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Abstract

Developers frequently rely on APIs in their daily programming tasks, as APIs
have become an indispensable tool for program development. However, with a
vast number of open-source libraries available, selecting the appropriate API
quickly can be a common challenge for programmers. Previous research on API
recommendation primarily focused on designing better approaches to interpret
user input. However, in practical applications, it is often difficult for users, espe-
cially novice programmers, to express their real intentions due to the limitations
of language expression and programming capabilities.
To address this issue, this paper introduces PTAPI, an approach that visualizes
the user’s real intentions based on their query to enhance recommendation per-
formance. Firstly, PTAPI identifies the prompt template from Stack Overflow
(SO) posts based on the user’s input. Secondly, the obtained prompt template
is combined with the user’s input to generate a new question. Finally, the newly
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generated question leverages dual information sources from SO posts and API
official documentation to provide recommendations.
To evaluate the effectiveness of PTAPI, we conducted experiments at both the
class-level and method-level. The experimental results demonstrate the effective-
ness of the proposed approach, with a significant improvement in the success
rate.

Keywords: API Recommendation, Real Intentions, Prompt Template, Stack Overflow

1 Introduction

In the process of modern software development, because the application program inter-
face (API) can improve the quality of code and improve the development efficiency
of the program, it is widely used by developers. Researchers randomly selected 1008
open-source projects on GitHub for research, and found that 93.3 % of the projects
used third-party libraries, and an average of 28 third-party libraries were invoked per
project [1]. Obviously, API plays a very important role in the software development
process. Through research, it is found that the number of APIs is very large and
appears very rapidly [2, 3]. In the past 20 years, the number of Java Development Kit
( JDK ) APIs has increased by more than 20 times, from 211 in the first edition of
1996 to 4403 in 2022 [4, 5]. The emergence of new APIs is accompanied by the failure
of old APIs. It is impossible for developers to understand all APIs. During the devel-
opment process, developers often need to select these unfamiliar APIs. In the process
of learning and then using these APIs, they usually consult the API reference doc-
ument. However, through investigation, it is found that these API documents often
have problems such as content redundancy, incompleteness, inaccurate description,
ambiguity and lack of examples [6]. To learn and use these APIs, programmers need
to spend a lot of time. According to research, developers need to spend 40 % of their
time learning APIs during the development process [7].

To solve this problem, relevant researchers have proposed API recommendation
approaches. According to current research on API recommendation, we divide API
recommendation into two types: completion type, which involves recommending sub-
sequent related content based on the existing code context, and question-and-answer
type, which allows developers to obtain answers through questions they enter. For the
completion type, MAPO [8] and UPMiner [9] use frequent patterns or clustering tech-
niques to mine the API usage patterns obtained in the project. PAM [10] uses the
probability statistical model of API call sequence to obtain the usage pattern of API.
Recent studies such as FOCUS [11], GAPI [12], MEGA [13], etc., mainly based on the
current code context of developers, use collaborative filtering technology to calculate
similarity and make subsequent recommendations. For question-and-answer, most of
them return the final answer by entering the function they want to achieve on differ-
ent question answering websites. For example, RACK [14] builds a database and then
queries whether the keyword is mapped to the answer. BIKER [15] uses the similarity
between the calculated input question and the posts and official documents in SO to
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obtain the final answer. BRAID [16] adds feedback function on this basis. PICASO
regards the query as a code annotation, looks for positive and negative samples in the
post in SO, and forms a triple to form multiple input sources [17]. After studying the
question-and-answer model, we found a major problem.

The objective of the aforementioned approach is to bridge the knowledge and
vocabulary gap that exists between the natural language description of programming
tasks and API-related documents. The knowledge gap refers to the lack of important
task description information, such as purpose and concept, in API documentation,
which primarily focuses on the structure and function of the API. The vocabulary
gap arises from the potential presence of multiple lexical expressions conveying the
same semantics. These approaches address the practical problem faced by users by
continuously incorporating diverse information sources. However, it is important to
acknowledge that the problems raised by users often involve uncertainty. We find that
this phenomenon is particularly common among novice programmers. Their uncer-
tainty often stems from inconsistencies between their queries and search terms, or
from difficulties in accurately expressing their true intentions.

