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Abstract

Regression testing activities greatly reduce the risk of faulty soft-
ware release. However, the size of the test suites grows throughout
the development process, resulting in time-consuming execution of the
test suite and delayed feedback to the software development team.
This has urged the need for approaches such as test case prioritiza-
tion (TCP) and test-suite reduction to reach better results in case of
limited resources. In this regard, proposing approaches that use aux-
iliary sources of data such as bug history can be interesting. We aim
to propose an approach for TCP that takes into account test case cov-
erage data, bug history, and test case diversification. To evaluate this
approach we study its performance on real-world open-source projects.
The bug history is used to estimate the fault-proneness of source code
areas. The diversification of test cases is preserved by incorporating
fault-proneness on a clustering-based approach scheme. The proposed
methods are evaluated on datasets collected from the development his-
tory of five real-world projects including 357 versions in total. The
experiments show that the proposed methods are superior to coverage-
based TCP methods. The proposed approach shows that improvement
of coverage-based and fault-proneness-based methods is possible by
using a combination of diversification and fault-proneness incorporation.

Keywords: Regression testing, Test case prioritization, Defect prediction,
Test case diversification, Bug History

1

ar
X

iv
:2

10
6.

10
52

4v
3 

 [
cs

.S
E

] 
 1

7 
N

ov
 2

02
3



Springer Nature 2021 LATEX template

2 TCP using test case diversification and fault-proneness estimations

1 Introduction

Modern software systems are continuously changing at a rapid rate throughout
the software development process. Changes are made to the software to add
new features, improve functionality, and repair identified software bugs. Dur-
ing this evolution, developers mustn’t unintentionally inject new bugs into the
software. Software regression testing attempts to reduce this risk by running
a certain suite of test cases regularly or after each modification. Due to the
increasing size of the software codebase and the number of change commits,
regression testing has become a resource-intensive procedure for current soft-
ware projects. Moreover, re-running the test suite can take much time, which
results in a large feedback delay for developers. For example, at Google, code
modification commits are done at the rate of more than 20 times per minute
requiring more than 150 million test executions per day [1, 2].

There has been a wide range of techniques proposed to improve the cost-
effectiveness of regression testing. These techniques can be categorized into
three groups: Test suite reduction, Test case selection, and Test case prior-
itization. Test suite reduction (also referred to as Test suite minimization)
techniques speed up regression testing by reducing the size of the test suite [3–
5]. These methods try to eliminate repetitive test cases, in hope of creating
a smaller test suite with similar fault detection capability. Test case selection
techniques intend to prevent unnecessary regression testing by choosing test
cases that cover the modified code between versions [6–8]. Test case prioritiza-
tion (TCP) techniques aim to reorder test cases such that early fault detection
is maximized [9, 10]. This approach has the advantage over test suite reduction
and test case selection in that it does not exclude any test cases from execution.
TCP methods provide a way to execute test cases with more fault detection
ability earlier to provide early feedback to developers. TCP also allows contin-
uing testing to the limit of time or budget, by running the test suite in order
obtained by prioritization.

Test case prioritization, which is the subject problem of this study, has
been highly investigated and many approaches have been proposed for the
TCP problem. [11–13]. The majority of TCP methods have used structural
code coverage as a metric to prioritize test cases [14, 15]. Some researchers
have investigated using other sources of information, such as the project
requirements [16–18], source code changes, [19–21] or test execution history
[22–24].

One valuable source of information for TCP is the bug history of the
project. Bug history has been recently proposed as a source of information
to improve TCP [25–28]. Bug history can be utilized to estimate the fault-
proneness of code units, which is the probability that developers have injected
a defect in a code unit. In this line, defect prediction methods have been
employed to estimate the fault-proneness of code units based on the source
code and bug history of the project [29–31]. However, there remains a chal-
lenge in the strategy of incorporating the fault-proneness estimations obtained
by defect prediction to prioritize the test cases. For example, if fault-proneness
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is naively used to prioritize test cases, the test cases that cover a fault-prone
area, although similar and possibly redundant will have a high priority.

It has been intuitively conjectured that test cases that have similar prop-
erties, also are probable to have similar fault detection capability [32, 33].
Therefore considering diversification in selecting and prioritizing test cases will
lead to appropriate results. Based on this conjecture, various approaches have
been proposed for TCP [34–36]. These methods have been shown to empirically
improve the fault detection rate of TCP, confirming the mentioned conjecture
about similar test cases’ fault detection capability in the context of TCP.

In this paper, we propose a novel approach to incorporate fault-proneness
estimations for TCP utilizing both fault-proneness and test case diversifica-
tion. Our approach is based on the idea of grouping similar test cases using
clustering methods and prioritizing the clustered test cases. To estimate the
fault-proneness of all code units from the bug history and source code, we
designed a defect prediction method customized for the regression testing set-
ting. Furthermore, we developed a TCP method based on test case clustering
which takes into account both fault-proneness and test case diversification.

Another challenge regarding TCP is the empirical study. Many studies
are based on manually injected faults or mutant versions of programs. To
measure the fault detection rate of various TCP strategies in a more realistic
situation, we evaluate the algorithms on real-world projects containing defects
that occurred in the development process. Our experiment is conducted on
357 versions of five real-world projects, included in the Defects4J dataset [37],
comparing the fault detection rate of multiple methods.

To more accurately assess our study, we raise the following research
questions:

• RQ1: The traditional total and additional TCP strategies have proven to
be successful for coverage-based TCP [14, 38, 39]. How do the proposed
clustering-based TCP methods compare to the traditional coverage-based
TCP strategies in terms of fault detection performance?

• RQ2: Does incorporating fault-proneness improve the proposed
clustering-based TCP algorithm in terms of fault detection performance?

• RQ3: What is the influence of the clustering parameters (distance func-
tion and the number of clusters) on the effectiveness of the proposed TCP
algorithms?

This paper makes the following contributions:
• We provide an approach to leverage existing coverage-based TCPmethods
in a clustering-based TCP scheme. This approach led to the development
of new TCP methods which are based on test case coverage data and take
advantage of the diversification of test cases for TCP.

• We propose a novel approach to combine fault history data and test case
diversification, in the context of coverage-based TCP.

• We design a customized defect prediction method to estimate the fault-
proneness of a code unit. This method is customized to work when only a
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small set of recorded bugs are available and utilizes the information from
all versions of the source code history.

• We present an empirical evaluation using five open-source projects con-
taining in total 357 versions of the projects. Results show that our
proposed approach could improve existing coverage-based TCP tech-
niques.

The rest of the paper is organized as follows: Section 2 presents the back-
ground material. Section 3 presents our approach to solving the problem and
our proposed method. Section 4 presents the setup of our empirical evaluation
and Section 5 shows the results of our experiments. In Section 6 the empirical
results and threats to the validity of this study are discussed. Section 7 sum-
marizes the most related work to this paper. Finally, Section 8 contains the
conclusions and future work of this paper.

2 Background

In this section, we present the formal definition of test case prioritization
and briefly introduce some of the classical coverage-based TCP methods. We
continue by providing background information on defect prediction, which is
employed for fault-proneness estimation in this study. Afterward, we present
concepts of test case similarity and diversification-based methods for TCP.

2.1 Test case prioritization

In its essence, TCP seeks to find a permutation of test cases, which optimizes
a certain intended goal function. To more formally define TCP, consider a test
suite containing the set of test cases T = {t1, t2, . . . , tn}. The TCP problem is
defined as follows [10]:

Given: T , a test suite; PT , the set of permutations of T; f , a function
from PT to the real numbers.
Problem: Find T ′ ∈ PT such that1:

∀T ′′ : PT | T ′′ ̸= T ′ • f(T ′) ≥ f(T ′′) (1)

In other words, the TCP problem is finding a permutation T ′ such that
f(T ′) is maximized. Here f is a scoring function that assigns a score value to
any permutation selected from PT .

The f function represents the goal of a TCP activity. Software engineers
using TCP methods could have different goals, such as testing business-critical
functionality as soon as possible, maximizing code coverage, or detecting faults
at a faster rate. Since the ultimate target of regression testing is to detect
regression faults, the TCP target function is usually specified as to how fast the
regression faults can be detected, which is referred to as fault detection rate.
One of the highly used measurements for evaluating the fault detection rate

1This relation is expressed using Z notation’s first order logic [40].
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is the APFD (Average Percentage of Faults Detected) goal function, an area-
under-curve metric that measures how quickly a test suite can detect faults.
APFD is frequently used in the literature for TCP when the goal of TCP is
maximizing the fault detection rate [15, 41, 42]. Another target function that
can be used is the percentage of test cases executed until the first failing test
case. We have chosen the first-fail metric for our empirical study and discussed
this in 4.2.

