
Vol.:(0123456789)

Automated Software Engineering           (2024) 31:26 
https://doi.org/10.1007/s10515-024-00426-z

1 3

Future of software development with generative AI

Jaakko Sauvola1 · Sasu Tarkoma2 · Mika Klemettinen3 · Jukka Riekki1 · 
David Doermann4

Received: 5 December 2023 / Accepted: 15 February 2024 
© The Author(s) 2024

Abstract
Generative AI is regarded as a major disruption to software development. Platforms, 
repositories, clouds, and the automation of tools and processes have been proven to 
improve productivity, cost, and quality. Generative AI, with its rapidly expanding 
capabilities, is a major step forward in this field. As a new key enabling technol-
ogy, it can be used for many purposes, from creative dimensions to replacing repeti-
tive and manual tasks. The number of opportunities increases with the capabilities 
of large-language models (LLMs). This has raised concerns about ethics, educa-
tion, regulation, intellectual property, and even criminal activities. We analyzed the 
potential of generative AI and LLM technologies for future software development 
paths. We propose four primary scenarios, model trajectories for transitions between 
them, and reflect against relevant software development operations. The motiva-
tion for this research is clear: the software development industry needs new tools 
to understand the potential, limitations, and risks of generative AI, as well as guide-
lines for using it.

Keywords  Software development · Generative AI · Real-time digital economy

1  Introduction

Software development is an essential enabler of future real-time digital economies. 
Technical advancements, economic growth, environmental concerns, and societal 
shifts drive these changes. Software is the engine of modern societies, industries, 
business sectors, and services in everyday life. The saying from 2011 by Marc 

 *	 Jaakko Sauvola 
	 jaakko.sauvola@oulu.fi

1	 University of Oulu, Oulu, Finland
2	 University of Helsinki, Helsinki, Finland
3	 Business Finland, Helsinki, Finland
4	 University at Buffalo, Buffalo, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00426-z&domain=pdf


	 Automated Software Engineering           (2024) 31:26 

1 3

   26   Page 2 of 8

Andreessen, “Software is eating the world,” turned during 2019 as “AI is eating the 
software” and now we may ask “Is generative AI redefining how software is being 
made?” (https://​www.​forbes.​com/​sites/​cogni​tivew​orld/​2019/​08/​29/​softw​are-​ate-​
the-​world-​now-​ai-​is-​eating-​softw​are/). Almost every aspect of life envisions a shift 
towards real-time digital economies with strict service-level agreements (SLA). This 
affects the creation, maintenance, hosting, and updating of software, services, and 
systems. The need for more specialized and technically demanding development 
skills, tools, and processes is increasing, putting pressure on automation. This fron-
tier requires talented engineers to develop and integrate new technologies, systems, 
and zero- and no-code platforms, to allow more people without software skills to be 
productive.

With generative AI, new software industry roles are emerging and some exist-
ing roles may be replaced. When assessing the impact, opportunities, and risks, we 
must consider the target domains, such as legacy, digitalizing the verticals, appli-
cation economy, real-time environments, and new business models like “selling 
service over things.” The launch of GPT3 in 2020, public availability in 2021, and 
GPT4 release in 2023 by OpenAI, Google Bard, and others took industry to a rapid 
transformation. The redefinition of roles, tools, processes, and operations simul-
taneously affect these changes and advancements. As people create GPT-powered 
proof-of-concepts (POCs) and services, new innovations appear almost every week. 
Game developers and graphics creation communities have adopted GPT with inte-
grated multiplatform capabilities, such as AutoGPT models. Many GPT-based cloud 
services are available for vertical business. Generative AI is seen as a solution to 
resource, automate, and increase quality in software development. GPTs may free 
high-level skills for more important tasks, reduce costs, and optimize resources. 
Many corporations have welcomed this, allowing them to shift engineers to new 
business models and to improve productivity (Ebert and Louridas 2023). LLMs and 
their GPT-based services have created a key enabler technology area inspired by 
millions of people: In this movement, the OpenAI’s ChatGPT has been the fastest-
growing web application ever (https://​www.​forbes.​com/​sites/​cindy​gordon/​2023/​02/​
02/​chatg​pt-​is-​the-​faste​st-​growi​ng-​ap-​in-​the-​histo​ry-​of-​web-​appli​catio​ns/).

