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ABSTRACT

The machine learning frameworks flourished in the last decades, allowing artificial intelligence to
get out of academic circles to be applied to enterprise domains. This field has significantly ad-
vanced, but there is still some meaningful improvement to reach the subsequent expectations. The
proposed framework, named AI%, uses a natural language interface that allows a non-specialist
to benefit from machine learning algorithms without necessarily knowing how to program with a
programming language. The primary contribution of the AI? framework allows a user to call the
machine learning algorithms in English, making its interface usage easier. The second contribution
is greenhouse gas (GHG) awareness. It has some strategies to evaluate the GHG generated by
the algorithm to be called and to propose alternatives to find a solution without executing the
energy-intensive algorithm. Another contribution is a preprocessing module that helps to describe
and to load data properly. Using an English text-based chatbot, this module guides the user to
define every dataset so that it can be described, normalized, loaded and divided appropriately. The
last contribution of this paper is about explainability. For decades, the scientific community has
known that machine learning algorithms imply the famous black-box problem. Traditional machine
learning methods convert an input into an output without being able to justify this result. The
proposed framework explains the algorithm’s process with the proper texts, graphics and tables.
The results, declined in five cases, present usage applications from the user’s English command
to the explained output. Ultimately, the AI? framework represents the next leap toward native
language-based, human-oriented concerns about machine learning framework.
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1 Introduction

Two decades ago, some popular algorithms existed and were well documented in scientific literacy,
but there was still no easy way to use them. Scientists had to read the equations and the algorithm
before implementing it in the desired programming language. Every matrix had to be multiplied,
and every derivative had to be computed by the scientist’s code. In the last two decades, machine
learning has finally flourished. One of the most meaningful frameworks was certainly TensorFlow
[1]. This powerful tool helped the community accelerate development and democratize the machine



learning field. It helped this field of knowledge reach a more comprehensive range of applicative
projects instead of being restricted to academics.

A few years after the first version of Tensorflow, many others came to the machine learning
community. Among the most popular: Scikit-Learn, CNTK, Torch, Matlab, and Keras [39]. In
the last few years, a user-friendly framework with a graphical interface named Orange [8] became
available, aiming to be even more accessible for the community, especially for the non-expert. While
consistently more accessible over time, requiring less mathematics and fewer programming skills,
none of those frameworks has made the ultimate step: the ability to communicate in the native
human language.

Some recent studies compare the most popular machine learning software framework. For in-
stance, framework performances have been recently analysed in [39]. For this same purpose of
performance analysis, [38] divides frameworks into some topics (computational distribution, Tensor
Processing Units and Field-Programmable Gate Array (FPGAs)). [42] compares machine learning
frameworks on different hardware platforms, such as Raspberry Pi 3 B+, NVIDIA Jetson, MacBook
Pro, Huawei Nexus 6P and Intel FogNode.

Nguyen et al. in [27] have an essential paper regarding this current research. Their work es-
tablishes evaluation criteria for supervised, unsupervised, and reinforcement learning, which are
the three prominent families of machine learning. [27] presents an overview of machine learning
frameworks and gives the advantages and disadvantages of each. Frameworks are applied in dif-
ferent domains. For instance, [30] applies it to the Automated Detection of Arrhythmias in ECG
Segments, while [26] is a framework application in the health domain for smart patient monitor-
ing and recommendation. The work of [25][3] present and compares explainable and interpretable
frameworks.

This framework, called AI?, proposes a natural language interface. To the authors’ best knowl-
edge, there is no machine learning framework offering an Natural language Processing (NLP) in-
terface using a chatbot. This first AI? version proposes an English chatbot, but some other native
languages might be proposed later. The NLP domain has flourished recently, especially when using
the Transformers technology [33] [37]. This recent NLP breakthrough created the opportunity to
fill the last gap between humans and machine learning frameworks: the ability to communicate in
the native human language. This last step has just been done with this proposed AI? framework.

A state-of-the-art, Transformer-based NLP agent can now correctly interpret users’ English
requests. Outperforming older methods like Recurrent Neural Networks (RNN) [I8] [35] and Artifi-
cial Intelligence Markup Language (AIML) [24], Transformer technology [19] delivers better results.
Transformer-based applications exist in multiple domains. For instance, [23] uses it for sentiment
analysis. [16] evaluates a Transformer’s ability to learn Italian syntax. Finally, [6] proposes a
chatbot that helps detect and classify fraud in a finance context.

Bidirectional Encoder Representation from Transformers (BERT) [14][32] [2] is a widely used
NLP model. It performs exceptionally well when evaluating the context and understanding the
intent behind the user’s query [28].

Using the BERT NLP model, two pre-trained datasets have been used to build the AI? frame-
work. The first one, BERT (BERT-large), is helpful to answer common questions like "Which
dataset has been used?". The second one is RoOBERTa (roberta-large) [21]. It is only used to an-
swer Yes/No questions like "Is it a clustering problem?". Besides launching the requests, a minor
contribution of AI? is its ability to preprocess the datasets using its NLP chatbot.