2.2 Coverage-based test case prioritization

For the sake of modeling the system for test case prioritization, the source
code can be partitioned into units such as files, methods, or statements.
Assuming a chosen level of partitioning, the source is partitioned into units
U = {u1, u2, . . . , um}. Using this modeling, a broad range of coverage-based
TCP methods settle on a level of partitioning (usually statements or methods)
and measure coverage of test cases over those units. Considering each test case
ti of the test suite and unit uj of the source code, Cover(i, j) represents how
much test case ti covers unit uj . The amount of coverage can be either 0 or 1
if the units of code are statements; however if the units are methods or files,
it can also be a real number in the range [0, 1] representing the proportion of
code that is covered by the test case execution.

Test case coverage can be collected in different ways. Dynamic coverage
information is collected by executing the test case and tracking every unit of
code that is executed. On the other hand, static coverage is derived by static
analysis of the source code [43].

When the coverage of a test case on the code units is known, other concepts
such as the total coverage of the test case can be computed. The total coverage
of a test case ti is formally defined as follows[14]:

Cover(i) =
∑

1≤j≤m

Cover(i, j) (2)

The value of Cover(i) is a real non-negative number and can be larger than
1. Coverage-based TCP methods utilize coverage of test cases to prioritize the
test suite. Traditional coverage-based TCP methods will be reviewed in the
following subsection.

2.3 Review of traditional TCP methods

In this subsection, we review three traditional TCP strategies that are
considered baseline methods in our empirical study.

2.3.1 Random strategy

The obvious and simple method of TCP is the random strategy. Taking the
random strategy, all test cases of the test suite are shuffled in random order.
The expected first-fail metric and APFD of this strategy are near 50%. This
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method is usually presented as the first baseline to be compared with other
proposed strategies for evaluation [44, 45].

2.3.2 Total strategy for TCP

The total prioritization strategy is based on the intuition that test cases that
have more coverage are more likely to uncover bugs. The total strategy, there-
fore, starts with computing the total coverage of all test cases according to
Equation 2. In the next step, test cases are sorted according to their total
coverage and as the result, the first test case in the prioritized order has the
highest total coverage. The total prioritization strategy does not consider the
fact that some test cases might cover duplicate areas of the code. Therefore,
when test cases are prioritized using this strategy, frequently some units of
code are executed multiple times before the whole units are covered [10].

Compared to other non-random existing strategies, the total prioritization
strategy is simple and efficient. The time complexity of this algorithm is the
sum of the time complexity of computing the total coverage for all test cases
and the time complexity of the sorting algorithm. The addition of these values
results in the time complexity of the total algorithm which is O(nm+n log n),
where n is the number of test cases and m is the number of source code units.

2.3.3 Additional strategy for TCP

In contrast to total prioritization, the additional prioritization strategy takes
into account that executing an uncovered unit of the code is more likely to
reveal new faults in the code, and therefore a test case that runs uncovered
code must have more priority compared to a test case that runs already cov-
ered units. The idea behind the additional strategy is that earlier coverage of
uncovered units of the code, results in revealing faults sooner [10].

The additional strategy begins by computing the total coverage of all test
cases. Afterward, in each step, the test case with the highest coverage over the
uncovered code area is chosen as the next test case. The selected test case is
appended to the end of the list of prioritized test cases and marked not to be
chosen in the next steps. The area of the code covered by the selected test case
will be marked as a covered area.

With this type of selection, the additional strategy falls in the category of
greedy algorithms. This strategy works in n steps where n is the number of
test cases. In each step, selecting the next test case and updating the coverage
of the remaining test cases is done in time complexity of O(nm). Therefore,
the total time complexity of this algorithm is O(n2m).

Due to different implementations in some scenarios, different variations of
The additional strategy have been developed. In two situations, this strategy
faces different options:

• When there exist at least two non-selected test cases which both have the
highest coverage over the uncovered code area. In case of such a tie, one
of these test cases should be selected with some criteria. For example, one
might select the test case randomly.
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• In case there are no uncovered areas of the code left. In this case, the
remaining test cases can be ordered with different approaches. A common
solution is to consider all the code uncovered again and continue the
algorithm with the remaining test cases [10].

2.4 Defect Prediction

Software faults are an inevitable part of the development process. These faults
happen for various reasons such as the addition or modification of the software
features, lack of tests and documentation, high level of dependence between
units, and faulty designs.

Modern software development tools can track and record occurrences of
each fault. As the cause behind most code faults is related to a limited set
of known or unknown generic fault patterns, it is reasonable to generalize the
pattern using the previously recorded samples.

There are usually four major steps to a defect prediction method [46]:
1. Feature extraction: In this step, each unit of code (package, file, class,

or method) is analyzed and various metrics are extracted from the unit.
The result of this step is a feature vector for each unit plus a label that
indicates whether the unit contains bugs or not.

2. Data preprocessing: To maximize the quality of defect prediction algo-
rithms, the extracted data should be manipulated in accordance with
the machine learning algorithm. This step includes removing unnecessary
features, normalization, and sampling.

3. Model learning: A machine learning algorithm is selected to predict faulty
code based on previous versions. The extracted feature vectors are then
fed to the machine learning algorithm. A small portion of the training
samples is reserved for validation. The choice of the algorithm is made
based on the quality of the predictions made by the model on the valida-
tion set. Prediction quality is then evaluated by the model’s performance
on the test set.

4. Prediction: The last step is to predict defects in unseen samples. In
this step, each new unit of code is labeled with a fault-proneness score,
indicating the plausibility of a defect in the unit.

There have been various features proposed for defect prediction. Static
code metrics which mainly capture the complexity and structural aspects of
the source code have been proposed, such as McCabe [47], Halstead metrics
[48], CK features (design metrics from UML) [49], and object-oriented features
(coupling, cohesion, etc.) [50–52]. Many studies have used static code metrics
for defect prediction [29, 53, 54]. Other metrics, such as historical and process-
related metrics (e.g., number of past bugs [30, 55] or the number of changes
[56–58]) and organizational metrics (e.g., number of developers [59, 60]), have
also been proposed.

Various machine learning techniques have been explored for the predic-
tion step of defect prediction, which can be categorized as supervised learning,
unsupervised learning, and semi-supervised learning [61]. Many supervised
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classification models have been applied for defect prediction, such as decision
trees [31], neural networks [62], support vector machines [63], Naive Bayes [64],
and Bayesian networks [65]. Jing et al. [66] employed cost-sensitive dictionary
learning for defect prediction. More recently, ensemble learning methods have
shown interesting performance and have gained attention in the area of soft-
ware defect prediction [67–70]. Unsupervised learning has been employed for
defect prediction [71] based on clustering methods [72–74] and other unsuper-
vised approaches [75–78]. Semi-supervised learning methods have been utilized
for defect prediction using sparse learning [79] and graph-based label prop-
agation [80]. The prediction of bugs at change-level or commit-level, namely
Just-In-Time (JIT) software defect prediction was introduced by Kamei et
al. [81].

In recent years deep learning techniques have also been utilized for defect
prediction. Yang et al. [82] utilize a deep belief network to extract a set of
expressive metrics from an initial set of change metrics. Using the extracted
features their method trains a classifier to predict defects at the change-level.
Wang et al. [83, 84] leveraged deep belief networks to learn semantic fea-
tures from abstract syntax trees and then used these features to create defect
prediction models. Hoang et al. [85] introduced DeepJIT for Just-In-Time
defect prediction, which utilizes Convolutional Neural Network (CNN) in an
end-to-end deep learning framework by extracting features from both commit
messages and code changes. Hoang et al. [86] proposed CC2Vec as an improve-
ment to DeepJIT using a Hierarchical Attention Network (HAN) architecture.
Pandey et al. [87] present BPDET for defect prediction, by implementing
a two-layer ensemble of different classifiers in front of an autoencoder-based
deep representation. Popular deep learning methods that have been applied in
defect prediction, include Long Short-Term Memory (LSTM) [88–90], Stacked
Denoising Autoencoder [91, 92], CNN [93], and Deep Neural Network (DNN)
[94]. Despite promising results using deep learning methods, applying presents
new challenges which are under investigation. Yedida et al. [95], point out
that many researchers applying deep learning in software engineering tasks
have not compared the results with other non-deep learning techniques. They
also provide experiments showing that class imbalance issues still should be
cared for when using deep learning methods for defect prediction. In their
study they show that using deep learning methods without applying appropri-
ate preprocessing techniques such as oversampling might significantly decrease
effectiveness of these methods.

2.5 TCP based on fault-proneness estimations

In case there is prior knowledge available on the presence of faults in cer-
tain areas of the code, this knowledge can be employed to improve test
case prioritization. One of the categories of research in this line is based on
estimating fault-proneness using defect prediction methods [25–28]. In [28],
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fault-proneness based coverage is presented, which is defined as:

CoverFP (i) =
∑

1≤j≤m

Cover(i, j)× Prob(Fj) (3)

Where CoverFP (i) denotes the fault-proneness based coverage of test case ti
of the test suite and the estimated probability2 of existing faults in unit uj

(1 ≤ j ≤ m) is shown by Prob(Fj).
This concept of coverage can be incorporated in coverage-based TCP

methods such as the ones presented in Section 2.3.

