
Using Data Mining Techniques to Generate Test
Cases from Graph Transformation Systems
Speci�cations
Maryam Asgari Araghi ( ma_asgar@encs.concordia.ca)

Concordia University
Ferhat Khendek

Concordia University
Vahid Rafe

Goldsmiths University of London

Research Article

Keywords: Software testing, Model-based testing, Test case generation, Model checking, Data mining
algorithms, Graph transformation systems

Posted Date: August 8th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3226069/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3226069/v1
mailto:ma_asgar@encs.concordia.ca
https://doi.org/10.21203/rs.3.rs-3226069/v1
https://creativecommons.org/licenses/by/4.0/

Using Data Mining Techniques to Generate Test

Cases from Graph Transformation Systems

Specifications

Maryam Asgari Araghi1*, Vahid Rafe2 and Ferhat Khendek3

1,3Department of Electrical and Computer Engineering, Concordia
University, Montreal, Canada.

2Department of Computing, Goldsmiths, University of London, London,
UK.

*Corresponding author(s). E-mail(s): ma asgar@encs.concordia.ca;
Contributing authors: v.rafe@gold.ac.uk; ferhat.khendek@concordia.ca;

Abstract

Software testing plays a crucial role in enhancing software quality. A significant

portion of the time and cost in software development is dedicated to testing.

Automation, particularly in generating test cases, can greatly reduce the cost.

Model-based testing aims at generating automatically test cases from models.

Several model based approaches use model checking tools to automate test case

generation. However, this technique faces challenges such as state space explosion

and duplication of test cases. This paper introduces a novel solution based on

data mining algorithms for systems specified using graph transformation systems.

To overcome the aforementioned challenges, the proposed method wisely explores

only a portion of the state space based on test objectives. The proposed method

is implemented using the GROOVE tool set for model-checking graph transfor-

mation systems specifications. Empirical results on widely used case studies in

service-oriented architecture as well as a comparison with related state-of-the-art

techniques demonstrate the efficiency and superiority of the proposed approach

in terms of coverage and test suite size.

Keywords: Software testing, Model-based testing, Test case generation, Model
checking, Data mining algorithms, Graph transformation systems

1

1 Introduction

Software testing is an important activity in the software development life cycle. It aims
at checking the software product against the specified requirements, detect poten-
tial bugs and improve the quality before release (Naik and Tripathy, 2011). Software
testing can consume a significant amount of time and resources, often accounting
for up to half of the total development cost (Beizer, 1990). Automating the software
testing activity and its central component of test case generation certainly improves
efficiency (Naik and Tripathy, 2011). The use of software models for automating the
testing process and reducing its costs has been a common practice for several years
(Schieferdecker, 2012; Utting and Legeard, 2006; Utting et al, 2016). With Model-
Based Testing (MBT) models representing the behavior/functionality of the system
are used to automatically generate test cases (Utting and Legeard, 2006).

Model checking (Enoiu et al, 2014; Mohalik et al, 2014) has been widely used for
formal verification. It has been also used in MBT. In this case, the technique requires
a model of the system and a test objective defined as a property. The state space of the
system is then generated and the property is evaluated. The model checker identifies
a counterexample or witness to either refute or validate the property, respectively, as
for usual formal verification. The counterexample or witness represents a path from
the initial state to a state where the property is either refuted or verified and can be
utilized as a test case (Gargantini and Heitmeyer, 1999; Rayadurgam and Heimdahl,
2001). Model checking may be limited by computational constraints in the case of
large and complex systems. It may result in the well known problem of state space
explosion (Baier and Katoen, 2008). Recently, the use of knowledge discovery has
been proposed to address the issue of state space explosion (Pira et al, 2016, 2018).
On the other hand, the use of a model checker to generate counterexamples may lead
to a significant amount of duplicate tests, as a significant number of the generated
counterexamples may be similar in nature (Fraser et al, 2009; Villani et al, 2019).

Graph Transformation Systems (GTS) (Heckel, 2006) is a formalism that is used
for describing the dynamics of complex systems. They enable a step-by-step simulation
of the system’s behavior, starting from an initial state and progressing towards a
state that satisfies specified objectives, by means of a well-defined path. This type
of analysis is a common application of GTS and provides valuable insights into the
functioning of complex systems. In GTS, there are interdependencies between the
rules in each path of the sequence in the state space. The order in which the rules
are executed is crucial for maintaining system consistency and correctness. Rules may
have conditions and dependencies that must be met prior to their execution. The
dependencies between the rules can impact the system’s behavior and performance.
Thus, GTS effectively describes software architectural styles through a formal and
systematic approach (Thöne, 2005). Architectural styles specify systems with models
of varying sizes sharing a common infrastructure and events (Pira et al, 2016). In the
state space of these models, there is a specific sequence of events along the path from
the initial state to the goal state. Repeating this sequence leads to the goal state.
Frequent patterns, which occur in the data set with a frequency greater than a specific
threshold, can be detected using data mining techniques such as Apriori (Agrawal and
Srikant, 2000), and FP-Growth (Han et al, 2000).

2

Testing approaches, especially test case generation techniques, have been devel-
oped for systems described with GTS, incorporating data-dependency coverage criteria
(Kalaee and Rafe, 2019; Rafe et al, 2022; Khan et al, 2012; Runge et al, 2013). To the
best of our knowledge, all existing testing methods for GTS experience a decline in
coverage when encountering large models.

The aim of this paper is to address the challenges faced by existing test generation
solutions from GTS specifications and which are based on model checking. We pro-
pose a novel method where an in-depth examination of the interconnections among
the transformation rules in GTS is carried out, focusing specifically on the relation-
ships between the data dependencies. We use data mining techniques to address the
issue of state space explosion in GTS. Instead of generating the entire state space, our
method generates only a subset of the state space using mining methods and identi-
fies repeating sequences of traversed states. The information gained from the training
phase is then utilized to guide the exploration test. While previous work (Pira et al,
2016, 2018) has used data mining techniques to guide the exploration of state space
for verification purposes, and searching for violation of safety and liveness properties,
we propose a method that builds on previous work (Pira et al, 2016, 2018) and lever-
ages data mining to generate effective test cases from GTS specifications. To avoid
duplicated test cases, we incorporate a minimization function that removes duplicates
and reduces the length of the test suite (defined as the concatenation of the test
cases or just the set of test cases). The proposed solution has been implemented in
the GROOVE (GRaph-based Object-Oriented VErification) tool set (Rensink, 2004).
To assess the effectiveness of the proposed test generation method and the intro-
duced data-dependency coverage criteria, several experiments have been conducted
with three widely used case studies in the field of service-oriented architecture. Our
results indicate that the proposed solution outperforms the related state-of-the-art
techniques, in terms of coverage and the size of the generated test suite.

The rest of the paper is structured as follows: Section 2 discusses related work.
Section 3 provides some background on different concepts used in this paper. Section 4
describes our approach for generating test cases. Our experiments for the evaluation of
the proposed approach and its comparison with related work are presented in Section 5.
We conclude in Section 6.

2 Related work

To address the issue of redundant test cases, several solutions using data mining
techniques have been proposed (Last, 2005). These techniques can generate a set of
non-redundant test cases that cover the most significant functionalities in the soft-
ware. In (Muthyala and Naidu, 2011), a data mining approach was used to streamline
the process of test case generation. The authors used the Weka software, which incor-
porates multiple data mining algorithms, and applied the K-Means clustering method
to group test items. The system first produced test cases automatically and then exe-
cuted the K-Means algorithm on the generated test cases, resulting in the clustering of
the test cases. To determine coverage, the system randomly selected a test case from

3

each cluster and evaluated the coverage level. If the coverage was considered insuffi-
cient, the system increased the number of clusters and repeated the process until an
acceptable coverage level is achieved. In (Saifan et al, 2016), the authors used two
data mining techniques, J48 and Naive-Bayes, to group test cases into clusters. The
process involved collecting test cases for a specific system and selecting a suitable
coverage and complexity for the data set. The K-clustering data mining method was
then used to group several test instances into a single cluster. In (Ilkhani and Abaei,
2010), a novel approach, that combines case-based reasoning (CBR) and data mining
to enhance effort estimation and streamline testing, was proposed. The approach was
rooted in the idea that software testing can result in the classification of test outcomes
into various categories, and that these classified results, along with the implemen-
tation of CBR and data mining, can be used to predict future software test cases,
thereby decreasing the cost of testing and the development expenses of comparable
software. By documenting the test cases and faults encountered during testing, they
can be leveraged in future software development projects to minimize testing costs.

(Acharya et al, 2015) introduces a novel approach to prioritize test cases using
association rule mining. The system being tested is represented using a Unified Model-
ing Language (UML) Activity Diagram, which is transformed into an Activity Graph.
To maintain a record of the system’s history and reveal more problems, a historical
data store is established. Whenever a modification is made to the system, the fre-
quently impacted nodes are identified through the detection of recurring patterns.
These patterns assist in prioritizing the test cases by identifying the nodes that are
most likely to be affected. The prioritization process during regression testing also
makes troubleshooting easier. A method was proposed in (Pira et al, 2016) to address
the challenge of state space explosion. This method leverages data mining algorithms
to analyze the behavior of the system. By employing data mining techniques, the
primary objective is to efficiently mitigate the challenges posed by state space explo-
sion. Consequently, for our specific testing requirements, we have chosen to adopt the
method proposed in reference (Pira et al, 2016), as elaborated in Section 4.