In this paper, we propose a task-based user intent visualization approach
PTAPI(use Prompt Template to enhance API recommendation performance). This
approach introduces SO as a third-party information source, and uses similar post
problems in SO as a prompt template for task description, so that developers can
understand their real intentions. That is, the developer input the problem to be solved,
find out the most similar problems from SO, and the developer selects the most simi-
lar problem as the prompt template, and combines the two sentences into a new input
problem. Then, the new questions are sent to the query, and an API recommendation
list is obtained by extracting the API answers in SO to match the similarity with the
official documents. Finally, the newly obtained API list is reordered and fed back to
the user.

To validate the effectiveness of PTAPI, we utilized problem posts from Stack Over-
flow (SO) as our dataset and assessed the model’s validity at both the method and
class levels. In order to evaluate the efficacy of prompt learning in API recommenda-
tion, we examined the selection and placement of prompt templates. To gather user
feedback on the model, we enlisted the participation of several graduate students and
undergraduates who provided their experiences with using PTAPI, resulting in pre-
dominantly positive evaluations. Furthermore, the experimental results demonstrate
the superiority of our approach compared to the baseline method.

In summary, our main contributions in this paper include :
1) We propose a new approach framework, PTAPI, to bridge the gap between user

description and actual intention.
2) We propose to construct a prompt template for the user ’s input to visualize

the user ’s real intention.
3) We conduct extensive experiments, and the results show that our proposed

approach is effective.
The rest of this paper is organized as follows. The Section 2 describes the moti-

vation example of this paper. The Section 3 elaborates our approach. The Section
4 introduces the evaluation settings, and the Section 5 introduces the experimental
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results. The Section 6 discusses our work, and the Section 7 introduces the related
work. Finally, the Section 8 summarizes this paper.

2 MOTIVATION EXAMPLE

In this section, we will introduce the motivation for writing this paper and illustrate
the importance of prompts for recommendations.

By observing the question posts in SO, we find that a large number of questions
are ambiguous, and the questioners do not know how to express their needs, so that
the respondents cannot provide help. After investigation, we found that the language
description of user problems is not only related to the user ’s language expression
ability. Moreover, it is also closely related to the user ’s programming experience.
In the process of program development, developers often encounter problems, but
they often cannot express them clearly. At present, researchers have proposed API
recommendation to solve these situations. They always consider the solution from
the downstream, that is, constantly designing better approaches to bridge the user ’s
description, but they ignore the user ’s true intention.

By using browsers, shopping and other software that support user input, we found
that these software are very friendly to new users. They not only have a good use of
instructions, but also, when the user searches in the search box, the input of different
content will have different prompt statements to guide. As shown in Figure 1 (a), when
the user searches for latex in the browser, the latex-related prompts appear automat-
ically below. Many of these prompt statements are search records from themselves or
other users. According to this discovery, we think about whether this prompt approach
can be used in API recommendation, so we propose a approach to add a prompt
template for API recommendation, so as to visualize the user ’s description and bet-
ter bridge the vocabulary gap with the questions in the question and answer library.
Combined with the method of prompt learning, when the user enters the problem, the
model returns several similar problems. Users can select expression statements similar
to their own descriptions, so that they can search more accurately. As shown in Figure
1 (b) , when the user wants to sort a set of data, he enters ’ Using Java to Sort Con-
tent ’. For other model approaches, they will give a lot of APIs with sorting function.
If the user is not familiar with the given results, it is necessary for the user to search
further. For users, they prefer that when they enter the above questions, there is a
prompt telling them to sort the collection, array, or other data. Specifically, we first
create a high-quality problem library to generate a prompt template to display the user
’s implicit purpose. Finally, the appropriate API recommendation is given according
to the corresponding template prompt. Compared with the original recommendation
idea, our recommendation idea has been changed as shown in Figure 2.

