
ProRLearn: Boosting Prompt Tuning-based
Vulnerability Detection by Reinforcement Learning
Zilong Ren

Nantong University
Xiaolin Ju

Nantong University
Xiang Chen

Nantong University
Hao Shen

Nantong University

Research Article

Keywords: Vulnerability Detection, Prompt Tuning, Pre-trained Language Model, Reinforcement Learning

Posted Date: January 15th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3856133/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Automated Software Engineering on April
20th, 2024. See the published version at https://doi.org/10.1007/s10515-024-00438-9.

https://doi.org/10.21203/rs.3.rs-3856133/v1
https://doi.org/10.21203/rs.3.rs-3856133/v1
https://doi.org/10.21203/rs.3.rs-3856133/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10515-024-00438-9

ProRLearn: Boosting Prompt Tuning-based

Vulnerability Detection by Reinforcement

Learning

Zilong Ren1, Xiaolin Ju1*†, Xiang Chen1*† and Hao Shen1†

1*School of Information Science and Technology, Nantong
University, Nantong, 226019, Jiangsu, China.

*Corresponding author(s). E-mail(s): ju.xl@ntu.edu.cn;
xchencs@ntu.edu.cn;

Contributing authors: zilongren23@gmail.com;
shenhyc@gmail.com;

†These authors contributed equally to this work.

Abstract

Software vulnerability detection is a critical step in ensuring system
security and data protection. Recent research has demonstrated the effec-
tiveness of deep learning in automated vulnerability detection. However,
it is difficult for deep learning models to understand the semantics and
domain-specific knowledge of source code. In this study, we introduce
a new vulnerability detection framework ProRLearn, which leverages
two main techniques (i.e., prompt tuning and reinforcement learn-
ing). Since existing fine-tuning of pre-trained language models (PLMs)
struggles to leverage domain knowledge fully, we introduce a new auto-
matic prompt-tuning technique. Precisely, prompt tuning mimics the
pre-training process of PLMs by rephrasing task input and adding
prompts, using the PLM’s output as the prediction output. The intro-
duction of the reinforcement learning reward mechanism aims to guide
the behavior of vulnerability detection through a reward and pun-
ishment model, enabling it to learn effective strategies for obtaining
maximum long-term rewards in specific environments. The introduc-
tion of reinforcement learning aims to encourage the model to learn
how to maximize rewards or minimize penalties, thus enhancing per-
formance. Experiments on two datasets (FFMPeg+Qemu and Reveal)
indicate that ProRLearn achieves an F1 score improvement of 3.58%-
28.6% over state-of-the-art baselines. The combination of prompt tuning

1

and reinforcement learning can offer a potential opportunity to improve
performance in vulnerability detection. This means that it can effectively
improve the performance level of the system in responding to constantly
changing network environments and new threats. This interdisciplinary
approach contributes to a better understanding of the interplay between
natural language processing and reinforcement learning, opening up
new opportunities and challenges for future research and applications.

Keywords: Vulnerability Detection, Prompt Tuning, Pre-trained Language
Model, Reinforcement Learning

1 Introduction

Software security issues [1] have become increasingly prominent with the
rapid development of information technology. Malicious attackers persistently
search for and exploit vulnerabilities in systems and applications to gain
unauthorized access, steal sensitive information, or disrupt systems. CVE-
2022-30190, disclosed in May 2022, is a remote code execution vulnerability
in the Microsoft Windows Support Diagnostic Tool that allows remote attack-
ers to execute arbitrary shell commands on the target system. Several existing
cases involve exploiting this vulnerability, including multiple phishing attacks
by government-linked threat actors (Sandworm, UAC-0098, and APT28) and
Russian government agencies aimed at infecting victims with information-
stealing malware. In today’s globally connected world, safeguarding computer
systems from these threats has become an utmost priority.

Currently, detecting source code vulnerabilities can be divided into
two broad categories: traditional vulnerability detection methods [2–5] and
machine learning (or deep learning)-based vulnerability detection methods [6–
11]. Previous vulnerability detection methods [2–5] mainly use rules defined
in advance by experts to analyze the code. However, such an analysis
method [6, 7] cannot identify some deeply hidden vulnerabilities [12, 13]. Deep
learning (DL) has gained widespread usage in recent years for detecting source
code vulnerabilities via automatic feature extraction.

Recently, several vulnerability-identifying frameworks [6, 7] utilize DL to
detect and learn source code vulnerabilities have been proposed. For exam-
ple, Devign [8] and ReVeal [14] use Graph Neural Network (GNN) [14] [9] on
attribute graphs that integrate control flow, data dependencies, and Abstract
Syntax Trees (ASTs) [8]. VulDeePecker [6] employs static analysis to extract
program slices and trains a Bidirectional Long Short-Term Memory (Bi-
LSTM) model to detect function-level vulnerabilities. Li et al. [7] used the
Bi-LSTM to detect vulnerabilities. However, these DL-based methods encoun-
tered limitations in capturing full code semantics due to challenges associated
with syntax-semantics distinctions, context dependencies, and domain-specific

knowledge. Meanwhile, PLMs [15–18] acquire powerful semantic representa-
tion capabilities through self-learning on large-scale datasets, which enable
them to capture potential vulnerability features and learn patterns from the
source code. However, considering that there are often certain gaps
between upstream and downstream tasks, and the unique character-
istics and complexity of source code, relying solely on pre-trained
models may not fully utilize the vulnerability information embedded
in the source code.

Therefore, we address the above issues from two perspectives. Firstly, we
use PLM-based prompt tuning to address the shortcomings of fine-tuning.
Prompt tuning can make the model more focused on learning features and pat-
terns related to vulnerability detection. It can make downstream tasks
accommodate PLMs, which is more in line with the pre-training pro-
cess. On the other hand, fine-tuning PLMs accommodates various
downstream tasks, which may result in input and output biases. Sec-
ondly, as the sample data increases [19], the performance gap between
fine-tuning and prompt tuning gradually narrows. Furthermore, we
propose a reward mechanism using policy gradients to address these limita-
tions. This idea comes from reinforcement learning, which can learn better
strategies as sample data increases, further improving model performance.

In this study, we propose ProRLearn, a novel vulnerability detection frame-
work that effectively learns representation information from code. ProRLearn
has two main components: (1) Guiding the model to generate features and
patterns relevant to vulnerability detection by providing specific prompt tem-
plates. (2) Further optimize the model’s performance through interactive
learning with the environment and reinforcement learning. The model can con-
tinuously adjust the detection results based on feedback from the environment
to maximize performance metrics for vulnerability detection.

To evaluate the effectiveness of ProRLearn, we employed two widely used
datasets for vulnerability detection: FFMPeg+Qemu [8] and Reveal [14]. We
conducted a comparative experiment between ProRLearn and six existing
software vulnerability detection methods, namely Sysevr, VulDeePecker, IVDe-
tect, Devign [8], Reveal [14] and AMPLE [20]. The experimental results on
two datasets indicate that ProRLearn can improve F1 scores by 3.57% and
4.07%, respectively, and improve accuracy by 1.13% and 2.02%, respectively.

The main contributions of this study are as follows:

1. We propose ProRLearn, a PLM-based method that applies improved
prompts with pre-trained knowledge to specific tasks and employs a reward
mechanism to guide the learning process to enhance vulnerability detection.

2. We compare ProRLearn with six state-of-the-art baselines and find that it
outperforms by 3.58% and 4.07% in F1 score and by 1.13% and 2.02% in
accuracy, respectively.