A number of MBT approaches have been proposed for systems specified using the
GTS at different levels. These methods vary in terms of their focus and coverage,
but they all strive to offer a systematic and efficient way of testing the functional-
ity of systems described using the GTS. The research (Gönczy et al, 2007) presents
a methodology for testing service infrastructure components described in a high-level
language. They use graph transformation and model checking techniques to generate
state spaces and identify test sequences that meet specific requirements. The method-
ology is demonstrated using a case study of a fault-tolerant service broker and is
applicable at the architectural level. The correlation between two common production
rules within the GTS formalism has been investigated by (Heckel et al, 2011). They
proposed a list of potential causal dependencies and conflicts as model-based coverage
criteria. An approach for Model-Based integration testing of component-based soft-
ware systems was proposed in (Heckel and Mariani, 2004). The systems are specified
using GTS rules, which are depicted using UML-based notations. This approach starts
by identifying all critical rule pairs, including dependent and conflicting pairs, and
then focuses on testing these identified pairs. In (Khan et al, 2012), a technique was

4

presented for dynamically assessing the coverage of the criteria outlined in (Heckel
et al, 2011) during the testing process with the utilization of the AGG tool set. In
(Runge et al, 2013), an approach was proposed for generating test cases from GTS
specifications using a dependency graph. The graph was obtained through a static
analysis of the dependencies between rules. In a study described in (Kalaee and Rafe,
2019), the challenge of generating a test suite was framed as an optimization prob-
lem focusing on data-flow coverage criteria. The authors used various meta-heuristic
search algorithms to find an optimal test suite. In (Rafe et al, 2022), a technique,
that employs a Bayesian optimization algorithm (BOA) in combination with a model
checker to create test cases for service-oriented systems, has been introduced. (Kalaee
and Rafe, 2019; Rafe et al, 2022), similarly (Runge et al, 2013) employ a dependency
graph to identify the test objectives. It has been observed that existing methods tend
to exhibit a decrease in coverage in the case of large models.

MBT with model checkers is a popular approach where testing requirements are
defined as reachability properties and counterexamples of violated properties serve as
test paths. However, using model checkers for generating test cases has some drawbacks
such as test suite minimization, test case prioritization, and state-space explosion,
as model checkers were primarily developed for verification, and not test generation
(Fraser et al, 2009). This paper proposes a new approach using model simulation
for GTS and data mining techniques to generate test sequences, and address the
aforementioned limitations.

3 Some Background

In this section, we briefly introduce some background concepts related to the proposed
approach.

3.1 Graph transformation systems

GTS (Ehrig et al, 2004) is a graphical and formal modeling language that uses graph
and graph transformation for describing states and behavior of systems. A GTS is
represented as a triple (TG, HG, R): TG is a type graph that represents the total
scheme of the system. This graph has several node types (TGN) and edge types (TGE)
and two functions src: TGN → TGE and trg: TGE → TGN. These functions assign to
each edge a source and a target node in turn. This graph is known as a meta-model. HG
is a host graph that represents the initial configuration of a system. This graph should
be an instance of the type graph. R is a set of graph transformation rules in which each
rule p over an attributed type graph TG is represented by a triple (LHS, RHS, NAC)
as follows: LHS (left-hand side) and RHS (right-hand side) are two graphs that specify
precondition and post-condition of rule p, respectively and NAC (negative application
condition) is a special configuration. Prerequisites for the execution of rule p are the
absence of negative application conditions with the presence of the left-hand side.
Various tools, including AGG (Taentzer, 2003), ATOM3 (Lara and Vangheluwe, 2002),
VIATRA2 (Varro and Balogh, 2007), and GROOVE (Kastenberg and Rensink, 2006),
are available for modeling and analyzing systems specified using GTS. As GROOVE

5

is the only tool that supports model checking and verification through an integrated
graph-based model checker, it was selected to implement the proposed approach.

3.2 Running example

The GROOVE tool set serves as a basis, in this paper, for modeling and analyzing
GTS-specified systems. As a running example throughout the paper, we consider a
Hotel Management service. This system allows registered guests to reserve rooms and
it generates automatically the bill at check-out.

The host graph and the type graph of the service are depicted in Figure 1, while
Figure 2 depicts the corresponding graph transformation rules. The GROOVE frame-
work merges LHS, RHS, and NAC graphs into a unified view, utilizing color coding
to differentiate the original elements (Rensink et al, 2010). The common nodes and
edges between the LHS and RHS graphs are represented by black coloring. Blue col-
oring denotes nodes and edges that are removed from the LHS graph after applying
the transformation rule, while green coloring indicates nodes and edges that are newly
created. NAC graphs are depicted with bold red double-bordered nodes and dashed
edges. To apply a transformation rule p to a state s (a graph), all instances of LHS
p in s (also known as graph matching or images of LHS p) are identified and one of
them is subsequently replaced with RHS p. A graph matching is considered valid if it
does not include any instance of a graph in NAC p. To fully capture the behavior of a
system, its state space must be constructed by repeatedly executing all of the trans-
formation rules on the initial state. A segment of the running example’s state space is
depicted in Figure 3.

3.3 Data-flow coverage criteria in graph transformation

systems

The concept of data-flow testing (DFT) was first introduced by (Herman, 1976). DFT
consists of choosing specific program paths to test the relationship between the def-
inition (def for short), and usage (use for short) of data objects (Wan et al, 2018).
Definitions 1 and 2 are two fundamental definitions in the context of def-use pairs
and data-flow testing.
Definition 1 (Def-Use Pair). A def-use pair, denoted as du(ℓd, ℓu, v), refers to a

control-flow path within a program. This path extends from the statement located at

ℓd, where a variable named ’v’ is defined, to the use statement of the same variable

’v’ at ℓu Crucially, the def-use pair does not allow for any re-definitions of ’v’ along

the path. Such a path, connecting the def to the use statement without any intervening

re-definitions, is commonly known as a def-clear path.

Definition 2 (Data-Flow Testing). For a given def-use pair du(ℓd, ℓu, v) in pro-

gram P, data-flow testing focuses on producing an input t that enables the execution of

a specific path p. This path starts at ℓd where variable v is defined and proceeds to ℓu
without encountering any re-definitions of v. A test case t satisfying these conditions

is said to cover the def-use pair du, indicating that the data flow from the definition

to the use of variable v has been covered.

6

Room

Occupied = false

RoomNo = 1

Status ="vacant"

Room

Occupied = false

RoomNo = 4

Status ="vacant"

Room

Occupied = false

RoomNo = 2

Status ="booked"

Room

Occupied = false

RoomNo = 3

Status ="booked"

Guest

Credit_No = "667540"

Name = "Joachim Wegener"

Status = "registered"

Parameters

Amount = 20000

Guest

Credit_No = "546516"

Name = "Harmen Sthamer"

Status = "registered"

Guest

Credit_No = "156670"

Name = "Daniel Castro"

Status = "registered"

Hotel

Bill_Cntr = 1023

Location = " Austria"

Name = "Coburg"

Phone = "+4995618210"

has

manages manages

Guest

Credit_No = "187331"

Name = "Andre Baresel"

Status = "registered"

has

bookinginfo

manages

hashas

manages

bookinginfo

Hotel

Bill_Cntr: int

Location: string

Name: string

Phone: string

Room

Occupied: bool

RoomNo: int

Status: string

Guest

Credit_No: string

Name: string

Status: string

Bill

BillNo: int

Paid: int

UnPaid: int

Parameters

Amount: int

maintains

hasmanages

bookinginfo

billDetails guestInfo

(a) Type Graph

(b) Host Graph

Fig. 1 The type graph(a) and host graph(b) of hotel management system

Multiple criteria for data flow testing were proposed in (Rapps and Weyuker, 1985),
among which the all-def-use-path criterion is considered to be the most effective. The
objective is to ensure that values generated at one point in the program are created
and utilized correctly by focusing on the definition and usage of those values (Ammann
and Offutt, 2008). Thus, data-flow coverage is taken into account as a test adequacy
criterion in the proposed approach.

A dependency graph (DG) (Albanese, 2019) is a visual representation of the
relationships between different components of a software system. It shows which

7

Guest

(b) Ocuupy Room

Name

Room

Status = = "vacant"

RoomNo

int

bookingInfo

string

Occupied: = false

Status := "booked"

0

hotel: Hotel

Guest

Bill

BillNo = hotelBill_Cntr

Paid = 0

UnPaid = 0

Bill_Cntr

maintains

guestInfo

(a) Book Room

int

Name

Room

Occupied = = false

RoomNo

int

bilDetails

string

Occupied: = true

Bill_Cntr := Bill_Cntr+1

!2

0

1

Bill

Paid = 0

UnPaid = 0

BillNo

billDetails

bookinginfo

1

(c) Check Out

Hotel

Guest

Bill

UnPaid = = 0

guestInfo

int

Name

Room

Occupied = = true

RoomNo

int

bilDetails

string

Status: = "vacant"

2

0
1

bookinginfo

manages

maintains

BillNo

has

Fig. 2 Portion of the graph transformation rules of hotel management system (a) Book Room, (b)
Occupy Room, (c) Checkout

components depend on which other components, and can be used to analyze and
understand the structure of a software system, as well as to identify potential issues
or opportunities for refactoring.