2.6 Diversity based TCP

As mentioned in Section 1, it is believed that test cases with similar features
have similar fault detection capabilities [32, 33]. The general idea behind the
diversity-based TCP approach is to rank the test cases in an order that at each
point of execution of the test cases, the diversity of the executed test cases at
that point is maximized. To do so, these methods attempt to implement the
following three steps:

• Encode test cases as a vector of features
• Computing distance/similarity of test cases according to a distance metric
• Maximize/minimize the distances/similarities of test cases
There have been different distance functions proposed for diversity-based

TCP such as Euclidean distance, Hamming distance, Jaccard Index, and Edit
distance [13].

After choosing an appropriate distance function, an algorithm must be
determined to order test cases such that the diversity of the test cases along the
prioritized test cases sequence is maximized. The problem of prioritizing test
cases to achieve such maximum diversity is an NP-hard problem (traditional
set cover) [96]. Therefore a heuristic method must be used to attempt to find
a permutation of the test cases which sub-optimally maximizes the diversity
function. Various heuristic methods have been proposed for this maximization
problem. These methods can be categorized as Greedy, Adaptive Random,
Clustering, and Search-based algorithms [13].

Among these categories, clustering-based methods have been employed
by several researchers for TCP [97–101]. Clustering methods partition data
points into groups or clusters, according to the similarity function between
the data points, such that data points in the same group have high similar-
ity. For the TCP application, normally a data point is extracted from each
test case, which represents the properties of the test case. Various cluster-
ing algorithms can be applied in this scenario, such as hierarchical clustering,
centroid-based clustering, clustering based on fuzzy theory, distribution-based
clustering, density-based clustering, and clustering based on graph theory
[102]. After clustering the data points various strategies can be imagined to

2Fj indicates the event in which j th code unit is faulty and Prob(FJ ) represents the probability
of this event.
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prioritize the test cases. We review some of the previously proposed strategies
in Section 7. This paper also leverages clustering and proposes a strategy in
this manner.

3 Methodology

Our proposed method consists of four main steps. The block diagram of the
proposed method is depicted in Figure 1. In the first phase, defect prediction
is utilized to predict the fault-proneness of code units. In the second phase,
the test cases are clustered to similar test cases in groups using a hierarchi-
cal clustering algorithm. In the third phase, the test cases in each cluster are
internally prioritized using coverage-based TCP methods. In the fourth phase

Fig. 1: Overview of the proposed test case prioritization algorithm
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test cases of the clusters are aggregated combining the fault-proneness estima-
tions and traditional TCP methods. To evaluate the prioritization algorithm,
the actual test results are used to find the rank of the fault-revealing test cases
and to compute the fault detection rate of each of the algorithms.

Two proposed algorithms are derived from this approach:
• The first step can be skipped resulting in the proposed TCP method
not utilizing fault-proneness and defect prediction concepts. Algorithm 1
shows the pseudo-code of the TCP method without using fault-proneness.
We refer to this algorithm as CovClustering in the empirical study
(Section 4).

• Algorithm 2 specifies the pseudo-code of the method with the incorpo-
ration of fault-proneness derived by defect prediction. We refer to this
algorithm as CovClustering+FP in the empirical study results.

In the following subsections, we explain each of the main steps of the pro-
posed approach in more detail. Explanations of the pseudo-codes follow in
Section 3.3, where we also give more details on the third and fourth steps of
the algorithms.

3.1 Proposed defect prediction method

In this section, the problem of predicting defective codes and the proposed
method to obtain an appropriate estimate of the fault-proneness are presented.
As mentioned in Section 2.5, the goal is to predict Prob(Fi) for each unit ui

of code given a set of features extracted from this unit. One effective method
to estimate Prob(Fi) is modeling it through a binary classification model.

In this section, we describe the concepts of the defect prediction model,
and the details of implementing this model are described in Section 4.5.

3.1.1 Feature set

The project data used for this study, including code features and code coverage
data are described in detail in Section 4.2. The features are extracted at the
class level and consist of 104 input features including static and process features
shown in Table 2. Each recorded version of the project in the dataset contains
exactly a single bug that can be detected by a few test cases of the test suite.
The classes which are buggy will result in data instances marked with the
buggy label and the other instances are marked as not-buggy instances.

One helpful step to achieving better performance is to combine features
to get new meaningful features. For each version, if there are no changes to
a specific unit and other units related to it, it would be highly unlikely that
it turns into a buggy unit and vice-versa. Using this idea, a set of features is
defined by calculating the difference between two consecutive version metrics of
each unit. This set of features can also be seen as the first derivative in discrete
time by viewing the unit versions as the time dimension. This additional set of
features (known as the churn of source code metrics) is shown to be effective
for defect prediction [103], therefore we add them to the feature set. Keeping
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the original features and the churn of source code features together helps to
capture both the static and dynamic aspects of the units.

We reviewed defect-prediction methods based on deep learning in
Section 2.4, however, as mentioned applying these techniques still has difficul-
ties and can be challenging. Our goal is to focus on designing a TCP method,
which should successfully work with any good enough defect-prediction
method. On the other hand, the volume of source code contained in the sub-
ject of empirical study also presents limitations for employing deep learning
methods. Therefore we consent to consider more simple defect-prediction mod-
els in this paper if their performance is acceptable. Note that using more
simple methods has the benefits of less implementation complexity and lower
execution resources needed which can be interesting.

3.1.2 Classification Model

As mentioned in Section 2.4, classification is one of the main components of
the defect prediction procedure. Various models have been utilized to be used
to predict bugs [46]. Lessmman et al. [104] compare many classification mod-
els for defect prediction in a standard benchmark and the results show that
the classification model has a negligible effect on the performance of defect
prediction. Among 22 classification models compared in this study, Random
Forest has the best performance which confirms the result of previous stud-
ies [105]. Ghotra et al. [106] revisit these studies by applying noise-cleaning
to the NASA dataset and adding the PROMISE dataset, and observe that
tree-based ensemble methods have the best performance. Aljamaan et al. [68]
study tree-based ensemble models for defect-prediction and confirm that these
methods have promising performance and specifically observe that random
forest and XGBoost have notable results. These models are a good fit for our
scenario of defect prediction as they have the following properties:

• Our dataset consists of numerous features both originating directly from
the codes or derived in the data preparation phase. Although removing
irrelevant features using feature selection methods might help with the
tree building process, selecting the most effective features manually is a
difficult task. An important advantage of tree-based methods is that these
models inherently select the most effective features based on the training
labels (target values) implicitly.

• Using tree-based models could be helpful since the result only considers
the samples which are in the leaf node. Therefore it almost resistant to
most of the preprocessing issues which must be considered. However, it’s
still useful to remove the noisy samples and generate more samples of the
class with a smaller size.

• These models are invariant to most scaling methods and require little to
no normalization.

• Ensemble models are less prone to over-fitting.
These properties lead to the effectiveness of tree-based ensemble defect pre-

diction models on generally any software project and decrease the dependency
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of the results on a specific dataset [107]. In section 4.5 we present the results
of empirically comparing multiple tree-based defect-prediction models on the
subject dataset, which leads to the conclusion that XGBoost has the best per-
formance on the subject dataset of study. Therefore XGBoost was chosen as
the classification model in the proposed defect prediction method.

An important step is to tune the key parameters of the XGBoost model.
The parameter tuning process is usually defined as an optimization problem
and the goal is to optimize a certain scoring function. We selected this approach
and used it iteratively and the parameters were chosen using validation data.
The details of this approach are mentioned in Section 4.5.

3.1.3 Data preprocessing

Machine learning models can benefit from data standardization before feeding
the data to the model. To standardize the data, it’s important to understand
the requirements of the selected ML model. In tree-based models (Random
Forest, XGBoost, etc.), the final tree structure is invariant to scaling input
vectors linearly [107]. This is since each split is applied at a given interval.
Also, the predicted target value is independent of the input vector because it
is calculated using training phase target values.

The dataset consists of over one hundred features and after adding the
different features, the number of features jumps to two hundred. Having this
many features makes the classification difficult. To address this problem several
measures are set to place.

The first strategy is to use the regularization parameters in the classifica-
tion model. Specifically, L1 regularization is a helpful way to tackle over-fitting
when dealing with sparse datasets [107]. The XGBoost model has implemented
three regularization parameters:
1. Alpha is the L1 regularization coefficient.
2. Lambda is the L2 regularization coefficient.
3. Gamma is the minimum loss reduction of a leaf node to be partitioned.

All three of these parameters are carefully examined and taken into effect.
The second strategy is manually limiting the max depth of the trees. This

is a straightforward approach since it limits the choice of dimensions used in
the trees and avoids the curse of dimensionality problem.

