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Abstract

The lack of flexibility and safety in C language development has been criti-
cized for a long time, causing detriments to the development cycle and software
quality in the embedded systems domain. TypeScript, as an optionally-typed
dynamic language, offers the flexibility and safety that developers desire. With
the advancement of Ahead-of-Time (AOT) compilation technologies for Type-
Script and JavaScript, it has become feasible to write embedded applications
using TypeScript. Despite the availability of writing AOT compiled programs
with TypeScript, implementing a compiler toolchain for this purpose requires
substantial effort.
To simplify the design of languages and compilers, this paper presents a new
compiler toolchain design methodology called TS−, which advocates the gener-
ation of target intermediate language code (such as C) from TypeScript rather
than the construction of higher-level compiler tools and type systems on top of
the intermediate language. TS− not only simplifies the design of the system but
also provides developers with a quasi-native TypeScript development experience.
This paper also presents Ts2Wasm, a prototype that implements TS− and allows
compiling a subset of language TypeScript to WebAssembly (WASM). The tests
from the repository TypeScript show that Ts2Wasm provides 3.8x as many
features compared to the intermediate language (AssemblyScript). Regarding
performance, Ts2Wasm offers a significant speed-up of 1.4x to 19x. Meanwhile,
it imposes over 65% less memory overhead compared to Node.js in most cases.

1



Keywords: keyword1, Keyword2, Keyword3, Keyword4

1 Introduction

In the domain of embedded system development, the debugging, compilation, and
uploading of programs usually takes longer than in native environments. In this case,
developers naturally write their code carefully to avoid errors. Although C is the most
widely used programming language for constrained devices [1], recent studies [2, 3] sug-
gest that it is prone to errors due to its use of pointers, manual memory management,
and the potential for memory leaks.

In recent years, embedded developers have been increasingly turning to languages
other than C for their development needs, such as JavaScript [4] and Python [5].
As a superset of JavaScript, TypeScript [6] has also gained increasing attention as
a developing language for embedded systems [7, 8]. By incorporating TypeScript,
developers can introduce a degree of type safety into their code, thus mitigating the
risk of type errors. Additionally, developers can select to take advantage of dynamic
typing in cases where it is necessary to maintain coding agility. The rich IDE support
and third-party tools also boost the development process, e.g., code linting, formatting,
and autocompletion.

There are currently two main approaches to TypeScript development in the embed-
ded systems domain: (i) Generate JavaScript code from TypeScript, which is then
executed by an Ahead-of-Time (AOT) compiler or interpreter [9–12]. And (ii) pro-
gramming directly in a TypeScript-like language tailored to specific hardware and
scenarios [7, 13, 14].

For approach (i), although Just-in-Time (JIT) compilers are powerful, they are
not a suitable choice for embedded devices. Since embedded systems, particularly
microcontroller units (MCUs), often lack the capability to support JIT compilers,
as their memory is limited (≤ 1MB). Additionally, a recent paper has demonstrated
that Ahead-of-Time (AOT) compilation exhibits significantly superior performance
compared to JavaScript interpreters in the context of embedded systems [7]. Therefore,
approach (i) involves TypeScript and an available JavaScript AOT language variant.

TypeScript is intentionally designed with an unsound type system; Type anno-
tations are optional. As such, approach (ii) similarly involves creating a variant for
TypeScript that guarantees soundness, and the corresponding compiler framework,
which is an arduous and time-consuming task. After investigating the AOT compi-
lation for dynamic typing languages and the properties of various type systems, we
observe an often overlooked insight that the gradual typing system of TypeScript
can substantially aid the compilation progress, following which we can design new
TypeScript-based languages for embedded devices in a trivial way. Instead of devel-
oping a type system for a new language, we build a compiler to transform the type
system from TypeScript to a low-level language (e.g., C or C++). One key challenge
is to preserve the dynamic features in TypeScript. Specifically, selective retention of
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certain dynamic features is chosen to optimize the performance of the compiled code
while sacrificing little flexibility.

In a nutshell, contrary to approaches (i) and (ii), we propose our approach, called
TS−, that does not require a dedicated type system but adheres to the original Type-
Script compilation procedure, using tsc to check type errors and emit nominal typed
intermediate language, which can eventually be AOT compiled into binaries.

Our contributions are listed as follows:

• Proposing TS−, a language and compiler design methodology for embedded
systems, and proving its feasibility from a design analysis (Section 2).

• Presenting a prototype Ts2Wasm that uses TypeScript as the source language to
emit AOT compiled binaries, which validates the proposed design TypeScript TS−

in practice (Section 3).
• Implementing five compiler passes to convert TS− to a C++-like intermediate
language (AssemblyScript) and emit WASM as the compilation target (Section 4).

• A series of comprehensive experiments to evaluate the performance of Ts2Wasm

and show that Ts2Wasm is 1.4x to 19x faster than Node.js and imposes over 65%
less memory overhead compared to Node.js in most cases (Section 5).

2 Motivation

This section presents the motivation for TS−.
Definition 1 (∼). Denote ∼X be the language with a syntax similar to X, which
requires a different type system from that of X.
Definition 2 (Gradual Typing, Structural Typing, and Nominal Typing). Gradual
typing is proposed in [15] and adopted in languages such as TypeScript [16], Grad-
ualTalk [17], and C# [18]. Gradual typing allows the coexistence of dynamic typing
(type checked at run-time) and static typing (type checked at compile time). Struc-
tural (property-based) typing and nominal (name-based) typing depend on how type
compatibility is determined.

We use GT, ST, and NT as abbreviations for Gradual Typing, Structural Typing,
and Nominal Typing, respectively.

Gradual typing allows developers to use type annotations for type safety, while also
supporting unannotated code, allowing for increased efficiency and adaptability in soft-
ware development. However, the gradual type system for TypeScript is intentionally
unsound, leading to conflicts for AOT compilation.
Definition 3 (AOT-Compatible Counterparts). Following Definition 1, we define
∼TS and ∼JS be the AOT-compatible counterparts of TypeScript and JavaScript.
Languages compiled using AOT compilation typically employ nominal typing to
achieve optimal performance.