This paper addresses the potential effects of generative AI and LLM technolo-
gies on software development in the context of dense societal, academic, and indus-
try discussions. We present four primary scenarios and assess them in the context 
of different SDOs. These opportunities and innovations have also raised concerns, 
challenges, and risks. AI will bring added automation and creativity, but also poten-
tial job losses, ethical questions, unclear ownership or IP, and illegal copying and 
stealing.

2 � AI is driving automation

The huge growth in the demand for software development has led to the automation 
of work and processes. The adoption of repositories, cloud services, and co-creation 
methods, such as Lean, Agile, DevOps, has been key to productivity. AI has further 

https://www.forbes.com/sites/cognitiveworld/2019/08/29/software-ate-the-world-now-ai-is-eating-software/
https://www.forbes.com/sites/cognitiveworld/2019/08/29/software-ate-the-world-now-ai-is-eating-software/
https://www.forbes.com/sites/cindygordon/2023/02/02/chatgpt-is-the-fastest-growing-ap-in-the-history-of-web-applications/
https://www.forbes.com/sites/cindygordon/2023/02/02/chatgpt-is-the-fastest-growing-ap-in-the-history-of-web-applications/


1 3

Automated Software Engineering           (2024) 31:26 	 Page 3 of 8     26 

enhanced the use of assets through automated developer environments, and has been 
established as a key factor in achieving productivity and growth.

The development and maintenance of software is experiencing accelerated trans-
formation owing to the introduction of large language models (LLMs) and GPT-
based services. Software developers adopt co-pilots, interpreters, and private or 
automated GPT models to optimize tools and workflows. The rapid introduction of 
these is pressuring existing co-creation processes such as agile or DevOps. Machine 
learning and NLP aid code discovery, production, review, testing, configuration, 
and optimization. In automation, simultaneous forces at play affect productivity 
(Elazhary 2021). Continuous process development has been the answer for decades, 
with many doctrines, e.g., “write once, copy endlessly,” “customer in a loop,” “code 
and test simultaneously,” “test-driven development,” and “create and share.”

In addition to generative AI (creating new data from existing data), other types 
of AI affects software development, such as supervised learning (labeled correct 
answers), unsupervised learning (clustering without prior labels), and reinforce-
ment learning (interacting to receive feedback). Although many previous solutions 
have used supervised learning principles, generative AI is viewed as a game changer 
in software development because of its cross-language and interpretation capabili-
ties. Currently, tools are available to aid in code discovery, generation, optimization, 
documentation, testing, debugging, and simulation of various execution models. In 
the future, these different types of AI will be used in a mix of different roles. For 
example, by integrating supervised and unsupervised learning, development times 
can drop dramatically. An example is the automated configuration of systems that 
learns and adapts to preferences. The use of these AI types collaboratively drives 
productivity improvements.

For generative AI, recent studies have shown that developer productivity can 
grow quickly, but this goes far beyond mere tooling or processes (https://​www.​mckin​
sey.​com/​capab​iliti​es/​mckin​sey-​digit​al/​our-​insig​hts/​unlea​shing-​devel​oper-​produ​ctivi​
ty-​with-​gener​ative-​ai#/). The growth seems to be especially high (20–50%) in repeti-
tive tasks, updates, development with templates, and ideating and creating “on-the-
fly” the first prototypes. These include time-consuming phases, such as generation, 
UX design, documentation, refactoring, and the discovery of existing codes. How-
ever, tasks that require high creativity, complex skills, or orchestration have not 
produced satisfactory results. To manage generative AI, models and scenarios are 
required to address these challenges. The next section presents four new primary 
scenarios on these issues with the respective analyses.