In a GTS, system operations are defined using rules. There are dependencies
between these rules, which means that one rule may rely on the execution or out-
come of another rule in order to function correctly. Thus, coverage criteria in GTS
are determined by analyzing the dependencies between rules by creating a DG from
the SUT. Let R1 and R2 be two rules of a graph transformation system. Definitions 3
and 4 show the conditions related to the dependency or interference of each pair of
rules based on the DG in (Heckel et al, 2011).
Definition 3 (Dependency). By establishing any of the following conditions, we say

that the rule R1 is dependent on the rule R2, and we display this dependence as R1 ≺
R2:

• At least one edge or node from the LHS of rule R1 is added by the RHS of rule R2.
• At least one edge or node from the NAC rule R1 is removed by the RHS rule R2.

Definition 4 (Interference). By establishing any of the following conditions, we say

that the rule R1 interferes with the rule R2, and we display it as R2 ↗ R1:

• At least one edge or node from the LHS of rule R1 is removed by the RHS of rule R2.

8

Fig. 3 A segment of the hotel management systems’ state space

• At least one edge or node from NAC rule R1 is added by RHS rule R2.

Definition 5 (Dependency Graph). A dependency graph, represented as DG = 〈G,

OP, op, lab〉, is a structure that includes:

• G = 〈V, E, src, tar〉, which is a graph
• OP: a set of operations
• op: V → OP, a function that maps vertices to operation names
• lab: E → {c, r, d} × {≺, ↗} × {c, u, r, d}, a labeling function that differentiates

between source and target types such as create, update, read, and delete, as well as

dependency types ≺, ↗.

Accordingly based on the Definition 5, if we demand all edges related to creating
and reading, creating and updating, and creating and deleting in the DG, we will
be covering all dependencies based on the data being defined and used subsequently
(Heckel et al, 2011). These criteria are defined in Table 1 in which our purpose is to
produce test cases to cover these coverage criteria.

3.4 Data-mining

Data mining is the process of extracting knowledge and patterns from massive amounts
of data. It involves using advanced techniques and algorithms to uncover hidden

9

Table 1 GTS dependency criteria

Criterion Coverage Criteria Description
(Dependency)

C1 Create-Read The first rule adds an element to the host
graph, which the second rule needs to run.

C2 Create-Delete The first rule adds an element to the host
graph, which the second rule removes.

C3 Create-Update The first rule adds an element to the graph,
which the second rule updates.

C4 C1 ∪ C2 ∪ C3 Test all def-use pairs (C1 ∪ C2 ∪ C3)

patterns and valuable insights from the data. Data mining encompasses a range of tech-
niques drawn from related disciplines such as databases, statistics, machine learning,
neural networks, and pattern recognition (Witten and Frank, 2002).

The key methods for discovering patterns include mining association rules and
frequent patterns, classification, and clustering (Han et al, 2012). These techniques
form the core of data mining and are used to uncover meaningful information from
large amounts of data. Mining association rules is one of the most significant algorithms
and was initially introduced in (Agrawal and Srikant, 2000; Agrawal et al, 1993). The
most widely used methods for this purpose are the Apriori and FP-Growth algorithms
(Han et al, 2012).

Apriori algorithm proposed by (Agrawal and Srikant, 2000) which operates on the
principle that any smaller group within a frequent set must also have a high frequency.
It begins by identifying single items and gradually combining them to create bigger
sets that have high frequency. The Apriori approach is bottom-up, breadth-first and
employs a strategy that generates and eliminates possibilities to minimize unneeded
calculations.

FP-Growth algorithm, which stands for Frequent Pattern Growth proposed by
(Han et al, 2000), uses an FP-tree, a tree-based data structure, to keep track of trans-
action data. The process starts by determining the frequency of items and constructing
an FP-tree from the items with high frequency. The algorithm leverages the tree struc-
ture to produce frequent item sets with efficiency and without the need for explicit
candidate generation, as seen in the Apriori algorithm. Researchers have proposed the
combination of the Apriori algorithm and FP-tree structure, and results demonstrate
its potential as a promising solution (Lan et al, 2009; Wu et al, 2008).

In our proposed approach, we use these algorithms to investigate a segment of the
state space and extract frequent patterns.

4 The proposed test case generation approach

The proposed approach uses GTS to model the system under consideration, where
each rule represents a service as known in service-oriented architecture, a function
in object-oriented systems, or an event in interactive or safety-critical systems. Our
approach is based on the use of data mining techniques to generate test suites, which
can effectively address the state space explosion problem and redundant test cases.
The proposed approach gains specific knowledge by exploring a small portion of the

10

state space of the system under consideration. This knowledge is subsequently used to
explore the remaining portion of the state space in an efficient manner until a goal state
is reached. The proposed approach consists of five phases, as illustrated in Figure 4.
In the subsequent sections, we will elaborate on each of these phases in detail.

Extract test objectives based on the

coverage criteria from the model

Exploring portion of state space by

BFS strategy

<PARAMETERS>

Coverage Criteria

MaxDepth

numBFS state

Datamining algorithm

Minsup

<MODEL>

Find promising state

Extract frequent pattern by data

mining algorithm

Explore state space with applying

frequent pattern on promising state

with respect to maxDepth

Create training data set

Delete redundant test cases by

greedy algorithm

Reduce test cases length

Calculate the coverage

Save test case in test suite

Test target

coverage?

Termination

conditions?

No

Yes

No

Yes

Fig. 4 The proposed approach for test suite generation using model checking and data mining
algorithms

11

4.1 Test criterion formulation phase

Drawing on the definitions of DFT presented earlier, a test case (TC) is deemed to
cover a def-use pair if it meets a specific condition, as outlined in Definitions 1 and
2. Specifically, the test case must contain a definition-clear path linking the point
in the code where the variable is defined (Def) to the point where it is used (Use).
This condition ensures that the variable remains in the intended state during program
execution, thereby minimizing the possibility of unexpected errors or behavior. In
summary, a test case is considered to cover a def-use pair if it satisfies the requirement
of having a definition-clear path between the Def and Use variables. Algorithm 1
contains the pseudo-code for generating the test criterion, which is responsible for
extracting the def-use pair statically.

Algorithm 1 Test objective extraction

Require: R (GTS − rules)
Ensure: C1, C2, C3 (Test objectives)
1: Define three sets: C1 Pairs, C2 Pairs, C3 Pairs to store du Pairs

2: r counter = 0
3: while r counter < R.length() do
4: Get the rule r from the set R
5: consumed Set = set of edges that erase entities created by r

6: produced Set = set of edges that create entities consumed by r

7: preserved Set = set of edges that preserve entities created by r

8: updated Set = set of edges that update entities created by r

9: r counter ++
10: end while
11: r counter = 0, dep r counter = 0
12: while r counter < R.length() do
13: Get the rule r from the set R
14: while dep r counter < R.length() do
15: Get the rule dep r from the set R
16: if r.preserved Set ∩ r.produced Set ̸= 0 then
17: C1 Pairs = du Pair(dep r, r) and r.preserved Set ∩ r.produced Set

18: end if
19: if r.consumed Set ∩ r.produced Set ̸= 0 then
20: C2 Pairs = du Pair(dep r, r) and r.consumed Set ∩ r.produced Set

21: end if
22: if r.updated Set ∩ r.produced Set ̸= 0 then
23: C3 Pairs = du Pair(dep r, r) and r.updated Set ∩ r.produced Set

24: end if
25: dep r counter ++
26: end while
27: r counter ++
28: end while

12

4.2 Coverage tracking phase

The proposed approach aims at optimizing the data-flow coverage criterion by evolving
test suites through the use of a data mining algorithm (introduced in Section 4.4). In
order to achieve this, we must establish a representation of the desired solutions and
a fitness function. This section details the problem and fitness formulation.

a b

Fig. 5 The structure of the test case in the proposed method a) Subset of state space associated
with the running example b) Corresponding test case to the path depicted in part a

4.2.1 Problem statement

The proposed method involves generating a test case set T that includes multiple test
cases ti, represented as T = < t1, t2, ..., tn >. Each test case comprises a series of graph
transformation rules that begin from the initial state. As shown in Figure 5, part a,
the test case in the state space resembles a path with the sequence of rule execution
< R1, R1, R0, R2, R0 > on the initial state, which is equivalent to Figure 5, part b.
The parameter values are obtained from either the initial graph or the implementation
of other rules. To create a test suite, an exhaustive exploration of the state space of a
system is performed, and a data set is generated. The state space has an initial state,
and candidate solutions for generating a test suite consist of a set of finite sequences
of transitions within the state space starting from this initial state.

13

4.2.2 Fitness formulation

We evaluate each test case, denoted as t, using the F function presented in Equation 1,
which counts the number of uncovered objectives by the test case, and the lower this
value, the higher the test case’s competence. The method used to identify the number
of objectives uncovered by a test suite is presented in Algorithm 2. By analyzing
each test case, the covered objectives are eliminated from the set of test objectives,
and the test case is added to the final test set. The coverage of the test suite is also
demonstrated by Equation 2.