In Definition 3, we make a general assumption for the type system design option
that ∼TS and ∼JS compile to a nominal typing IL. Despite that a sound gradual
type system for AOT compilation is feasible [19, 20], a recent research paper also
[21] shows that such soundness comes at the cost of significant performance overhead.
Subsequently, we refer to IL as being nominal typed for the remainder of this section.
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Fig. 1: ∼TS,∼JS and TS−: 3 different compilation path for TypeScript development
in embedded systems

2.1 Existing Methodology

The methodologies for implementing ∼TS and ∼JS are similar, that is, finding an IL,
building a higher level language on top of it, and adding support for as many original
language features as possible. Hop.js [9, 10] is an example of ∼JS that utilizes Scheme
as its intermediate language, while StaticTS [7] as an example of ∼TS, uses C++. As

shown in Figure 1, ① and ② are the compilation path for ∼JS and ∼TS, respec-
tively. Type systems are distinguished by different colors, while GT is represented by
a mixture of the colors for NT and ST.

For ①, developers write TypeScript and can use tsc to emit JavaScript, which
is then fed to the compiler of ∼JS. To ensure compatibility with ∼JS, developers
must modify the generated JavaScript code, which risks breaking the type safety
provided by TypeScript. As ∼JS would be compiled into IL, type system reconstruc-
tion is needed. Furthermore, since all type information is discarded while generating
JavaScript with tsc, ∼JS type system reconstruction involves redundant work for
constructing discarded types.

A type system based on IL is designed for ②, and the type system imitation
process is demonstrated in Figure 1. ∼TS utilizes an NT system similar to TypeScript
while it is imitated from the IL’s NT. Given that TypeScript comes equipped with
a powerful type system, it follows that ∼TS, which is a subset of TypeScript, only
includes a relatively limited set of TypeScriptfeatures. As a result, a large portion of
the language’s functionalities that depend on ST are missing.

2.2 Our proposed methodology

Prior to introducing TS−, it is essential to understand that the process of compiling
TypeScript AOT is not a straightforward one.
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Taking into account the GT nature of TypeScript [15, 16], the code usually includes
both ST and NT elements (as suggested in Figure 1). However, the nominal type sys-
tems for IL are non-trivial to represent the ST component, which typically involves
dynamic typing code. As a result, many runtime functions are bundled into compi-
lation at the performance cost or a maximum language subset is selected. The latter
language subset is strictly not TypeScript, as it does not support a complete syntax
or a standard compilation path of TypeScript.

In addition to ① and ②, we introduce a new approach called TS−, which is
illustrated in Figure 1 3○. Programmers write code in native TypeScript, use tsc to
validate the type annotations, generate target code, and compile the target code into
an executable binary. The differences are

• tsc is modified with additional rules to detect type errors and forbidden dynamic
typing features.

• A part of ST is lifted to NT counterparts so that they can be AOT compiled.
• Runtime functions transform the commonly used features that are incompatible
with type lifting.

• The NT-only Abstract Syntax Tree (AST) produced by type lifting can be easily
mapped to an IL. However, in ∼JS, type reconstruction is necessary.

• The IL is not restricted to any particular language and can encompass class-based
languages such as C++, Java, and C#.

TS− imitates not only a TypeScript source but also the compile path of TypeScript.
Therefore, we coined the term TS− to denote TypeScript itself with fewer features,
different from languages that only write like TypeScript (∼TS, ∼JS).

3 Implementation: Ts2Wasm

In this section, we present the design of Ts2Wasm, a TypeScript to WASM compiler.
We buildTs2Wasm based on TypeScript, with AssemblyScript as the IL and Binaryen
as the compiler from IL to binary. AssemblyScript is a class-based language similar
to C++, and its source files can be compiled into WebAssembly (WASM) binaries.
The selection of WASM as the AOT compilation target binary is primarily based on
its portability across platforms, fast execution speed, and small code size - all desired
features for developing embedded systems applications [22–24].

Ts2Wasm is written in about 13000 lines of TypeScript. Figure 2 shows the archi-
tecture and basic execution workflow of Ts2Wasm, which serves as a checker and
compiler framework for TypeScript. The user-input source files are written in native
TypeScript syntax while containing two types of code:

• Static: Code blocks suitable for AOT compilation with the TypeScript type system.
• Dynamic: Code blocks containing some highly dynamic features (mainly
JavaScript) that cannot be AOT compiled.

Following the TypeScript compilation procedure, the user-input TypeScript files
are first parsed into TypeScript ASTs with tsc, the TypeScript compiler. Then,
Ts2Wasm traverses the ASTs and picks out the nodes suitable for static compilation.
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Fig. 2: Ts2Wasm Design Overview: A compiler framework for TS− AOT compilation

Meanwhile, some AST transform operations are performed during the AST traversal,
and for simplicity, we abstract the process into a Checker component. The Checker
component (also a CLI tool for Ts2Wasm) takes different actions depending on the
type dynamic of code.

Dynamic nodes are represented by hatched circles in Figure 2 and are identified
and collected by Checker. Subsequently, these dynamic nodes and the collected infor-
mation (such as line number, node type, file name) are exported to the succeeding
component. The nodes that have passed the check are classified as static and undergo
AST rewriting in the Rewriter component of Ts2Wasm. Additionally, since certain
runtime functions are necessary to manage the selected dynamic features, a customized
AssemblyScript compiler is utilized.

Also, note that in Figure 2, the rule-outed dynamic AST nodes are reported to the
developer for manual review.

3.1 Nominal (Typing) Boundary Detection

We make an in-depth survey of the features unsupported by static compilation and
divide the features into different categories, as Table 1 shows. The features are not
fully listed for some categories due to space limitations.

When building the Ts2Wasm Checker to filter the dynamic AST nodes, a com-
plete version of Table 1 is applied to the AST visitor, as introduced in Section 4.1.
Furthermore, we have categorized the features listed in Table 1 based on the reason
for their exclusion.

• Dynamic Typing: The complexity of implementing dynamic semantics in a nom-
inal type system excludes most of the features. For instance, the categories of types
such as Type Manipulation, Narrowing, (dynamic) Expressions, and Interface are
excluded.

• JavaScript Compatibility: In TypeScript, certain features are kept for JavaScript
compatibility that may not be essential for AOT compilation.