3 � Scenarios for future of software development

There are already tens of GPT-driven products available and hundreds of them 
are in development. Collectively, these tools aim to transform traditional roles and 
phases into dynamic, parallelized flows using variants of LLM models with applica-
tions, such as AutoGPT (https://​medium.​com/@​finta​nkear​ney/​explo​ring-​the-​promi​
sing-​future-​appli​catio​ns-​of-​autog​pt-​in-​softw​are-​devel​opment-​a5c2c​de2d7​76), or to 
manage ecosystems, such as ChatDev (https://​github.​com/​openb​mb/​chatd​ev). New 

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai#/
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai#/
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai#/
https://medium.com/@fintankearney/exploring-the-promising-future-applications-of-autogpt-in-software-development-a5c2cde2d776
https://medium.com/@fintankearney/exploring-the-promising-future-applications-of-autogpt-in-software-development-a5c2cde2d776
https://github.com/openbmb/chatdev


	 Automated Software Engineering           (2024) 31:26 

1 3

   26   Page 4 of 8

GPT-based tools have been published daily, such as FuturePedia (https://​www.​futur​
epedia.​io). These target a vision in which the boundaries between design, coding, 
testing, and deployment overlap, or even disappear. For instance, as code is written, 
the testing, documentation, and deployment processes can be initiated almost simul-
taneously with continuous feedback.

Cloud capabilities enable the handling of parallel tasks while ensuring data integ-
rity and security. Furthermore, GPU acceleration at the edge becomes important for 
real-time processing, particularly in machine-to-machine- and machine-to-user-cen-
tric tasks. This promises a landscape in which efficiency and user centricity redefine 
how we create and run software and services.

Advances in AI-driven automation have accelerated the evolution of SDOs. As 
AI becomes more sophisticated, it assumes more tasks, roles, and processes, which 
are the fundamental building blocks of SDOs. These building blocks have deep con-
textual interdependencies that continuously evolve in terms of performance, produc-
tivity, and automation. Humans must assume new roles, acquire relevant skills and 
expertise, and be able to design, understand, and control AI systems to create and 
test new AI models. Furthermore, humans must be able to critically evaluate the 
ethical, business, and social implications.

Below, we conceptualize four scenarios for software development, each reflect-
ing an interaction between human roles, tools, AI, and processes. These scenarios 
assume that more automation is desirable. For resource and productivity reasons, 
they assume that human and AI roles will co-exist, and many different combinations 
may be used for specific purposes. The scenarios can be formulated as presented in 
Table 1, using the parameters listed in Table 2.

These primary scenarios S1–S4 can be parameterized to model the scenarios for 
different types of SDOs. Many real-life operations are transitions between scenarios 

Table 1   Four scenarios for using AI in software development

Scenario 1: Traditional Software Development Operations. Humans own all roles, and tools and develop-
ment environments provide automation. Humans are responsible for managing the process, designing, 
implementing, testing, and delivering and maintaining products. Tools are used to automate tasks, from 
code discovery to deployment

Formulation: S1: P2−3{A(H1) → {B(H2−3) → {C(T1-3), D(H2−3)}}}
Scenario 2: AI in loop. Humans dominate AI, but AI is beginning to manage larger and more complex 

work areas. AI is used to automate selected parts of manual and repetitive tasks such as code genera-
tion, documentation, testing, and deployment. AI is also used to assist humans in tasks such as design, 
troubleshooting, and decision-making

Formulation: S2: P2{A(H1) → {B(AI3−4 or H2−3) → {C(T1–2), D(H2−3 or AI3−4)}}}
Scenario 3: AI assumes role(s). AI starts to assume selected roles. For example, AI is used to manage 

the process, design, implementation, testing, delivery, and maintenance. Humans focus on the most 
complex tasks and control the entire operation, responsible for overseeing that it is working correctly, 
and producing high-quality results

Formulation: S3: P2{A(H1 or AI2) → {B(H1−2 or AI1−2) → {C(T1–2), D(AI2−3 or H1−2)}}}
Scenario 4: Human-in-the-loop. AI manages development operations in various roles. Humans oversee 

and control the process, but their role is focused on overwatches such as operational control, problem 
solving, quality assurance, and security. AI roles are responsible for automating most or all the other 
tasks in the development lifecycle

Formulation: S4: P1{A(AI1↑H1) → {B(AI1↑H1−2) → {C(T1), D(AI1−2↑H2−3)}}}

https://www.futurepedia.io
https://www.futurepedia.io


1 3

Automated Software Engineering           (2024) 31:26 	 Page 5 of 8     26 

and a subset or mix of primary scenarios. Furthermore, we can study these transi-
tions and sub-models using relevant parameters such as efficiency, cost, and quality.

