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Abstract This paper is an extended description of SemEval-2014 Task 1, the task on the evalu-
ation of Compositional Distributional Semantics Models on full sentences. Systems participating
in the task were presented with pairs of sentences and were evaluated on their ability to predict
human judgments on (i) semantic relatedness and (ii) entailment. Training and testing data were
subsets of the SICK (Sentences Involving Compositional Knowledge) data set. SICK was devel-
oped with the aim of providing a proper benchmark to evaluate compositional semantic systems,
though task participation was open to systems based on any approach. Taking advantage of the
SemEval experience, in this paper we analyze the SICK data set, in order to evaluate the extent
to which it meets its design goal and to shed light on the linguistic phenomena that are still chal-
lenging for state-of-the-art computational semantic systems. Qualitative and quantitative error
analyses show that many systems are quite sensitive to changes in the proportion of sentence
pair types, and degrade in the presence of additional lexico-syntactic complexities which do not
affect human judgements. More compositional systems seem to perform better when the task
proportions are changed, but the effect needs further confirmation.

1 Introduction

Distributional Semantic Models (DSMs) approximate the meaning of words with vectors sum-
marizing their patterns of co-occurrence in corpora. Recently, several compositional extensions
of DSMs (CDSMs) have been proposed, with the purpose of representing the meaning of phrases
and sentences by composing the distributional representations of the words they contain (Baroni
and Zamparelli, 2010; Mitchell and Lapata, 2010; Grefenstette and Sadrzadeh, 2011; Socher et al,
2012). Despite the ever increasing interest of the field in this domain, the development of adequate
benchmarks for CDSMs, especially at the sentence level, is still lagging behind. Existing data
sets, such as those introduced by Mitchell and Lapata (2008) and Grefenstette and Sadrzadeh
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(2011), are limited to a few hundred instances of very short sentences with a fixed structure. In
the last ten years, several large data sets have been developed for various computational seman-
tics tasks, such as Semantic Text Similarity (STS) (Agirre et al, 2012) or Recognizing Textual
Entailment (RTE) (Dagan et al, 2006). Working with such data sets, however, requires dealing
with issues, such as identifying non-compositional multiword expressions, recognizing named en-
tities or accessing encyclopedic knowledge, which have little to do with compositionality per se.
CDSMs should instead be evaluated on data that is challenging for reasons due to semantic com-
positionality, such as context-cued synonymy resolution and other lexical variation phenomena,
active/passive and other syntactic alternations, impact of negation at various levels, operator
scope, and other effects linked to the functional lexicon. These issues do not occur frequently in,
e.g., the STS and RTE data sets.

With these considerations in mind, we developed SICK (Sentences Involving Compositional
Knowledge), a data set aimed at filling this gap, including a large number of sentence pairs that
are rich in the lexical, syntactic and semantic phenomena that CDSMs are expected to account
for, but do not require dealing with other aspects of existing sentential data sets that are not
within the scope of compositional distributional semantics. Moreover, we distinguished between
generic semantic knowledge about general concept categories (such as knowledge that a couple is
formed by a bride and a groom) and encyclopedic knowledge about specific instances of concepts
(e.g., the fact that the current president of the US is Barack Obama). The SICK data set contains
many examples of the former, but none of the latter.

SICK was used in the SemEval 2014 shared task on the evaluation of Compositional Distri-
butional Semantics Models on full sentences (Marelli et al, 2014a), where systems were presented
with pairs of sentences and were evaluated on two tasks: (i) predicting the degree of semantic re-
latedness between the two sentences, and (ii) detecting the entailment relation holding between
them. These two tasks are not new in the literature. With respect to the first one, previous
works often used tasks of semantic similarity, rather than semantic relatedness. In the Semantic
Text Similarity Task of Agirre et al (2012), for instance, ‘similarity’ is defined as the degree of
equivalence between two sentences. Budanitsky and Hirst (2006) highlighted how the concept of
‘relatedness’ is more general than that of ‘similarity’; the relatedness between two entities can be
expressed by many relations, and similarity (e.g. money-cash) is just one of them. Other possible
relations are meronymy (e.g. car-wheel), antonymy (e.g hot-cold) or even just frequent association
(e.g. rain-flood). This explains why, according to Gabrilovich and Markovitch (2007), the assess-
ment of semantic relatedness involves a deeper understanding of the text than the evaluation of
semantic similarity, one which requires common sense and domain-specific knowledge.