• Asynchronous Programming: Asynchronous is vital in JavaScript programming
to handle blocking operations. However, asynchronous is not supported in WASM.
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Table 1: Ts2Wasm Checker Feature Filter Table

Category Feature (Partially Displayed)

Primitive Types
BigInt Types

Unknown Types

Advanced Types
Type Assertions

Intersection Types

Type Manipulation
Conditional Types

Mapped Types

Narrowing
Typeof Type Guards

Equality Narrowing

Expressions
Object Literals

Computed Property

Operator ‘in’
Statements For-Await-Of Statement
Functions / Methods Function Overload

Interface
Interface Extending Class

Interface Optional Property
Class Class Optional Properties
Enums String Enums

Async
Await Expression

Asynchronous Function

Promise

Generators
Yield Expression

Generator Function
Decorators Accessor / Property / Parameter Decorators

Namespaces
Namespace Merging

Nested Namespace
Modules Importing Types

• Variable Scope: This includes modules and namespaces, also absent in WASM.

By categorizing the language features,Ts2Wasm can provide developers with more
valuable hints than just reporting the lines that the Checker failed on.

3.2 Structural Typing Lifting

Recall in Section 2 that TS− uses type lifting technique to transform some code
components from ST (Structural Typing) into NT (Nominal Typing). However, in
the implementation of Ts2Wasm, structural type lifting is accomplished by several
methods executed during various compilation passes. For simplicity, we represent the
implementation of structural type lifting by using the Rewriter pass in which the type
lifting methods are primarily executed.

Roughly speaking, structural type lifting involves explicit rewriting and implicit
inference. Implicit inference happens before explicit rewriting and endeavors to push
the boundary between nominal and structural types toward the structural type side
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as far as possible. The details of implicit inference are introduced in Section 4.3, and
in this section, we focus on explicit rewriting.

Primitive Types

Depending on the runtime type of a TypeScript variable, different strategies are used
to rewrite the related AST node. Figure 3 shows an example of a simple add function in
which the input and output arguments are all of any type, and a module-exported func-
tion func calls add with a primitive type i32 for the input arguments. This scenario
is frequently encountered when legacy JavaScript code is transitioned to TypeScript.

function add(a : any, b : any) : any { 

    return a + b; 

} 

export function func(): i32 { 

    let a: i32 = 10; 

    let b: i32 = 20; 

    return add(a, b); 

}   

return nanany.add(a, b); 

return anyvalue.init<i32>( 

    add( 

    anyvalue.init<i32>(a),  

    anyvalue.init<i32>(b)) 

    ); 

Fig. 3: Primitive Types: Simple Add function rewriting in Structural Typing Lifting

After the compilation passes, the original code inside the color box in Figure 3
is rewritten to the right-hand side counterpart . The original any is replaced with a
runtime type any, defined in our customized AssemblyScript compiler. To support the
basic operations of any, we introduce namespace nanany (NaN boxing any), which
overrides the default operators with namespace methods, e.g., nanany.add in Figure
3. Type casts between built-in primitive types and runtime types are performed by
inserting explicit calls to the casting functions, e.g., anyvalue.init<T>.

Objects

Any keyword is also crucial for features associated with Object Literals. When an object
is declared as any 1, or an any parameter accepts an object as input, straight-forward
type casting does not work in such cases.

As the example in Figure 4 shows, the function bar attempts to access properties
y and x and invoke method foo of parameter a. Because of TypeScript’s structural
typing nature, any object with the same structure as class A can serve as a valid input
for parameter a. Structural typing lifting involves converting an object into a nominal
typing object, which requires designing a runtime type (interface) called StcTyped.
StcTyped stands for static objects that maintain a static layout throughout their life-
cycle. Additionally, it serves as a common interface for property access and method
call of statically typed objects. The lifting process rewrites static object classes into

1Implicit any is forbidden in ’strict’ TypeScript
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classes implementing StcTyped, as is shown inside red boxes in Figure 4. The class def-
inition now includes dedicated implementations of the getProperty and setProperty

methods defined in StcTyped, which includes invalid property access checking.
Property access of parameter a: any in function bar are type checked to ensure

runtime type safety. Initially, variable a is typecast to the object implementing
StcTyped. Subsequently, the corresponding property accesses and method invokes are
replaced with the aforementioned safe implementation.

Static objects are distinguished from dynamic ones with have changing dynamic
memory layouts. The type-lifting strategy for dynamic objects is a runtime class
DynTyped that implements StcTyped while maintaining a map to store object prop-
erties. Prior to accessing a property or invoking a method, the class searches the map
using the given property name. Hence, property insertion/deletion can be implemented
based on manipulating the map data structure.

class A implements StcTyped  

{ 

    x: i32; 

    y: f32; 

    foo(): void { } 

    getProperty(prop: string): _any { } 

setProperty(prop: string,  

value: _any): void { } 

    invoke0(prop: string): _any { } 

}; 

any_object.ts

function bar(a: _any): _any { 

let tmp: StcTyped =  

anyToObject<StcTyped>(a); 

    tmp.setProperty("x", anyFromI32(1)); 

    tmp.invoke0("foo"); 

    return tmp.getProperty("y"); 

} 

function func(): void { 

    let a = new A(); 

    bar( 

        anyvalue.init<object>(a) 

    ); 

} 

class A { 

    x: i32; 

    y: f32; 

    foo(): void { }; 

} 

function bar(a: any) 

: any { 

    a.x = 1; 

    a.foo(); 

    return a.y; 

} 

function func(): void  

{ 

    let a = new A(); 

    bar(a); 

} 

Fig. 4: Objects: Method invoke and property access on a class object (any is used as
an object)

Closures

Prior research has extensively investigated the compilation of closures [25, 26]. Building
on the work of others, and in order to design a strategy for lifting types on closures,
it is necessary to determine and optimize the scope that each closure is allocated.

The Rewriter pass accepts metadata for closure rewriting collected in previous
compilation passes and uses this metadata to explicitly construct the lexical scope of
each closure. For example, in Figure 5, the return type of func is closure, and the
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statement let f1 = func(1) assigns variable f1 a closure value. Then a call is made
to closure function f1.