3 METHODOLOGY

3.1 Workflow of PTAPI

Figure 3 illustrates the workflow of our framework. PTAPI mainly includes three
main stages : constructing a language model for subsequent similarity calculation,
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(a) Example of recommendation sequences from
browser

(b) Example of API recommendation
sequences from PTAPI and BIKER

Fig. 1: Example diagram

Fig. 2: Recommendationl idea diagram

generating a prompt template based on the input problem and generating new prob-
lems, continuing to search for new problems and generating APIs that need to be
recommended.

3.2 Training language model

In this section, we will build a corpus of training models to measure the similarity
between queries and SO posts or API documents. The data in this corpus is extracted
from the SO website, which contains a large number of SO posts on API issues. We
extract the text information of the posts from the HTML page and process it. On the
one hand, we delete posts with no answers and unclear answers. On the other hand,
we also deleted the long code fragments in the post, because these long code fragments
will affect the performance of the training and the results of the recommendation.

For the bag-of-words based word embedding model, we choose the Word2Vec [18]
model in a neural network to train. Word2Vec model is a kind of language model,
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Fig. 3: Overall framework of PTAPI

which can learn semantic knowledge from a large number of text predictions in an
unsupervised way. At present, it can be widely used in natural language processing,
and the trained word embedding model can measure the similarity between words.
Then we construct an IDF ( Inverse Document Frequency ) vocabulary, which can
reflect the frequency of words in all texts. If a word appears in many texts, its IDF
value will be lower and its importance will be lower. We use the NLTK [19] library
to preprocess the text of the corpus and normalize the words in the corpus, that is,
convert each word into a root form, and the IDF value of the words with the same
root is the same. We use IDF to weight the word embedding similarity. Finally, the
trained IDF vocabulary and word embedding are also used directly for the words in
the API document, because the vocabulary in the SO post is much larger than the
vocabulary in the API official document.

3.3 Generate prompt template

At this section, we need to generate prompt through the input description, and the
newly generated prompt statements can better express the user ’s display information.
First, we need to find the most similar questions to the input description in the SO
post title. Through the language model constructed in the previous stage, we calculate
the similarity formula 1 between the query and the SO problem as follows :

sim(Wq,WSO) = cos(Wq,WSO) =
WT

q WSO

∥Wq∥ ∥WSO∥
(1)

Wq and WSO represent the words in Qq and QSO respectively. We use cosine
similarity to calculate similarity. The cosine similarity is normalized by calculating the
inner product of two vectors and using the L2 norm. To calculate the similarity between
sentences, we first use the formula 2 to measure the similarity between sentences.
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sim(Wq, QSO) = max
WSO⊆QSO

(Wq, QSO) (2)

Then, we need to calculate the maximum similarity between the word and each
word in the sentence, and use the IDF vocabulary to weight it, as shown in the following
formula 3, 4:

sim(Qq,
sim
→ QSO) =

∑
Wq⊆Qq

sim(Wq, QSO) ∗ IDF (Wq)
∑

Wq⊆Qq
IDF (Wq)

(3)

sim(QSO,
sim
→ Qq) =

∑
WSO⊆Qq

sim(WSO, Qq) ∗ IDF (WSO)
∑

WSO⊆QSO
IDF (WSO)

(4)

IDF (WSO) and IDF (Wq) represent the IDF weights of the words WSO and Wq,
convert the QSO and Qq into two word bundles, and then calculate the similarity
scores from Qq to QSO, and from QSO to Qq, respectively. Finally, the two scores are
combined to calculate the final similarity score, as shown in the formula 5 :

sim(QSO, Qq) =
1

1

sim(Qq
sim
→ QSO)

+ 1

sim(QSO
sim
→ Qq)

(5)

Using the above formula, the similarity between the user ’s input and the statement
in SO can be calculated, and finally several similar statements are returned to the
user. According to the returned statement, the user selects the statement that meets
his own purpose as the prompt template.