3. An ablation experiment is exploring the effectiveness of each component of
ProRLearn.

4. We share ProRLearn to encourage future studies on vulnerability
detection1.

2 Background

2.1 Vulnerability detection

Deep learning (DL)-based vulnerability detection methods can be classified
into two categories. One category treats the source code as a natural language
sequence and employs NLP techniques to represent the input code [6, 10, 21,
22], often utilizing methods like word2vec to initialize token embeddings in the
code. Although these methods have shown acceptable performance, they come
with certain limitations. It cannot capture the code syntax well or effectively
encode unknown identifiers among source code. Another category attempts
to leverage the structural information in code, abstracting code into a graph
representation [7, 9, 14, 23], such as Abstract Syntax Trees, Control Flow
Graphs, Data Flow Graphs, Program Dependency Graphs, and using these
graphs as inputs to the model. Our research aims to address the limitations
and issues that arise when transforming source code into flat sequences to
overcome some of the constraints of traditional methods.

2.2 Prompt tuning

Prompt tuning is a method for pre-trained language models [24] to improve
their adaptation to specific tasks by designing and adjusting prompt informa-
tion in the model input. In the context of vulnerability detection tasks, prompt
tuning can guide PLM to comprehend better the semantics and context related
to vulnerabilities, thereby enhancing the model’s ability to discover poten-
tial vulnerabilities. By adding relevant prompts about vulnerable codes to the
model input, prompt tuning encourages the model to make more accurate
judgments about potential vulnerabilities.

According to the flexibility of prompt templates, prompt tuning can be
divided into two types: hard prompt and soft prompt. Specifically, the hard
prompt, a discrete prompt, defines the task by including specific informa-
tion as part of the input and providing clear guidance. Taking vulnerability
detection as an example, discrete prompts can include descriptions about the
type of vulnerability, code structure, or examples of specific vulnerabilities
that are included as part of the input. Such templates are usually created
manually and require some domain knowledge. The soft prompt, known as
the continuous prompt, differs from the traditional discrete prompt in that it
guides the model’s learning and inference process by using continuous values
as input to the model. The benefit of using continuous prompts is the ability
to provide more flexible task descriptions. Models can better understand task
requirements, context, and reason by learning relationships and semantics in
continuous space.

1https://github.com/ProRLearn/ProRLearn001

Pure Code

Datasets

Trained

Model blank line

comments

debug

statement

GitHub

Remove noise

Label

Muti-Head

Attention

Add&Norm

Feedforward

Add&Norm

X12

Pure Code
Hybrid

Template

Prompt

Model

Reward Function

Label Action

Pure Code

Verbalizer

Hybrid

Template

Preprocessing Phase Training Phase Detecting Phase

Reward

Policy

Gradient

Update

Params

Non-Vul Vul

Fig. 1 Overview of ProRLearn

2.3 Reinforcement learning

Reinforcement learning (RL) possesses goal-directed advantages as it does
not rely on exemplary supervision or comprehensive modeling of sample fea-
tures [25]. Instead, RL [26–29] optimizes its strategy through multiple rounds
of environment exploration and experience mining. RL performs superhuman
without prior expert knowledge and exhibits the following characteristics [30–
34]. First, the trial-and-error learning strategy ensures that the PLMs may
have more feature choices, allowing them to explore different possibilities effec-
tively. Second, the long-term reward mechanism is the feature selection of
PLMs’ long-term pursuit of reward maximization. These two characteristics
can help the model better understand the task.

Classified according to maximizing long-term rewards, current reinforce-
ment learning can be divided into value-based and policy-based methods.
Value-Based method focuses on learning and optimizing the state value func-
tion, which is used to measure the quality of taking different actions in
different states. Typical representatives of value function methods include Q-
learning [35], Deep Q-Networks [36], etc. Policy-Based method: this method
aims to directly learn the optimal policy without involving the value function.
It represents the probability distribution of actions by parameterizing the pol-
icy and then uses various optimization techniques to maximize the expected
reward. Policy gradient methods [37] and deep deterministic policy gradient
methods [38] are examples of policy optimization methods.

3 Approach

The overall architecture of ProRLearn is shown in Fig. 1, which is divided into
three main phases. For the preprocessing phase, we preprocess the collected
datasets to remove noise that may affect vulnerability detection and ensure
that the input to the model is pure code. For the training phase, the rein-
forcement learning environment is set up. The pure code and corresponding
labels are used as the current environment, the pre-trained model is used as
the agent, the strategy algorithm is determined, and the model is updated with
the current strategy algorithm as the core. Next, we construct prompt tuning
templates and use the CodeBERT [39] encoder to convert these inputs into
vector representations. Following these steps, we obtain a trained model for
identifying vulnerabilities during detection. For the detection phase, we input
a combination of pure code and prompt templates into the trained model to
detect the presence of vulnerabilities in the current code segment.

3.1 Preprocessing Phase

While examining the dataset, we identified noise in the code snippets that could
affect the predictions made by PLM. Specifically, as shown in Fig. 1, there
are three main types of noise: blank lines (extra indentation or line breaks),
comments, and debugging statements. These are defined as noise primarily
because PLM’s input length is limited. To remove this noise, we implemented
the following procedures.

Our experiments aimed to input pure code directly into the model. How-
ever, the code snippets in the dataset contained numerous line breaks. These
line breaks would be encoded during the input process and mistakenly treated
as part of the code, occupying space within the original code. To address this
issue, we removed the excess line breaks.

Furthermore, the code snippets in the dataset include some comments. If
these comments were input directly into the model, the model might mistak-
enly recognize them as code, potentially leading to incorrect assumptions about
code vulnerabilities. Similarly, some debugging or output statements within
code snippets occupy input space, such as the content printed by a cout state-
ment in Fig. 2, which is solely used for displaying code execution progress and
is unrelated to the variables in the code snippet. To address these noises, we
carried out removal operations.

Fig. 2 illustrates three types of noise in a given code: excess line breaks,
comments, and irrelevant debugging or output statements. Fig. 3 displays
the style and structure of the code after our data processing. These processing
steps help reduce noise and make the code more suitable for direct input into
the model for analysis and prediction.

01. int main () {
02. pthread_key_create (& threadKey , nullptr) ;
03. // Initialize the 'Debug' and 'Error' objects.
04. Utils : : init (& Debug , & Error) ;
05. {
06. cout << end << "===================== Test 1" << endl;
07.
08. Utils : : HeaderValueList whitelistCookies ;
09.
10. whitelistCookies . push_back ("c1") ;
11. whitelistCookies . push_back ("c2") ;
12. ……
13. }
14. cout << endl << "All tests passed!" << endl ;
15. return 0 ;
16. }

Fig. 2 Code snippets before data processing

01. int main () {
02. pthread_key_create (& threadKey , nullptr) ;
03. Utils : : init (& Debug , & Error) ;
04. {
05. Utils : : HeaderValueList whitelistCookies ;
06. whitelistCookies . push_back ("c1") ;
07. whitelistCookies . push_back ("c2") ;
08. ……
09. }
10. return 0 ;
11. }

Fig. 3 Code snippets after data processing

3.2 Prompt Tuning Implementation

In our approach, predicting and classifying vulnerable code based on prompt
tuning primarily involves two steps. Firstly, selecting an appropriate PLM,
considering that most PLMs are more suitable for specific tasks. Secondly, we
apply a combination of prompt tuning [40, 41] to the selected PLM to achieve
classification predictions for vulnerable code. Next, we will provide a detailed
explanation of these steps.