Even if the NLP interface is the main contribution of this paper, other contributions are also
proposed. For instance, another contribution of the AI? framework is the awareness of greenhouse



gases (GHG). CodeCarbon [22] recently proposed a library of functions about GHG awareness and
AI? integrates some of those functions and enhances it with machine learning methods. Based
on [29], explainability is an essential contribution of this proposed framework. It aims to include
ethics principles from the Institute for Ethical AT & Machine Learning [20]. This UK-based research
centre develops frameworks that support the responsible development, deployment and operation
of machine learning systems.

Ezplainability is a concept intending to eliminate the "black box" problem. Yoshua Bengio has
addressed it, and Judea Perl [15], two Turing awards winners. Over the last decade, ML has reached
a certain level of maturity. One of the differences is our expectations of machine learning. There
is a need to democratize the methods to non-expert users. Until recently, the scientific community
was concerned about lowering the error when using ML algorithms. They were concerned about
the performance. Now the expectation is higher. The community still wants good results, but those
results have to be found in an explainable, interpretable and ethical context. Human well-being
must be the main interest of the ML systems. The results must be explainable. For decades, the
"black box" problem was neglected. Now, there are some methods to explain the results and make
them understandable to a human. The expectations are also higher regarding the accessibility to
the ML methods, GHG awareness and preprocessing. Now, the expectations are higher at different
levels. Disposing of the previously presented technologies and based on [I3], the contributions of this
framework aim to reach expectations with the following targets: 1. democratizing ML frameworks
using NLP methods, 2. being GHG aware with a built-in structure to monitor it, 3. being more
ethics with a built-in structure systematically explain the results, and 4. having the preprocessing
of the data more accessible with an automated NLP based chatbot.

The following sections of this paper are organized with the following structure: Section [2| de-
scribes the proposed methodology. Section [3] presents the results. Section [ discusses the results
and their meaning, and Section [5] concludes this research.

2 Methodology of the AI? framework

2.1 Architecture

Fig. presents the architecture of the AI? framework. The NLP method, through a chatbot,
allows communication with the framework methods and the data using the English language. The
kernel of the AI? framework includes four types of methods: 1. Preprocessing methods, 2. Machine
learning methods, 3. GHG methods, and 4. Explainability methods.

The preprocessing interface method is done systematically once for each dataset when used
for the first time. The chatbot guides this user throughout the process. It consists of a series of
questions to the user about the dataset and each feature/class. The chatbot asks about the type of
each field and its normalization method. The machine learning methods are the classic supervised
and unsupervised learning methods: classifiers, regressors, clustering, dimensionality reduction and
a method to evaluate the importance of the features. There are also some new methods like Decision
Process for Dimensionality Reduction (DPDR) [10], Decision Process for Dimensionality Reduction
before Clustering DPDRC [12], and CK-Means [II]. There are also some functions assuring the
GHG awareness of the framework. Based on the CodeCarbon library [22], those functions compute
the generated GHG for each request. Before launching a request, the GHG functions will predict
the GHG generated for this request. They will try to find equivalent requests using clustering
methods to save the execution of the subsequent request, thus, saving the generation of GHG.
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Figure 1: Architecture of the AI? framework.

The explainability methods offer a complement to the standard machine learning results. The user
gets more than the expected results for his request. He gets a well-documented explanation for
every result. The form of the explanation varies according to the used algorithm and data. Some
examples (like learning curves and the importance of features graphic) are described in the use cases.
The different machine learning methods are divided into three modules. Module 1 includes the
preprocessing tools (Encoding, normalization, data augmentation/imputation, graphics). Module
2 consists of the supervised learning tools (classifiers, regressors and the computation of the feature’s
importance). Finally, module 3 exploits the unsupervised learning tools (clustering and reduction
of dimensionality methods). At last, all the results are given in 2 forms: the expected and the
explained results. AI%’s functions can be called without using its NLP interface. Calling the
Python function directly without using the English chatbot is very straightforward. The user is
responsible for obtaining his own datasets. No sample dataset is included in this first version of
AL,

2.2 NLP methods (chatbot)

This machine learning framework is its ability to communicate with a user, exploiting a chatbot
based on NLP. The chatbot used by the AI? user interface is made with the Transformers technology,
thus, being a state-of-the-art NLP model. In the AI? context, the Transformer technology is used
with the "BERT" technology. Fig. [2] presents the NLP architecture of the AI? framework.



English command
User

NLP methods (chatbot)

N\
[ Chatbot

I
v v
Standard NLP ™
answering module
using Bert-large-
uncased-whole-word-
masking-finetuned-
squad J
[ |
v

Yes/No NLP answering
module using using
Roberta-large

Best answers analysis
(Problem and
parameters)

1

Problem and parameters to send to
the machine learning modules

Figure 2: Architecture of the NLP interface in the AI? framework.