F (t) = Test Objectives− number of covered objective by the t. (1)

Coverage(TS) =

(

∑TCi

i=0
Covered Test Objectives

Test Objectives

)

× 100. (2)

Algorithm 2 Fitness function

Require: Test suite T, Coverage Criteria C, du Pairs (with respect to C) D
Ensure: Test suite coverage TSC

1: foreach test case t in the T do
2: foreach consecutive pair p of rule transition (d, u) in path of t do
3: while p ∈ D && p is not covered by test targets do
4: if C = C1 ∥∥ C = C4 then
5: if entities created by d ∩ entities read by u ̸= 0 then
6: TSC .add(p)
7: end if
8: end if
9: if C = C2 ∥∥ C = C4 then

10: if entities created by d ∩ entities deleted by u ̸= 0 then
11: TSC .add(p)
12: end if
13: end if
14: if C = C3 ∥∥ C = C4 then
15: if entities created by d ∩ entities updated by u ̸= 0 then
16: TSC .add(p)
17: end if
18: end if
19: end while
20: end for
21: end for
22: return D − TSC

14

4.3 State space exploration by Breadth-First Search strategy

and creation of the training data set

The purpose is to select a test objective from a set of objectives derived from Algo-
rithm 1. The goal is to find a path that covers the chosen objective. Each test
objective consists of a rule pair that defines a relationship between a definition and
its corresponding use. The solution starts by searching for the definition section. If it
successfully locates the definition part, it sets the starting point of the path to the
position where the definition is found and then proceeds to search for the use part. In
case the definition section is not found, the starting graph remains the same as the
initial state.

To achieve the desired outcome, which could involve reaching either the definition
or the use part, the breadth-first search (BFS) algorithm is employed. BFS explores the
states in a systematic manner, examining each level starting from 0 and progressing
up to maxl. The value of maxl depends on factors such as the model’s size and
the number of states that have been explored. By employing BFS, the solution can
systematically traverse the states and work towards achieving the objective.

Since the states at level maxl are closer to a goal state compared to those at lower
levels, they are prioritized for further exploration (Pira et al, 2018). Among these
states, there are promising states that are more likely to reach a goal state, and these
are selected based on similarity to our test objectives. Once these promising states
are identified, a training data set is generated from the explored states to extract the
necessary knowledge.

In order to extract the necessary knowledge, we generate a training data set from
the explored states by considering all paths that meet the following criteria: each path
must begin at an initial state and lead to a promising state. Our approach modifies
the methodology employed by (Pira et al, 2018) for creating the training data set.
In this research paper, we make the assumption that the system under study can
be effectively represented by a GTS. As a result, both the properties of the system
and the individual states within the model’s state space are graph structures. These
graphs consist of nodes and edges, each of which possesses specific labels that provide
additional information and context.

In the GROOVE tool set, when it comes to labeling nodes, a label (lbl) for a par-
ticular node (n) is denoted by a self-loop edge on that node, which itself is labeled with
the corresponding (lbl). This means that the similarity between nodes is determined
by examining only the outgoing edges of each node, disregarding any incoming edges.
Let’s consider a scenario where the goal state, denoted as t can either be a part of the
definition or the usage. At the maxl, a state s is considered promising if its similarity
to the goal state t is higher compared to other states at the same level. Algorithm 3
focuses on calculating the similarity between the states in maxl and the goal state.
Once the similarity of the states at maxl is computed, a subset of states with the high-
est similarity is selected as the promising states. By choosing these promising states,
the training data set is composed of all paths leading to these selected states.

15

Algorithm 3 Similarity function

Require: s (a state in maxl), t (a goal state (def/use))
Ensure: Similarity score
1: Let Gs and Gt the corresponding graph of s and t
2: foreach node ns in Gs do
3: foreach node nt in Gt do
4: pair.ns = ns, pair.nt = nt

5: allPairs.append(pair)
6: end for
7: end for
8: foreach pair in allPairs do
9: pairs.similarityCount+ = number of pair edges with equal labels

10: end for
11: Sort allPairs based on similarityCount in descending order
12: foreach pair in allPairs do
13: similarityCounter+ = unique pairs with the highest similarityCount

14: end for
15: if Gt has NAC then
16: foreach pair of node in between G′

ts NAC and Gs do
17: NACCounter = numberofpairedgeswithequallabels

18: end for
19: end if
20: return similarityCounter −NACCounter

4.4 Data mining phase

We adopt a data mining-based approach to effectively identify frequent patterns within
the training data set. To achieve this, we have enhanced the existing FP-growth and
Apriori algorithms. The primary focus of our modified algorithms is to maintain the
order of rules during the exploration of the state space. Unlike traditional methods that
generate multiple frequent patterns, our approach aims to extract a single frequent
pattern with the highest occurrence frequency. This selected pattern is then leveraged
wisely to explore the remaining state space until a specific termination criterion is
met. Termination criteria include achieving full coverage or reaching a predefined time
limit.

Let us assume that the frequent pattern is denoted as r0, r1, ..., rk, where each
element (ri) belongs to the set R (0 ≤ i ≤ k). Furthermore, we identify promising
states using the set S. Additionally, we introduce a parameter calledmaxDepth, which
represents the maximum depth allowed for intelligent exploration.

For each state s present in S, we execute the following procedure: we sequentially
apply each rule from the frequent pattern (r0, r1, ..., rk) to the state s. This process
continues until the termination criterion is satisfied or the maximum depth is reached.
In situations where the frequent pattern is not applicable to a specific state, we employ
a strategy of randomly selecting successive states and proceeding with the exploration.
This approach allows us to continue the search for an applicable rule within the state

16

space. By opening states in a random manner, we increase the chances of finding a
state where the frequent pattern can be effectively applied. This dynamic approach
enhances the overall efficiency and effectiveness of the algorithm. Whenever a response
is obtained, we consider the path from the initial state to the goal state. In our case,
the goal state may refer to the definition/use part of the test objective. To provide a
clearer understanding, we present the pseudo-code in Algorithm 4.

Algorithm 4 Intelligent State Space Exploration with Data Mining

Require: FP (generated frequent pattern with Apriori/FP-Growth Algorithm),
g (goal state), S (set of promising states), maxDepth (maximum depth of
exploration specified by the user

Ensure: The path from an initial state to the goal state
1: foreach state s in S do
2: currentState = s, depth = 0
3: while depth ≤ maxDepth do
4: foerach rule r in FP do
5: apply rule r to currentState and update it
6: if rule r is not applicable to current state then
7: Select successive state randomly and update currentState

8: Break to next iteration
9: end if

10: if currentState = g then
11: return path from initial state leading to currentState

12: end if
13: end for
14: depth+ = FP.length

15: end while
16: end for
17: return Null

4.5 Test suite minimization phase

We introduce a two-step approach for minimizing test suites to address the issue of
redundant test cases. This approach focuses on enhancing the effectiveness of the test
suite while optimizing resources and saving time.

The first step involves eliminating redundant test cases by selecting test cases from
the test suite using a greedy strategy. We examine the test suite and compare the
covered objectives of each test case. If we find that the covered objectives of one test
case are completely contained within the covered objectives of another test case we
consider the second test case redundant and remove it from the test suite.

The second step revolves around reducing the length of test cases. Our aim is to
shorten the test case path by focusing only on the portion of the path starting from
the initial state and ending at the state where all Def-Use pairs have been visited.

17

We disregard the remaining portion of the path since it does not contribute to the
coverage of the objectives.

By implementing these two steps, we effectively minimize the test suite by elimi-
nating redundant test cases and reducing the length of the remaining test cases. This
approach enhances the efficiency and effectiveness of the testing process, optimizing
resource utilization and save valuable time.

5 Evaluation

In this section, we first examine the proposed approach, and the data mining algo-
rithms it uses, to fine tune it and carefully analyze the results obtained from
experiments with three case studies. In the second part of the section, to assess the
effectiveness of our approach, we compare it with related test case generation meth-
ods, such as the search-based (Kalaee and Rafe, 2019), machine learning-based (Rafe
et al, 2022), as well as model verification based test generation techniques (Wan et al,
2018).

Given the approximate nature of the algorithms proposed in this paper, each
experiment is repeated 10 times to ensure reliable outcomes, and the average result
is recorded for further analysis. To evaluate the efficiency of the algorithm, we use
Mann-Whitney statistical tests and U tests. These tests use a standard method known
as effective size Â12, introduced by Vargha and Delaney (Arcuri and Briand, 2011).
The Â12 value represents a non-parametric measure of the effective size, and we use
two methods to compare the probabilities of higher (or lower) values for coverage (or
test suite set size).

If Â12 is less than 0.5, it indicates that the occurrence of results obtained from the
first method is less likely compared to the second method. A value of Â12 equal to 0.5
suggests equal probability, while Â12 greater than 0.5 indicates a higher probability
for the first method. Furthermore, we assessed the significance level, denoted as the
P−value, which, if less than 0.05, indicates a significant difference between the results
of the two methods. If the P −value is greater than 0.05, additional tests are required
to reach a conclusion.

All experiments were conducted on a system equipped with an Intel(R) Xeon(R)
CPU E5-2620 V4 operating at 2.10 GHz, with 16 GB of RAM.