Selecting the suitable PLM as the foundation for prompt tuning is crucial.
PLMs can roughly be categorized into two types: autoregressive-based and
autoencoder-based. Autoregressive PLMs, such as GPT[42], are better suited
for generative tasks like text summarization and dialogue generation. On the
other hand, autoencoder-based PLMs like BERT, after pre-training, can be
applied to various downstream NLP tasks [43] such as classification and named
entity recognition. CodeBERT, as an extension of the BERT [44] model, offers
a unique advantage: it undergoes training on both natural language and source
code. This training imparts a certain level of code knowledge to CodeBERT,
and further fine-tuning with downstream task [45–49] corpora enhances its
understanding of specific tasks. Inspired by the above research conclusions, we
selected the widely used CodeBERT [39, 50] for the vulnerability classification
task in our study.

Below is the specific prompt tuning process. As shown in Fig. 5, the pro-
cessed source code and prompt template are combined and converted into
new input by building a prompt template. Subsequently, these constructed
prompt templates are input into the PLM. The model leverages its pre-trained

Source

Code

[CLS] . [SEP]

…

…

…

MLM

true :

right :

real :

false:

wrong:

fake:

Verbalizer
Target

class

L1

L2

L12

…

Here is vulnerability . Source code

Here is [MASK] vulnerability Source… code

…

…

 <answer> vulnerability
. Source code

Fig. 4 The model architecture of prompt tuning

knowledge to predict the masked positions within the input. The predicted
results are then mapped to the actual labels through the definition of a Ver-
balizer [45]. This process effectively transforms the downstream task into a
masked prediction task, resembling what occurs during the pre-training phase.

The prompt template consists of three components: the input part (the
source code in Fig. 5), the answer part (< answer > in the figure), and the
prompt words (such as ”Here,” ”is,” ”vulnerability” in the figure). The input
part is filled with the vulnerable code to be predicted. The answer part is filled
with the vocabulary ultimately predicted by the PLM. The final predicted
vocabulary output is subject to certain constraints, and its output is mapped
to the target category labels through a verbalizer.

The construction of prompt words and prompt templates can also exist in
various forms. Next, we will introduce the templates and verbalizers used. We
use a Hybrid Prompt template as an innovative technique to prompt tuning. It
combines the advantages of discrete prompts and continuous prompts. Hybrid
prompts provide more flexible and controllable task guidance while maintain-
ing model interpretability and tunability. We used and tested this template,
and the results showed that the hybrid prompt performed best in vulnerability
detection tasks. Hybrid prompt allows for discrete and continuous information,
providing the model with more comprehensive task guidance. The following is
the specific template creation process.

Hard prompt templates are often intuitive and simple. An example
template is as follows:

f = [input] Is the code vulnerable? [answer] (1)

Soft prompt templates are usually relatively abstract, but prompts are
more flexible, allowing the model to play freely. An example template is as
follows:

f = [input] [MASK] [MASK] [MASK] [MASK]? [answer] (2)

Hybrid prompt templates combine the best of both worlds. In this tem-
plate, vulnerability is a token related to the task. We do not want this token
to be replaced.

f = [input] [MASK] [MASK] code vulnerable? [answer] (3)

Verbalizer is a label-to-word mapping that aims to project target cate-
gory labels onto words within the Verbalizer. These label words constrain the
Pre-trained Language Model (PLM) output range, meaning that the model’s
output probabilities are focused exclusively on these label words. Each target
category label can correspond to one or multiple label words. By utilizing the
Verbalizer, the label word with the highest probability is mapped to the target
category label, serving as the model’s final prediction output.

In this task, the Verbalizer’s corresponding label words can be added as
needed or can directly use the target category as the label word. This design
ensures that the model’s output aligns with the task objective, enabling the
model to generate language descriptions related to the target category, thereby
enhancing model interpretability and comprehensibility. The Verbalizer is cru-
cial in bridging the gap between the model’s output and the task objective
through this approach.

action

state

Environment

reward

AgentPolicy Gradient

Loss

PLM

update params

Fig. 5 Agent-environment interaction in RL

3.3 Reinforcement Learning Implementation

In our experiments, we decided not to employ unsupervised methods for fine-
tuning the pre-trained model. Unsupervised learning methods often demand
more significant computational resources and time for training, both of which
were constrained in our setting. Therefore, in the interest of efficiency, we
opted to leverage labeled vulnerability information to expedite the pre-trained
model’s learning process. This approach allowed us to use our existing labeled

data more effectively, achieving rapid improvements in model performance to
align with our research and experimentation goals.

Next, we outline how to leverage the principles of reinforcement learning
to fine-tune the pre-trained model. In our research, we adopted reinforcement
learning to improve the performance of the pre-trained model further. The
reinforcement learning approach is based on the following ideas, as shown in
Fig. 5. In the classification task of vulnerability detection, we first created
an RL environment. This environment included sample source code and their
corresponding labels, which were used to define the reward mechanism. Then,
we transform the source code and cue templates so that they can be directly
input into the pre-trained model, such as the prompt tuning process. We deter-
mined the reward based on the model’s prediction results. This means we could
define a reward function based on the model’s output to evaluate its perfor-
mance at each step. Finally, based on the current state, action, and reward,
we computed the gradient of the policy and used these gradients to update
the network parameters.

The reinforcement learning (RL) elements in this context can be summa-
rized as follows: (1) Using a pre-trained model as the agent within the RL
framework. (2) The transformation of vulnerability code into a format the
neural network understands, representing the state. (3) Actions correspond
to the predictions made by the pre-trained model in classification tasks. (4)
Reward function to measure the vulnerability detection model’s performance
in performing specific actions in the current state. (5) The policy which deter-
mines the agent’s behavioral strategy in selecting actions to maximize rewards.
(6) Given the discrete nature of classification tasks, the RL environment is
effectively constructed based on a training sample pool of samples and their
corresponding labels.

Traditional RL typically relies on Markov decision processes where the
value of a state (s) depends on the value of the current action chosen and
the value of the subsequent state (s′). The value of actions within a state is
determined by a combination of rewards (r) and the values of the following
state-action pairs. However, in classification tasks, states are often independent
of each other. Therefore, we have adopted a different approach using a discrete
Markov chain. In this setup, we consider only combinations of given states
and available actions without considering logical subsequent states. In essence,
our reinforcement learning framework comprises the following elements: the
current state, the predicted action, the probability of selecting the current
action, and the ultimately determined reward magnitude.

Since states are discrete, each state value or action value may have a lim-
ited impact on the final classification task. Therefore, we have introduced a
novel approach for training the classification model. The basic idea of this
method is to integrate the reward mechanism from reinforcement learning into
the training process, employing a reward-based optimization approach. Our
method draws inspiration from reinforcement learning, specifically the Vanilla
Policy Gradient (VPG) method, which is used to update and train our model

rather than directly using the traditional cross-entropy loss function. VPG is
a policy-based optimization algorithm with the primary objective of mapping
the policy (or the probability of action selection) to the corresponding labels
as effectively as possible, thereby maximizing cumulative rewards. The policy
gradient expression is as follows:

∇J = −
1

B

B
∑

t=1

∇logπ(at|st)R(t), (4)

where B represents the batch size given in a single training run. t denotes the
example code within the given batch B. st stands for the input example code,
at is the predicted action category made by the agent, and π(at|st) represents
the probability of selecting at given the current state st. R(t) corresponds to
the reward function, which determines how well the model’s action in state st
performs based on task-specific criteria. Introducing VPG can better adjust
the training process of our model to meet the specific requirements of the
classification task.