The entailment task consists of deciding, given two text fragments, whether the meaning of
one text fragment is entailed (i.e. can be inferred) by the other. The notion of entailment is
defined in terms of truth values: a text t entails another text h if, typically, a human reading
t would infer that h is most likely true (Dagan et al, 2006). The entailment relation differs
from traditional text similarity, and can only be applied to declarative sentences, qua truth-
value bearing elements. Both tasks can be formally defined, or left at an intuitive level: in the
SICK data set gold-standard annotation was obtained via crowdsourcing by giving participants
examples of the various relations, rather than the exact definition of the two tasks.

The SICK-based SemEval evaluation exercise was especially targeted to developers of CDSMs,
but participation was open to systems based on any approach. The rationale behind this choice
was that—besides being of intrinsic interest—the performance of the latter systems would situate
CDSM’s performance within the broader landscape of computational semantics. The SemEval
results highlighted the need for a deeper analysis of the various performances, with the aim of
understanding the specific characteristics of the systems and the main difficulties encountered in
addressing the various phenomena represented in SICK.
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This paper attempts to carry out this analysis, using various orthogonal approaches. First, we
try to distinguish, when possible, the contribution to the final result of the more compositional
features used by some of the systems, especially in terms of robustness. In order to study this
aspect, we check how the various systems performed on a subset of the results where the task’s
conditions have been balanced. Finally, we carry out a qualitative evaluation of those cases
that were easy for humans but hard for machines, looking for linguistic generalizations, but
also for better ways to design future releases of the data set or alternative methods to study
compositionality in computational semantics.

The paper is organized as follows. In Section 2 we introduce the SICK data set, describing
how it was built and giving detailed statistics about the type of data it contains. In Section
3 we present the SemEval 2014 shared task where SICK was proposed, and its outcomes in
terms of community response, results achieved, and approaches adopted. Finally, in Section 4 we
present the new analyses carried out on the data set and on the performances of the participating
systems.

2 The SICK data set

The SICK data set1 consists of about 10,000 English sentence pairs annotated for relatedness in
meaning and entailment. The main characteristics of the data set are outlined in the following
subsections, while all the details about the procedure followed in its creation can be found in
Marelli et al (2014b).

2.1 Data set creation

SICK was built starting from two existing data sets: the 8K ImageFlickr data set2 (Hodosh et al,
2013) and the SemEval-2012 STS MSR-Video Descriptions data set3 (Chen and Dolan, 2011).
The 8K ImageFlickr data set is a data set of images, where each image is associated with five
descriptions. To derive SICK sentence pairs we randomly chose 750 images and we sampled two
descriptions from each of them. The SemEval-2012 STS MSR-Video Descriptions data set is a
collection of sentence pairs sampled from the short video snippets which comprise the Microsoft
Research Video Description Corpus. A subset of 750 sentence pairs were randomly chosen from
this data set to be used in SICK.

In order to generate SICK data from the 1,500 sentence pairs taken from the source data sets,
a 3-step process was applied to each sentence composing the pair, namely (i) normalization, (ii)
expansion and (iii) pairing. Table 1 presents an example of the output of each step in the process.

The normalization step was carried out on the original sentences (Orig a, Orig b) to exclude
or simplify instances that contained lexical, syntactic or semantic phenomena that CDSMs are
currently not expected to account for. For instance, named entities were replaced with words
standing for the class (e.g. Ferrari with car); numbers not acting as determiners were removed
(e.g. “A football player is wearing a green jersey with the number 4 on it” was normalized as “A
football player is wearing a green jersey with a number on it”), while numbers used as determiners
were turned into letters (e.g. 3 people into Three people); multiword expressions - i.e. sequences
of words which habitually co-occur and whose meaning cannot be derived compositionally - were

1 The original SICK data set and all the derived versions used for the analyses carried out in this paper can be
downloaded at http://clic.cimec.unitn.it/composes/sick.html.

2 http://nlp.cs.illinois.edu/HockenmaierGroup/data.html
3 http://www.cs.york.ac.uk/semeval-2012/task6/index.php?id=data
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Table 1 Data set creation process. Examples of the normalization and expansion of a sentences pair.