5.1 Case studies

We selected three well known case studies, the Online Shopping System (Engels et al,
2007), Bug Tracker System (Runge et al, 2013), and Travel Agency System (Rafe,
2013). Each of these case studies is known for its large state space. Using these case
studies, we aim at evaluating the effectiveness of our approach in handling such chal-
lenging scenarios. The Online Shopping System (OSS) allows customers to purchase
products online and pay with a credit card. The Bug Tracker System (BTS) manages
software bugs during development projects. The Travel Agency System (TAS) books
flights and hotels for clients based on their preferences and budget. The specifications
of the chosen case studies, including the number of rules and test objectives for each
criterion, are presented in Table 2. These models are based on real-world scenarios

18

with large state spaces. The criteria are labeled as C1, C2, C3, and C4, which corre-
spond to Create-Read, Create-Delete, Create-Update, and the combination of C1, C2,
and C3, respectively.

Table 2 Case studies details

#Test Objective

Case Study #Rule Create-Read Create-Delete Create-Update All Dependencies
C1 C2 C3 C4

OSS 19 28 7 12 47
BTS 32 73 13 5 91
TAS 43 66 10 10 86

5.2 Experiment settings

In order to optimize the efficiency of the proposed solution, we conducted extensive
experiments to determine the optimal parameter values. Table 3 presents the results
obtained from these experiments, including empirical values for the maximum test
case length, and the number of states traversed by the BFS algorithm for various case
studies. The experimental values for the parameters were determined based on the
outcomes of these experiments.

To determine the suitable value for the maximum length of the test case parameter,
different values were tested. For values of the maximum length set to less than 50,
the coverage significantly decreased. On the other hand, setting the maximum length
to more than 50 did not result in any further increase in coverage. However, it did
increase the time required to generate the test case set. Consequently, a value of 50
was determined to be optimal for this parameter.

The number of states traversed by the BFS algorithm plays a crucial role in the
learning process’s efficiency, and its value depends on the size of the model. Larger
models have a larger state space, which in turn necessitates a higher number of states
to be traversed by the BFS algorithm for constructing the training data set.

The efficiency of data mining algorithms is significantly influenced by the mini-
mum support percentage (minsup) parameter. To identify the optimal value for this
parameter, we conducted a series of tests to measure the coverage achieved for different
(minsup) values. Subsequently, the value yielding the highest coverage was selected
for further analysis.

Table 3 Fine-tuning the parameters for test case generation

Case Study Max TC # State Apriori’s FP-Growth’s
length BFS minsup minsup

OSS 50 5000 0.2 0.2
BTS 50 25000 0.5 0.3
TAS 50 10000 0.5 0.7

19

5.3 Experiment results

This section presents an overview of the outcomes obtained from our experiments.

5.3.1 Achieved coverage

When evaluating the effectiveness of a test generation method, it is common to com-
pare its achieved coverage with that of a baseline technique such as Random Testing
(RT) (Arcuri and Briand, 2011). Random Testing is a straightforward technique that
utilizes random search in state space without any specific guidance to select test cases.
This comparison allows us to assess the performance of the proposed approach in
comparison to the baseline method

Table 4 presents the results obtained from applying the data mining-based test
generation approach to the OSS, BTS, and TAS case studies. The table comprises
various columns that contain significant data related to the experiments. It displays the
data mining technique used, the selected evaluation criterion, and the coverage results
represented by the mean, median, and variance values. The mean value represents the
average coverage achieved during the experiments. The median value shows the middle
coverage value, separating the higher and lower results. The variance value indicates
the extent of variation or spread in the coverage results obtained.

From table 4, among the three algorithms, the FP-Growth algorithm consistently
achieved the highest coverage, demonstrating perfect coverage (100%) across all cases
and criteria. It outperformed both the RT and Apriori algorithms in terms of cov-
erage. The second-best algorithm in terms of coverage is the Apriori algorithm. The
RT algorithm exhibited moderate coverage results, with coverage percentages vary-
ing across different cases and criteria. It did not surpass the coverage performance of
either the FP-Growth or Apriori algorithms.

Figure 6 presents the average coverage achieved per coverage criterion for each case
study.

In Table 5, the performance of the Fp-Growth algorithm is evaluated by comparing
its average coverage with that of the other algorithms. This analysis sheds light on how
effectively Fp-Growth performs in terms of coverage in comparison to its counterparts.
Specifically, the value Â12 represents the estimated probability of Fp-Growth achieving
better coverage compared to the other algorithms.

Referring to Table 5, we observe that in 8 cases, Fp-Growth and the Apriori and
RT algorithm yield equal results (i.e., Â12 = 0.5). Furthermore, it becomes evident
that in 16 cases Fp-Growth has higher coverage. To visually represent the effect size
of the average coverage on the selected case studies, we utilize box plots, as depicted
in Figure 7.

5.3.2 Test suite size

In this section, we will compare the algorithms according to the size of the test
suites they generate. Table 6 shows the results of our experiments conducted with the
selected case studies. The tables present relevant information, including the data min-
ing algorithm used, the coverage criterion used, the number of test cases generated,

20

Table 4 Analyzing the effectiveness of the data mining algorithms through the achieved coverage

Case I: OSS Case II: BTS Case III: TAS

Algorithm Criterion Mean Median Variance Mean Median Variance Mean Median Variance

RT C1 81.07 82.14 88.33 75.89 75.89 10.30 92.12 92.12 45.41
C2 74.28 74.28 141 70.76 76.92 65.55 83 80 110.75
C3 92.5 91.66 30.99 100 100 0 89 90 44.62
C4 87.02 87.23 34.94 75.27 76.92 65.55 92.09 92.09 45.92

Apriori C1 100 100 0 88.35 87.67 19.57 88.03 87.87 8.53
C2 100 100 0 78.46 76.92 30.32 100 100 0

C3 100 100 0 100 100 0 100 100 0

C4 100 100 0 86.37 86.37 1.58 98.13 97.67 1.29

FP-Growth C1 100 100 0 100 100 0 100 100 0

C2 100 100 0 100 100 0 100 100 0

C3 100 100 0 100 100 0 100 100 0

C4 100 100 0 100 100 0 100 100 0

21

Fig. 6 The average coverage achieved by the different algorithms

Table 5 Effect size comparison of average coverage by FP-Growth and the other algorithms per
case-study (FP

Case I: OSS Case II: BTS Case III: TAS

Algorithm Criterion P − V alue Â12 P − V alue Â12 P − V alue Â12

RT C1 6.2944× 10−5 1 6.2944× 10−5 1 7.4679× 10−4 0.9

C2 5.3075× 10−5 1 4.8800× 10−5 1 7.1229× 10−4 0.9

C3 1.9753× 10−3 0.85 - 0.5 6.5058× 10−4 0.9

C4 6.3403× 10−3 1 2.2381× 10−4 0.95 2.2676× 10−4 0.95

Apriori C1 - 0.5 6.2944× 10−5 1 6.1133× 10−5 1

C2 - 0.5 5.4699× 10−5 1 - 0.5
C3 - 0.5 - 0.5 - 0.5
C4 - 0.5 5.9802× 10−5 1 6.9964× 10−4 0.9

Note: The notation Â12 < 0.5 indicates that FP-Growth resulted in lower coverage, Â12 = 0.5 denotes
equal coverage, and Â12 > 0.5 indicates higher coverage than the other algorithms. Effect sizes with
statistically significant differences (p− V alue < 0.05) are highlighted in bold.

and the length of those test cases. Additionally, the total length of the test suite, which
represents the sum of the lengths of all test cases, is displayed in the last column.

It is important to note that when the coverage achieved by different algorithms
varies significantly, comparing the size of their test suites becomes less relevant. Our
approach primarily focuses on coverage-based test generation, aiming to achieve higher
coverage. Therefore, a higher coverage implies a better performance of the algorithm.
As a result, we only examine the test suite size for cases in which we did not find any
statistically significant difference in coverage, denoted by Â12 = 0.5 in Table 5.

22

Table 6 Comparison of the different algorithms with respect to the size of the generated test suite

Case I: OSS Case II: BTS Case III: TAS

Algorithm Criterion #TC TC Length TS Length #TC TC Length TS Length #TC TC Length TS Length

RT C1 4.5 25 112.5 23.8 23.8 566.4 11.2 23.8 266.6
C2 4 10 40 5.8 22 127.6 2 34.5 69
C3 3 17.4 52.2 2.2 17.4 38.28 2.6 22.2 57.72
C4 5.1 25.8 131.6 11.4 25.4 289.6 15.4 20.3 312.6

Apriori C1 6 10 60 3 33 99 3 29 87
C2 9 4 36 5 57 35 74 7 28
C3 7.6 5 38 3 5 15 4 10 40
C4 5 12 60 3 38.4 115.2 ‘3 36 108

FP-Growth C1 6 10 60 3 33.3 99.9 3.2 31.3 100.2
C2 4 9.1 36.4 5 7 35 4 7 28
C3 5 7.3 36.5 3 5 15 4.5 9.7 46.35
C4 5 12 60 3.7 40.9 151.33 3.1 36.7 113.77

23

Fig. 7 Illustration of the variation in coverage across different case studies using box plots: The Fp-
Growth algorithm demonstrates a higher likelihood of achieving superior coverage compared to the
counterpart algorithms.