The chatbot uses two types of questions, requiring two different types of NLP pre-trained data.
It is essential to note the difference between the datasets that can be processed by the Al’s methods
and those NLP-based pre-trained datasets used by the chatbot. The Standard NLP answering mod-
ule using Bert-large-uncased-whole-word-masking-finetuned-squad can help in responding to open
questions like: What is the dataset?. As displayed in Table [} this question is associated with
the DATASET key. The chatbot will try every question having this key to filling out the dataset
information. A typical answer to this request can be iris, for the iris dataset. The pre-trained
dataset Bert-large-uncased-whole-word-masking-finetuned-squad [14] is used to answer this type of
question. It is a pretrained model on English language using a Masked Language Modeling (MLM)
objective.

Using the Roberta-large [21] pre-trained dataset, the second type of question is the Yes/No
question. A typical question would be Is this a clustering problem?. The two possible answers
are Yes and No, both associated with a certain level of confidence. As presented in Table [1} this
question is associated with the PROBLEM key and the CLUSTERING return value. If the answer
to this question is Yes, it will return CLUSTFERING as an answer to fill out the information.

As mentioned earlier, every question related to the key is asked in these two types. The NLP
system returns an answer for each question and confidence level. The answer related to the best
level of confidence is kept. The methodology used to train both pretrained datasets, including the



level of confidence formulas are documented in [I4] and [2I]. It conmsists of applying a softmax
function on the logits values. The logits variable is known to be the output of a BERT-based
Transformer. It is a list of the most probable answers.

The following describes how the chatbot works. The chatbot first asks "Please, enter your
English command to the framework". The system specifies writing the English command to
avoid confounding with a specific programming language-based command used in other frameworks.
The expected command is the English instruction to the AI? framework. A typical command could
be "I want to perform a clustering using 3 clusters on the iris dataset."”. From this first
answer from AI2, the chatbot will read a Parameters.csv file storing the structure of the required
keys, the returned values and the questions to send to the chatbot to access the information. There
is no specific order for the keys in this file. The system will request the keys to get the related
information. For now, there are 73 rows defined in this file. Those rows designate 19 keys and the
questions to access them. Many questions may retrieve each key. It is essential to understand that
the framework uses those questions to extract pieces of information from the user command. Those
questions are entirely transparent for the users. This file will grow following the new releases of
the AI? framework. Table [1] presents a sample of this file. Key field identifies the information to
retrieve. For instance, if AI? seeks the type of problem in the user’s command, it will find all the
PROBLEM rows. It will then interrogate the user’s command with all the corresponding Questions
field. It will keep the answer having to higher level of confidence according to the Transformer.
The answer to the question will be returned, except if it is a Yes/No question. In this case, the
Return value field will be used. For instance, if the AI? system replies Yes to the question Is this a
clustering problem? then the returned value will be CLUSTERING. The Type field indicates Y/N
for Yes/No questions and Std. for standard questions.

Table 1: Sample of the Parameters.csv file. Only data used for this example is presented (14 rows

on a total of 73).

Key Type Return value Questions to the command

PROBLEM Y/N  DIMENSIONALITY Is this about dimensionality?

PROBLEM Y/N  DIMENSIONALITY Is this about dimensionality
reduction?

PROBLEM Y/N  CLASSIFICATION Is this about classification?

PROBLEM Y/N  CLASSIFICATION  Is this a classification problem?

PROBLEM Y/N  CLUSTERING Is this clustering?

PROBLEM Y/N  CLUSTERING Is this a clustering problem?
PROBLEM Y/N  CLUSTERING Is this regrouping?
PROBLEM Y/N CLUSTERING Is this a regrouping problem?
PROBLEM Y/N CLUSTERING Do you want to regroup data?
PROBLEM Y/N  CLUSTERING Do you want to cluster data?
DATASET  Std. What is the dataset?
DATASET  Std. Which data are used?
NB_CLST  Std. How many groups?
NB_CLST  Std. How many clusters?

Systematically, the chatbot will try to fill the PROBLEM key. It must know what kind of



problem it is. To find it out, a question list corresponding to the PROBLEM key, is processed
by the chatbot. If the chatbot can return the answer, the problem information (corresponding to
PROBLEM in the Key field, Table will be filled. If the first question can return no answer, other
questions (corresponding to the key) will be tried to extract information. If no answer can be found
after having tried all the questions, the chatbot will prompt to directly ask the user: problem to
resolve has been found in your text. Please clearly identify the type of problem to
solve. Then, the algorithm will go to the second and the third required keys: the DATASET key
and the NB_CLST (number of clusters) key. The interface will ask for every crucial information.
When the parameter is not mandatory, its default value will be assumed. The same principle is
repeated for every required parameter. An example of a complete sequence is illustrated in Table
Remember that the questions are not directly addressed to the user but to his command, aiming
to extract meaningful information to execute his request.

Table 2: Example of a typical command and the question sequence used to extract the information

of the command: I want to perform a clustering using 3 clusters on the iris dataset.

Questions Answer Ret. value
(To extract the type of the problem)

Is this about dimensionality? No None

Is this about dimensionality No None

reduction?