According to the current gradient strategy, each step increases the log
probability of each action, which is proportional to R(t) (the sum of rewards
at all past moments). However, the general logic should be that the agent
intensifies its actions according to its consequences. Rewards received before
taking an action have nothing to do with the quality of the action; only rewards
received after the action will impact the agent’s behavior. Therefore, the policy
gradient expression of this idea is:

∇J = −
1

B

B
∑

t=1

∇logπ(at|st)

B
∑

t′=t

R(st′ , at′). (5)

The reward function is defined as follows: In each training batch, with a
batch size of B, every input in the batch is considered a step. At each step, the
agent’s predicted action category yt is compared to the actual class label yt.
If at equals to yt, the agent receives a reward of 1; otherwise, the reward is 0.
Throughout this process, the reward function R(t) accumulates continuously,
updating based on the prediction results at each step. This reward mechanism
provides feedback to the agent, encouraging it to make correct predictions.

R(t) =

{

1, at = yt
0, otherwise.

(6)

4 Experimental Evaluation

4.1 Research Questions

To evaluate ProRLearn, we aim to answer the following four research questions:
RQ1: How effective is ProRLearn in vulnerability detection?

To answer this question, we will compare ProRLearn with other
approaches, including some latest graph-based and token-based vulnerability
detection methods.

RQ2: How effective is prompt tuning for improving ProRLearn’s
performance on vulnerability detection?

For ProRLearn, the performance of the model is optimized by adjusting the
Prompt template to meet the special requirements of vulnerability detection
tasks. To answer this question, we will investigate the effectiveness of using
different prompt templates.

RQ3: How effective is reinforcement learning for improving ProRLearn’s
performance on vulnerability detection?

For ProRLearn, the performance of the model is optimized by adjusting
the reinforcement learning methods to meet the special requirements of vul-
nerability detection tasks. To answer this question, we will investigate the
effectiveness of using different reinforcement learning methods.

RQ4: What is the effectiveness of ProRLearn with different pre-trained
models?

For ProRLearn, the choice of different model architectures may have some
impact on the results, and we aim to find a suitable pre-trained model that
meets the specific requirements for vulnerability detection. To answer this
question, we will investigate the effectiveness of using different pre-trained
models.

4.2 Datasets

Our research used two vulnerability datasets, including FFMPeg+Qemu [8]
and Reveal [14]. The FFMPeg+Qemu dataset is a balanced dataset widely
used in previous studies [8, 20]. It is derived from two open-source C projects
and comprises approximately 10k vulnerable entries and 12k non-vulnerable
entries, vulnerabilities account for 45.02%. On the other hand, ReVeal is
an imbalanced dataset. It originates from two open-source projects: Debian
and Chromium. This dataset contains around 2k vulnerable entries and 20k
non-vulnerable entries, vulnerabilities account for 9.16%. Table 1 summarizes
dataset characteristics. Furthermore, we did not use the BigVul [51] dataset.
The accuracy for BigVul was lower, as many of the vulnerability fixing commits
used during data extraction for this dataset were large, tangled, or noisy [52].

Table 1 Statistics of the datasets.

Dataset Samples #Vul #Non-vul Vul Ration(%)

FFMPeg+Qemu 22,361 10,067 12,294 45.02

Reveal 18,169 1,664 16,505 9.16

4.3 Performance Metrics

We used the following four widely used performance metrics for evaluation:
TP: True Positive (TP) refers to the number of instances where the

model correctly predicts positive class samples. In vulnerability detection, TP
indicates cases where the model accurately identifies code with vulnerabilities.

TN: True Negative (TN) refers to the number of instances where the model
correctly predicts negative class samples. In vulnerability detection, TN indi-
cates cases where the model accurately determines that the code does not have
vulnerabilities.

FN: False Negative (FN) occurs when the model incorrectly predicts sam-
ples that are positive as negative. In vulnerability detection, FN indicates
cases where the model mistakenly claims that code has vulnerabilities without
vulnerabilities.

FP: False Positive (FP) happens when the model incorrectly predicts sam-
ples that are negative as positive. In vulnerability detection, FP indicates
cases where the model mistakenly claims that code without vulnerabilities has
vulnerabilities.

Accuracy: Accuracy is the proportion of correctly predicted vulnerabil-
ities to all vulnerabilities. TN represents the number of true negatives, and
TP+TN+FN+FP represents the total number of vulnerabilities.

Accuracy = TP+TN

TP+TN+FN+FP
(7)

Precision: Precision is the proportion of relevant vulnerabilities among
the retrieved vulnerabilities. TP represents the number of true positives, and
FP represents the number of false positives.

Precision = TP

TP+FP
(8)

Recall: Recall is the proportion of relevant vulnerabilities among the
retrieved vulnerabilities. TP represents the number of true positives, and FN

represents the number of false negatives.

Recall = TP

TP+FN
(9)

F1 score: The F1 score is the geometric mean of precision and recall,
representing a balance between the two.

F1 score = 2× Precision×Recall

Precision+Recall
(10)

4.4 Baseline Methods

We compared ProRLearn with six baselines at the function level: four graph-
based and two token-based methods. We select these baselines because they
represent the most commonly used methods in the current field and can
serve as effective controls for our proposed method. These baselines cover

both graph-based and token-based approaches, allowing us to evaluate the
performance of our method against different types of baseline methods.

(1) SySeVR [7]: SySeVR is a vulnerability framework that utilizes
a bidirectional recursive neural network. This framework extracts syntax
and semantic features from the code to be examined and applies them to
vulnerability detection.

(2) VulDeePecker [6]: VulDeePecker converts code into an intermedi-
ate representation that carries semantic information, such as data and control
dependencies. This intermediate representation is then transformed into vec-
tors, which serve as inputs to a bidirectional LSTM-based neural network for
vulnerability detection.

(3) IVDetect [9]: IVDetect utilizes a Program Dependence Graph (PDG)
to represent the code and extracts information as vector representations. It
then employs the Factorized Aggregated Graph Convolutional Network (FA-
GCN) to classify the vector representations for vulnerability detection.

(4) Devign [8]: Devign is a source code vulnerability detection model
based on Graph Neural Networks (GNN). It utilizes GNN to learn rich seman-
tic information from the source code. The model consists of a Conv module,
which extracts valuable features for graph-level classification.

(5) Reveal [14]: Reveal utilizes Code Property Graphs (CPG) and employs
the GGNN (Gated Graph Neural Network) to obtain graph embeddings from
the CPG. Then, it utilizes a Multi-Layer Perceptron (MLP) for classification
and detection.

(6) AMPLE [20]: AMPLE simplifies and enhances the graph based on the
code structure diagram, and uses GCN to obtain graph embeddings. Then, it
utilizes a Multi-Layer Perceptron (MLP) for classification and detection.

4.5 Experimental Settings

We followed the hyper-parameters and dataset split outlined in the original
Baseline papers to ensure accuracy and fairness in our experiments. For each
dataset, we followed the same settings as other experiments [20] and divided
it into 80% training set, 10% validation set, and 10% test set, as this is a
standard testing setup used in prior research [20, 53, 54]. In the case of Devign,
since the code was not provided, we replicated the experiments based on the
methodology provided by ReVeal.

We used CodeBERT as our model with a maximum input sequence length
of 512. Our model was optimized using the Adam optimizer with a batch size of
16 and a learning rate of 2e-5. Additionally, we incorporated hybrid templates
during prompt tuning and employed the VPG for reinforcement learning with
a reward magnitude of 1.

Our model training was conducted on a server equipped with an NVIDIA
GeForce RTX 4090, and each training session consisted of 20 epochs.

5 Experimental Results

5.1 RQ1. Effectiveness of ProRLearn

To demonstrate the effectiveness of ProRLearn, we evaluated its performance
by comparing ProRLearn with six baselines on two datasets. The experimental
results are presented in Table 2.

Table 2 Comparison between ProRLearn and two datasets for copper leakage detection
methods. ”-” indicates that the method does not apply to the current dataset. The best
results for each metric are highlighted in bold.