The third strategy is to sample the number of columns used for each tree in
the boosting model. This way, when adding a new tree, the number of features
making an effect on it is limited. Hence, it reduces the chance of an over-fitted
model.

In real-world projects, it is very common that the project contains a few
recorded bugs for each version [108]. Due to this fact, for each version, there
are mostly non-faulty samples. In machine learning terms, this phenomenon is
known as imbalanced classification and standard machine learning algorithms
struggle in this case and must be implemented with care [109]. Hence, some
steps in the data preparation should be manipulated to tackle these problems.
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There are several well-known approaches to deal with the imbalanced
dataset issue. These include oversampling, undersampling, and class weights.
Oversampling attempts to generate samples nearby the existing samples with
the same label to increase the samples of the smaller class [110]. On the other
hand, undersampling methods remove the samples that are considered noisy
(i.e. two samples with different labels that are very close in the input vector
space) and samples that are insignificant to the results (e.g. duplicates). Fur-
thermore, the class weight approach is a really useful technique in tree-based
methods since it emphasizes more on the class with the least samples. We come
back to this issue and mention our approach to handling imbalanced data in
Section 4.5.

3.2 Proposed clustering method

To arrange similar test cases in groups, we use a clustering method. As
explained in Section 2.6, a standard clustering method receives a set of points,
each with a feature vector as input, and returns multiple subsets of points (i.e.
the clusters) as output. In our proposed method, the points are the test cases.
To create a feature vector for each test case, we use the vector of source code
coverage values of that test case. This vector has a size equal to the number of
methods in the source code and is created by appending the traced coverage
value of each method of the source code after execution of the test case, which
is a real number in the range of [0, 1]. The value of 0 represents no coverage
of the test case on the method and the value of 1 represents coverage of all
statements of the method by executing the test case.

The agglomerative hierarchical clustering method is applied to cluster the
test cases. In the agglomerative clustering method, a bottom-up approach is
followed. The clustering starts by considering each of the points as a cluster
and follows by merging pairs of nearest clusters until the number of clusters
reaches the desired number of clusters. Some studies have already reported the
successful application of this clustering method in the application of test case
prioritization [99, 111]. One of the reasons for using a hierarchical clustering
method, in this case, is that the origin of the clusters in the data and the
number of clusters are not fully known. Hierarchical clustering methods do not
consider any assumption on the number of clusters in the data and have more
resistance to such situations.

Clustering methods use a distance function to group similar points (i.e.
points with small distance) and any of the normal distance functions can be
used for this purpose. Another configuration of the agglomerative clustering
methods is the type of distance measurement between two clusters of points.
The average linkage metric is used in this manner. This metric is computed
using the average pairwise distance between points from each cluster.

We also utilize the results of the defect prediction phase to arrange better
clusters. As we are partitioning the test cases into groups, it is reasonable to
arrange the partitions in a manner that all partitions have a comparable prob-
ability of fault-revealing test cases. Therefore we modify the coverage matrix
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such that test cases that cover areas of code with a high fault-proneness are
put into different clusters. More exactly, the coverage of code units is multi-
plied by their corresponding CoverFP value (presented in Section 2.5) for all
coverage values and then the distance is computed based on these modified
coverage values. As result, test cases covering code areas with high fault-
proneness would be grouped with test cases covering the same areas and there
would be resistance for them to be merged with other clusters which cover
high fault-proneness areas.

Algorithm 1 Proposed test case prioritization algorithm (CovClustering)

Inputs:
Cover: the coverage matrix of the test suite
n: size of the test suite
clusterNum: the number of clusters for clustering

Outputs:
Prioritized: the prioritized list of the test suite

1: D ← distances(Cover)
2: testClusters ← agglomerativeClustering(D, clusterNum)
3: for each c(1 ≤ c ≤ clusterNum) do
4: testClusters[c]← additionalPrioritization(testClusters[c],Coverage)
5: end for
6: round ← 0
7: while |Prioritized | < n do
8: tests ← ∅
9: for each c(1 ≤ c ≤ clusterNum) do

10: if |testClusters[c]| > round then
11: tests ← ( tests ∪ testClusters[c][round ])
12: end if
13: end for
14: tests ′ ← totalPrioritization(tests,Coverage)
15: Prioritized ← Prioritized ∥ tests ′
16: round ← round + 1
17: end while

3.3 Proposed test case prioritization method

As mentioned, the proposed TCP method consists of four steps. In the first
step (defect prediction phase) which has been described in sections 3.1 and 4.5,
the fault-proneness of code units is estimated and this estimation is used to
prioritize the test cases in the next steps. In the second step (clustering phase)
which was explained in section 3.2, test cases are grouped into multiple clusters.

In this section, we will describe the third and fourth steps of the algorithm
in detail. In the third step, the test cases of each cluster are prioritized inter-
nally, concerning each other. In the fourth step, we use an iterative approach.
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Algorithm 2 Proposed test case prioritization algorithm incorporating fault-
proneness (CovClustering+FP)

Inputs:
Metrics: computed metrics
Model: the learned defect prediction model
Cover: the coverage matrix of the test suite
n: size of the test suite
clusterNum: the number of clusters for clustering

Outputs:
Prioritized: the prioritized order of the test suite

1: ProbFP ← defectPrediction(Metrics,Model) ▷ fault-proneness probability
2: D ← distances(Cover × ProbFP )
3: testClusters ← agglomerativeClustering(D, clusterNum)
4: for each c(1 ≤ c ≤ clusterNum) do
5: testClusters[c]← maxPrioritization(testClusters[c], Coverage,ProbFP )
6: end for
7: round ← 0
8: while |Prioritized | < n do
9: tests← ∅

10: for each c(1 ≤ c ≤ clusterNum) do
11: if |testClusters[c]| ≥ round then
12: tests ← tests ∪ testClusters[c][round ]
13: end if
14: end for
15: tests ′ ← maxPrioritization(tests, Coverage,ProbFP )
16: Prioritized ← Prioritized ∥ tests ′
17: round ← round + 1
18: end while

In each iteration, a test case is selected (according to the internally priori-
tized order) from each of the clusters. After that, the selected test cases are
prioritized using a prioritization strategy.

Algorithm 1 shows the pseudo-code of the proposed TCP method. In lines
1-2, the distances between test cases are computed based on their coverage
value and agglomerative clustering is executed to cluster the test cases. Lines
3-5, show the third step which is prioritizing the test cases internally in each
cluster. For this purpose, we use the additional prioritization strategy which
was mentioned in section 2.3. The additional strategy has been shown to have
significant performance among coverage-based TCP strategies [39].

Finally lines 6-16, describe the fourth step at which in each iteration of the
while loop, a test case is selected from each cluster and added to the tests set.
After that, the selected test case set is prioritized using the total prioritization
strategy. Using the additional prioritization is not necessary for this step, as
clustering has already limited duplicate code coverage between clusters.
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Algorithm 2 uses the same procedure as Algorithm 1, also adding incor-
poration of fault-proneness into the method. In line 1 of Algorithm 2, the
defect prediction method described in Section 3.1 is executed to extract a
fault-proneness value for each unit of the code. Line 2 computes the distances
between test cases after element-wise multiplication of the coverage matrix
into the fault-proneness vector. Lines 3-18 are the same as Algorithm 2, with
the difference of using maxPrioritization for prioritizing test sets in lines 5 and
15. We define maxPrioritization as sorting test cases in descending order by the
maximum of fault-proneness of units covered by each test case.

4 Empirical study

In this section, we explain our empirical study and discuss the results of our
experiments.

4.1 Research Questions

In our empirical study, we aim to answer several research questions, presented
in the introduction of this paper. These research questions are stated as follows:

• RQ1: How does the proposed TCP method (without the usage of
the defect prediction), compare to the traditional coverage-based TCP
strategies in terms of fault detection performance?

• RQ2: Does incorporating fault-proneness improve the proposed
clustering-based TCP algorithm in terms of fault detection performance?

• RQ3: What is the influence of the distance function and number of
clusters on the effectiveness of the proposed TCP algorithms?

4.2 Subjects of study

To evaluate TCP algorithms, the algorithms must be executed on projects
with a large test suite. The test suite must reveal at least one bug for the
prioritization to be meaningful. Furthermore, the source of the projects and
the bug locations must be identifiable so that white box TCP methods can be
applied. To apply defect prediction, the bug history of the project throughout
development must also be recorded.

Table 1: Projects included in Defects4J initial version

Identifier Project name Bugs Test classes

Chart JFreechart 26 355
Closure Closure compiler 133 221
Lang Apache commons-lang 65 112
Math Apache commons-math 106 384
Time Joda-Time 27 122

Sum - 357 1194
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The Defects4J collection presented by Just et al. [37], fulfills the mentioned
properties. In its initial published version, Defects4J provided a version history
of five well-known open-source Java projects, which contain a considerable
number of test cases, alongside a recorded bug history, summarized in Table 1.
As these projects represent completely real-world project development, we can
hope that the results can be more practically significant.