Is this about classification? No None

Is this a classification problem? No None

Is this clustering? Yes CLUSTERING
(To extract the name of the dataset)

What is the dataset? Iris Iris
(To extract the number of clusters)

How many groups? (No suitable answer) None

How many clusters? 3 3

In this example, the answer is No for the first four questions, since the command is not about
reduction of dimensionality nor classification. Since the command is about a clustering problem, the
answer will be Yes to the question Is this clustering?. Since the value Yes would not mean anything,
the corresponding return value (Table [Iy CLUSTERING is returned. After having extracted the
problem type, the dataset name is required. The question What is the dataset? answer the question.
The answer is Iris, and the returned value is also Iris. The last required information is about the
number of clusters needed for the clustering algorithm. There are at least two ways of asking this
question since groups and clusters are synonyms. The question How many groups? is tried to
extract the information. Since the command uses the term clusters, no suitable answer is found for
this question. The second question will be: How many clusters?. The answer and the returned value
will be 8. From this point, AI? has all the required information to launch a clustering algorithm
using the Iris dataset and 3 clusters. Some more complete examples are shown in Section [3]

2.3 Preprocess module

The preprocessing method is done systematically once for each dataset when used for the first time.
AT? detects when no dataset configuration has been done and stored in a JSON file. The chatbot



then asks for the correct configuration for every field, like their name, role in the dataset, and
normalization methods. In the end, the dataset’s configuration is stored in a JSON file, and the
dataset is preprocessed and stored using the same file name, added with a _ preprocessed suffix.
The chatbot finally asks the user if he wants to process a data imputation of the missing data and
a data augmentation.

Fig. B presents the functionalities of the preprocess modules. First, a dataset name is given to
the module. If a preprocessed version of the dataset already exists, the module will open it, dividing
it into train and test data. If the preprocessed files do not exist, the system will try to find the
corresponding JSON file. If the JSON file exists, the system will use it to build the preprocessed
file. If it does not exist, the AI? chatbot will guide the user through some questions about the
field and create the final JSON file containing the structure of the dataset, and it will create the
preprocessed dataset from this JSON file. Ultimately, it will also split the data into train and test

data.
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Figure 3: Preprocessing architecture

Fig. [4] shows an example of a structure configuration JSON file. The included fields in JSON
format are the following: dataset _name is the name of the dataset. dataset description is a
description of the dataset. feat no is the number of the feature. feat label is the label given to
this feature. The type of the feature is given by feat type. Possible values are 1. Feature field, 2.



iris.json
{
"dataset_name": "iris",
"dataset_description": "iris dataset",
"feat_no": [
0,

1,
"feat_label": [
"Petal length in cm",

1,
"feat_type": [
||1l| s

1,

"feat_normalization": [
n 1 n
E

Figure 4: iris.json structure file

Regression value field, 3. Class field, and 4. Class for neural network field (to be one-hot encoded).
The last field is feat normalization. Possible values are 1. No normalization, and 2. MinMax
normalization.

Fig. [5| shows an example of an exchange between the chatbot and the user, aiming to propro-
cessing the data.

2.4 Machine learning methods

Any framework requires a tremendous amount of development hours. This framework is still in
development, yet it has some contributions to bring to the scientific community. Some known
algorithms are included, resolving most machine learning problems (prediction, classification, and
others). Table |3 shows algorithms included in AT



following questions:

dataset.

>Sepal length in cm

for neural network)
>1

(1. None 2. MinMax)
>1

Saving dataset configuration...

The configuration is saved to iris.json
Processing to the file conversion...
The configuration is saved to iris_preprocessed.csv

Let us preprocess the iris dataset. Please, answer the
What is the description of the iris dataset (ENTER to skip)?
>This dataset describes the features and the class of the iris

What is the name of the field 07 (Value example: 5.1)

What is the type of field Sepal length in cm? (1. Feature 2.

Predicted value 3. Class 4. Class (to be converted ONE-HOT

What is the normalization applied to Sepal length in cm?

(... And so on for each feature and class.)

Figure 5: An example of the exchange between the chatbot and the user for the data preprocessing.

Table 3: Machine learning algorithms are included in the AI? framework.

No. Modules

Algorithms
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Unsupervised learning
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SMOTE

KNNImputer

xGEWFI metric

Neural network regressor
Neural network classifier
Random Forest
K-Means

CK-Means

Silouette metric

PCA

DPDRC

DPDR

FRSD
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The pre-processing methods (Module 1) are regrouped into one callable function. This function
can do the whole process of finding the outliers, augmenting the data and imputing the missing
data. The recent explainable metric named xGEWFT [9] is used to evaluate the performance of the
data generation (imputation and augmentation). It considers the importance of the feature and
each feature error to evaluate the global error of the data generation process. Inter Quartile Range
(IQR) algorithm is used to find the outliers. Data generation (augmentation and imputation of
missing data) are made with a SMOTE algorithm [7] and a KNNImputer [36], respectively.

Some neural networks (multilayer perceptron doing regressions and classifications) [31] are avail-
able for supervised learning functions (Module 2). A Random Forest (RF) algorithm [5] is used as
a classifier and regressor. It is also used to evaluate the importance of the features.