Further research on different trajectories might lead to sweet spots in vertical 
industries and those that can lead to unfavorable outcomes. To this end, we iden-
tified potential trajectories that were discussed between colleagues in the industry 
(Table 3).

We can also see many interesting sub-models using the S1–4, such as “collabo-
rative partnership”, “AI design with human validation”, “human-AI role reversal”, 
“decentralized model”, “hybrid with external oversight”, and “human learning 
from AI”. These models bring interesting adaptations to organizations, proposing 

Table 2   Scenario parameters and definitions

Parameter Description

Hn Human in a role, where n = 1–4 is skill level, 1 = highest, 4 = lowest
AIn AI in a role, where n = 1–4 is level of automation, 1 = highest, 5 = lowest
Tn Software development tools and environments, where n points to a level of automation of a 

tool, where n = 1–3, 1 = automated and 3 = manual
Pn Process and model to operate software development, where n = 1–3, 1 = automated, 2 = semi-

automated, and 3 = manual
A Management of software development
B Worker in software development
C Tools used in software development
D Delivery/configuration/update/maintenance
↑ Supervision or oversight, where the entity within parentheses () is overseen by the entity to 

its left
 →  Hierarchical relationship between the entities within braces {}

Table 3   Potential trajectories between the scenarios

1. Gradual AI integration. S1 → S2 → S3. This pathway respects the idea that, while AI can enhance 
many aspects of the software development process, high-skilled human input (such as intuition, creativ-
ity, and complex problem-solving) remains invaluable. S3, in particular, harnesses synergy between AI 
and human strengths

2. Direct leap-to-balanced collaboration. S1 → S3. This path utilizes the maturity of certain environ-
ments and their ecosystems both with high quality, processes, and roles, e.g., they have achieved high-
level CMMI scores, or equivalent level or maturity

3. Abrupt full automation. S1 → S4 or S2 → S4. Moving from a human-centric model such as S1 or 
human-dominant S2 directly to a near-fully automated model such as S4 might lead to overlooked 
nuances and a lack of creativity. Although AI can automate many tasks, a sudden loss of human 
insight, oversight, and intuition can lead to unanticipated problems, loss of architectural control, and 
reduced quality

4. Incomplete AI integration. S1 → S2. Transitioning from S1 to S2 and halting the integration process 
may lead to a suboptimal setup where full potential of AI is used

5. Overemphasis on automation. S1 → S3 → S4. Transitioning from S1 to S3 and then regressing to S4 
implies that an organization has moved to balanced collaboration but then shifted towards full automa-
tion, neglecting the value of human input



	 Automated Software Engineering           (2024) 31:26 

1 3

   26   Page 6 of 8

improved dynamics and profiles to achieve better productivity, quality, and cost 
management. However, we leave this to the next phases of our research. The next 
section analyses some of these scenarios for different SDO cases. For each category, 
we examined the potential of generative AI and LLMs in four cases analyzing the 
primary scenarios and their timely transition paths by assessing the benefits for each 
SDO.

4 � Analysis of primary scenarios in SDO cases

We used the primary scenarios S1–4 to identify the potential AI adoption for the fol-
lowing SDO cases:

Case 1: Legacy, maintenance, renewal of existing systems This is S1 because 
many of these systems require manual maintenance, often with old APIs, architec-
tures, and even languages. Critical roles for human experts will remain, but GPT and 
code-interpreter capabilities can help developers understand older code within such 
systems, debugging, testing, and analysis during maintenance operations, and even 
create new adapter modules for renewal. Thus, it is likely that S2 takes over in the 
mid-term.