In Figure 5, the nested scopes are represented by the boxes with varying greyscale
colors, with higher greyscale colors used for inner scopes. Closure f1 is defined in
scope 3○, invoked in scope 1○, and dependent on variable a that lives in scope 2○.
When f1 is assigned, only the pointer to the closure function is stored, while the input
parameter a is lost because it is defined in scope 2○, which is the otter scope of 3○.

As painted in Figure 5, the code inside color boxes is transformed accordingly:

• The return statement in func is modified, and an object of class Closure is returned
instead.

• Context#func object explicitly represents the lexical scope. The Context object is
created with the closure and stored in the Closure object.

• Closure class is like a wrapper around the original closure function, which includes
additional context information. Ultimately, a call to the function closure variable
f1 turns into invoking method execute of the Closure class.

• The class Context and Closure declarations are generated for each use case of a
closure.

4 Compiler

In this section, we present the compiler implementation overview of Ts2Wasm.

4.1 Compilation Passes

Generally, Ts2Wasm consists of 5 compilation passes – Resolver , Completer ,
Rewriter , Checker , and Emitter , as shown in Figure 6. Before entering the compilation
passes, Ts2Wasm will use tsc, the TypeScript compiler, to perform pre-compilation

const ctx = new Context#func(); 

ctx._a = a; 

return new Closure(func$1, ctx); 

 

 

let f2 = f1.execute(2); 

Scope Context

Extract

1

2

3

type FnType = (_: number) => number; 

function func(a: number): FnType { 

return  

function (b: number): number 

    { 

        return a + b; 

    } 

} 

let f1 = func(1); 

let f2 = f1(2); 

Fig. 5: Closures: Context extract and closure rewriting
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steps like lexical analysis, semantic analysis, type checking, and the AST (Abstract
Syntax Tree) emitting. The ASTs will be later manipulated using TypeScript compiler
API [27].

Resolver

During the Resolver pass, class information is extracted for subsequent compilation
passes, incorporating the class hierarchies, members, and methods. Additionally, the
type references are linked with the type declarations, the Resolve Reference block in
Figure 6. For closures, Ts2Wasm explicitly constructs a compile-time object Scope to
identify the lexical scope. Additionally, to handle nested scopes, pointers to the inner
and outer scope are also recorded. Resolver also infer types on variables declared as
any based on the inference rules in Section 4.3. Calibrate Type process is performed
to infer the types of variables and mark the inference-failed nodes as any .

Completer

The Completer pass generally addresses the issue of variable types, especially for any .
Ts2Wasm completes the type of each AST node based on the type inference results,
and the originally untyped nodes will either have a concrete type or any type. Once
some node was assigned any type, the Completer would insert type conversions to the
relevant operations. For example, if

• An node with any type is inferred as a concrete type, then the corresponding
conversion function from any to this concrete type is automatically inserted.

• Type inference failed on a node with any type, then a forced conversion from the
concrete type to any would be inserted.

For objects with any type, the operations on this object are refactored to some built-
in function calls, similar to reflection (See Figure 4 for example). We will explain the
runtime implementation of any in Section 4.2.

11



Rewriter

Ts2Wasm will rewrite closures in this pass by leveraging the previously constructed
Scope objects As Ts2Wasm aims to emit AssemblyScript code as intermediate prod-
ucts, which does not support some syntax sugar in TypeScript, desugaring techniques
are used to rewrite the code into equivalent semantics.

Checker

For the dynamic features Ts2Wasm currently does not support, Checker will capture
these invalid uses of features, report check failures, and provide code rewrite hints
accordingly.

Emitter

The last pass will emit the refined AST to the AssemblyScript code. Note that in
Figure 6, we put a customized AssemblyScript compiler after Emitter .

4.2 JavaScript any

Byte . . . . . . 9 8 7 6 5 4 3 2 1 0

Field Tag
i32/i64/f32/f64/

objref

High Low

Id of class 

type

Fig. 7: AnyValue: The memory layout

We extend asc, the AssemblyScript compiler, to support any with a built-in object,
namely AnyValue. AnyValue wraps number types (i32, i64, f32, and f64) and refer-
ence types (objref), and the memory layout of AnyValue is shown in Figure 7. The
16-byte AnyValue object is allocated in the stack, bitwise-copied, and passed/returned
in value. The first four-byte field, Tag, stores the type of each runtime object, and all
the types represented by the Tag field are listed in Table 2. If the variable is a class
object, the following four bytes are used to store the class ID of the object. Other-
wise, these bytes are ignored. The actual value of any is represented by the remaining
8 bytes. Among these types, the 32-bit numbers, strings, and objref2 only use the
lower 4 bytes. AnyValue is implemented as a tagged union in AssemblyScript’s built-
in definition and compiled using Binaryen IR tuple type. Tagged union is a special
type to hold multiple values that does not exist in WASM.

The compiler implementation of AnyValue is similar to the implementation of
JSValue [28] in quickjs [29], a small embeddable JavaScript engine that supports the
static compilation.

2Currently, WASM only supports 32-bit addressing

12



Table 2: AnyValue: Runtime type represented by Tag
field

Tag Type

TAG NONE
AnyValue with no concrete type,
i.e., void, null and undefined

TAG I32/I64 i32/i64
TAG U32/U64 u32/u64
TAG F32/F64 f32/f64
TAG STRING builtin string
TAG OBJ GC-managed objects
TAG UNMANAGED OBJ Not GC-managed objects

NaN Boxing (or NaN Tagging) [30] plays an essential role in encoding JavaScript
Numbers, which is the approach adopted by SpiderMonkey [31, 32] and JavaScript-
Core [33]. Compared with the built-in object implementation, we also implement NaN
Boxing in AssemblyScript with a built-in type NanAny. According to the IEEE-754
specification [30], there are 252−1 different NaN values that can be encoded, but only
sNaN (signal NaN) and qNaN (quiet NaN) are used in processors.