Some unsupervised learning methods (Module 3) are also available. The K-means algorithm [4]
can be executed for clustering problems. The CK-Means algorithm [I1] can be called to extract
data from the cluster’s intersection. The metric to evaluate the cluster consistencies of those first
two algorithms is the Silhouette Index (SI) [34]. Concerning the dimensionality reduction, the
Principal Component Analysis (PCA) algorithm [I7] is included in the AI? framework. Two new
decision processes are also included to help with the dimensionality reduction problems. 1. Decision
Process for Dimensionality Reduction before Clustering (DPDRC) [12] and 2. Decision Process
for Dimensionality Reduction (DPDR) [I0]. Those two are used in unsupervised learning and
supervised learning contexts, respectively. In an unsupervised learning context, Feature Ranking
Process Based on Silhouette Decomposition (FRSD) [40] helps evaluate the importance of the
features.

2.5 GHG Methods - CodeCarbon integration in AI”

Climate change is an essential issue for humanity. It is our responsibility to be aware of it and
to do everything that can be done to contribute to lower GHG. We know that computer sciences,
particularly machine learning, can significantly generate GHG while executing on CPU and GPU.
The CodeCarbon library is an important initiative available to data scientists, so they can be
aware of their impact on GHG. The following quote can be found on the CodeCarbon website (at
pypi.org/project/codecarbon/) based on [22]: While computing currently represents roughly 0.5%
of the world’s energy consumption, that percentage is projected to grow beyond 2% in the coming
years, which will entail a significant rise in global CO2 emissions if not done properly. Given this
increase, it is important to quantify and track the extent and origin of this energy usage, and to
minimize the emissions incurred as much as possible. For this purpose, we created CodeCarbon, a
Python package for tracking the carbon emissions produced by various kinds of computer programs,
from straightforward algorithms to deep neural networks. By taking into account your computing
infrastructure, location, usage and running time, CodeCarbon can provide an estimate of how much
CO2 you produced, and give you some comparisons with common modes of transportation to give
you an order of magnitude. The contribution of this paper is to embed this library’s features in a
machine learning framework, add some machine learning-based functions to predict the subsequent
request amount of GHG, and try to spare its execution by proposing some alternatives. Fig. [f]
explains those embedded GHG functionalities.

First, every GHG statistic (request name, machine learning algorithm used, dataset, number of
data, fields, elapsed time, GHG emissions) is stored in a file. When a user is about to launch a
new request, from this stored historic, AI? framework will try to predict the amount of GHG this
subsequent request will generate. A multilayer perceptron (MLP) is used to evaluate this GHG
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Figure 6: GHG module architecture

amount. This MLP have 5 hidden layers of 25 neurons. It uses a relu activation function and an
adam solver. Then, a k-means clustering algorithm is used to regroup every similar request to the
current request. The list is proposed to the user so he can spare his execution, with some similar
results available from the historic. Knowing how much GHG will be generated and knowing the
similar results of the past, the user will finally decide if yes or no he wants to execute his new
request. Fig. presents an example of the information from the chatbot concerning the GHG
before launching a new request.

2.6 Explainability methods

The goal of this part is to get rid of the famous "black box" problem in machine learning. When
most frameworks usually display the results for every executed algorithm, AI? will systematically
display the ad-hoc graphics, tables and texts that will ensure a better explainability for a particular
algorithm. It could be some learning curves, some scalability curves, and some confusion matrices.
For instance, for a clustering process, some stacked radar graphics (one per cluster) are produced,
plus a Silhouette index graphic that shows the cluster’s consistency. A cluster table and a text (in
LaTeX format) are also created to complete the explainability of the process. For each machine
learning algorithm, the totality of the graphics, tables and texts are generated using the explain()
method.
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Predicted execution time (in sec): 4.498
Predicted generated GHG: 4.899e-05 kg CO02

Here are the most similar requests in case launching another
request can be avoided.
Request _2022-11-21_21-23-43 using dataset make_blob
Request _2022-11-22_13-54-45 using dataset make_blob
Request _2022-11-22_14-29-32 using dataset make_blob
Launch the request (y/n)?

Figure 7: Information from the chatbot concerning the GHG before launching a new request.

3 Results

The following presents five functional use cases. They emphasise the singularity of the AI? frame-
work. It shows how a user can execute some requests to this framework and what type of results
are presented as output. The output graphics, tables, and texts are not presented in this paper
for two reasons: 1. It is not what this paper intends to demonstrate. For instance, there is no
need to show result for a simple clustering K-mean process. 2. There would have needed too many
graphics, tables and texts to present in this paper. Case 1 to case 5 present a clustering, a reduction
of dimensionality, a classification, a prediction, and an evaluation of the feature’s importance.

3.1 Case 1: Clustering

The first case is about a clustering process. As mentioned earlier, the user must write his query
in English in the chatbot. For this first case, the following command has been entered: I want to
perform a clustering using iris dataset and having 3 clusters.

From the Parameters.csv file where a sample is presented in Table [4] the following questions
(Table will be generated by the chatbot to fill the required information about a clustering process :

Table 4: Required information and questions to access it.

Key Type Return value Questions

PROBLEM Y/N  CLUSTERING Is this clustering?