Case 2: Clean slate, products without legacy This is well-suited to S2–S4 due to 
the absence of outdated architectures and languages. AI tools can be fully leveraged 
for a broad spectrum of tasks e.g., code generation, debugging, testing, deployment, 
and maintenance. For larger software operations, S2 is more likely to occur in the 
short-to mid-term, as AI is increasingly being used in automating repetitive and even 
customer (DevOps) facing tasks. For simpler applications, we see many offers with 
zero- and no-code environments, or code generation services. In the long term, S3 
and later S4 are more likely as AI tools and their integration into processes matures.

Case 3: Networked applications and services These require low latency, high 
responsiveness, and reliability. S2 is the most likely fit, with AI as a design tool 
to plan and optimize the complexity, APIs, IOPs, and QoS requirements. Later, 
transitioning to S3 can bring many benefits for developers, e.g., dynamically adapt-
ing to varying configurations, creating customer and language variants, optimizing 
on-site performance, and performing updates. Ultimately, S4 can be achieved with 
emerging computing paradigms, such as the network-level edge computing and spa-
tial computing environments. Human roles are primarily in design, architecture, and 
ensuring integrity, security, and performance. While many NFR or other problems 
can be pre-empted, human operators are required to intervene during unprecedented 
issues.

Case 4: Special SDOs Initially (S1), this area will demand highly skilled engi-
neers and developers because of high-SLA and NFRs, interoperability challenges, 
and real-time system interdependencies. When software assets are moved to reposi-
tories, platforms, and development environments, a transition to S2 with features 
inherited from S3 can be expected. Later, AI is used in roles that burden humans 
and S4 could perform operational tasks, configurations, updates, and recovery, as 
we already see in some front-runner areas. AI can be used to analyze and correct the 
behavior of complex, interconnected systems with real-time performance.



1 3

Automated Software Engineering           (2024) 31:26 	 Page 7 of 8     26 

Recent studies suggest an interest in using GPT to automate tasks at least partially 
(Elazhary 2021; https://​www.​gartn​er.​com/​en/​docum​ents/​43488​99). Certain tasks 
will be automated, and some roles will be replaced by AI or change their focus, and 
new roles will be needed to orchestrate the development.

5 � Considerations beyond software development

Generative AI offers tools to renew software development, business models, UX, 
and engineering. We’ve seen new business models built with autonomously gener-
ated expert content, logic, and NLP narratives. These examples create videos, music, 
images, avatars, AR, and e.g., limitless game scenarios (and any mix of these) on the 
fly. Risks must be addressed in business dynamics, liabilities, workforce, security, IP 
ownership, and ethics as generative AI will integrate deeply into any businesses and 
their monetization. New roles, such as AI system supervision and optimization, need 
to be introduced. When demand for special skills is continually evolving, continuous 
education must provide applicable skills and new ways to adapt (Bull and Kharrufa 
2023). Cybersecurity will become a design issue: The AI’s capability to produce 
malware and virus strains requires a new pre-emptive and preventive approaches 
that must be embedded in the software design phase and as in-built property of any 
SDO product.

Generative AI brings new ethical dilemmas and intellectual property (IP) chal-
lenges. The ownership of AI-generated code remains ambiguous: Who is respon-
sible for the generated end-product? AI-assisted creation demands legally sound 
guidelines to ensure accountability. From a regulatory perspective, the responsibili-
ties of automatically generated codes and content that might bypass ethical consider-
ations, need to be addressed. Finally, integrating generative AI into software devel-
opment, business models, operational setups in organizations’ dynamics and ethical 
norms needs new rules.