The Defects4J data set has been collected in a specific standard. For each
recorded bug, Defects4J provides a faulty version of the project which contains
the bug. In the faulty version, one or more failing test cases identify the bug.
This helps us to locate buggy classes in each version of the source code. There

Table 2: Defect prediction features [28]

#
Feature
type

Category Definition Count General Items

1 Input
Source
code

metrics

Used to quantify
different source

code
characteristics

52

Cohesion metrics, Complexity
metrics, Coupling metrics,
Documentation metrics,

Inheritance metrics, Size metrics

2 Input
Clone
metrics

Used to Identify
the number of
type-2 clones
(same syntax
with different

variable names)

8

Clone Classes, Clone
Complexity, Clone Coverage,
Clone Instances, Clone Line
Coverage, Clone Logical Line
Coverage, Lines of Duplicated

Code, Logical Lines of
Duplicated Code

3 Input
Coding
rule

violations

Used for
counting coding
violation rules

42

Basic Rules, Brace Rules, Clone
Implementation Rules,

Controversial Rules, Design
Rules, Finalizer Rules, Import
Statement Rules, J2EE Rules,
JUnit Rules, Jakarta Commons
Logging Rules, Java Logging

Rules, JavaBean Rules, Naming
Rules, Optimization Rules,

Security Code Guideline Rules,
Strict Exception Rules, String
and StringBuffer Rules, Type
Resolution Rules, Unnecessary

and Unused Code Rules

4 Input Git metrics

Used to count
the number of
committers and
commits per file
(these metrics
could not be
computed for
inner classes)

2
Committers count, Commit

counts

5 Output Bug label

Label that
shows this file is
buggy in this
version of the
project or not

1 IsBuggy
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is exactly one bug in each version of all projects of the Defects4J dataset,
therefore after any failing test case is reached the bug is detected, and executing
other failing test cases will not have significant value. Therefore we chose the
first failing or first-fail metric to measure the fault detection rate, similar to
other studies which have used this metric for evaluating TCP on the Defects4J
dataset [22, 26, 112, 113]. Furthermore, due to the small number of failing
test cases, which is a single test case in some versions, the value of the first
failing metric and the value of the APFD metric are near to equivalent in many
versions of the dataset.

In order to obtain the coverage of the test cases and also code metrics
extracted from the Defect4J source code, we have used the already created and
publicly available Defects4J+M dataset3[28]. Defects4J+M is an extension of
the Defects4J dataset, containing the measured test coverages and source code
metrics for each version of all projects included in Defects4J.

In this dataset, dynamic coverage is used to measure coverage of test case
execution on the source code. Dynamic coverage is generally more accurate
than static coverage and can lead to more effective prioritization results. The
coverage values in this dataset, represent the amount of coverage of each test
case on each unit of the code. The coverage values are measured at the method
level with a real value indicating the amount of coverage on each method.

The source code metrics of Defects4J+M are composed of a combina-
tion of static and process metrics. These metrics were computed at the
class level. Table 2 which is quoted from the article which introduces the
Defects4J+M dataset [28] contains the details of each feature group contained
in Defects4J+M. To use the computed metrics for defect prediction, we stored
them in a vector that is used as the input feature vector by the defect prediction
algorithm.

4.3 Subject TCP algorithms

To empirically compare our proposed methods with related methods, we
selected and implemented notable TCP methods. An important point to con-
sider for selecting these TCP methods is that the information sources used
by the methods must be the same as the proposed method. For example, if a
TCP method uses both test coverage and software requirements as the infor-
mation source for prioritization, it is not reasonable to compare this method
with methods that only use test coverage for prioritization.

The TCP algorithms used for comparison in our empirical study our sum-
marized in Table 3. These algorithms can be divided into two categories: First,
are TCP algorithms that use only coverage as their information source, and
second are TCP algorithms using coverage, bug history, and source code met-
rics as their information source. The algorithms of the first category are the
following:
1. The traditional total and additional prioritization methods (described in

Section 2.3)

3https://github.com/khesoem/Defects4J-Plus-M

https://github.com/khesoem/Defects4J-Plus-M
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Table 3: Studied TCP algorithms

Algorithm Identifier
Information

sources
Description

Total strategy Total Coverage
Total prioritization strategy
described in Section 2.3

Additional
strategy

Additional Coverage
Additional prioritization strategy

described in Section 2.3
Adaptive

random TCP
ART Coverage

Adaptive random test case
prioritization proposed in [34]

Proposed
clustering
based TCP
method

CovClustering Coverage

The proposed based TCP method
without the usage of the phase of
defect prediction, in either of the
clustering or prioritization phases

Total strategy
with

fault-proneness
based coverage

Total+FP

Coverage, Bug
history and
source code
metrics

Total prioritization strategy using
fault-proneness based test case
prioritization proposed in [28]

Additional
strategy with
fault-proneness
based coverage

Additional+FP

Coverage, Bug
history and
source code
metrics

Additional prioritization strategy
using fault-proneness based test

case prioritization proposed in [28]

G-clef with
greedy

prioritization
G-clef (Greedy)

Coverage, Bug
history and
source code
metrics

G-clef prioritization method
proposed in [26]

G-clef with
additional

prioritization

G-clef

(Additional)

Coverage, Bug
history and
source code
metrics

G-clef prioritization method
proposed in [26]

Proposed TCP
method with
incorporating
fault-proneness

CovClustering+FP

Coverage, Bug
history and
source code
metrics

The proposed based TCP method
which was presented in Section 3

2. The adaptive random TCP algorithm proposed by Jiang et al. [34].
3. The proposed based TCP method of this paper without the usage of

the phase of defect prediction, in either of the clustering or prioritization
phases (we refer to this method as CovClustering).

The algorithms of the second category, which use coverage, bug history,
and source code metrics, are as follows:
1. The total and additional prioritization TCP methods based on fault-

proneness coverage proposed in [28] and presented in Section 2.5.
2. The G-clef proposed by Paterson at al. [26] in two variants: using either

the greedy or the additional strategy as the secondary objective function.
3. The proposed based TCP method of this paper which was presented

in Section 3 that utilizes defect prediction (we refer to this method as
CovClustering+FP).

Note that another TCP algorithm that leverages fault-proneness is the
QTEP method proposed by Wang et al. [25]. This algorithm is based on influ-
encing fault-proneness on coverage. As the formulation of QTEP is very similar
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to the method presented in [28], we only put the latter in the set of algorithms
for comparison.

4.4 Experimental procedure

The main part of the experiment consists of running the algorithms mentioned
in Table 3 on the projects of the Defects4J+M dataset. To create the defect
prediction model for the ith version of the projects, the procedure explained
in Section 3.1 is performed by aggregating the data of the other projects and
the data from the 1st to (i − 1)th versions of the same project. Since it is
reasonable to create the defect prediction model using a minimum number of
bugs from the same project, we created the model only for the versions of each
project from some version onward. In this regard, the evaluation is done over all
versions of the projects, except the oldest 5 versions of each project which are
used for defect-prediction hyperparameter tuning. Additionally, other projects
were added to the training set of each version to get an advantage in early
versions. This addition happens to enhance the model performance even in
later versions.

The source code of the methods implemented in this paper and usage
instructions are put publicly available on a GitHub repository4. This package
contains instructions on the usage of the algorithms and replicating the results
of this paper in multiple steps.

The defect prediction model is implemented using Python language and
XGBoost machine learning libraries. The clustering algorithms are imple-
mented using the Python scikit-learn library and the TCP algorithms are also
implemented with Python language using NumPy and pandas libraries. The
distance metric used for the agglomerative hierarchical clustering method is
the euclidean distance metric, which is frequently applied when using this clus-
tering method. The number of clusters chosen for our experiments was chosen
by observing the Davies–Bouldin index, which is explained in Section5.3.2.

4.5 Defect prediction implementation

There are several key steps regarding the choice of the proposed classifica-
tion model and its parameters. These include choosing the best classification
algorithm, hyperparameter tuning, and data preparation techniques. We begin
with the discussion of the classification algorithm and then the procedure upon
which the hyperparameters are chosen is explained. Lastly, a few ideas that
were tested regarding the imbalanced nature of data is introduced.

4.5.1 Comparison of tree-based models

In Section 2.4, tree-based ensemble methods were introduced and in Section 3.1
the classification model was further looked into. It is clear that the performance
of models varies on different datasets, therefore to choose between tree-based

4https://github.com/mostafamahdieh/ClusteringFaultPronenessTCP

https://github.com/mostafamahdieh/ClusteringFaultPronenessTCP
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ensemble methods, we selected three major models and compared their perfor-
mance on our dataset. The selected models are Random Forest, CatBoost, and
XGBoost where in this section a comparison between these tree-based models
is presented.