Metrics(%)

Dataset
FFMPeg+Qemu Reveal

Baseline Accuracy Precision Recall F1 Accuracy Precision Recall F1

SySeVR 48.59 47.08 60.02 52.77 73.21 43.56 27.84 33.97

VulDeePecker 50.12 47.89 33.34 39.31 78.51 20.63 14.59 17.09

Devign 57.19 52.41 58.11 55.11 86.38 28.98 34.73 31.60

Reveal 62.73 53.94 71.22 61.39 85.25 29.73 64.96 40.79

IVDetect 56.22 55.18 59.94 57.46 - - - -

AMPLE 63.01 53.26 83.21 64.33 90.72 50.06 43.28 46.42

ProRLearn 64.14 55.99 86.27 67.91 92.74 53.18 48.06 50.49

Based on the Table 2, we achieve the following findings. First, we can
observe that ProRLearn outperforms all the baselines. ProRLearn achieves
higher F1 scores, recall, and accuracy on both datasets compared to base-
lines. Specifically, ProRLearn improves the F1 score by 3.58% and 4.07%,
respectively, compared to the current best baseline method. The correspond-
ing relative improvements are 5.57% and 8.77% for the F1 score. Additionally,
ProRLearn increases the recall score by 3.06% on FFMPeg+Qemu [8], with rel-
ative improvements of 4.76%. Moreover, ProRLearn raises the accuracy score
by 1.13% and 2.02%, respectively, with relative improvements of 1.79% and
2.23%. In addition, we also compared with LineVul [53] on the FFMPeg+Qemu
and Reveal datasets. On these two datasets, LineVul achieved the F1 scores of
56.54% and 44.79%, respectively.

In other words, the experiment results indicate that the ProRLearn frame-
work surpasses existing works that utilize graph properties and semantic
information. In many previous studies, it has been believed that graph-based
feature extraction is more effective in detecting code vulnerabilities than
semantic and syntactic feature extraction.

However, Table 2 shows that graph-based methods (IVDetect, Devign,
Reveal, AMPLE) perform better than token-based methods (SySeVR,
VulDeePecker) in three metrics. This is the exact opposite of our experimental
results. There could be several reasons for this discrepancy. In past research

on semantic and syntactic features, most studies were based on RNN architec-
tures, which (1) did not address the long-term dependency problem effectively
and (2) were trained on specific vulnerability datasets. Our approach suc-
cessfully addressed the issues as mentioned above, and our research results
demonstrate that ProRLearn is more accurate than state-of-the-art methods.

Answer to RQ1: ProRLearn excels beyond all baseline methods across
the metrics of accuracy, precision, and F1 score. Specifically, ProRLearn out-
performs the best baseline method in F1 scores on the two datasets by 3.58%
and 4.07%, respectively.

Table 3 The impact of different prompt methods on the performance of ProRLearn.

Dataset Method Accuracy Precision Recall F1 score

FFMPeg+Qemu

non-prompt 58.05 54.11 74.33 62.63

hard-prompt 63.21 53.19 89.63 66.77

soft-prompt 63.39 54.79 86.25 67.01

hybrid-prompt 64.14 55.99 86.27 67.91

Reveal

non-prompt 90.98 57.86 32.84 41.90

hard-prompt 89.79 65.60 35.19 45.81

soft-prompt 91.22 51.72 47.96 49.77

hybrid-prompt 91.47 53.18 48.06 50.49

5.2 RQ2. Effectiveness of Prompt Tuning

To answer this research question, we initially delved into the contribution
of prompt tuning to the performance of ProRLearn and the effectiveness of
various prompt learning methods.

Our relevant methods for assessing prompt tuning are hard prompt, soft
prompt, and hybrid prompt. We conducted ablation experiments on two
datasets to evaluate the effectiveness of prompt tuning. In particular, we
carried out four experiments on ProRLearn: (1) ProRLearn without prompt
tuning; (2) ProRLearn with the hard prompt; (3) ProRLearn with the soft
prompt; and (4) ProRLearn with the hybrid prompt. The results are presented
in Table 3.

Compared to ProRLearn without prompt tuning, the hybrid prompt
achieved significant improvements in F1 scores of 5.28% and 8.59% on the
two datasets. Additionally, the precision score increased by 1.88% on the
ReVeal [14]. The recall score also demonstrated substantial improvements of
11.94% and 15.22%. Hard and soft prompts outperformed ProRLearn without
prompt learning in terms of F1 and recall scores on the two datasets, indicating

that the prompt tuning module enhances ProRLearn’s performance. Further-
more, the hybrid prompt showed slightly superior performance to hard and soft
prompts, with F1 scores increasing by 1.14% and 4.68% on the two datasets,
respectively. These results underscore the effectiveness of prompt tuning in
improving ProRLearn’s performance in vulnerability detection tasks.

From Table 3, we can observe that any prompt template enhances ProR-
Learn’s performance. This is because prompt tuning transforms the original
classification task into a cloze-style format, similar to the pre-training phase of
the PLM. Prompt tuning enables a more comprehensive and effective utiliza-
tion of the pre-trained knowledge [55] within the PLM. As a result, prompt
tuning methods exhibit improved performance in vulnerability detection,
underscoring the effectiveness of prompt tuning.

Answer to RQ2: Prompt tuning contributes significantly to the perfor-
mance of ProRLearn, with an F1 score improvement of 5.28% and 8.59% on
the two datasets, respectively.

Table 4 Performance differences between different reinforcement learning strategies.

Dataset Method Accuracy Precision Recall F1 score

FFMPeg+Qemu

non-RL 61.54 52.44 74.01 62.57

Q-RL 59.77 54.02 73.33 62.22

PG-RL 64.14 55.99 86.27 67.91

Reveal

non-RL 88.86 42.92 42.48 42.70

Q-RL 89.32 47.17 40.08 43.34

PG-RL 91.47 53.18 48.06 50.49

5.3 RQ3. Effectiveness of Reinforcement learning

To answer this research question, we aim to explore reinforcement learning
ideas’ contribution to ProRLearn performance and evaluate the effectiveness
of different reinforcement learning methods.

It should be noted that in reinforcement learning, the two most com-
mon training methods are policy-based reinforcement learning and value
function-based reinforcement learning. To evaluate the effectiveness of rein-
forcement learning, we performed ablation experiments on three different
versions of ProRLearn for two datasets: ProRLearn without reinforcement
learning (denoted as non-RL), ProRLearn with a value function (denoted as
Q-RL), ProRLearn (denoted as PG-RL) using the policy function. The results
are shown in Table 4. The best results are highlighted in bold.

Performance is similar between contrasting value functions and not using
reinforcement learning (only using prompt tuning). Reinforcement learning

using policy functions significantly improves performance. All evaluation indi-
cators of the policy function on both data sets are better than other methods.
Among them, compared with the ProRLearn method using non-RL, the f1
score increased by 5.34% and 7.79%, and the accuracy increased by 2.6% and
2.59%, respectively. Analysis of this situation shows that RL of value functions
is unsuitable for this task because value functions are suitable for evaluating
whether a state is good or bad, while policy functions are suitable for deter-
mining the actions that should be taken in each state, similar to classification
Tasks. Therefore, the RL of policy functions is more suitable for improving
vulnerability detection performance.

Answer to RQ3: Reinforcement learning contributes significantly to the
performance of ProRLearn, with an F1 score improvement of 5.34% and 7.79%
on the two datasets, respectively.

Table 5 Performance differences between different pre-trained models.