3.4 Generate relevant API recommendations

In the previous section, we find the prompt template according to the description
entered by the user, and we combine the generated template with the description
entered by the user into a new input statement. The operation that continues the
previous stage calculates the sentence similarity for the newly generated statement.
By calculating, n similar questions are retrieved in SO posts, and there are several
answers in these similar questions. Therefore, in the next chapter, we study the setting
of n at the class level and the method level respectively. Too much may introduce
noise, too little may ignore the correct answer.

Through the previous step, we get several answers. Because the answers in the
SO post contain many hyperlinks of the API official document, it is necessary to use
the regularized expression to extract the hyperlinks contained in the HTML tag. And
the regularization expression can extract the names of API methods in hyperlinks, we
mark these APIs as candidate APIs.

After the previous step, we get several candidate API entities. There may be differ-
ent solutions to a problem, especially at the class level. Therefore, we need to further
sort these API entities. Specifically, we calculate the similarity score between the newly
generated query and the post title containing the candidate API answer. We calcu-
late the similarity score between the newly generated query and the API description
in the official API document, as shown in Formula 6. Through these two scores, the
final API answer ranking is obtained.
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simso = min(1,

∑n
i=1 sim(Qso, Q

′
q)

n
) ∗ (1 + log2 n) (6)

where Q′
q = Qq+max(sim(Qso, Qq)) represents the newly generated problem descrip-

tion, simso represents the problem description and the post title with SO, and simdoc

represents the problem description and the official API document. The final score is
shown in Formula 7.

Simtotal =
2 ∗ Simso ∗ Simdoc

Simso + Simdoc

(7)

4 EXPERIMENTAL SETUP

In this section, we evaluate the proposed approach by answering three research
questions :

•RQ1 : What effect does our approach have on the experimental results ?
•RQ2 : What is the effect of selecting different numbers of SO posts as the source

of API sequence on the experimental results ?
•RQ3 : What is the effect of the combination sequence and combination times of

the prompt template on the experimental results ?

4.1 Dataset Description

To verify the effectiveness of the prompt template approach, we selected the BIKER
dataset for experiments. BIKER ’s dataset is extracted from SO. SO is an open Q
& A website, and the quality of many posts in it is not particularly high. Hence, the
BIKER researchers conducted rigorous screening procedures. For the dataset employed
in prompt template generation and API answer search, the screening criteria were as
follows: 1) the question must have a positive score, and 2) the question must possess at
least one answer, with the answer also having a positive score. Consequently, a dataset
comprising 125,847 questions was formed after the screening process. Additionally, a
separate testing dataset consisting of 413 datasets was created. This testing dataset
comprised high-quality questions and ground-truth APIs. Specifically, the SO problem
score had to be equal to or greater than 5 points, and these data were excluded from the
initial dataset. The test data involved inputting query questions and comparing them
with their respective answers, ultimately evaluating the accuracy of the experiment.

4.2 Baselines

Baseline1(BIKER) [15]: uses a bag-of-words based word embedding model to narrow
the vocabulary gap and knowledge gap by using SO posts and API official documents.
BIKER implements recommendation at class level and method level.
Baseline2(BRAID) [16]: reorders the recommended results by using the user ’s (
implicit ) feedback information. It belongs to a framework that combines experiments
with BIKER, RACK, and NLP2API approaches, and it performs best on BIKER.
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4.3 Evaluation Metrics

To evaluate the effectiveness of PTAPI, we compare the two indicators of MRR (Mean
Reciprocal Rank) and MAP (Mean Average Precision) with the baseline, which are
common evaluation indicators in the field of information retrieval and software engi-
neering [20–23]. MRR indicates how far it takes to find the first correct answer in the
recommendation list. MAP represents the ranking of the correct answers in the result
ranking. In addition, we also use S @ K to represent the first correct API position
in the top K of the recommendation list. The calculation formula of each evaluation
index is as follows :

MRR =

∑i=1
R

1
posi

R
(8)

where R denotes the number of all queries, and posi denotes the number of ranked
digits of the first answer to the i-th question.