The training and evaluation process is repeated separately on every version
of each project. For each version of a project, the training set consists of data
instances of older versions of that project and data instances of other projects.
The idea is to maintain the model’s generalization over all projects in the
earlier stages and it further improves on average as new versions are added
to the training set. We will refer to this type of classification as online. The
other type of execution of the classification algorithm, denoted by offline, is
to only use other projects in the training set and does not require iterating
over versions. The offline execution type is only used to measure the impact
of adding the previous versions into the training set.

We principally evaluate the defect prediction method performance by
Matthews Correlation Coefficient (or MCC in short). MCC is the binary
version of the Pearson Correlation Coefficient that measures the similarity
between the predicted labels and the true labels. This evaluation metric works
well in the imbalanced dataset cases and has been suggested for usage in defect
prediction applications [114, 115], and also used in other fields [116, 117].

A comparison between the classification algorithms is shown in Table 4.
Interestingly, the offline runs have a good enough result without having seen
any of the project instances and solely depending of data instances of other
projects. This indicates that overfitting has not occurred in our classification
models, because the training and evaluation instances are very different in this
case.

It is observed that the online models have improvements over the offline
models in most cases, which is reasonable due to feeding more training data for
the online models. The best model among the six candidate models in terms
of the MCC score, is the online XGBoost model, therefore we select this model
for our further experiments.

Table 4: Comparison of different classification algorithms

Classifier Run Type MCC F1-score Precision Recall AUC

Random Forest Offline 0.71 0.69 0.75 0.71 0.992
Random Forest Online 0.68 0.67 0.67 0.71 0.994

Catboost Offline 0.87 0.87 0.88 0.86 0.992
Catboost Online 0.88 0.87 0.90 0.85 0.994
XGBoost Offline 0.87 0.87 0.88 0.87 0.992
XGBoost Online 0.89 0.89 0.89 0.90 0.992

Table 5 shows a detailed overview of the properties of the learning process
of online XGBoost model on all projects. Column Evaluation versions show
the number of versions that evaluation is done on the project. F1-score is also
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measured for each project and the results are nearly identical to the MCC
score.

The defect prediction method performance can also be measured using the
precision and recall metric. In the context of our setting, recall is the number
of bugs identified using the defect prediction model. Also, precision can be
evaluated as the proportion of classes that have been correctly labeled among
all classes that have been labeled as buggy by the prediction model. A bug
is considered to be predicted if the corresponding class to its bug-fix has a
fault-proneness higher than the project’s computed threshold. This threshold
is selected using the validation data to maximize the MCC score.

Table 5: Performance of online XGBoost on all projects

Project Versions
Evaluation
versions

MCC F1-score Precision Recall

Chart 26 21 0.88 0.88 0.78 1
Closure 133 128 0.89 0.89 0.90 0.89
Lang 65 60 0.92 0.92 1 0.85
Math 106 101 0.84 0.84 0.86 0.83
Time 27 22 0.91 0.91 0.91 0.91

Overall 357 332 0.89 0.89 0.89 0.90

4.5.2 Classification model hyperparameter tuning

To tune the hyperparameters a randomized search is done according to a distri-
bution for the subjected parameters [118, 119]. In the XGBoost classifier, the
key parameters are Tree count, Max tree depth, L1 and L2 regularization coef-
ficients, and Gamma which is the minimum change needed in the loss function
to partition a leaf node. The distributions used in the randomized search are
mostly uniform. To increase the flexibility of the model, the hyperparameters
are tuned separately for each project.

The next step is to make a validation set for the randomized search to
select the best hyperparameters. Table 6 summarizes the data instances used
in the hyperparameter tuning step of each project as the training, validation,
and test sets. The best model is selected in terms of the Matthews correlation
coefficient score [114, 115] on the validation data. In the case of a tie, the
model with the highest tree count to max depth ratio is selected.

Table 6: Data instances used in the hyperparameter tuning step of each
project

Project Versions Dataset

Current Project First 5 versions Validation
Current Project Versions higher than 5 Test (Untouched in this step)
Other Projects Last 5 versions Validation
Other Projects First version up to the last 5 versions Training
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The usage of the three shrinkage strategies to minimize the risk of the curse
of dimensionality discussed in Section 3.1.3 can be verified by the parameters
chosen in the hyperparameter tuning. The key parameters are Tree count,
Tree max depth, Column sampling rate, Alpha, Lambda, and Gamma. Tree
count is the number of trees used in the ensemble. Tree max depth is the limit
within which each tree in the ensemble can grow. Hence, it is the number of
features used in each tree to make the final decision. The column sampling
rate is the rate of subset columns used to build each tree in the ensemble.
Alpha, Lambda, and Gamma are L1/L2 regularization parameters and the
minimum loss reduction of a leaf node respectively. Table 7 shows the values
of the aforementioned parameters. The maximum depth for each tree alone
has drastically limited the number of features that influence the decision, but
in some cases, other parameters also have non-zero values which further limits
the curse of dimensionality problem.

Table 7: Selected parameters for each project

Project
Tree
count

Tree
max
depth

Column
sampling

rate
Alpha Lambda Gamma

Lang 400 2 0.83 0 0 0
Math 400 5 0.86 0 5 1
Chart 300 4 0.93 2 0 1
Closure 300 4 1 0.1 5 1
Time 400 2 0.83 0 0 0

Average 360 3.4 0.89 0.42 2 0.6

4.5.3 Other considerations

To overcome the imbalanced nature of the dataset, several ideas were tested.
Most of the negative samples are unchanged units throughout the versions.
These are more likely to be duplicate samples in terms of the final feature
instances. The first idea is to remove these duplicates to reduce the negative to
positive samples ratio. To further decrease this ratio, a random sub-sampling of
the negative instances also takes place. These two combined have improved the
final results on average. The idea of generative positive samples using SMOTE
was also tested but did not further improve the average result. Therefore, only
negative sampling methods were applied to balance the dataset.

5 Results

In this section, we present and analyze the results of our empirical study. In
this regard, we answer the research questions raised in Section 4.1 by providing
and discussing the corresponding experimental results.
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5.1 RQ1: Comparing traditional TCP strategies with the
CovClustering method (the proposed TCP method without
incorporating fault-proneness)

In this research question, we compare the first-fail performance of coverage-
based TCP methods with the proposed CovClustering TCP method (the pro-
posed clustering-based TCP algorithm without incorporating fault-proneness).
The compared methods have been described in Section 4.3. For the purpose
of comparison, we have implemented and executed these methods on the sub-
jects of study, presented in Section 4.2. The average first-fail value of these
methods is shown in Table 8. Also, Figure 2 depicts the boxplot of the first-
fail of these methods on the subject versions of each project. Note that lower
values of first-fail mean that the TCP algorithm has detected the fault sooner,
therefore algorithms with lower values of first-fail are performing better.

The Additional algorithm has better performance than the Total algo-
rithm, which confirms previous reports [39]. The ART algorithm has interesting
performance and performs better than the Additional algorithm on the
Chart and Lang projects. However, overall their performance is near and the
Additional algorithm slightly performs better than the ART algorithm.

Our research question is related to the rows Total, Additional, ART, and
CovClustering in Table 8. The first-fail metric of all algorithms on the Lang
project are more than 40% which shows that the algorithms do not perform
much better than random prioritization (which should have around 50% first-
fail). This shows that TCP algorithms based solely on coverage, probably will
not have appropriate performance on the Lang project.

As can be seen, the average first-fail metric of the CovClustering method
is less than the other methods on all projects except the Lang project, where
the ART method has the best performance. This comparison is also observed
in the boxplots of Figure 2.

The proposed CovClustering method has better performance on four of
the five projects and is also superior on the overall value on all projects. We per-
formed Wilcoxon signed-rank tests [120] (p-value < 0.05) to make sure that the
overall superiority is statistically significant. The null hypothesis is that there
is no significant difference in the first-fail performance of the CovClustering

TCP method with respect to each of the coverage-based TCP methods. The
results of this test demonstrate that there is a statistically significant difference
between the CovClustering TCP method with respect of other coverage-based
methods: Total (p-value = 4.91 × 10−7), Additional (p-value = 0.008), and
the ART (p-value = 3.52× 10−4).

Therefore our answer to RQ1 is that the proposed clustering method is
superior to the coverage-based TCP methods.