PROBLEM Y/N CLUSTERING Is this a clustering problem?
PROBLEM Y/N CLUSTERING Is this regrouping?
PROBLEM Y/N CLUSTERING Is this a regrouping problem?
PROBLEM Y/N CLUSTERING Do you want to regroup data?
PROBLEM Y/N  CLUSTERING Do you want to cluster data?

DATASET  Std. What is the dataset?
DATASET  Std. Which data are used?
NB_CLST  Std. How many clusters?
NB_CLST  Std. How many groups?
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At this first step, AI? transparently tries to find the answers in the command entered by the
user. After this first step, if AI? misses some information, the chatbot will ask for it until every
critical information is defined. From this example, the iris dataset is loaded, a k-means algorithm
is launched with the parameter n.lusters = 3 and using the default parameters randomgtate = 1
and init = "k — means + +”.

The primary results are displayed, presenting a data table along with their clusters, that what
most of the frameworks would do. Using AI?, each graphic, table and text can be called using the
explain() method. In this first case, stacked radar graphics are generated for each cluster, allowing
to visualize the profile of every cluster. It also generates a graphic of the Silouhette Index, showing
and measuring the consistency of every cluster, and finding the mean of the whole clustering process.
For each table and graphic, a short text describing it is generated in LaTeX format.

3.2 Case 2: Reduction of dimensionnality

The second case is about the reduction of dimensionality. The entered command was: reduction
of dimensionality with iris dataset and having 3 components. The only required parameter is the
targeted number of components that should be used to downsize the dataset. If this parameter is
not specified in the command, the chatbot will directly ask to specify it. Since it is defined in this
case command, AI? will extract three components of the dataset using the PCA algorithm. Always
from the Parameters.csv file, the questions shown in Table [5| will be generated by the chatbot to
fill the required information about a reduction of dimensionality process :

Table 5: Required information and questions to access it.

Key Type Return value Questions
PROBLEM Y/N  DIMENSIONALITY Is this about dimensionality?
PROBLEM Y/N  DIMENSIONALITY Is this about dimensionality
reduction?
PROBLEM Y/N  DIMENSIONALITY Is this about reduction
of dimensionality?
PROBLEM Y/N DIMENSIONALITY Is this a regrouping problem?
PROBLEM Y/N DIMENSIONALITY Is this a dimensionality problem?
PROBLEM Y/N  DIMENSIONALITY Is this a dimensionality
reduction problem?

DATASET  Std. What is the dataset?
DATASET  Std. Which data are used?
NB_CMPS Std. How many components?

The result is a dataset having three principal components (reduced with the PCA algorithm).
The ezplain() method generated two graphics: 1. the covariance heatmap of the initial features.
2. a bar graph of the three extracted features’ importance (explained variance ratio). For both
graphics, a short LaTeX explaining it is generated.

3.3 Case 3: Classification

The following case is about the typical problem of classification. For this case, a multiple sentences
English is given: Perform a classification of the iris dataset. I want this request to be reproducible.
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Test [4.8,5.0,1.4,0.2] value. The first sentence of the command is straightforward. Those two sen-
tences are written in a single command. It calls a classification of the iris dataset. To do so, it will
call a multilayer perceptron (MLPClassifier from the Scikit-learn framework). The second sentence
mention that it requires reproducible results. This will set the seed of the random__state parameter
to the "1" integer value, assuring the request gives the same result every time. The opposite would
have been a "random request'. The seed would have been set to None, allowing the request to give
slightly different results due to some random synaptic connection initialization. If it is not specified,
the request is reproducible. The final sentence commands to try some values. In other words, it
aims to classify the specified values [4.8,3.0,1.4,0.2]. The questions in Table |§| will be extracted from
the text command.

Table 6: Required information and questions to access it.

Key Type Return value Questions

PROBLEM Y/N  CLASSIFICATION Is this about classification?
PROBLEM Y/N  CLASSIFICATION Is this a classification problem?
PROBLEM Y/N CLASSIFICATION Do you want to classify data?

DATASET  Std. What is the dataset?
DATASET  Std. Which data are used?
RANDOM Y/N  RANDOM Is this a random request?
RANDOM  Y/N REPRODUCTIBLE Is this a reproductible request?
TEST Std. What are the test values?
TEST Std. What values do you want

to be tested?

The classification result will then be shown. The training is done with cross-validation having
the parameter k = 10. The whole dataset is split k times, and the subsets are used to validate to
process. The training and validation scores are returned for each step of the cross-validation. While
both scores are increasing, the training may continue the learning process. When the training score
is still increasing while the validation score starts to decrease, it is precisely the right time to stop
the training process. Stopping before that moment creates under-fitted training, and stopping after
that point results in overfitted training. Calling the ezplain() method, a learning curve is generated
of both the training score and validation score based on the cross-validation.

A state-of-the-art method executes the neural network to classify the data. Earlier in the process,
the train and the test data were split, allowing the algorithm to train and evaluate the performances.
Performance graphics is also created, showing the performance of the training. Scalability graphics
show the ratio of the number of processed data/processing time. Like the other cases, LaTeX texts
are generated to explain every graphic.