MAP =
1

R

∑R
i=1

∑n
i=1count(hiti) ∗ rel(i)

len(true apis)
(9)

where count(hiti) denotes the number of correct APIs in the preceding i. rel(i) denotes
whether the given sentence with the order of i is the true answer sentence, 1 denotes
yes, and 0 denotes no.

S@K =

∑R
i=1count(ranki <= K)

R
(10)

where ranki <= K indicates that the position of the first correct answer is within K.

4.4 Implementation Details

We run our experiments on a computer with AMD Ryzen 7 2700X 3.7GHz, 32GB
RAM. We found that retaining similar questions as prompt templates has a great
effect on recommendation. Too few prompts may miss the goals that users need, and
too many prompts may cause users to choose. Finally, we retain the top 10 most
similar problems as templates. After subsequent experiments, it is found that due to
the high quality of the test data set problem, the first result is always the best. For
the selection of the number of recommended results, we conducted a special study in
the next chapter. To compare with the baseline, we selected the parameter of 50 for
the experiment.

5 Results

5.1 Effectiveness of PTAPI Compared with Baselines (RQ1)

Table 1 shows the overall results of all baselines and PTAPI in terms of S @ 1, S @ 3,
S @ 5, MRR and MAP metrics.

Comparison at the Method Level. Compared with BIKER, we have increased
by 27.2 %, 20.3 %, 11.9 %, 14.3 %, and 18.1 % on S @ 1, S @ 3, S @ 5, MAP, and
MRR, respectively. Compared with BRAID, we increased the S @ 1, S @ 3, S @ 5,
MAP, MRR by 22.3 %, 18.3 %, 11.6 %, 11.9 %, 15.7 %, respectively.
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Table 1: Comparison of PTAPI and baselines results

method level class level

S@1 S@3 S@5 MAP MRR S@1 S@3 S@5 MAP MRR

BIKER 0.423 0.660 0.775 0.553 0.569 0.547 0.814 0.903 0.675 0.652

BRAID 0.440 0.671 0.780 0.565 0.581 0.562 0.817 0.905 0.689 0.703

PTAPI 0.538 0.794 0.867 0.632 0.672 0.697 0.889 0.932 0.761 0.794

Comparison at the Class Level. Compared with BIKER, we have increased by
22.3 %, 18.3 %, 11.6 %, 11.9 %, and 15.7 % on S @ 1, S @ 3, S @ 5, MAP, and MRR,
respectively. Compared with BRAID, we increased the S @ 1, S @ 3, S @ 5, MAP,
MRR by 24.0 %, 8.8 %, 3.0 %, 10.4 %, 12.9 %, respectively.

It is worth noting that PTAPI has the most obvious increase on S @ 1 at both the
method level and the class level. This means that PTAPI can recommend more than
half of the correct APIs in the S @ 1 results. This is consistent with our expectation
that the prompt template can help users better choose the API. BRAID implicitly
expresses the user ’s possible willingness by using the user ’s feedback information,
and we display the user ’s willingness through the prompt template. The results show
that the display improvement effect is better.

Prompt template is very important for API recommendation, which can signifi-
cantly improve the recommendation performance.

5.2 The influence of parameters on the experiment (RQ2)

Table 2 and Table 3 are the different parameter recommendation results of PTAPI at
the method level and the class level, respectively.