Bits

Field Tag i32/f32/objref

High Low

Id of class 

type

031324863 47…… …… ……………………

Exponent

(11 bit)

Sign
Fraction

(52 bit)

Fig. 8: NaN-Boxing-Any (NanAny): The memory layout

The memory layout of NanAny is shown in Figure 8. Compared with the memory
layout of AnyValue in Figure 7, the data fields of NanAny are not strictly byte-aligned,
so we use Bits instead of Bytes on the top as indices. One major difference between
AnyValue and NanAny is that NaN boxing can encode any in a Binaryen primitive
type (F64 or I64), which takes 64 bits of memory. At the same time, this cost doubles
to 128 bits when we use AnyValue. The leftmost empty 12-bit field defaults to 0x7ff,
representing a NaN value in IEEE-754 spec, while other values for this field are treated
as the sign bit (1 bit) + exponent part (11 bits) of the double floating point number
representation.

Meanwhile, the Tag filed is compressed into 4 bits, compared with the original 4
bytes in AnyValue. Considering only seven values are used in Table 2, integers from
0 to 16 are sufficient to encode the currently supported tags, including sNaN, qNaN,
and ∞. The remaining bits encode the class ID and the data value. Since the runtime
class ID is a 32-bit unsigned integer, the workaround is keeping the lower 16 bits of
the class IDs, as they are incremented from 0.
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4.3 Type Inference
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Fig. 9: AS-Benchmarks Performance: Speedup compared with Node.js (JavaScript).
The Ts2Wasm result stands for the best performance among interpreters / AOT
compilers. (Wasmtime JIT mode is taken into the account of AOT compilers)

Although TypeScript does not recommend using any , it is still commonly used in
some cases, such as when incorporating third-party JavaScript libraries or for quick
bug fixes when avoiding TypeScript’s type checking is preferable. Ts2Wasm pursues
minimizing the usage of any as much as possible. Given that in Ts2Wasm, each use
of any incurs the cost of runtime type casts. We use the following type inference rules
to eliminate unnecessary anys.

Rule 1 : Types of operands and results derived on the basis of operator rules.
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1. The operands and results of arithmetic operators can only be Number, except for
+, which also accepts String.

2. The results of relational operators (>, <, ==, etc.) must be Boolean.

Rule 2 : Infer the types of operands and results based on the argument types and
the return types of built-in functions.

1. The argument of console.log function must be String type.
2. Most built-in functions in Math library accept/return only Number.
3. Some type cast functions have fixed typed arguments and return values, e.g.,

parseInt, parseFloat, toString, etc.

Rule 3 : Assignment operations should have consistent types of expressions on the
right side and on the left side.

1. Infer types of expressions on the left-hand side based on the type of expression on
the right-hand side and vice versa.

2. The input arguments muse be type-consistent with the function parameters.
3. The type of expression Return must be consistent with the return type of the

function.
4. The preceding rules are also applied to literals and the new operator.

Rule 4 : For the dot (.) operator, the left-hand side expression must be an object.
For example, an expression A.B.C.D = X, variable A, A.B, and A.B.C should be an
object.

5 Evaluation

In this section, we evaluate Ts2Wasm in the following aspects:

1. Feature Support: As mentioned in Section 2, the static compilation of TypeScript
is non-trivial. We aim to support the most widely used features for TypeScript
developers such that they can write and deploy AOT-compiled programs efficiently.
We use the tests from the official repository of TypeScript and AssemblyScript to
check the feature support status Ts2Wasm. Besides, we also design unit tests for
Ts2Wasm to verify the correctness of feature support.

2. AOT Performance: The performance of TypeScript relies on JavaScript compiler
toolchain implementations. While the execution speed of JavaScript is slower than
some AOT-compiled languages (C/C++) [34], the AOT performance of JavaScript
[10] often falls behind the optimized JIT runtimes. For those concerned about the
performance of statically compiled code, we choose AS-Benchmarks [35], a compute-
intensive benchmark suite provided by AssemblyScript, to compare the performance
of AOT-compiled and JIT-compiled programs.

3. Memory Usage: Generally, AOT-compiled binaries are more memory-efficient
than programs running in JIT runtimes. The preceding statement also holds for
embedded systems with constrained storage, where AOT is the preferred option
for memory-saving purposes. To demonstrate the memory efficiency of Ts2Wasm
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compared with existing works, we tested the maximum allocated memory size in
benchmark programs for various runtimes and compilers.

4. Runtime Implementation Overheads: The implementation of AnyValue

relies on the assistance of built-in runtime functions, which can introduce some
performance overhead. The third experiment quantifies this overhead using four
computation-intensive benchmarks with different input parameters. The results
can provide users with hints to adjust the use frequency of any to mitigate the
performance slowdown.

Table 3: Ts2Wasm Running Tests from
Ts2Wasm, AssemblyScript, and TypeScript,
respectively. Skipped are the tests that currently
unsupported by Ts2Wasm checker

Total Passed Failed Skipped

TS2WASM 77 77 0 0
AssemblyScript 106 106 0 0
TypeScript 5409 1160 1396 2853

5.1 Feature Tests

As shown in Table 3, Ts2Wasm passes all the tests from AssemblyScript and
Ts2Wasm, covering about 47% of the tests from TypeScript. Among the covered tests
from TypeScript, 1160 test cases (45%) passed cases, i.e., these 1160 test cases can be
AOT compiled to WASM. In AssemblyScript, only 306 of the 1160 tests are passed,
indicating that Ts2Wasm provides 3.8x as many features.

The Failed cases stand for the cases that are rule-outed by the Checker, such as
abstract keywords, accessors, BigInt, and some decorators (e.g., accessor, property,
and parameter), which are mentioned in Section 3. As Ts2Wasm includes a superset
of AssemblyScript, the tests mentioned above also fail during asc compilation. Many
Failed tests use JavaScript-compatible features and syntactic sugar, which are not the
primary focus of Ts2Wasm implementation.

The remaining Skipped cases are the features the Ts2Wasm checker can not detect.
Hence, they might cause unexpected behaviors (such as runtime errors) when used
with Ts2Wasm. In theory, it is feasible to classify the Skipped test cases, which can
be achieved by maintaining a logically correct table to eliminate all language features
that are not supported by AOT compilation. However, creating such a filtering table
would require significant manual effort due to the complexity of TypeScript and the
complex cases that require considering the types of multiple AST nodes. Therefore,
we leave the implementation of these test cases for future work.