Dataset Method Accuracy F1 score Method Accuracy F1 score

FFMPeg+Qemu

BERT 54.96 55.84 BERT + RL + PT 60.39 59.59

Roberta 48.68 58.73 Roberta + RL + PT 46.52 63.44

CodeT5 46.59 56.83 CodeT5 + RL + PT 50.76 63.69

CodeBERT 59.77 61.59 CodeBERT + RL + PT 61.71 66.10

Reveal

BERT 84.19 33.51 BERT + RL + PT 88.74 36.40

Roberta 87.58 39.52 Roberta + RL + PT 88.61 46.10

CodeT5 82.14 35.77 CodeT5 + RL + PT 86.31 37.86

CodeBERT 89.96 41.98 CodeBERT + RL + PT 89.74 46.15

5.4 RQ4. Effectiveness of Prolearn with Different Models

To answer this research question, we explore the performance of our method
on different pre-trained models.

Although our ProRLearn finally applied the pre-trained model CodeBERT.
However, during the empirical study, we extended the experiments to ver-
ify whether our basic idea is specific to CodeBERT. Specifically, we only
replace the PLM in ProRLearn and keep other ideas unchanged to evalu-
ate our method. When evaluating other models, to be able to ensure that
all models are functioning correctly. Parameter adjustments have been made
for all models. Adjust the original max len parameter to 256, leaving other
parameters unchanged. When evaluating the model, we still use four metrics
to measure its performance comprehensively. This helps us better understand
the applicability and validity of our ideas to different models.

It is obvious from Table 5 that our method can significantly improve the
model’s performance no matter which model architecture is used. PT in the
table represents a prompt tuning. Specifically, when we apply the idea in
the BERT architecture, the F1 score increases by 3.75% and 2.89%. When

we apply the idea in the CodeBERT architecture, the F1 score increases
by 4.51% and 4.17%. When applying the idea in the CodeT5 architecture,
the F1 score increased by 6.86% and 2.09%. When applying the idea in the
Roberta architecture, the F1 score increased by 4.71% and 6.58%. This find-
ing demonstrates the broad applicability of our ideas to larger code bases, as
well as to the vulnerability detection domain. We conducted tests on two dif-
ferent datasets, and the results showed that the CodeBERT architecture we
adopted outperformed other architectures in performance. Furthermore, Code-
BERT significantly outperforms other models regardless of whether our idea
is used. This further proves the effectiveness and superiority of CodeBERT in
vulnerability detection tasks.

It is worth noting that CodeBERT, Roberta [56], CodeT5, and BERT
belong to the same model architecture but use different data sets in the pre-
training stage. CodeBERT uses code-related data sets for training in the pre-
training stage, which may be one of the reasons why CodeBERT performs
better in vulnerability detection tasks. Although CodeT5 also uses code-related
data sets in the training phase, CodeT5 adopts a text-to-text architecture and
is more suitable for code annotation or translation tasks.

Answer to RQ4: Different choices of pre-trained models can influence the
performance of ProRLearn in vulnerability detection. We have experimentally
found that using CodeBERT can achieve the best performance.

6 Discussion

In this section, we perform additional analysis to discuss the results of our
ProRLearn approach further and provide some recommendations for future
researchers.

6.1 How does the size of the reward and verbalizer

impact the performance of ProRLearn?

The impact of the verbalizer is shown in Fig. 6. We tried five different numbers
of verbalizers, the numbers being 1, 2, 3, 4, and 5 respectively. We form a
one-to-many action verbalizer by adding task-related tag words with similar
meanings to the target tag to improve the performance of prompt tuning.
However, it is important to emphasize that adding more verbalizers is not
necessarily better.

According to the results shown in Fig. 6, we can observe that the number of
verbalizers is 3, and the model performance reaches the best state. When the
number of verbalizers increases to 4 or 5, the F1 score decreases slightly. This
means that as the number of prompt words continues to increase, performance
may not continue to improve. Selecting an appropriate number of verbalizers
for combination can further improve the performance of prompt tuning while
reducing the cost of searching for the best performance template.

The impact of reward size: The size of rewards can affect the learning speed
of intelligent agents. Greater rewards make it easier for agents to understand

1 2 3 4 5
Verbalizer of Devign

30
35
40
45
50
55
60
65
70
75

65.65 66.32 67.91 67.58 65.58
61.2 60.87

64.14 63.59
60.43

54.43 55.14 53.99 55.74
52.58

f1-score
accuracy
precision

1 2 3 4 5
Verbalizer of Reveal

10
20
30
40
50
60
70
80
90

100

47.78 49.21 50.49 48.15 46.81

91.06 88.15 91.47 91.2 85.85
75.7

57.41 53.18
63.97 61.11

f1-score
accuracy
precision

Fig. 6 Comparison of verbalizers based on vulnerability detection.

1 10 20 30 40
Reward of Reveal

10
20
30
40
50
60
70
80
90

100

50.49 47.38 49.31 46.8 43.68

91.47 90.71 90.18 91.2
83.81

53.18 55.58 56.21 56.52
50.27

f1-score
accuracy
precision

1 10 20 30 40
Reward of Devign

20

30

40

50

60

70

80
67.91 65.39 64.27 60.88 59.7564.14

60.02 59.77 63.21 59.77
55.99 54.14 52.77

48.16 50.53

f1-score
accuracy
precision

Fig. 7 Performance comparison with different reward sizes.

good behavior and may converge to the optimal strategy faster. The reward
is small, and the agent will need more training samples and learning time.
However, if the reward is too large, it may lead to unstable training, and the
agent may be unable to find the optimal strategy. Therefore, we need to find
the right reward size to ensure that the model performs well in the task.

As shown in Fig. 7, we investigated five different reward values, namely 1,
10, 20, 30, and 40. It is worth noting that the model performs best when the
reward value is 1, and as the reward value gradually increases, the model’s
performance gradually decreases. Specifically, it can be observed from the table
that when the reward value increases from 1 to 40, the F1 score significantly
decreases by 8.16%. This indicates that the reward value set is inappropriate
and will have a negative impact on the detection performance of the model.
Therefore, careful consideration is needed when choosing reward values to
ensure the model performs well.

6.2 How do the different prompt templates impact the

performance of ProRLearn?

From the perspective of prompt templates, we analyze the impact of different
types of templates on model performance. For all prompt template types, we
build three types. They are hard prompts (H1, H2, H3), soft prompts (S1, S2,
S3) and mixed prompts (D1, D2, D3). The three templates set are: 1) Prefix
prompt template: the prompt word comes first, and the source code comes
after; 2) Suffix prompt template: the source code comes first, and the prompt
word comes after; 3) Double-fix prompt template: the prompt word comes
after Both sides, source code in the middle.

Table 6 The impact of different prompt templates on the performance of ProRLearn.