Table 7 illustrates the effect size of the FP-Growth algorithm in terms of test suite
size compared to other algorithms. The table includes p-values that indicate whether
the differences observed between these algorithms are statistically significant or simply
random. It is evident that in 1 out of 8 cases, FP-Growth exhibits a lower average
test suite size (Â12 < 0.5) in comparison with Random testing. However, it is worth
noting that in the remaining 7 cases all p− V alues in the table are greater than 0.05.
This implies that there is not enough statistical evidence to confidently assert that
these algorithms differ significantly in terms of test suite size.

5.4 Comparison with other test case generation techniques

In this section, we evaluate the effectiveness of our proposed data mining-based test
generation approach by comparing it with model checking-based, search-based, and
Bayesian-based test generation approaches. Our evaluation focuses on two key aspects:
achieved coverage and test suite size.

5.4.1 Model checking-based test (MCT) generation approach

To assess the scalability of our approach, we conduct a comparative analysis with the
conventional technique of test case generation assisted by model checking. While model
checking has been previously employed for data flow testing (Agrawal and Srikant,
2000), these methods directly operate at the program source code level to generate
test objectives based on data-flow criteria. In contrast, our approach focuses on the
abstract model level.

24

Table 7 Effect size comparison of test suite for FP-Growth
and the other algorithms where the same coverage is achieved

Case Study Criterion Algorithm P − V alue Â12

Case I: OSS C1 Apriori 0.8206 0.47
C2 Apriori 0.6997 0.44
C3 Apriori 0.9691 0.49
C4 Apriori 0.9253 0.49

Case II: BTS C3 RT 0.0022 0

C3 Apriori 0.5656 0.42

Case III: TAS C2 Apriori 0.9256 0.48
C3 Apriori 0.9086 0.52

Note: The notation Â12 < 0.5 indicates that FP-Growth
resulted in lower , Â12 = 0.5 denotes equal , and Â12 >

0.5 indicates higher test suite size than the other algo-
rithms. Effect sizes with statistically significant differences
(p− V alue < 0.05) are highlighted in bold.

In the context of Model Checking-assisted Test case generation, the test objectives
are defined as a collection of trap properties formulated using temporal logic formulas
like Linear Temporal Logic (LTL). A trap property serves as a clever trick to compel
the model checker to search for a counterexample that demonstrates the achievement
of the test objective. This counterexample is subsequently interpreted as a test case.

To conduct a comparison between our approach and the traditional test generation
method based on model checking, we used the Algorithm in (Kalaee and Rafe, 2019)
implemented in GROOVE. The search strategy employed by GROOVE to explore
counterexample paths is known as best-first search (BFS). The results of the compar-
ison between the FP-Growth algorithm and MCT are presented in Table 8. In this
evaluation, the coverage criterion used is C4. The test suite generation time is limited
to 30 minutes, allowing for a fair comparison of the coverage achieved within a specific
time frame.

According to Table 8, it is clear that MCT encounters a memory issue and fails to
generate the test suite. This limitation arises as the model state space expands. Our
proposed method, FP-Growth, exhibits better scalability.

5.4.2 Search-based and Bayesian-based test case generation

Recent studies related to our proposed approach are search-based (Kalaee and Rafe,
2019) and Bayesian-based testing (Rafe et al, 2022) test generation.

In (Kalaee and Rafe, 2019), search algorithms are used to tackle the challenges
associated with MCT Test case generation and to maximize coverage. These algo-
rithms, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat
Algorithm (BA), Gravitational Search Algorithm (GSA), and a hybrid algorithm com-
bining GA and PSO (HGAPSO), are integrated into the GROOVE tool set. The focus
is on covering data flow in software models specified using the GTS.

On the other hand, (Rafe et al, 2022) proposes a Bayesian-based testing approach
that leverages Bayesian optimization techniques to effectively handle the state space.

25

Table 8 Comparison of FP-Growth algorithm with the related state-of-the-art test generation techniques with respect to the achieved coverage for
30 minutes of execution

Case I: OSS Case II: BTS Case III: TAS

Reference Algorithm Mean Median Variance Mean Median Variance Mean Median Variance

(Agrawal and Srikant, 2000) MCT Out of Out of Out of Out of Out of Out of Out of Out of Out of
memory memory memory memory memory memory memory memory memory

(Kalaee and Rafe, 2019) HGAPSO 100 100 0 87.68 85.71 33.75 96.50 98.25 21.65
GA 100 100 0 85.15 84.61 30.89 98.25 100 10
PSO 91.90 91.48 9.85 82.08 81.31 17.70 84.99 84.3 20.85
BA 93.39 93.61 6.49 77.87 77.47 23.22 85.11 85.46 23.38
GSA 92.33 91.48 11.28 78.56 77.47 16.97 87.2 87.2 9.01

(Rafe et al, 2022) c-BOA 90.4 90.42 33.95 86.48 86.48 1.32 100 100 0

tp-BOA 91.70 93.61 29.48 90 89.01 10.28 100 100 0

n-BOA 66.59 66.59 29.67 89.01 89.01 8.12 75.46 69.76 68.45

FP-Growth 100 100 0 86.92 86.81 1.19 97.67 100 24.78

26

This method aims to optimize the selection of test cases and achieve better coverage.
They utilize three distinct structures for the Bayesian Network: c-BOA, tp-BOA, and
n-BOA.

To evaluate the achieved coverage, Table 8 presents a comparison between our
proposed method and the search-based testing approach by (Kalaee and Rafe, 2019),
as well as the Bayesian-based testing approach by (Kalaee and Rafe, 2019), for selected
case studies. The test suite generation time is limited to 30 minutes, ensuring a fair
comparison of the coverage achieved within the specified time frame. The coverage
criterion used for this comparison is C4. The objective is to determine which method
achieves higher coverage within the given time constraint.

In Table 9, the performance of the Fp-Growth algorithm is evaluated by comparing
its average coverage with that of the other algorithms. This analysis sheds light on how
effectively Fp-Growth performs in terms of coverage in comparison to its counterparts.
Specifically, the value Â12 represents the estimated probability of Fp-Growth achieving
better coverage compared to the state-of-the-art testing techniques.

Based on the findings presented in Table 9, it is clear that Fp-Growth demonstrates
significant improvement. The effect sizes range from 0.76 to 1, indicating a strong
impact. To visually represent the effect size of the average coverage on the selected
case studies, we utilize box plots, as depicted in Figure 8.

However, we observe that in 2 cases, Fp-Growth, HGAPSO, and GA algorithm
yield equal results (i.e., Â12 = 0.5). Furthermore, in 11 out of 24 cases, the p −
V alues surpass the threshold of 0.05. In these specific instances, there is insufficient
statistical evidence to confidently assert a difference between Fp-Growth and the other
methods in terms of coverage. It is important to acknowledge that such occurrences
are more likely to transpire when the subject pool is limited. Therefore, under these
circumstances, it is not possible to establish a fair and conclusive comparison. However,
it may be worth considering the comparison of test suite size as an alternative criterion
to determine the superiority of algorithms. For example, we can consider the test suite
size as an alternative criterion to compare algorithms.

Table 10 displays the results obtained from our experimental analysis concerning
test suite size in the selected case studies. The table provides essential information,
including the algorithm utilized, the number of test cases generated, and the length
of each test case. Furthermore, the last column presents the total length of the test
suite, which represents the summation of all test cases lengths.

The table serves as a valuable reference for evaluating and comparing the different
algorithms in terms of test suite size. By examining the number of test cases and their
respective lengths, we can assess the efficiency and comprehensiveness of each test
case generation technique.

Table 11 presents an analysis of the effect size of the FP-Growth algorithm concern-
ing test suite size in comparison to other algorithms. It is indeed crucial to consider
the varying coverage achieved by different algorithms when evaluating the relevance
of comparing test suite sizes. In our approach, which prioritizes coverage-based test
generation with the objective of achieving higher coverage, a higher coverage indicates
superior algorithm performance. Therefore, the examination of test suite size becomes
particularly significant when there is no statistically significant difference in coverage

27

Table 9 Effect size comparison of average coverage for FP-Growth and the related state-of-the-art
test generation techniques per case study

Case I: OSS Case II: BTS Case III: TAS

Reference Algorithm P − V alue Â12 P − V alue Â12 P − V alue Â12

(Agrawal and Srikant, 2000) MCT NA NA NA NA NA NA

(Kalaee and Rafe, 2019) HGAPSO - 0.5 0.7244 0.45 0.4421 0.59
GA - 0.5 0.1320 0.70 0.8243 0.53
PSO 6.2944× 10−5 1 1.9753× 10−3 0.76 6.2944× 10−5 0.97

BA 6.2944× 10−5 1 7.4679× 10−4 0.9 6.3403× 10−5 1

GSA 2.2676× 10−4 0.95 2.2381× 10−4 0.92 5.9802× 10−5 0.98

(Rafe et al, 2022) c-BOA 1.0131× 10−2 0.84 0.7237 0.55 0.0779 0.35
tp-BOA 4.6744× 10−3 0.86 0.0831 0.27 0.0779 0.35
n-BOA 1.6025× 10−4 1 0.2000 0.33 1.8528× 10−4 0.98

Note: The notation Â12 < 0.5 indicates that FP-Growth resulted in lower coverage, Â12 = 0.5 denotes
equal coverage, and Â12 > 0.5 indicates higher coverage than the other algorithms. Effect sizes with
statistically significant differences (p− V alue < 0.05) are highlighted in bold.