6 � Summary

This study examines the role of generative AI in the future of software develop-
ment and proposes primary future scenarios S1–4, as frameworks for understanding 
its role and potential. Using these scenarios, we analyzed potential advancements, 
shift(s), trajectories and also risks for different SDO cases from the industry: legacy, 
clean slate, networked, and special operations. We also addressed critical challenges 
and ethical considerations. Generative AI presents promising prospects in multiple 
levels of SDOs and offers a strategic tool to drive productivity, resource optimiza-
tion, and cost/time savings. Since the introduction of GPT3 and 4 the adoption speed 
of the software development community has been phenomenal. Further research is 
required to examine the implementation of the proposed scenarios in practical SDOs 
in the industry.

https://www.gartner.com/en/documents/4348899


	 Automated Software Engineering           (2024) 31:26 

1 3

   26   Page 8 of 8

Author contributions  All authors contributed to the writing and reviewing the paper.

Funding  Open Access funding provided by University of Oulu (including Oulu University Hospital).

Data availability  No datasets were generated or analysed during the current study.

Declarations 

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Forbes Homepage. https://​www.​forbes.​com/​sites/​cogni​tivew​orld/​2019/​08/​29/​softw​are-​ate-​the-​world-​
now-​ai-​is-​eating-​softw​are/

Ebert, C., Louridas, P.: Generative AI for software practitioners. IEEE Softw. 40(4), 30–38 (2023). 
https://​doi.​org/​10.​1109/​MS.​2023.​32658​77

Forbes Homepage. https://​www.​forbes.​com/​sites/​cindy​gordon/​2023/​02/​02/​chatg​pt-​is-​the-​faste​st-​growi​ng-​
ap-​in-​the-​histo​ry-​of-​web-​appli​catio​ns/

Elazhary, O.: Investigation of the interplay between developers and automation. In: Proceedings of the 
43rd International Conference on Software Engineering: Companion Proceedings (ICSE ’21), pp. 
153–155. IEEE Press (2021)

https://​www.​mckin​sey.​com/​capab​iliti​es/​mckin​sey-​digit​al/​our-​insig​hts/​unlea​shing-​devel​oper-​produ​ctivi​ty-​
with-​gener​ative-​ai#/

Medium Homepage. https://​medium.​com/@​finta​nkear​ney/​explo​ring-​the-​promi​sing-​future-​appli​catio​ns-​
of-​autog​pt-​in-​softw​are-​devel​opment-​a5c2c​de2d7​76

ChatDev Homepage. https://​github.​com/​openb​mb/​chatd​ev
FuturePedia Homepage. https://​www.​futur​epedia.​io
Large Language Models as Tool Makers. https://​arxiv.​org/​pdf/​2305.​17126.​pdf
Homepage Gartner. https://​www.​gartn​er.​com/​en/​docum​ents/​43488​99
Bull, C., Kharrufa, A.: Generative AI assistants in software development education: a vision for integrat-

ing generative AI into educational practice, not instinctively defending against it. In: IEEE Software 
(2023). https://​doi.​org/​10.​1109/​MS.​2023.​33005​74

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.forbes.com/sites/cognitiveworld/2019/08/29/software-ate-the-world-now-ai-is-eating-software/
https://www.forbes.com/sites/cognitiveworld/2019/08/29/software-ate-the-world-now-ai-is-eating-software/
https://doi.org/10.1109/MS.2023.3265877
https://www.forbes.com/sites/cindygordon/2023/02/02/chatgpt-is-the-fastest-growing-ap-in-the-history-of-web-applications/
https://www.forbes.com/sites/cindygordon/2023/02/02/chatgpt-is-the-fastest-growing-ap-in-the-history-of-web-applications/
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai#/
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai#/
https://medium.com/@fintankearney/exploring-the-promising-future-applications-of-autogpt-in-software-development-a5c2cde2d776
https://medium.com/@fintankearney/exploring-the-promising-future-applications-of-autogpt-in-software-development-a5c2cde2d776
https://github.com/openbmb/chatdev
https://www.futurepedia.io
https://arxiv.org/pdf/2305.17126.pdf
https://www.gartner.com/en/documents/4348899
https://doi.org/10.1109/MS.2023.3300574

	Future of software development with generative AI
	Abstract
	1 Introduction
	2 AI is driving automation
	3 Scenarios for future of software development
	4 Analysis of primary scenarios in SDO cases
	5 Considerations beyond software development
	6 Summary
	References