5.2 RQ2: Studying the effect of incorporating fault-proneness on the
proposed method

We want to know the effect of fault-proneness on the proposed method in this
research question. Therefore we compare the CovClustering TCP method,
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Table 8: Average first-fail scores of each TCP strategy

Algorithm Chart Closure Lang Math Time Overall

Total 41.14 36.04 50.28 40.32 41.72 41.90
Additional 42.69 21.37 45.94 40.80 33.04 36.77

ART 38.75 31.92 41.93 42.37 36.16 38.23
CovClustering 32.07 19.12 47.44 34.87 31.04 32.91

Total+FP 13.01 20.20 15.11 11.32 25.97 17.12
Additional+FP 30.79 19.52 37.12 34.24 30.22 30.38

G-clef Original (Greedy) 47.9 47.6 33.1 31.8 24.7 37.0
G-clef Original (Additional) 41.2 27.1 49.9 36.6 24.3 35.8

G-clef (Greedy) 3.81 14.15 9.63 10.00 22.47 12.01
G-clef (Additional) 2.40 9.19 9.24 9.49 18.97 9.86
CovClustering+FP 1.31 10.50 8.79 8.98 4.31 6.78

(a) Chart (b) Closure (c) Lang

(d) Math (e) Time

Fig. 2: Evaluation results of all TCP strategies in the subject study

with the proposed CovClustering+FP method, in terms of the first-fail metric.
The average value of the first-fail metric on the proposed method incorporating
fault-proneness is shown in row CovClustering+FP of Table 8.

In addition we also compare the CovClustering+FP method with other
state-of-the-art fault-proneness based methods which are the TCP using
fault-based coverage [28] and the G-clef algorithm [26]. Rows Total+FP and
Additional+FP of Table 8 correspond to the fault-based coverage TCP meth-
ods and rows G-clef (Greedy) and G-clef (Additional) correspond to the
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G-clef algorithm presented by Patterson et al. [26]. To implement the fault-
proneness-based algorithms we used the fault-proneness resulting from the
defect prediction method proposed in this paper, to have comparable results.

Table 9: The details of the statistical tests of comparison of all TCP algo-
rithms to the CovClustering+FP method

Algorithm Chart Closure Lang Math Time Overall

Total+FP 0.000∗ 0.000∗ 0.000∗ 0.044 0.001 0.000∗

Additional+FP 0.001 0.000∗ 0.000∗ 0.000∗ 0.001 0.000∗

G-clef (Greedy) 0.001 0.013 0.405 0.012 0.068 0.028
G-clef (Additional) 0.007 0.540 0.587 0.044 0.040 0.062

(0.000∗ denotes values less than 0.001 which are typically very small)

We have also provided the original results of the G-clef algorithm noted
in their paper [26] as two rows of Table 8, as they have used the same initial
dataset used by our study (the Defects4J dataset). It is observable in Table 8
that the performance of the G-clef algorithm using the fault-proneness results
of this paper is significantly better than the G-clef results in the original paper.
This observation confirms that the defect prediction method proposed in this
paper has remarkable performance.

It is observed that the algorithms based on fault-proneness (the lower part
of Table 8) have better performance than the purely coverage-based algorithms
(the upper part of Table 8). The performance of Total+FP is also interesting
and it is superior to Additional+FP, unlike their purely coverage-based coun-
terparts. This shows that the highly competitive Additional algorithm will
not improve enough when naively applying fault-proneness to the coverage
formulation.

Comparing the results presented in Table 8, it is observed that the
CovClustering+FP method has the best value of average first-fail compared to
other TCP algorithms, in all but one case. The only exception to this observa-
tion is the comparison of the G-clef (Additional) algorithm on the Closure
project.

We performed the Wilcoxon signed-rank again to evaluate the significance
of the results. The null hypothesis is that there is no significant difference in
the first-fail performance of the CovClustering+FPmethod with respect to the
other TCP algorithms. The results of this test are shown in Table 9. The null
hypothesis is rejected in cases where the values are less than 0.05, and in these
cases, there is a significant difference between the proposed CovClustering+FP

method and other algorithms. The very low p-values indicate that significance
is confident. For most of the table, this significance is verified however the
statistical test fails for some of the values relating to the G-clef methods,
specifically on the Closure and Lang project.

The conclusion is that the CovClustering+FP performs better than the
Total+FP and Additional+FP algorithms of [28] but does not significantly
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dominate the G-clef (Additional) algorithm in all cases. Note that as men-
tioned and observed in Table 8, CovClustering+FP performs much better
than the original G-clef implementation and the presented results are due to
boosting G-clef with the defect prediction method presented here.

5.3 RQ3: The effect of the clustering configurations (distance function
and number of clusters) on the effectiveness of the proposed TCP
strategies

In this research question, we study the effect of the distance function
and number of clusters on the effectiveness of the CovClustering and
CovClustering+FP methods. In this manner, we experiment the proposed
methods, with different distance functions and vary the number of clusters in
a specified range.

5.3.1 Distance function

We experiment using three well-known distance functions which have been
also used in previous related research [121]: Euclidean distance, Manhattan
distance, and distance based on Cosine similarity.

Fig. 3: The performance of the proposed CovClustering TCP strategy on
the subject study using different distance functions and cluster numbers (RQ3,
Distance function)

Figure 3 and 4 show the performance of executing the CovClustering and
CovClustering+FP method through different distance functions and cluster
numbers. For CovClustering the Euclidean and Manhattan distance have sim-
ilar performance and seem to have better performance than cosine similarity
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Fig. 4: The performance of the proposed CovClustering+FP TCP strategy
on the subject study using different distance functions and cluster numbers
(RQ3, Distance function)

on most points. However, for the CovClustering+FP method, Euclidean dis-
tance shows competitive performance compared to other distance functions on
all subject projects. The superiority of Euclidean distance for diversity-based
TCP algorithms has also been observed by other researchers [122]. Therefore
we can hope that generally, Euclidean distance can be more appropriate for this
application as a first choice, but experimenting with other distance functions
can also be considered. This also shows that the accuracy of defect prediction
can highly impact the performance of fault-proneness methods.

5.3.2 Number of clusters

To choose the appropriate number of clusters, a well-practiced technique is
to employ metrics that evaluate the quality clustering to get a better insight.
Among these metrics, we utilize the Davies–Bouldin index (DBI) [123]. DBI
is defined as the average ratio of within-cluster distances of each cluster to the
between-cluster distances to the nearest cluster. Thus, more compact clusters
will result in a better score. Lower values of DBI indicate better clustering,
and therefore the range of points that have low values of DBI are candidates
for choosing the number of clusters. However, we must consider some tips
in choosing the number of clusters e.g. we shouldn’t consider the points in
the steady slope at the end of the curve. Using this approach we show an
appropriate number of clusters intuitively chosen considering the DBI metric
in Table 10.
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Table 10: Best numbers of clusters chosen heuristically using the DBI metric

Project CovClustering best
cluster number by DBI

Covclustering+FP best cluster
number by DBI

Chart 100 175
Closure 150 150
Lang 175 150
Math 125 150
Time 150 75

Additionally, to validate this approach and also observe the effect of the
number of clusters on the proposed strategies, we show the result of experi-
mentation of the proposed methods with a varied number of clusters in the
range of [25, 500], in Figure 5 and Figure 6. It is observed that the chosen num-
ber of clusters has relatively good TCP performance, confirming the chosen
approach. Furthermore, it is observed in Figure 6 that the number of clusters
has less impact on the performance of the CovClustering+FP method on the
subject projects when compared to CovClustering.

Fig. 5: The DBI value of the clustering of the CovClustering method on the
subject projects using different cluster numbers (RQ3, Number of clusters)
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Fig. 6: The DBI value of the clustering of the CovClustering+FP method on
the subject projects using different cluster numbers (RQ3, Number of clusters)

6 Discussion

6.1 Practical Considerations

To apply the proposed approach, the coverage of the test suite must be mea-
sured. This measurement can be done once and used for subsequent changes to
the source code until a certain point. This shortcut technique is also applicable
for the defect prediction phase and also distance computation. The coverage
measurement can be implemented using static analysis methods to speed up
this process. The granularity of code units we have experimented with for cov-
erage measurement is method-level, but measuring coverage in statement-level
can be even more effective.

There were no theoretical assumptions about the defect prediction phase,
therefore it can be replaced with any standard defect prediction method with
hopefully appropriate results. Additionally, The proposed classification process
can be used with other feature sets extracted from the source code. Applying
cross-project methods can help the usage of the proposed method in the early
stage of a project.

One important practical advantage of the proposed TCP method is that
the proposed method is designed such that using a weak classifier for the defect
prediction phase does not deteriorate the whole TCP result. This is due to the
clustering phase which is independent of the fault-proneness estimations and
provides a stable base platform for test-case diversification.
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6.2 Threats to validity

Construct Validity. Construct validity focuses on the relation between the
theory behind the experiment and the observed results. One of the main
concerns of this threat is related to the evaluation metrics in our experi-
ment. We considered the first-fail metrics as measures of the effectiveness of
test case prioritization. The first failing metric has also been previously used
[22, 24, 112, 113, 124] and is also reasonable to be used when only a few test
cases fail such as our case.