To validate that our modification to AssemblyScript does not incur errors, we
introduce the AssemblyScript tests, all of which passed. The outcome indicates that
AssemblyScript programs can run without modification with Ts2Wasm.
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5.2 AOT Performance

Methodology

We run the performance tests on a Linux server, which has a 2.6 GHz Intel Xeon Gold
6240 32-core CPU and 190 GiB memory with hyper-threading disabled. For compilers,
-O3 flag is set for the best performance. The benchmarks are selected from the AS-
Benchmarks [35], which contain five individual tests: BFS (Breadth First Search),
FFT (Fast Fourier Transform), LUD (Lower Upper Decomposition), PageRank,
and SPMV (Sparse Matrix Vector Multiplication).

We use nine different language runtimes/compilers for testing:

• WAMR (Wasm Micro Runtime) interpreter/AOT: WASM runtime written in
C, optimized for both small source code and runtime size.

• Wasmtime JIT/AOT: WASM runtime written in Rust that has rich support for
the WASM features.

• Wasm3: A fast WASM interpreter that supports a wide range of embedded system
architectures.

• Node.js: JavaScript framework powered by V8 JavaScript engine.
• QuickJS: An embeddable JavaScript interpreter and runtime [29] that can compile
JavaScript programs into small native binaries.

• Hop.js: A JavaScript AOT compiler [9, 10].

As the performance of JIT compilers is optimized through repeated executions,
we use two experiment settings to compare the performance between Ts2Wasm com-
piled WASM binaries and JavaScript on other JavaScript runtimes. The performance
of JavaScript can, to a large extent, represent the performance of JavaScript since
TypeScript is first compiled into JavaScript and then executed. We utilize the param-
eter n = 1 to indicate the number of iterations for each test run. Specifically, when n

is set to 1, we analyze the cold-start performance of JavaScript JIT compilers. When
n is set to 20, we evaluate their warm-up performance.

Results

The experiment results are shown in Figure 9. We chose the best performance data
from all WASM runtimes to represent the performance of Ts2Wasm and distin-
guished the execution policy adopted with interpreter/AOT suffix. The vertical axis
stands for the related performance speedup of each tested compiler, normalized to the
performance of Node.js. Specifically, this is computed by

RX−speedup =
Tnode

TX

(1)

When n = 1, as Figure 9 (a) shows, the platform with the best performance is
Ts2Wasm AOT, which has a speedup ranging from 1.4x to 19x. Ts2Wasm inter-
preters also outperform Node.js in LUD, PageRank, and SPMV tests and even
approximate the performance of the Ts2Wasm AOT compiler in the PageRank test.
BFS and FFT tests involve the operations on high-dimensional data, such as matrix
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Fig. 10: Maximum Memory Footprints: compare the memory overhead of running
TS2WASM AOT binaries with JIT-compiled JavaScript programs

convolution and graph walking, for which WASM is not optimized. Despite WASM
interpreters being slower than Node.js in some cases, they perform better than Hop.js,
exhibiting up to an order of magnitude speedups in LUD and PageRank tests.

The n = 20 case in Figure 9 (b) gives us a different result, where the speedup
becomes less pronounced. Moreover, for JavaScript programs, the speed of Node.js
is dominant after the warm-up phase. However, Ts2Wasm AOT compilation still
outperforms Node.js in all tests except FFT, with an average 6x speedup. In the worst
case of AOT compilation, Ts2Wasm still reaches 74% of Node.js’s execution speed.
Moreover, the performance of Hop.js does not improve but shows heavier performance
degradation in LUD and PageRank tests.

There are some exceptional cases, for example, that Hop.js failed in FFT and
SPMV tests. In these two tests, runtime errors are thrown, while the compilation from
JavaScript to the native code of Hopc works fine. Additionally, the performance of
LUD in Hop.js is terrible, with no errors generated during runtime. Another point not
mentioned in the figure is that when running WASM with Node.js, the speedup in the
BFS test is minor (1.78x), and the speedups in the rest tests are not significant, from
which we can infer that standalone WASM runtimes are better than V8 in a native
environment.

5.3 Memory Size

Methodology

A process’s memory usage is hard to precisely defined, and the most frequently referred
metrics are heap/stack usage, virtual memory size (VSZ), and resident set size (RSS).
VSZ should be larger than RSS since the mapped pages can not exceed the total
virtual memory size given to a process. However, the memory test results presented in
Hop.js [10] demonstrate that the RSS is greater than the VSZ, which is unconvincing.

We adopt the Linux time [36] command to measure benchmark programs’ mem-
ory usage (RSS). Besides Node.js (V8), we have incorporated two other significant
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JavaScript engines: js and jsc. Jsc and js are built locally in the test environment, using
WebKit 2.36 and the latest release of Mercurial repository (SpiderMonkey sources).

Results

The maximum memory footprints are shown in Figure 10, where each color stands
for a different runtime or compiler. In the BFS test, the difference between maximum
memory footprints for JavaScript runtimes and WASM is small, and the JavaScript
program’s memory footprint is about 10% larger. After comparing the minimum mem-
ory footprint data of JavaScript runtimes with that of WASM, we found that in the
FFT test, WASM saves 65% of memory. Additionally, in the rest tests, WASM can
save more than 85% of memory usage.

5.4 Runtime Overhead

Methodology

We use three tests from AS-Benchmark: FFT, LUD, and PageRank, along with a
matrix multiplication test, GEMM, to evaluate the runtime overhead of AnyValue

implementation. The horizontal axis represents the input parameter set for each test,
increasing from A to E. And the vertical axis stands for the performance loss com-
pared with the baseline programs that use f64 variables instead of AnyValue, which
is computed by

LossX =
TX(any)

TX(f64)
− 1 (2)

Results

As is shown in Figure 11, the slowdowns of any tests are not increasing when the
workload increases, meaning a more frequent use of any .

On average, the performance loss is 1.7x for all benchmark tests. For FFT, the
average performance loss is 0.3x, the minimum among the tests. The worst case of
performance loss happens in the LUD test, having an average value of 4.0x. Addition-
ally, the performance loss for GEMM and PageRank falls between 1.0x to 1.5x. While
the performance loss is moderate in some cases (0.3x), the abuse of any (PageRank)
would cause a heavy performance downgrade.