Table 2: At the method-level, various performance comparisons are made
when the number of different similar problems is taken

S@1 S@3 S@10 MAP MRR

5 0.550 0.666 0.685 0.573 0.609

15 0.557 0.782 0.792 0.613 0.654

20 0.566 0.746 0.816 0.624 0.666

30 0.561 0.782 0.864 0.633 0.679

40 0.552 0.804 0.898 0.641 0.682

50 0.538 0.794 0.906 0.632 0.672

100 0.527 0.809 0.935 0.629 0.667

1000 0.462 0.814 0.973 0.571 0.619
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Table 3: At the class-level, various performance comparisons are made
when the number of different similar problems is taken

S@1 S@3 S@10 MAP MRR

30 0.690 0.872 0.922 0.748 0.781

40 0.692 0.881 0.939 0.754 0.788

45 0.702 0.884 0.944 0.763 0.796

50 0.697 0.889 0.947 0.761 0.794

100 0.685 0.896 0.964 0.763 0.789

1000 0.617 0.884 0.998 0.718 0.747

The parameter here refers to the number of similar SO posts retained in the rec-
ommendation results, and the final API ranking is obtained in these similar SO posts.
To study this problem, we manually adjusted and set multiple parameters for experi-
ments. By analyzing the experimental results in the two tables, we find that when the
parameter setting is very small, the accuracy of the experiment is relatively poor. At
the method level, when the parameter is 20, S @ 1 works best. On the overall trend,
S @ 3 and S @ 10 increase with the increase of parameters. Among them, when the
experimental parameter is 40, the MAP and MRR are optimal. At the class level, when
the experimental parameter is 45, the results of S @ 1, MAP and MRR are the best.

From the analysis of the above results, we know that when the number of similar
problems is too small, the experiment may lose important API information. When the
number of reservations is too large, a lot of noise will be introduced. S @ 3 and S @ 10
have a good fault-tolerant space ( such as S @ 10 indicates the probability of a correct
answer in the recommended 10 answers ), and S @ 3 and S @ 10 will also decrease as
the number of parameters continues to increase. Fortunately, users pay more attention
to the top-ranked answers. Therefore, we pay more attention to the results of S @ 1,
MAP and MRR in the experiment.

The experimental results show that the number of similar problems is not the
larger or the smaller the better, it is necessary to analyze the specific problems.

5.3 The influence of the position of the prompt template on
the experiment (RQ3)

Table 4 is the experimental results of the prompt template at different positions, and
table 5 is the experimental results of the existence of multiple prompt templates.

Table 4 shows the experimental results at the method level ( at the class level, the
sequence of the prompt template does not affect the experimental results ), where K

indicates that the prompt template is in front and the user ’s input problem is in the
back. K̂ indicates that the user ’s input problem is ahead and the prompt template is
behind. We found that regardless of the number of parameters, the result of putting
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Table 4: The influence of the position of the template on the experiment
was suggested

S@1 S@3 S@10 MAP MRR

30 0.562 0.782 0.864 0.633 0.679

3̂0 0.540 0.760 0.845 0.618 0.659

40 0.552 0.804 0.898 0.641 0.682

4̂0 0.542 0.775 0.862 0.622 0.666

50 0.538 0.794 0.906 0.632 0.673

5̂0 0.525 0.775 0.881 0.617 0.661

100 0.528 0.809 0.935 0.629 0.667

ˆ100 0.511 0.833 0.918 0.614 0.656

1000 0.462 0.814 0.973 0.571 0.618

ˆ1000 0.453 0.801 0.954 0.567 0.611

Table 5: The influence of using multiple prompt templates on the experiment

S@1 S@3 S@10 MAP MRR

30method 0.552 0.782 0.847 0.623 0.665

50method 0.542 0.789 0.884 0.631 0.670

45class 0.678 0.903 0.959 0.758 0.787

50class 0.682 0.906 0.969 0.763 0.791

the prompt template in front is always the best. Table 5 is to verify whether the more
templates we add, the better the experimental results will be. In this experiment, we
find 10 similar problems as the initial template in the first step. Then, in the range
of 10, we set three different random numbers as different three prompt templates for
experiments. We found that there are more experimental results than a single template
at both the method level and the class level.