3.4 Case 4: Prediction

This case aims to demonstrate the prediction feature of the AI? framework, using the MLPRegres-
sor from Scikit-learn. It also shows how to preprocess a dataset before calling an algorithm. This
preprocessing can be called in the chatbot. In this case, the following English command is given:
Do the preprocess of the iris2 dataset. Note that the iris2 dataset is identical to the iris dataset,
except that the class field is not included. Selecting the columns of a dataset is not included in
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this first version of AI2, but it will be in a different version. The iris2 dataset remains with four
features: Sepal length, sepal width, petal length and petal width. The value of the petal width
must be predicted. When responding to the chatbot’s questions, the user must specify that the
first three fields are non-normalized features and the fourth is a regression value. After responding
to the questions in the chatbot, the iris2.json file is created, containing the information about the
configuration. The iris2_preprocessed.csv data file is also created containing the preprocessed data.
A second command can be sent to AI? using the chatbot: I want to make a prediction using the
iris dataset. Test [{.5,3.1,1.2]. The questions in Table [7] will be extracted from the text command.

Table 7: Required information and questions to access it.

Key Type Return value Questions
PROBLEM Y/N  PREDICTION Do you want to make
a prediction?
PROBLEM Y/N PREDICTION Is this a prediction problem?
PROBLEM Y/N PREDICTION Do you want to predict something?

DATASET  Std. What is the dataset?
DATASET  Std. Which data are used?
TEST Std. What are the test values?
TEST Std. What values do you want

to be tested?

Three graphics are generated to explain the results as in 3.3] A learning curve is displayed
to ensure no training underfitting or overfitting. A second graphic shows the performance of the
training process. Moreover, a third graphic shows the scalability of the training. As always, LaTeX
texts are created to explain the figures, ready to be cut and pasted in a LaTeX document.

3.5 Case 5: Feature’s importance

This next case shows how to evaluate the feature importance in the AI? framework. The following
command has been typed in AI?’s chatbot: Find the importance of the features with the iris dataset.
This command calls a Random Forest algorithm. More precisely, the RandomForestClassifier and
the RandomForestRegressor from the Scikit-learn framework. According to the configuration file’s
content (iris.json in this case), it will detect whether it is a dataset made for regression or classi-
fication. In this case, the iris is a dataset made for classification, so the RandomForestClassifier
algorithm will be used. From the Parameters.csv file, the questions shown in Table [8| are asked by
the chatbot to fill in the information about the feature importance algorithm:
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Table 8: Required information and questions to access it.

Key Type Return value Questions
PROBLEM Y/N  FEAT IMP Is this about feature importance?
PROBLEM Y/N FEAT IMP Is this about the importance
of the features?
PROBLEM Y/N  FEAT_IMP Is this a feature importance problem?
PROBLEM Y/N  FEAT IMP Do you want to know the
feature importance?
DATASET  Std. What is the dataset?
DATASET  Std. Which data are used?

The explain() method gives a graphic where the X axe represents the index of the features,
and the Y axe shows each feature’s normalized level of importance. A LaTeX explanation text is
generated as usual.

3.6 GHG algorithms validation

As stated in the AI? framework predicts GHG for each algorithm to be executed. Execution
time is also predicted before calling the machine learning algorithm. To validate those predictions,
a clustering algorithm has been called within 50 iterations loops. For each execution, a random-
sized dataset of 10,000 to 50,000 rows and 5 to 20 features have been used. Those datasets were
generated by the make_blob() function of the scikit-learn framework. Fig. 8| shows the validation
of the predicted and real values of the generated GHG. X axe displays the 50 iterations, and the Y
axe shows the level of GHG (in kgC' O unit). The regression algorithm was trained from a dataset
containing 1382 rows containing the request’s historical.

0.000175 4
Predicted GHG

R —— Generated GHG '
0.000150 ‘ f

0.000125 | | H

[1{] Il 1
o 0:000100 [ [ |11 ‘ |
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T T T T T T
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Figure 8: Validation of the predicted and real GHG
Fig. [0 displays the validation of the predicted and actual values of the execution time for every

iteration of the loop. X axe shows the 50 iterations, and the Y axe shows the execution time (in
sec.).
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Figure 9: Validation of the predicted and real execution time

Here are the most similar requests in case launching another request can be avoidged.
Request _2022-11-21_21-23-43 using dataset make_blob
Request _2022-11-22_13-54-45 using dataset make_blob
Request _2022-11-22_14-29-32 using dataset make_blob

Figure 10: iris.json structure file

Concerning the predicted and real GHG and execution time, it can be seen that the signal is
reasonably reconstructed.

Finally, before launching each request, AI? proposes similar requests from the request’s historic
after extracting this information using a clustering process. Fig. presents an example of the AI?
propositions of the similar requests.

4 Discussions

The first contribution of this paper is to present an accessible framework. With its state-of-the-art
NLP methods, this machine learning framework is a pioneer in communicating with a non-expert
user in English. The new Transformers technology allows the AI? framework to receive native
language commands extracted, parsed and executed. When there is an essential missing parameter,
AT? will use its chatbot to communicate with the user, asking him to enter the missing information.
With this NLP interface, a user can exploit the AI? framework without knowing how to code with
a programming language like Python or others.