Fig. 8 Illustration of the variation in coverage across different case studies using box plots: The Fp-
Growth algorithm demonstrates a higher likelihood of achieving superior coverage compared to the
counterpart algorithms.

among the compared algorithms or where the selected algorithms achieve the same
coverage. These scenarios are denoted by p − V alue > 0.5 and Â12 = 0.5 in Table 9,
respectively.

From Table 11, it becomes apparent that in 9 out of 11 cases, FP-Growth demon-
strates a lower average test suite size (Â12 < 0.5) in comparison to state-of-the-art
testing techniques. However, it is important to acknowledge that in the remaining 2

28

Table 10 Comparison of the different algorithms with respect to the size of the generated test suite

Case I: OSS Case II: BTS Case III: TAS

Reference Algorithm #TC TC Length TS Length #TC TC Length TS Length #TC TC Length TS Length

(Agrawal and Srikant, 2000) MCT NA NA NA NA NA NA NA NA NA

(Kalaee and Rafe, 2019) HGAPSO 2.3 24.9 57.3 6.1 39.58 221.4 3.8 39.4 149.6
GA 2.5 24.86 62.1 6.1 39.86 243.1 4 39.6 158.4
PSO 2.1 24.48 51.1 5.1 39.08 199.4 3.6 40 144
BA 2.2 23.76 52.4 4.7 38.08 181.8 3.8 39.15 148.6
GSA 2.5 24.44 60.9 4.7 38.81 182.6 3.8 38.17 144.7

(Rafe et al, 2022) c-BOA 3 25 75 5.8 40 232 5.9 40 236
tp-BOA 31 25 77.5 6.4 40 256 5.9 40 236
n-BOA 2.1 25 52.5 5.7 40 228 2.9 40 116

FP-Growth 5 12 60 3.7 40.9 151.33 3.1 36.7 113.77

29

cases, all the p−V alues displayed in the table exceed the threshold of 0.05. This indi-
cates that there is insufficient statistical evidence to confidently conclude that these
algorithms significantly differ in terms of test suite size.

Table 11 Effect size comparison of test suite
between FP-Growth and the state-of-the-art testing
technique where the selected algorithms achieve the
same coverage or there is no significant differences
between their coverage

Case Study Algorithm P − V alue Â12

Case I: OSS HGAPSO 0.9072 0.52
GA 0.9255 0.48

Case II: BTS HGAPSO 1.5475× 10−4 0

GA 1.6022× 10−4 0

c-BOA 1.6025× 10−4 0

tp-BOA 1.7155× 10−4 0

n-BOA 1.5748× 10−4 0

Case III: TAS HGAPSO 1.6118× 10−4 0

GA 1.6684× 10−4 0

c-BOA 1.6399× 10−4 0

tp-BOA 1.7265× 10−4 0

Note: The notation Â12 < 0.5 indicates that FP-
Growth resulted in lower , Â12 = 0.5 denotes equal
, and Â12 > 0.5 indicates higher test suite size than
the other algorithms. Effect sizes with statistically
significant differences (p − V alue < 0.05) are high-
lighted in bold.

6 Conclusion

Software testing is an essential activity in the software development life cycle and plays
an important role in improving software quality. Software testing can be costly and
time-consuming. MBT has emerged as a new paradigm. This enables automation for
both test case generation and execution. Model checking is a widely used technique
within the field of MBT to automate test case generation. Model checkers are used
to explore the entire state space in search of the desired targets. However, a major
obstacle faced by such tools is the state space explosion for large and complex systems.
Furthermore, these test generation techniques often result in repetitive test cases,
another drawback.

In this paper, we proposed an approach to improve test case generation, from
graph transformation systems specifications, using model checkers. The proposed solu-
tion uses data mining algorithms to avoid exhaustive exploration of the state space.
Knowledge discovery is used to gain valuable insights into the application of graph
transformation rules for a smart navigation of the state space. Graph transformation
systems exhibit interdependencies between rules within ordered sequences (of rules)

30

used in the state space. Some of these ordered sequences of rules are recurrently
present in different parts of the state space. Consequently, the proposed solution scans
a portion of the desired model state space and uses data mining techniques to identify
repeated patterns. This acquired knowledge is then leveraged to navigate wisely the
remaining model state space. Two data mining algorithms, Apriori and FP-Growth,
have been presented as part of this solution.

The proposed solution has been implemented. We integrated our approach into the
widely-used model checker GROOVE. This adaptation allows us to effectively apply
our techniques and evaluate their performance. To demonstrate its effectiveness, the
proposed solution has been compared with related state-of-the-art techniques. The
test results in section 5 confirm the excellent performance of the proposed solution
with respect to coverage and test suite size.

As future work, we are aiming at:

• Dynamically setting the Minsup parameter value: The Minsup parameter, which
greatly influences the extracted repetitive algorithm, is fixed in the proposed solu-
tion. As potential future work, one can explore the possibility of setting the value
of this parameter dynamically and adjust it during program execution.

• Utilizing mutation testing: Employing jump testing to assess the effectiveness of the
provided test cases in revealing software errors.

• Strengthening the proposed solution through the combination of data mining
algorithms.

Declarations

• Funding This work has been partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) with the Grant # RGPIN-2021-
03298.

• Conflict of interest The authors declare no competing interests.
• Authors’ contributions Maryam Asgari Araghi and Vahid Rafe defined the prob-
lem. Maryam Asgari Araghi performed the initial research and discussed with Vahid
Rafe, the initial ideas, the solution and algorithms. Maryam Asgari Araghi and
Ferhat Khendek worked together to improve the potential of the solution and the
algorithms. Maryam Asgari Araghi implemented the work and performed the exper-
iments. All authors discussed, analyzed and refined the experiments. All authors
participated actively in the writing of the paper after a first draft written by Maryam
Asgari Araghi starting with an outline agreed on by all the authors. All authors
participated in the final analysis and in all the rounds of the paper writing.

• Availability of data and materials Not applicable.

References

Acharya AA, Mahali P, Mohapatra DP (2015) Model based test case prioritization
using association rule mining

31

Agrawal R, Srikant R (2000) Fast algorithms for mining association rules. Proc 20th
Int Conf Very Large Data Bases VLDB 1215

Agrawal R, Imieli’nski T, Swami A (1993) Mining association rules between sets of
items in large databases. pp 207–216, https://doi.org/10.1145/170035.170072

Albanese M (2019) Dependency Graphs, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp 1–3. https://doi.org/10.1007/978-3-642-27739-9 1771-1, URL https:
//doi.org/10.1007/978-3-642-27739-9 1771-1

Ammann P, Offutt J (2008) Introduction to Software Testing, 1st edn. Cambridge
University Press, USA

Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering. pp 1 – 10, https://doi.org/10.1145/
1985793.1985795

Baier C, Katoen JP (2008) Principles of Model Checking, vol 26202649

Beizer B (1990) Software Testing Techniques (2nd Ed.). Van Nostrand Reinhold Co.,
USA

Ehrig H, Engels G, Parisi-Presicce F, et al (2004) Graph Transformations: Second
International Conference, ICGT 2004, Rome, Italy, September 28-October 1, 2004,
Proceedings, vol 3256. Springer

Engels G, Güldali B, Lohmann M (2007) Towards model-driven unit testing. In:
Kühne T (ed) Models in Software Engineering. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp 182–192

Enoiu E, Causevic A, Ostrand T, et al (2014) Automated test generation using model-
checking: An industrial evaluation. International Journal on Software Tools for
Technology Transfer https://doi.org/10.1007/s10009-014-0355-9

Fraser G, Wotawa F, Ammann P (2009) Issues in using model checkers for test
case generation. Journal of Systems and Software 82:1403–1418. https://doi.org/10.
1016/j.jss.2009.05.016

Gargantini A, Heitmeyer C (1999) Using model checking to generate tests from require-
ments specifications. SIGSOFT Softw Eng Notes 24(6):146–162. https://doi.org/10.
1145/318774.318939, URL https://doi.org/10.1145/318774.318939

Gönczy L, Heckel R, Varró D (2007) Model-based testing of service infrastruc-
ture components. In: Petrenko A, Veanes M, Tretmans J, et al (eds) Testing
of Software and Communicating Systems, 19th IFIP TC6/WG6.1 International
Conference, TestCom 2007, 7th International Workshop, FATES 2007, Tallinn,
Estonia, June 26-29, 2007, Proceedings, Lecture Notes in Computer Science, vol

32

https://doi.org/10.1145/170035.170072
https://doi.org/10.1007/978-3-642-27739-9_1771-1
https://doi.org/10.1007/978-3-642-27739-9_1771-1
https://doi.org/10.1007/978-3-642-27739-9_1771-1
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1007/s10009-014-0355-9
https://doi.org/10.1016/j.jss.2009.05.016
https://doi.org/10.1016/j.jss.2009.05.016
https://doi.org/10.1145/318774.318939
https://doi.org/10.1145/318774.318939
https://doi.org/10.1145/318774.318939