After the analysis of the above results, first of all, for the study of the position of
the prompt template, we believe that the use of the word bag model without order,
the order before and after will not affect the experimental results. After subsequent
research, it is found that when the user ’s question is combined with the prompt
template, the statement will be too long. In the experiment, we set the maximum
statement length, and some newly generated statements will lose key information
due to too long, thus affecting the accuracy. The prompt template is more valuable
for the user ’s display intention. As for the class level, we find that the problems
on the class level are relatively short, so the two values are consistent. For multi-
templates, our initial guess is that the more prompts, the better the experimental
results, because the use of the bag-of-words model, the more prompts can provide more
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keywords for query, so the results will be better. But in the end, it was found that
the experimental results did not have obvious advantages. Later, we found that the
experimental results of multiple templates have a particularly high quality requirement
for user input problems. As shown in Figure 1 (b), we enter the problem of ’ Using
Java to Sort Content ’. Due to the particularly poor quality of the problem, multiple
templates will give keywords with very different meanings, resulting in a particularly
poor recommendation effect.

The experimental results show that if the sentence length based on the bag-of-
words model is set very large, the position of the prompt template has no effect on the
experiment. The influence of multi prompt templates on the experiment is affected by
the quality of user input problems.

6 DISCUSSION

In this section, we will discuss the implications of using prompt learning to recommend
APIs to explore other possible directions, as well as potential threats in experimental
approaches.

6.1 Implications

Using prompt Learning to enhance API recommendations : Researchers have
demonstrated the effectiveness of using a bag-of-words-based word embedding model
for API recommendation. However, there are usually two problems in the bag-of-
words model. ( 1 ) The approach uses bag-of-words and embeds words, but it cannot
capture the order information. ( 2 ) The two words in the bag of words are similar
in grammar, but there may be a big difference in grammar, so only using the context
of the word is not enough to distinguish between queries. We use prompt learning
to visualize the user ’s needs, and can enhance the semantics of the query keywords
when performing similarity calculations, which can reduce the shortcomings of using
the bag-of-words model for recommendation. Therefore, we suggest that researchers
can combine sequential and semantic information to further study the effectiveness of
prompt learning.

Selection of approaches in prompt learning : With the development of the
times, prompt learning has become a new favorite in the direction of NLP. The prompt
is a paradigm or template designed by the researcher for the downstream task, which
makes the downstream task to accommodate the pre-training model. The purpose is
to make the downstream task similar to the pre-training, so that the potential of the
pre-training model can be brought into play. However, there are usually two problems
when using prompt learning : ( 1 ) How to select a template ? ( 2 ) The token predicted
by the model is sometimes uncontrollable and difficult to map to the label. At present,
there are two template selection methods, in which one is called Hard-prompt artificial
construction template, the other is Soft-prompt automatic learning template. In this
paper, we use artificially constructed templates to artificially control the location of
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the template. It is hoped that the following researchers can use Soft-prompt in API
recommendation research.

6.2 Threats to Validity

Internal Validity. In this paper, we mainly study the improvement effect of API
recommendation combined with prompt learning. In terms of datasets, we use the
dataset used by the BIKER author ’s team, and do not collect relevant data by our-
selves. However, we view this data set to determine the high quality of the data set
and can be used on our model. Therefore, this problem can be ignored.

External Validity. On the one hand, we use prompt learning in the API rec-
ommendation model. At present, there is no particularly good solution to the two
problems in prompt learning. On the other hand, we use the bag-of-words model in
the API recommendation stage, and the bag-of-words model also has some defects.
However, the purpose of this paper is to study the simultaneous prompts to show the
user ’s willingness to improve the recommendation effect, so these shortcomings can
be ignored. At the same time, our method model only takes into account the JAVA
language, and lacks research on other languages.

7 RELATED WORK

In this section, we will review the existing work on prompt learning in the API recom-
mendation direction. The existing work on prompt learning in API recommendation
direction can be divided into two categories : API recommendation research direction
and prompt learning research direction.

