach to ease
the modeling and prevent the implementation of repetitive states. Every sequence is made
up of a set of states and does not create any change in the game by itself; instead, it is used
to organize and keep in order the states to be used. In case the need to use a sequence more
than once arises, the RepeatingSequence component can be used. Figure 12 shows a game
that uses 3 sequences and 12 different states. The game enters a state in the form of an
event. The flow of the game stops until the intended event is called by the user. Then the
game reaches a state or condition where the game can be either directed to the right or left.
Finally, if the game is directed towards its ending point, it will end. All behavioral states
and rules of the game can be modeled using this method.

Sequence: As mentioned, every sequence is composed of a set of events, conditions and
actions. In this approach, the game needs to have one or an unlimited number of sequences
to hold the game states. The sequences may be identified and used later for a particular
operation with the help of their unique identities. In case there is the need to use a sequence
repeatedly, the concept of RepeatingSequence can be applied.

State: In this approach, every state is a unique and effective point in the game that
helps to guide the game from its starting point to its ending point. The game flow starts from
a point where the isFirstState attribute is true and then the game keeps moving forward
with the help of the event’s nextState attribute, which stores the unique identification of
the next state, until one of the ending points of the game is reached.

Event: Events are elements that are executed by players and change the flow of the
game. The flow of the game is stopped until an event is called by the user. In the MAndroid
approach, all events that can possibly occur in a board game have been covered. Examples
of these events are throwing the dice, moving an element form an origin tile to a destination
tile, touching an element, clicking on it or pressing a tile.

Condition: Sometimes it is necessary to guide the flow of a game to different paths based
on the execution of certain events and states or upon satisfaction of certain conditions. The
Condition component is used to accomplish this task in the MAndroid approach. Condition
is the only state in the game whose output leads to two different paths, whereas all other
states have only one output. The condition component has an expression attribute that is
a logical statement and can acquire true and false as its value. If the expression is true, the
game is guided towards a path whose trueNextState attribute is true, otherwise it is guided
to the falseNextState feature. To write an expression in a condition, one must follow the
grammar rules of Java, reason why these three attributes are of type EString. Also, it is
possible to use predefined as well as user-defined variables. Another conditional component
is the CollectionCondition, which is used for writing complex conditions that are applied on
a collection of components such as the elements or the tiles.



A Model-Driven Framework for Android-based Multiplayer 2D Board Games 55

Action: The action component is used to undertake an action in the game. The actions
have been designed by considering the domain of board games, so that all needed actions
are possible. All possible actions in the MAndroid approach are explained as follows:

– DoSequence: This action is used to start a sequence from any point. This ability
may be used to easily search the predefined sequences for a desirable point from
where to start the game.

– RepeatSequence: This action is used if repetitive sequences are needed. With the
help of this action, the desired sequence is executed once again from the start.

– UpdateVariable: This action is used in case it is required to change the value of the
defined variables.

– StartGame: The action can be used to start the game with showing a welcome
message to users.

– ShowDialog and ShowMessage: One of the most important needs of a mobile phone
is the display of required messages to the players. These messages can be reminders
about the game rules, error displays and displays of players’ scores. Dialogs are
separate windows that open on the current page and stay on the screen until their
window is closed. Messages are also a form of information that stay on the screen
for some time and disappear shortly after. Figure 13 shows an example of a Dialog
window and a message window in MAndroid.

– InitialTurnQueue: Applying turns is an important concept in board games. The
process of identifying the turns on the starting point may be different depending
on the game. In our approach, it is possible to implement it as desired using the
InitialTurnQueue component. This action determines the initial turn as the game
starts such that all players are placed sequentially in a queue. Every player gets in
the end of the queue after their turn.

– ChangeTurnQueue: If the need arises to change the turns sequence while playing
the game, this action is used. For example, we might want to relocate or completely
remove a player form the turn queue. The ChangeTurnerQueue is used in such
circumstances.

– NextTurn: This action is used to shift the turn to the next player in the queue.
– HideElement : Every element has a property called isVisible, which determines whether

the element is visible on the board or not. Invisible elements cannot be seen on the
game screen, although they do occupy the position in a tile. To hide an element,
the HideElement action is used.

– ShowElement : It is used to make an invisible element visible on the board, i.e. it is
directly opposite to HideElement.

– DeleteElement : It can be used to remove an element from the game; for example,
in case of defeating an opponent element. This action is irreversible and, in order
to remove the element temporarily, it must be hidden.

– CreateElement : This action is used to create a new element on the board. The four
latter actions, i.e., HideElement, ShowElement, DeleteElement and CreateElement
actions cover all the needed operations to be applied on elements in the game.

– MoveElementToTile: This action is used to move an element from a tile to another.
To perform this task, the unique address of the element and the addresses of the
initial and final tiles are needed.

– DisableTile: Every tile on the board has an isEnable property that shows whether
the tile is active or not. In the tile is inactive, it cannot be used to store an element.
To make a tile inactive, this action is used.

– EnableTile: This is the exact opposite to the DisableTile element and is used to
activate a tile.

– NonMovableElement : All elements have an isMovable property that describes whether
the element is movable or not. This action is used to deactivate the movement of an
element.

– MovableElement : This action is the exact opposite to the former action and is used
to activate an element’s movement.

– UpdateElementUI : Every element can be identified on the board using its image.
If needed, the image of the element can be changed using this action. This would
result in a change in the appearance of the element on the board.



56 Mohammad Derakhshandi et al.

– UpdatePlayerBoxInfo: This action can be used to change the text displayed by the
player boxes in the top or bottom part of the screen.

– PlaySound : This action is used to play a soundtrack or audio in the game, thus
resulting in making the game more attractive. In MAndroid, it is possible to play
sounds/audios during the game.

– EndGame: This action is used for the end of the game. The moment the game
reaches the EndGame action, the final window is displayed and the name of the
winner is announced. After this action, game processing is not possible anymore
and the game comes to an end.

ExtraAttribute: The player, element and tile components contain a number of prede-
fined properties that cover all the qualities needed to define the structure of a board game.
Besides, there is the possibility for defining new properties during the game. This is achieved
by the ExtraAttribute component.


	Introduction
	Background
	Related Work
	Approach and Framework
	Evaluation
	Results
	Conclusion and future work
	Appendix