The AI? framework is GHG-aware, and this is the second contribution of this paper. The
CodeCarbon library is encapsulated in each of its ML functions, allowing the calculation of the
GHG for each algorithm executed. Those GHG records are kept in a register and used to predict,
based on ML, the GHG generated before the execution. AI? also propose some similar registered
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requests, also based on ML, to save this execution and save GHG.

The opposite of most other frameworks, AI? systematically encapsulates the most important
format of explanations about the data and the results. This aspect of the framework is crucial to
solving the famous black-box problem. This is the third contribution of this paper. Most of the
machine learning framework is not systematically offering some explainability with the results. AI?
does. It generates, for each request, some graphics, some tables, and some texts explaining the
results and the data, thus, making this framework more ethical than others.

The final contribution of this paper is data preprocessing. It usually takes time to code a suitable
preprocessing of the data. The AI? framework proposes a method based on communication with
the chatbot to automatize this process. Guided by the AI? chatbot, the user may do some basic
preprocessing of its datasets by establishing the dataset’s structures. Having a structure stored in
a JSON file, the preprocessing module can generate a new preprocessed dataset.

Comparing AI? with other machine learning frameworks, what is the advantage of using it?
For now, there are frameworks more complete and more sophisticated. The AI? framework targets
non-expert users who need a machine-learning algorithm to process their data. Typical AI? users
would be, for instance, researchers, engineers, teachers and students in natural science, and so
on. A significant part of the scientific community cannot program complex algorithms using a
programming language. An NLP interface is the best solution since it requires no programming
skills.

Table |§| shows a comparison between AI? and the other popular machine learning framework,
according to 3 criteria: 1. NLP interface, 2. GHG awareness, 3. Explainability, and 4. NLP
Preprocessing.

Table 9: Comparison of the popular machine learning frameworks, specialized frameworks, and AI?

Framework NLP GES Explain. Prepro. Code Ref.

Aware req.

AIX360 NO NO YES NO YES  [3]

ELI5 NO  NO YES NO YES  [3]

Gluon NO NO NO NO YES [27]
Keras NO NO NO NO YES 27
LIME NO NO YES NO YES  [25]
Matlab NO NO NO NO YES  [27]
MXNet NO  NO NO NO YES [l
Orange NO NO NO NO NO 18]

PyTorch NO NO NO NO YES [27]
Scikit-learn ~~ NO NO NO NO YES [27]
SHAP NO NO YES NO YES  [25]
Skater NO NO YES NO YES 13]

Tensorflow NO NO NO NO YES  [4I]
What-if Tool NO  NO YES NO YES  [25]
XAI NO NO YES NO YES  [25]
CodeCarbon NO YES NO NO NO [22]
AT? YES YES YES YES NO 113

Note that some well-known frameworks may seem absent from the list: CNTK and Theano
are no longer supported. Caffe2 is merged with PyTorch. According to Table [9] we can regroup
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the frameworks into three categories: 1. The general, multi-purpose frameworks (Gluons, Keras,
MXNet, Tensorflow, PyTorch, Matlab, Orange and Scikit-learn) 2. The Explainability frameworks
(AIX360, ELI5, LIME, SHAP, Skater and XAI), and 3. The GHG-aware framework (CodeCarbon).

This table shows AI?’s novelty. It is the only framework that combines all the studied criteria
(NLP interface, GES awareness, Explainability, Preprocessing, and Coding required). It is the first
framework to have an NLP interface to send the instructions to the framework. Several frameworks
integrate the explainability of the data and the models, but no general and multi-purpose framework
includes it. AI?: The next leap toward native language-based, GHG-aware and explainable ML
framework.

5 Conclusion

This framework proposes a tool for the non-expert to use machine learning methods. It offers
an NLP interface so the user can communicate with the framework using a chatbot. It encap-
sulates some very concrete functions to provide ecological awareness. It includes the principle of
explainability, proposing expanded results explications for different algorithms. It finally allows
preprocessing of data using an English chatbot.

This framework could be the first draft of a long series of improvements. There are many
future works to do for each of its contributions. Regarding its NLP interface, this framework
can be improved by training the pre-trained Transformer on a specific machine learning-oriented
text corpus. Likely, the NLP’s performance will significantly improve. The chatbot method can
also be optimized to minimize errors and recognize the user’s intentions. Questions used to extract
command information can be improved by increasing the quality and the number of questions. GHG
awareness can be improved. Better methods can be found to minimize wasted energy, maximize
the GHG estimation before calling an algorithm, and cluster similar requests. There is a lot to
do, but this framework has the merit of being aware of the climate change problem and proposing
a modest solution. Explanations available for each data and machine learning algorithm can also
be optimized in quantity and quality. Some essential explanations are included in this framework,
but those need to be systematically included. Regarding the preprocessing module, there are many
things to add. For instance, some normalization methods can be added. The rows and columns
selection can be added to this module, also. Some graphics can be added to plot data at the
preprocessing stage. Finally, this framework contains a limited number of ML algorithms. Some
more ML algorithms can be easily added to the AI? framework.
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