Template
FFMPeg+Qemu Reveal

Accuracy Precision Recall F1 Accuracy Precision Recall F1

H1 Here is [answer] vulnerability. [input] 63.36 54.12 76.37 63.35 90.01 51.51 36.63 47.11

S1 [Mask] [Mask] [answer] [Mask] [Mask] [input] 63.54 51.88 83.73 65.20 89.51 54.65 37.27 47.27

D1 [Mask] [Mask] [answer] vulnerability [Mask] [input] 65.57 53.32 85.16 65.58 91.27 53.16 43.72 47.98

H2 [input] This code is a vulnerability. [answer] 61.48 58.73 64.37 61.42 87.07 52.52 36.63 43.16

S2 [input] [Mask] [Mask] [Mask] [Mask] [Mask] [Mask] [answer] 62.84 58.07 66.34 61.93 88.15 50.55 38.62 43.79

D2 [input] [Mask] [Mask] [Mask] [Mask] vulnerability [Mask] [answer] 63.39 59.08 67.94 63.20 88.73 50.69 39.37 44.32

H3 This code [input] is a vulnerability. [answer] 63.59 53.26 84.63 65.38 90.68 53.39 45.89 49.36

S3 [Mask] [Mask] [input] [Mask] [Mask] [Mask] [Mask] [answer] 62.12 55.34 85.27 67.12 90.47 52.12 47.62 49.77

D3 [Mask] [Mask] [input] [Mask] [Mask] vulnerability [Mask] [answer] 64.14 55.99 86.27 67.91 91.47 53.18 48.06 50.49

According to the results in Table 6, we can observe that the double-fix
prompt template has the best effect, which may be because it combines the
advantages of the prefix prompt template and the suffix prompt template. The
best-performing prompt template (D3) has an improvement of 6.49% relative
to the worst-performing prompt template (H2). In addition, prefix prompt
templates (H1, S1, D1) generally perform better than suffix prompt templates

(H2, S2, D2), meaning placing the prompt words in front of the input text can
achieve better results. This may be because the prompt words in the prefix
position can better guide the pre-trained model to focus on learning the target
task.

6.3 How does our model improve performance on

datasets with different sample sizes?

We evaluate the performance improvement of our method across varying sam-
ple sizes. The original dataset was segmented into four scenarios, with 20%,
40%, 60%, and 80% of the data volume as training data, respectively. The test
set and training set remain unchanged, and we exclusively utilize the F1 score
to measure model performance in this evaluation.

As seen from Table 7, ProRLearn can improve performance with a few sam-
ples. As the sample size continues to increase, the improvement effect increases
significantly. The performance improvement is the highest when the sample size
is increased to 80%. ProRLearn achieves performance improvements with both
few and many samples. The reason is that prompt tuning can perform better
than fine-tuning in a few samples, and RL can further improve performance
as the sample size increases.

Table 7 ProRLearn’s performance (in terms of F1-score (%)) in vulnerability detection in
scenarios with different sample sizes.

Dataset Method 20% 40% 60% 80%

FFMPeg+Qemu

fine-tuning 61.14 61.27 54.76 61.94

prompt-learning 63.07 64.93 57.20 62.55

ProRLearn 64.93 65.76 62.22 67.91

Reveal

fine-tuning 31.62 36.09 40.80 43.78

prompt-learning 34.74 40.08 43.22 46.47

ProRLearn 35.31 41.94 45.37 50.49

7 Threats to Validity

Threats to internal validity mainly relate to minimizing system error.
ProRLearn is controlled by multiple parameters, including learning rate, opti-
mizer, batch size, etc. Different settings of these parameters will produce
different results. However, exploring optimal parameter settings can be difficult
due to the large number of parameters. Our research aims not to seek optimal
parameter settings but to demonstrate the performance of our method through
fair comparison with baseline models. Therefore, the performance of this paper

can be considered as the lower limit of our method, and the performance can
be further improved through parameter optimization.

Threats to external validity mainly relate to the limited size of the
experimental dataset. ProRLearn was evaluated on two datasets because these
two datasets have been previously used in vulnerability detection-related
research work. We only conducted experiments on the C/C++ datasets and
did not cover datasets from other programming languages, such as Java and
Python. In future work, we plan to expand the scope of experiments and
evaluate more datasets to verify and evaluate the effectiveness of ProRLearn.

8 Conclusion and Future work

In this paper, we propose ProRLearn, a novel vulnerability detection frame-
work that combines pre-trained models, prompt tuning, and reinforcement
learning. ProRLearn can quickly apply pre-trained models to specific tasks
with the help of enhanced prompts. RL also guides the model to optimize
specific tasks iteratively. ProRLearn can improve incrementally by interacting
with the environment rather than relying solely on static supervisory signals.
Compared with state-of-the-art DL-based methods, ProRLearn significantly
improves vulnerability detection performance on both datasets, with an F1
score improvement of 3.58% - 28.6%. The results demonstrate the practical-
ity and importance of our ProRLearn in vulnerability detection, reducing the
workload of manual review and vulnerability detection, thereby saving time
and cost.

In the future, we plan to conduct large-scale experiments to explore various
prompt settings and combinations while seeking strategies to optimize model
performance. We will take into account factors such as training time and overall
performance in our comprehensive evaluation.

References

[1] Nord, R.L.: Software vulnerabilities, defects, and design flaws: A technical
debt perspective. In: the 14th Annual Acquisition Research Symposium,
vol. 2017, pp. 67–75. Acquisition Research Program, Naval Postgraduate
School (2017)

[2] Cherem, S., Princehouse, L., Rugina, R.: Practical memory leak detec-
tion using guarded value-flow analysis. In: Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pp. 480–491. Association for Computing Machinery, New York,
NY, USA (2007)

[3] Fan, G., Wu, R., Shi, Q., Xiao, X., Zhou, J., Zhang, C.: Smoke: scalable
path-sensitive memory leak detection for millions of lines of code. In:
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 72–82. IEEE, Montreal, QC, Canada (2019)

[4] Kroening, D., Tautschnig, M.: Cbmc–c bounded model checker: (compe-
tition contribution). In: Proceedings of the 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Sys-
tems. Grenoble, France, April 5-13, 2014., pp. 389–391. Springer, Berlin,
Heidelberg (2014)

[5] Heine, D.L., Lam, M.S.: Static detection of leaks in polymorphic con-
tainers. In: Proceedings of the 28th International Conference on Software
Engineering, pp. 252–261. Association for Computing Machinery, New
York, NY, USA (2006)

[6] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y.:
Vuldeepecker: A deep learning-based system for vulnerability detection.
arXiv preprint arXiv:1801.01681 (2018)

[7] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: Sysevr: A framework for
using deep learning to detect software vulnerabilities. IEEE Transactions
on Dependable and Secure Computing 19(4), 2244–2258 (2021)

[8] Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: Effective vulnerabil-
ity identification by learning comprehensive program semantics via graph
neural networks. Advances in neural information processing systems 32
(2019)

[9] Li, Y., Wang, S., Nguyen, T.N.: Vulnerability detection with fine-grained
interpretations. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pp. 292–303. Association for Computing
Machinery, New York, NY, USA (2021)

[10] Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir,
O., Ellingwood, P., McConley, M.: Automated vulnerability detection in
source code using deep representation learning. In: 2018 17th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA), pp.
757–762. IEEE, Orlando, FL, USA (2018)

[11] Lomio, F., Iannone, E., De Lucia, A., Palomba, F., Lenarduzzi, V.: Just-
in-time software vulnerability detection: Are we there yet? Journal of
Systems and Software 188, 111283 (2022)

[12] Cao, S., Sun, X., Bo, L., Wu, R., Li, B., Tao, C.: MVD: memory-related
vulnerability detection based on flow-sensitive graph neural networks. In:
Proceedings of the 44th International Conference on Software Engineer-
ing, pp. 1456–1468. Association for Computing Machinery, New York,
NY, USA (2022)

[13] Cheng, X., Zhang, G., Wang, H., Sui, Y.: Path-sensitive code embedding

via contrastive learning for software vulnerability detection. In: Proceed-
ings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 519–531. Association for Computing Machinery,
New York, NY, USA (2022)

[14] Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based
vulnerability detection: Are we there yet. IEEE Transactions on Software
Engineering 48(9), 3280–3296 (2021)

[15] Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Yao, Y.,
Zhang, A., Zhang, L., et al.: Pre-trained models: Past, present and future.
AI Open 2, 225–250 (2021)

[16] Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X.: Pre-trained models
for natural language processing: A survey. Science China Technological
Sciences 63(10), 1872–1897 (2020)