Internal Validity. Internal validity refers to whether the relationship
between the experiment itself and the result obtained is causal rather than the
result of other factors. A major part of our experiment concerns the Defects4J
and Defects4J+M datasets which we have relied on because of being previ-
ously reviewed by other researchers [22, 26, 28, 125]. The main methods of
our implementation are also parts of standard libraries which have been thor-
oughly tested. One concern that can be mentioned is using some parameters
in methods, such as the number of clusters. In practice, choosing these param-
eters can be done using heuristics (which is practiced in this paper) or by
checking multiple values and choosing the one with the best performance.

External Validity. The experimental procedure has been performed on
projects which are mostly implemented in the Java language; therefore, the
results might differ in projects developed using other languages. However, the
clustering algorithms are completely language-neutral and the defect predic-
tion procedure is mostly based on language-independent features. Additionally,
by using popular open-source projects that contain large test suites in our
empirical study, we tried to study a completely real-world scenario. Despite
these facts, in the future, we have to evaluate our approaches using projects
with different languages and other characteristics to ensure that the results
are generalizable.

Conclusion Validity. Conclusion validity focuses on the significance of the
treatment specifically the statistical validity of the conclusions. To enhance
conclusion validity, we applied the Wilcoxon signed-rank statistical tests to
the results of the experiments to validate the significance of the conclusions of
comparing the performance of the algorithms with each other. The Wilcoxon
signed-rank has been applied in many TCP experimental comparisons [25, 126–
128]. This non-parametric test is chosen since we did not make assumptions
that the data under consideration is normally distributed.

7 Related Work

Much research has been conducted in the last two decades to study different
methods and analyze their performance for test case prioritization in the con-
text of regression testing. From a big-picture point of view, TCP methods can
be categorized based on two aspects: different sources of information used for
TCP and various heuristics and optimization strategies used for ordering the



Springer Nature 2021 LATEX template

TCP using test case diversification and fault-proneness estimations 33

test cases [13]. We continue by reviewing different TCP algorithms, considering
their source of information and optimization strategy.

Considering the first point of view, many TCP studies have used code
coverage as a major source of information for prioritization [12]. These methods
are based on the assumption that test cases with larger coverage have a better
ability for fault detection. Other sources of information have also been used
for TCP such as historical failure data of test cases, formal specifications or
requirements, and source code metrics [13].

Lachman et al. [129] propose using machine learning techniques to lever-
age test case execution history and test case description texts for prioritizing
manual system-level test cases. Their method runs in a completely black-box
context which implies better applicability of the method in practice. Het-
tiarachchi et al. [16] designed a fuzzy expert system which estimates the risks
of system requirements and then prioritize test cases based on the risks which
they cover. Arafeen and Do [130] propose a method that first clusters the
requirements based on a text-mining technique and then uses the requirements-
test cases traceability matrix to cluster the test cases. Afterward, the test
cases in each cluster are prioritized using source code metrics such as McCabe
Cyclomatic Complexity and finally, the test cases are prioritized according to
the importance of the requirements to the clients.

Noor et al. [22] propose a similarity-based TCP approach based on histor-
ical failure data of test cases. Their method uses the intuition that test cases
that are similar to failed test cases in the past are probable of fault detection.

As another source of information, several researchers have been proposed
methods to utilize bug history for test case selection and prioritization. Laali et
al. [131] propose an online TCP method that utilizes the locations of faults in
the source code revealed by failed test cases to prioritize the non-executed test
cases. A method utilizing previously fixed faults to choose a small set of test
cases for test selection is proposed by Engstrom et al. [132]. Some studies such
as [133] and [41], suggest the idea of using the failure history of regression test
cases to improve future regression testing phases. Kim et al. [134] borrowed
ideas from fault localization to tackle the TCP problem. By considering the fact
that defects are fixed after being detected, they guess that test cases covering
previous faults must have lower priority in TCP ordering because they will
have lower fault detection possibility. Wang et al. [25] proposed a quality-aware
TCP method (QTEP) that uses static bug finders and unsupervised methods
for defect prediction. Paterson et al. [26] proposed a ranked-based technique
to prioritize test cases that estimate the likelihood of java classes having bugs.
Their experiments show that using their TCP method reduces the number
of test cases required to find a fault compared with existing coverage-based
strategies.

Multi-objective evolutionary techniques have been of interest for TCP and
test selection as they can tackle two or more different kinds of objectives (such
as code coverage, requirements coverage, etc.) for prioritization [7, 135, 136].
Pradhan et al. [137] employ rule mining on the test execution history to extract
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relationships among test cases and use multi-objective algorithms to prioritize
test cases in a black-box setting.

Due to the relatively high computation cost of TCP algorithms, proposing
TCP methods with lower computation costs for large-scale test suites has been
investigated. Miranda et al. [138] propose using hashing-based approaches to
provide faster TCP algorithms.

Reinforcement Learning (RL) based Continuous Integration (CI) testing
[139] was introduced to prioritize test cases based on applying reinforcement
learning techniques to the test case execution history of continuous integration
systems. Bagherzadeh et al. [140] provide RL-based TCP methods for CI,
employing both the test execution history and light-weight code features and
show that their methods are effective.

We will thoroughly review methods that utilized clustering methods for
test case diversification, due to their relation to the approach of this paper.
Carlson et al. [111] proposed a method based on clustering of method coverage
for TCP. Their approach works in two steps, in the first step the test cases are
clustered using code coverage similarity. The clustering is performed using an
agglomerative hierarchical clustering method [141]. In the second step, the test
cases of each cluster are prioritized using multiple metrics such as code cover-
age, code complexity, fault history, and a combination of these metrics. They
empirically investigate their method on a subset of the Microsoft Dynamics
AX project. Their results show that using clustering improves TCP compared
to prioritizing without clustering. By utilizing the same coverage clustering
method and prioritizing test cases according to the previous failure history of
test cases, another TCP method is proposed by Fu et al. [99]. Their method
also uses estimations of failure rate according to the program line changes.

Chen et al. [101] employed ideas from adaptive random testing and cluster-
ing to propose TCP methods for object-oriented software. Their methods start
by clustering the test cases by comparing the number of objects and methods
and also the Object and Method Invocation Sequence Similarity (OMISS) met-
ric [142]. Afterward, the clusters are sorted in an adaptive random sequence
and test cases are sampled iteratively according to the order of clusters. Zhao
et al. [143] have combined Bayesian networks with coverage-based clustering
for TCP. Their method works by prioritizing test cases in each cluster by the
Bayesian network proposed by Mirarab and Tahvildari [144] which uses change
information, software quality metrics, and test coverage as data sources. They
conclude that their TCP method has a higher fault detection rate than the
plain Bayesian network-based approach of [144].

Fang et al. [35] introduced a new test case similarity measure by comparing
the ordering of execution count on program entities. They use this similar-
ity measure to prioritize test cases using both an adaptive random testing
inspired method and a clustering-based method. These methods are evaluated
empirically by creating mutant versions of multiple open-source projects and
measuring the fault detection rate.
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History of test case failure is used by Abu Hasan et al. [145] to improve
clustering-based TCP. Their proposed methods order test cases in order of
similarity to test cases that have failed in previous versions. Their empirical
study is based on real-world faults however the number of versions experi-
mented with is very limited (only 2 versions of 3 projects) and the comparison
of their methods is done with random TCP.

A test case failure prediction method based on coverage clustering is pro-
posed by Pang et al. [146]. Their approach divides test cases into two categories
of effective and ineffective through k-means clustering. Their results show that
their coverage clustering method is effective in failure prediction. This result
confirms our assumption that test cases with similar execution coverage are
likely to have similar failure detection capability.

8 Conclusions and future work

In this paper, to address the challenges of test case prioritization, we propose a
method that combines the ideas of test case diversification and the incorpora-
tion of fault-proneness estimations. Specifically, we leverage defect prediction
models to estimate the fault-proneness of source code areas and use agglomer-
ative clustering to diversify the test cases. The difference between the proposed
method with other state-of-the-art TCP methods is that it considers fault-
proneness and diversification at the same time in a natural composition. The
method proposed can also be extended to other scenarios such as other types
of information sources for diversification.

We conducted an empirical study on 357 versions of five real-world
projects included in the Defects4J dataset to investigate and compare differ-
ent approaches. Our evaluation shows that the proposed clustering-based TCP
methods are a great improvement over traditional coverage-based TCP meth-
ods. Also, the proposed combination of clustering and fault-proneness for TCP
is superior to the naive fault-proneness-based TCP methods.

In future work, it is possible to apply the proposed techniques for other
software testing applications such as automatic test case generation, test suite
reduction, and test selection. Also, in the internal and final test case ordering
phases we have used specific strategies, but other strategies can also be studied.
To further study and evaluate these methods, these approaches can be executed
on other subject programming languages and datasets. Furthermore, applying
other methods for defect prediction, such as unsupervised methods can be
interesting.
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