4581. Springer, pp 155–170, https://doi.org/10.1007/978-3-540-73066-8 11, URL
https://doi.org/10.1007/978-3-540-73066-8 11

Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation.
Sigmod Record 29:1–12. https://doi.org/10.1145/342009.335372

Han J, Kamber M, Pei J (eds) (2012) Preface, third edition edn. The Morgan
Kaufmann Series in Data Management Systems, Morgan Kaufmann, Boston,
https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00020-4, URL https:
//www.sciencedirect.com/science/article/pii/B9780123814791000204

Heckel R (2006) Graph transformation in a nutshell. Electronic Notes in Theoretical
Computer Science 148:187–198. https://doi.org/10.1016/j.entcs.2005.12.018

Heckel R, Mariani L (2004) Component integration testing by graph transforma-
tions. In: International Conference on Computer Science, Software Engineering,
Information Technology, e-Business, and Applications, Cairo

Heckel R, Khan T, Machado R (2011) Towards test coverage criteria for visual
contracts. ECEASST 41. https://doi.org/10.14279/tuj.eceasst.41.667

Herman PM (1976) A data flow analysis approach to program testing. Aust Comput
J 8:92–96

Ilkhani A, Abaei G (2010) Extraction test cases by using data mining; reducing the
cost of testing. pp 620 – 625, https://doi.org/10.1109/CISIM.2010.5643525

Kalaee A, Rafe V (2019) Model-based test suite generation for graph transforma-
tion system using model simulation and search-based techniques. Information and
Software Technology 108:1–29. https://doi.org/10.1016/j.infsof.2018.12.001

Kastenberg H, Rensink A (2006) Model checking dynamic states in groove. pp 299–305,
https://doi.org/10.1007/11691617 19

Khan T, Runge O, Heckel R (2012) Testing against visual contracts: Model-based
coverage. pp 279–293, https://doi.org/10.1007/978-3-642-33654-6 19

Lan Q, Zhang D, Wu B (2009) A new algorithm for frequent itemsets mining based
on apriori and fp-tree. 2010 Second WRI Global Congress on Intelligent Systems
2:360–364. https://doi.org/10.1109/GCIS.2009.387

Lara Jd, Vangheluwe H (2002) Atom3: A tool for multi-formalism and meta-modelling.
In: Kutsche RD, Weber H (eds) Fundamental Approaches to Software Engineering.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp 174–188

Last M (2005) Data Mining for Software Testing, pp 1239–1248. https://doi.org/10.
1007/0-387-25465-X 59

33

https://doi.org/10.1007/978-3-540-73066-8_11
https://doi.org/10.1007/978-3-540-73066-8_11
https://doi.org/10.1145/342009.335372
https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00020-4
https://www.sciencedirect.com/science/article/pii/B9780123814791000204
https://www.sciencedirect.com/science/article/pii/B9780123814791000204
https://doi.org/10.1016/j.entcs.2005.12.018
https://doi.org/10.14279/tuj.eceasst.41.667
https://doi.org/10.1109/CISIM.2010.5643525
https://doi.org/10.1016/j.infsof.2018.12.001
https://doi.org/10.1007/11691617_19
https://doi.org/10.1007/978-3-642-33654-6_19
https://doi.org/10.1109/GCIS.2009.387
https://doi.org/10.1007/0-387-25465-X_59
https://doi.org/10.1007/0-387-25465-X_59

Mohalik S, Gadkari A, Yeolekar A, et al (2014) Automatic test case generation from
simulink/stateflow models using model checking. Software Testing, Verification and
Reliability 24. https://doi.org/10.1002/stvr.1489

Muthyala K, Naidu R (2011) A novel approach to test suite reduction using data
mining. Indian Journal of Computer Science and Engineering 2

Naik K, Tripathy P (2011) Software testing and quality assurance: theory and practice.
John Wiley & Sons

Pira E, Rafe V, Nikanjam A (2016) Emcdm: Efficient model checking by data mining
for verification of complex software systems specified through architectural styles.
Applied Soft Computing 49. https://doi.org/10.1016/j.asoc.2016.06.039

Pira E, Rafe V, Nikanjam A (2018) Searching for violation of safety and liveness
properties using knowledge discovery in complex systems specified through graph
transformations. Information and Software Technology 97. https://doi.org/10.1016/
j.infsof.2018.01.004

Rafe V (2013) Scenario-driven analysis of systems specified through graph transfor-
mations. Journal of Visual Languages & Computing 24. https://doi.org/10.1016/j.
jvlc.2012.12.002

Rafe V, Mohammady S, Cuevas E (2022) Using bayesian optimization algorithm for
model-based integration testing. Soft Comput 26(7):3503–3525. https://doi.org/10.
1007/s00500-021-06476-9, URL https://doi.org/10.1007/s00500-021-06476-9

Rapps S, Weyuker E (1985) Selecting software test data using data flow information.
Software Engineering, IEEE Transactions on SE-11:367– 375. https://doi.org/10.
1109/TSE.1985.232226

Rayadurgam S, Heimdahl M (2001) Coverage based test-case generation using model
checkers. pp 83–, https://doi.org/10.1109/ECBS.2001.922409

Rensink A (2004) The groove simulator: A tool for state space generation. In: Pfaltz
JL, Nagl M, Böhlen B (eds) Applications of Graph Transformations with Industrial
Relevance. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 479–485

Rensink A, Boneva I, Kastenberg H, et al (2010) User manual for the groove tool set.
Department of Computer Science, University of Twente, The Netherlands

Runge O, Khan TA, Heckel R (2013) Test case generation using visual contracts.
Electronic Communications of the EASST 58

Saifan A, Alsukhni E, Alawneh H, et al (2016) Test case reduction using data mining
technique. International Journal of Software Innovation 4:56–70. https://doi.org/
10.4018/IJSI.2016100104

34

https://doi.org/10.1002/stvr.1489
https://doi.org/10.1016/j.asoc.2016.06.039
https://doi.org/10.1016/j.infsof.2018.01.004
https://doi.org/10.1016/j.infsof.2018.01.004
https://doi.org/10.1016/j.jvlc.2012.12.002
https://doi.org/10.1016/j.jvlc.2012.12.002
https://doi.org/10.1007/s00500-021-06476-9
https://doi.org/10.1007/s00500-021-06476-9
https://doi.org/10.1007/s00500-021-06476-9
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1109/ECBS.2001.922409
https://doi.org/10.4018/IJSI.2016100104
https://doi.org/10.4018/IJSI.2016100104

Schieferdecker I (2012) Model-based testing. IEEE Software 29:14–18. https://doi.org/
10.1109/MS.2012.13

Taentzer G (2003) Agg: A graph transformation environment for modeling and
validation of software. pp 446–453, https://doi.org/10.1007/978-3-540-25959-6 35

Thöne S (2005) Dynamic software architectures: a style based modeling and refinement
technique with graph transformations

Utting M, Legeard B (2006) Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

Utting M, Legeard B, Bouquet F, et al (2016) Recent Advances in Model-Based
Testing, pp 53–120. https://doi.org/10.1016/bs.adcom.2015.11.004

Varro D, Balogh A (2007) The model transformation language of the viatra2 frame-
work. Science of Computer Programming 68:214–234. https://doi.org/10.1016/j.
scico.2007.05.004

Villani E, Pastl R, Coracini G, et al (2019) Integrating model checking and model
based testing for industrial software development. Computers in Industry 104:88–
102. https://doi.org/10.1016/j.compind.2018.08.003

Wan C, Wang L, Phoha VV (2018) A survey on gait recognition. ACM Comput Surv
51(5). https://doi.org/10.1145/3230633, URL https://doi.org/10.1145/3230633

Witten I, Frank I (2002) Data mining - practical machine learning tools and techniques
with java implementations. Morgan Kaufmann 31

Wu B, Zhang D, Lan Q, et al (2008) An efficient frequent patterns mining algorithm
based on apriori algorithm and the fp-tree structure. Convergence Information Tech-
nology, International Conference on 1:1099–1102. https://doi.org/10.1109/ICCIT.
2008.109

35

https://doi.org/10.1109/MS.2012.13
https://doi.org/10.1109/MS.2012.13
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1016/bs.adcom.2015.11.004
https://doi.org/10.1016/j.scico.2007.05.004
https://doi.org/10.1016/j.scico.2007.05.004
https://doi.org/10.1016/j.compind.2018.08.003
https://doi.org/10.1145/3230633
https://doi.org/10.1145/3230633
https://doi.org/10.1109/ICCIT.2008.109
https://doi.org/10.1109/ICCIT.2008.109

	Introduction
	Related work
	Some Background
	Graph transformation systems
	Running example
	Data-flow coverage criteria in graph transformation systems
	Data-mining

	The proposed test case generation approach
	Test criterion formulation phase
	Coverage tracking phase
	Problem statement
	Fitness formulation

	State space exploration by Breadth-First Search strategy and creation of the training data set
	Data mining phase
	Test suite minimization phase

	Evaluation
	Case studies
	Experiment settings
	Experiment results
	Achieved coverage
	Test suite size

	Comparison with other test case generation techniques
	Model checking-based test (MCT) generation approach
	Search-based and Bayesian-based test case generation

	Conclusion