6 Related Work

6.1 Structural Typing vs. Nominal Typing

There has long been a debate about the superiority of dynamic typing over static
typing or vice versa. [37] conducts a large-scale survey to study the effect of language
features. The results from their work show that strong typing is slightly better than
weak typing, and for functional languages, static typing is better than dynamic typing
in code quality. Moreover, an empirical study [38] shows that static typing has a
positive impact on the maintenance of software. However, the dynamic characteristic
of structural typing languages allow writing succinct code flexibly and efficiently.
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Gradual typing [15] offers a way to emerge the two type systems: structural typing
and nominal typing into a language, and TypeScript is a famous one of gradual typing
languages. Even though TypeScript is intentionally unsound [17], the type system in
TypeScript brings many positive outcomes. The evidence can be found in a study in
2017 [39] that runs a series of quantifying tests in TypeScript and Flow. The test
results in this paper show that adding type annotations to JavaScript can help avoid
15% of the reported bugs.

6.2 JavaScript / TypeScript in Embedded Systems

The works with similar purpose of this paper are Espruino and Static TypeScript,
which are both designed for embedded systems. Espruino [14] offers a comprehensive
hardware and software solution that enables JavaScript-like embedded software devel-
opment. Meanwhile, Static TypeScript [7] is a TypeScript-like language for course
teaching with embedded devices [40]. However, these approaches are limited to some
specific embedded hardware and preserves few structural typing language features.

6.3 AOT Compilation of Structrual / Gradual Typing
Languages

Researchers have shown that AOT compilation can bring significant performance
improvements [41, 42]. While for JavaScript, the performance of AOT compilers is not
usually comparable to JIT compilers (see in 6.2), some optimization techniques follow
an AOT-like nature.

To support AOT compilation, some existing works proposed to extend or modify
TypeScript, which includes [7, 19, 20]. An alternative approach is to generate stati-
cally compiled targets with some JavaScript AOT compilation workarounds, typically,
building a language subset of JavaScript, as thoroughly investigated in many research
papers during the past decade [9, 11–13].
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6.3.1 ∼JS Related Works

The research on the AOT compilation of JavaScript started long ago before we pro-
posed this work, and continues till recently. As JavaScript is a dynamically typed
language, the AOT compilation would suffer from the runtime path penalty for deter-
mining the types of variables and expressions. An early dynamic language [43], SELF,
invoked the succeeding type inference works (mainly for JavaScript). For instance,
TAJS [44] proposes a whole program analysis framework for inferring the sound type
information for JavaScript programs. After that, researchers from Samsung Research
proposes SJS [11], a static type system for a subset of JavaScript, which supports high-
level features such as prototype inheritance, structural subtyping, and closures. SJS
also presents a proof-of-concept AOT compiler implementation, compiling JavaScript
to C, and then to machine code. Based on the type system of SJS, researchers pro-
posed a rich subset of JavaScript for static compilation in [12], where they further
extend SJS to a more comprehensive type inference framework. Hop.js [9, 10] is another
AOT compiler and language subset of JavaScript, while Hopc compiles JavaScript to
Scheme and uses another compiler, Bigloo [45], to compile Scheme. The authors of
Hop.js further investigate the performance of JavaScript AOT compilation (Hop.js)
in [10] and claim that the performance (execution time) of Hopc is mostly within 2×
compared to V8. They also introduce the detailed design of Hopc in [9, 46], which gives
valuable insights into the future AOT compiler design of dynamic languages. Type
inference techniques play an important role in preceding JavaScript AOT compilation
frameworks, and their effects and accuracy are thoroughly studied in [47].

6.3.2 ∼TS Related Works

Another line of research is introducing type annotations to JavaScript to support
efficient type checking, and the mainstream is Microsoft TypeScript [16]. Besides, Face-
book also proposes a fast type checking system for JavaScript called Flow. [13]. A
common trait of these languages is that they use their type system for type checking
instead of compilation. And due to pragmatic reasons, the type system for TypeScript
is unsound, which means building an AOT compiler directly on top of TypeScript is
infeasible. Hence, researchers devote their efforts to proposing some variants of Type-
Script language and the corresponding AOT compiler implementations. For example,
Static TypeScript [7] (STS) is a subset of TypeScript developed by Microsoft, with
an easy-to-learn syntax and compact code size of static compilation. The distinct
features of STS are utilized to promote in-class programming for teenage students.
StrongScript [20] is a superset of TypeScript which extends TypeScript with syntax !

to denote concrete types and provides correctness guarantees offered by the language
runtime for concretely typed code. Safe TypeScript [19], also a subset of TypeScript,
adds a “Safe” compilation mode for TypeScript, that enforces additional type checks
to confirm type soundness. A most recent paper [48] proposes their AOT compiler
framework STSC (Static TypeScript Compiler), which is implemented based on tsc

and V8.
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6.4 WebAssembly

First proposed in 2015 [22], and released MVP in 2017, WebAssembly (WASM) [49]
is a binary format with compact code size and near-native execution speed. Despite
initially being designed for web applications, WASM is a light-weight sandbox indepen-
dent of the source language, platform, and architecture, which is suitable for embedded
systems applications [50–56]. The release and standardization of WASI (WebAssem-
bly System Interface) [57, 58] provides official community support for native WASM
applications. With the evolution of WASI, more embedded system applications will
be able to migrate to WASM. Engaged with the WASM, the applications developed
in TS− can be portable among various embedded devices.

7 Conclusion

In this paper, we present TS−, a design methodology for embedded systems program-
ming language. A prototype implementation of TS− is Ts2Wasm, a flexible compiler
framework for the static compilation of TypeScript, that provides a checker tool to
split the code into dynamic and static parts. We show that Ts2Wasm generated tar-
gets achieve close-to-JavaScript and even better performance on compute-intensive
benchmarks, with optimized memory usage.
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[17] Allende, E., Callaú, O., Fabry, J., Tanter, E., Denker, M.: Gradual typing for
smalltalk. Sci. Comput. Program. 96(P1), 52–69 (2014) https://doi.org/10.1016/