API recommendation : At present, many researchers have studied API rec-
ommendation, which is mainly divided into recommendation based on existing code
context information and recommendation based on user input. For the first direction
of research, Zhong et al. proposed that MAPO [8] mines and clusters API usage pat-
terns from open source databases, and then recommends relevant usage patterns to
users. Nguyen et al.proposed APIREC [24], which recommends APIs by changing the
corresponding context and fine-grained code. Fowkes et al. proposed PAM [10], which
solves the problem of large API recommendation list by mining API usage patterns
through a probabilistic algorithm with few parameters. Nguyen et al. proposed FOCUS
[11], which finds API usage in similar projects from an open source knowledge base,
and implements API recommendation through context-based collaborative filtering
[25, 26] technology. Xie et al. proposed GAPI [12], which proposes a new graph-based
API recommendation method. This method uses GNN [27] to capture collaborative
signals from API call interactions and project structures, and these interactions con-
stitute graphs for API usage recommendation. Chen et al. proposed MEGA [13], which
uses a structure-aware attention network and a frequency-aware attention network to
construct a multi-view heterogeneous graph representation model between the project
and the API method, thereby increasing API interaction.

For the second direction, Zhang et al. proposed PASH [28]. This method obtains
the API sequence according to the literature, and then uses the information in SO
to reorder the sequence, and finally obtains the API result. Rahman et al. proposed
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RACK [14], which recommends API lists for natural language queries by constructing
keyword-API association information in SO. Huang et al. proposed BIKER [15], they
believed that there is a knowledge gap between the user ’s input and the knowledge
base, so they proposed the concept of double information sources, and sorted the API
through multiple information sources to achieve API recommendation at the method
level and class level. Zhou et al. proposed the framework of BRAID [16], which uses
user feedback to continuously improve the performance of API recommendation. In
the field of deep learning, Gu et al. proposed DeepAPI [29], which uses neural networks
to transform API recommendation tasks into encoding and decoding tasks. Wei et al.
proposed CLEAR [30], which uses BERT [31] sentence embedding and comparative
learning methods to solve the word order and semantic problems when user input
problems, thereby improving the API recommendation effect. Irsan et al. proposed
PICASO [17] on the basis of CLEAR, which proposes to convert the problem into
multiple input sources to improve the recommendation effect before inputting the
problem into the model. Compared with BIKER and BRAID, PTAPI can better
express the real intention of users, so it is easier to get close to the answer in the
knowledge base.

Prompt learning: Recently, the breakthrough of self-supervised [32] pre-trained
language model has prompted the development of natural language processing. Rad-
ford et al. proposed GPT [33]. This method first uses the Transformer architecture
to pre-train large-scale network text. Since Brown et al.proposed GPT-3 [34], prompt
learning has received great attention. This method enables large-scale language mod-
els to achieve excellent performance in low data states through context learning and
instant tuning. But it relies heavily on manual prompts to serve downstream tasks.
Shin et al. [35] used a token-based gradient search, and Gao et al. [36] used a separate
model to automatically search for discrete prompts. Li & Liang [37] proposed a pre-
fix tuning method for natural language generation tasks, which can train continuous
prompts. PTAPI relies on manual selection of templates and manual tuning because
our model does not require too many parameters.

8 CONCLUSION

In this paper, we introduce PTAPI, a novel API recommendation method that lever-
ages information from Stack Overflow to visualize the user’s genuine intention and
facilitate the selection of an appropriate prompt template. By combining the prompt
template with the user’s problem description, a new input problem is generated. This
newly generated problem serves the dual purpose of clarifying the user’s true inten-
tion and enhancing the expressiveness of the statement. Through our experimental
evaluation, we demonstrate the effectiveness of PTAPI at both the method and class
levels.

In the future, we will expand the scope of PTAPI, on the one hand, it can be
applied to more programming languages. On the other hand, we will choose more
prompt learning to apply to more model methods. Finally, we will make unremitting
efforts to improve API recommendation performance.
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