[17] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M.,
Zhou, Y., Li, W., Liu, P.J.: Exploring the limits of transfer learning
with a unified text-to-text transformer. The Journal of Machine Learning
Research 21(1), 5485–5551 (2020)

[18] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language
models are few-shot learners. Advances in neural information processing
systems 33, 1877–1901 (2020)

[19] Li, X., Ren, X., Xue, Y., Xing, Z., Sun, J.: Prediction of vulnerability
characteristics based on vulnerability description and prompt learning.
In: 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), Taipa, Macao, pp. 604–615 (2023). IEEE

[20] Wen, X.-C., Chen, Y., Gao, C., Zhang, H., Zhang, J.M., Liao, Q.:
Vulnerability detection with graph simplification and enhanced graph
representation learning. arXiv preprint arXiv:2302.04675 (2023)

[21] Dam, H.K., Tran, T., Pham, T., Ng, S.W., Grundy, J., Ghose, A.:
Automatic feature learning for vulnerability prediction. arXiv preprint
arXiv:1708.02368 (2017)

[22] Wang, C., Yang, Y., Gao, C., Peng, Y., Zhang, H., Lyu, M.R.: No
more fine-tuning? an experimental evaluation of prompt tuning in code
intelligence. In: Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 382–394. Association for Computing Machinery, New
York, NY, USA (2022)

[23] Wu, Y., Zou, D., Dou, S., Yang, W., Xu, D., Jin, H.: VulCNN: An image-
inspired scalable vulnerability detection system. In: Proceedings of the
44th International Conference on Software Engineering, pp. 2365–2376.
Association for Computing Machinery, Pittsburgh, USA (2022)

[24] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing. ACM Computing Surveys 55(9), 1–35
(2023)

[25] Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction.
Robotica 17(2), 229–235 (1999)

[26] Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., Funkhouser, T.:
Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning. In: 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 4238–4245. IEEE,
Madrid, Spain (2018)

[27] Rosenstein, M.T., Barto, A.G., Si, J., Barto, A., Powell, W., Wunsch, D.:
Supervised actor-critic reinforcement learning. Learning and Approximate
Dynamic Programming: Scaling Up to the Real World, 359–380 (2004)

[28] Lagoudakis, M.G., Parr, R.: Reinforcement learning as classification:
Leveraging modern classifiers. In: Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pp. 424–431. AAAI Press,
Washington, DC USA (2003)

[29] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A
survey. Journal of artificial intelligence research 4, 237–285 (1996)

[30] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Belle-
mare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G.,
et al.: Human-level control through deep reinforcement learning. nature
518(7540), 529–533 (2015)

[31] Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforce-
ment learning. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Santiago Chile, pp. 2488–2496 (2015)

[32] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., et al.: Mastering the game of go with deep neural networks and tree
search. nature 529(7587), 484–489 (2016)

[33] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement
learning framework for autonomous driving. Electronic Imaging 29(19),

70–76 (2017)

[34] Shao, K., Tang, Z., Zhu, Y., Li, N., Zhao, D.: A survey of deep
reinforcement learning in video games. arXiv e-prints, 1912 (2019)

[35] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8, 279–292 (1992)

[36] Osband, I., Blundell, C., Pritzel, A., Van Roy, B.: Deep exploration via
bootstrapped DQN. Advances in neural information processing systems
29, 4026–4034 (2016)

[37] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.:
Deterministic policy gradient algorithms. In: International Conference on
Machine Learning, pp. 387–395. Pmlr, Bejing, China (2014)

[38] Qiu, C., Hu, Y., Chen, Y., Zeng, B.: Deep deterministic policy gradient
(ddpg)-based energy harvesting wireless communications. IEEE Internet
of Things Journal 6(5), 8577–8588 (2019)

[39] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L.,
Qin, B., Liu, T., Jiang, D., et al.: CodeBERT: A pre-trained model for
programming and natural languages. In: Findings of the Association for
Computational Linguistics, pp. 1536–1547. Association for Computational
Linguistics, Online (2020)

[40] Jiang, Z., Xu, F.F., Araki, J., Neubig, G.: How can we know what lan-
guage models know? Transactions of the Association for Computational
Linguistics 8, 423–438 (2020)

[41] Qin, G., Eisner, J.: Learning how to ask: Querying lms with mixtures of
soft prompts. In: Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pp. 5203–5212. Association for
Computational Linguistics, Online (2021)

[42] Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., Tang, J.: Gpt
understands, too. AI Open (2023)

[43] Howard, J., Ruder, S.: Universal language model fine-tuning for text clas-
sification. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 328–339.
Association for Computational Linguistics, Melbourne, Australia (2018)

[44] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018)

[45] Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text clas-
sification and natural language inference. In: Proceedings of the 16th
Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, pp. 255–269. Association for Computational
Linguistics, Online (2021)

[46] Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for gen-
eration. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597.
Association for Computational Linguistics, Online (2021)

[47] Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-
efficient prompt tuning. In: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 3045–3059.
Association for Computational Linguistics, Online and Punta Cana,
Dominican Republic (2021)

[48] Gu, Y., Han, X., Liu, Z., Huang, M.: Ppt: Pre-trained prompt tuning
for few-shot learning. In: Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp.
8410–8423. Association for Computational Linguistics, Dublin, Ireland
(2022)

[49] Han, X., Zhao, W., Ding, N., Liu, Z., Sun, M.: Ptr: Prompt tuning with
rules for text classification. AI Open 3, 182–192 (2022)

[50] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., et al.: Huggingface’s
transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771 (2019)

[51] Fan, J., Li, Y., Wang, S., Nguyen, T.N.: Ac/c++ code vulnerability
dataset with code changes and cve summaries. In: 2020 IEEE/ACM 17th
International Conference on Mining Software Repositories (MSR), pp.
508–512 (2020). IEEE

[52] Croft, R., Babar, M.A., Kholoosi, M.M.: Data quality for software vul-
nerability datasets. In: 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), pp. 121–133 (2023). IEEE

[53] Fu, M., Tantithamthavorn, C.: Linevul: A transformer-based line-level
vulnerability prediction. In: Proceedings of the 19th International Con-
ference on Mining Software Repositories, pp. 608–620 (2022). IEEE

[54] Hin, D., Kan, A., Chen, H., Babar, M.A.: Linevd: Statement-level vul-
nerability detection using graph neural networks. In: 2022 IEEE/ACM

19th International Conference on Mining Software Repositories (MSR),
pp. 596–607 (2022). IEEE

[55] Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for text
classification? In: Proceedings of the 18th China National Conference
on Chinese Computational Linguistics, Kunming, China, October 18–20,
2019, pp. 194–206 (2019)

[56] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O.,
Lewis, M., Zettlemoyer, L., Stoyanov, V.: RoBERTa: A robustly optimized
BERT pretraining approach. In: International Conference on Learning
Representations, Addis Ababa, Ethiopia (2020)

	Introduction
	Background
	Vulnerability detection
	Prompt tuning
	Reinforcement learning

	Approach
	Preprocessing Phase
	Prompt Tuning Implementation
	Reinforcement Learning Implementation

	Experimental Evaluation
	Research Questions
	Datasets
	Performance Metrics
	Baseline Methods
	Experimental Settings

	Experimental Results
	RQ1. Effectiveness of ProRLearn
	RQ2. Effectiveness of Prompt Tuning
	RQ3. Effectiveness of Reinforcement learning
	RQ4. Effectiveness of Prolearn with Different Models

	Discussion
	How does the size of the reward and verbalizer impact the performance of ProRLearn?
	How do the different prompt templates impact the performance of ProRLearn?
	How does our model improve performance on datasets with different sample sizes?

	Threats to Validity
	Conclusion and Future work