23

https://doi.org/10.1145/3357390.3361032
https://doi.org/10.1145/3357390.3361032
https://doi.org/10.1145/3357390.3361032
https://microsoft.github.io/devicescript/
https://microsoft.github.io/devicescript/
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3473575
https://doi.org/10.1007/978-3-662-48288-9_11
https://doi.org/10.1007/978-3-662-48288-9_11
https://doi.org/10.1007/978-3-662-48288-9_11
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/3133872
https://www.espruino.com/
https://www.espruino.com/
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://www.typescriptlang.org/
https://doi.org/10.1016/j.scico.2013.06.006
https://doi.org/10.1016/j.scico.2013.06.006


j.scico.2013.06.006

[18] Bierman, G.M., Meijer, E., Torgersen, M.: Adding Dynamic Types to C#. In:
ECOOP 2010 - Object-Oriented Programming, 24th European Conference, Mari-
bor, Slovenia, June 21-25, 2010. Proceedings, pp. 76–100 (2010). https://doi.org/
10.1007/978-3-642-14107-2 5 . https://doi.org/10.1007/978-3-642-14107-2 5

[19] Rastogi, A., Swamy, N., Fournet, C., Bierman, G.M., Vekris, P.: Safe & efficient
gradual typing for typescript. In: Rajamani, S.K., Walker, D. (eds.) Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
pp. 167–180. ACM, ??? (2015). https://doi.org/10.1145/2676726.2676971 . https:
//doi.org/10.1145/2676726.2676971

[20] Richards, G., Nardelli, F.Z., Vitek, J.: Concrete types for typescript. In: Boyland,
J.T. (ed.) 29th European Conference on Object-Oriented Programming, ECOOP
2015, July 5-10, 2015, Prague, Czech Republic. LIPIcs, vol. 37, pp. 76–100. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, ??? (2015). https://doi.org/10.4230/
LIPIcs.ECOOP.2015.76 . https://doi.org/10.4230/LIPIcs.ECOOP.2015.76

[21] Takikawa, A., Feltey, D., Greenman, B., New, M.S., Vitek, J., Felleisen, M.: Is
sound gradual typing dead? In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, pp. 456–468 (2016). https://doi.
org/10.1145/2837614.2837630 . https://doi.org/10.1145/2837614.2837630

[22] Bastien, J.F.: WebAssembly – Going public launch bug (2015). https://github.
com/WebAssembly/design/issues/150

[23] Alliance, B.: WebAssembly Micro Runtime. Bytecode Alliance. original-
date: 2019-05-02T21:32:09Z (2023). https://github.com/bytecodealliance/
wasm-micro-runtime Accessed 2023-03-22

[24] Wasm3: wasm3/wasm3: A fast WebAssembly interpreter, and the most universal
WASM runtime. https://github.com/wasm3/wasm3 Accessed 2023-03-22

[25] Kranz, D.A., Kelsey, R., Rees, J., Hudak, P., Philbin, J., Adams, N.: Orbit:
an optimizing compiler for scheme (with retrospective). In: 20 Years of the
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion 1979-1999, A Selection, pp. 175–191 (1986). https://doi.org/10.1145/989393.
989414 . https://doi.org/10.1145/989393.989414

[26] Shao, Z., Appel, A.W.: Space-Efficient Closure Representations. In: Proceedings
of the 1994 ACM Conference on LISP and Functional Programming, Orlando,
Florida, USA, 27-29 June 1994., pp. 150–161 (1994). https://doi.org/10.1145/
182409.156783 . https://doi.org/10.1145/182409.156783

24

https://doi.org/10.1016/j.scico.2013.06.006
https://doi.org/10.1016/j.scico.2013.06.006
https://doi.org/10.1007/978-3-642-14107-2_5
https://doi.org/10.1007/978-3-642-14107-2_5
https://doi.org/10.1007/978-3-642-14107-2_5
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/2837614.2837630
https://github.com/WebAssembly/design/issues/150
https://github.com/WebAssembly/design/issues/150
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/wasm3/wasm3
https://doi.org/10.1145/989393.989414
https://doi.org/10.1145/989393.989414
https://doi.org/10.1145/989393.989414
https://doi.org/10.1145/182409.156783
https://doi.org/10.1145/182409.156783
https://doi.org/10.1145/182409.156783


[27] Microsoft: Using the compiler API · Microsoft/typescript wiki (2021). https://
github.com/Microsoft/TypeScript/wiki/Using-the-Compiler-API

[28] Bellard, F.: QuickJS Documentation - JSValue (2021). https://bellard.org/
quickjs/quickjs.html#JSValue-1

[29] Bellard, F.: QuickJS Javascript Engine (2021). https://bellard.org/quickjs/

[30] Wikipedia, T.F.E.: Double-precision floating-point format (2022). https:
//en.wikipedia.org/w/index.php?title=Double-precision floating-point format&
oldid=1104943899

[31] Mozilla: SpiderMonkey - Mozilla’s JavaScript and WebAssembly Engine, (2022).
https://spidermonkey.dev/

[32] MDN: SpiderMonkey Internals (2019). https://firefox-source-docs.mozilla.org/js/
index.html

[33] Apple: WebKit: A fast, open source web browser engine. (2018). https://webkit.
org/

[34] Cheng, L., Ilbeyi, B., Bolz-Tereick, C.F., Batten, C.: Type freezing: exploit-
ing attribute type monomorphism in tracing JIT compilers. In: CGO ’20: 18th
ACM/IEEE International Symposium on Code Generation and Optimization,
San Diego, CA, USA, February, 2020, pp. 16–29. ACM, ??? (2020). https:
//doi.org/10.1145/3368826.3377907 . https://doi.org/10.1145/3368826.3377907

[35] nischayv: Github - AS-Benchmarks (2020). https://github.com/nischayv/
as-benchmarks

[36] page, L.: time(1) - Linux manual page. https://man7.org/linux/man-pages/
man1/time.1.html Accessed 2023-03-24

[37] Ray, B., Posnett, D., Filkov, V., Devanbu, P.T.: A large scale study of program-
ming languages and code quality in github. In: Cheung, S., Orso, A., Storey,
M.D. (eds.) Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, (FSE-22), Hong Kong, China, November
16 - 22, 2014, pp. 155–165. ACM, ??? (2014). https://doi.org/10.1145/2635868.
2635922 . https://doi.org/10.1145/2635868.2635922

[38] Hanenberg, S., Kleinschmager, S., Robbes, R., Tanter, É., Stefik, A.: An empirical
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