Original pair

Orig a: “A sea turtle is hunting for fish” Orig b: “The turtle followed the fish”

Normalized pair

Norm a: “A sea turtle is hunting for fish” Norm b: “The turtle is following the fish”

Expanded pairs

Sim a: “A sea turtle is hunting for food” Sim b: “The turtle is following the red fish”

Contr a: “A sea turtle is not hunting for fish” Contr b: “The turtle isn’t following the fish”

Diff a: “A fish is hunting for a turtle in the sea” Diff b: “The fish is following the turtle”

removed. The general idea behind normalization was to remove unwanted phenomena without
changing the original sentence significantly and make it easily processable by state-of-the-art
parsers. To ensure the quality of the normalization phase, each sentence in the original pairs
was normalized by two different annotators with a strong background in linguistics, and a third
judge chose the most suitable one. A post-check of the data set revealed that some multiword
expressions are actually present in the data. These are mostly of two types: (i) they have the
function of subject in the sentence, and were thus not removable without considerably modifying
it; (ii) they are not clearly non compositional and can be processed by systems. Related to this
latter characteristics, it has to be acknowledged that the boundary between multiwords and free
(i.e. completely compositional) combinations of words is not clear-cut, and distinguishing between
expressions that lie in the middle of a continuum is a very subtle and sometimes controversial
task.

The expansion step was applied to each of the normalized sentences (Norm a, Norm b) in
the pair, in order to create up to three new sentences for each normalized one with specific
characteristics suitable for CDSM evaluation. In this step, syntactic and lexical transformations
with predictable effects were applied to each normalized sentence, in order to obtain (i) a sentence
with a similar meaning (Sim), (ii) a sentence with a logically contradictory or at least highly
contrasting meaning (Contr), and (iii) a sentence that contains most of the same lexical items, but
has a different meaning (Diff). The latter transformation was carried out mainly by scrambling
the words of the normalized sentence, but only where this scrambling could yield a meaningful
sentence; as a result, not all normalized sentences have a Diff expansion. Note that as a result of
the expansion process, two expansion sets are created for each pair, one for each of the normalized
sentences.

Finally, in the pairing step each normalized sentence (i.e. Norm a, Norm b) was combined
with all the sentences resulting from the expansion phase as well as with the other normalized
sentence in the pair, leading to a total of 13 different sentence pairs. Among them, 6 pairs be-
long to the same expansion set, i.e. the paired sentences originate from the same source sentence
(Norm a-Sim a,Norm a-Contr a,Norm a-Diff a,Norm b-Sim b,Norm b-Contr b,Norm b-Diff b) –
we will refer to them as the “same set” pairs – while 7 pairs are composed of sentences belong-
ing to the different expansion sets (Norm a-Norm b, Norm a-Sim b, Norm b-Sim a, Norm a-
Contr b, Norm b-Contr a, Norm a-Diff b, Norm b-Diff a) – we will refer to them as the “cross
set” pairs.

Furthermore, a number of pairs composed of completely unrelated sentences were added to
the data set by randomly taking two sentences from two different pairs. For example: “A sea
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Table 2 Distribution of the SICK sentence pairs with respect to the transformations performed during data set
creation.

Expected relation N. of pairs

Similar meaning 4366 (44.4%)

Norm a-Sim a, Norm a-Sim b, Norm b-Sim a, Norm b-Sim b, Norm a-Norm b

Contrasting meaning 3574 (36.3%)

Norm a-Contr a, Norm a-Contr b, Norm b-Contr a, Norm b-Contr b

Similar lexicon, different meaning 703 (7.1%)

Norm a-Diff a, Norm a-Diff b, Norm b-Diff a, Norm b-Diff b

Unrelated 1197 (12.2%)

Total 9840 (100%)

turtle is hunting for fish” and “A young woman is playing the guitar”. The result is a set of about
10,000 new sentence pairs, in which each sentence is contrasted with either a (near) paraphrase, a
contradictory or strongly contrasting statement, another sentence with very high lexical overlap
but different meaning, or a completely unrelated sentence. The rationale behind this approach was
to build a data set which hindered methods based on individual lexical items, on the syntactic
complexity of the two sentences or on pure world knowledge, thus encouraging the use of a
compositional semantics step in understanding when two sentences have close meanings or entail
each other.

The distribution of the SICK sentence pairs with respect to the transformations performed
during data set creation is presented in Table 2, which summarizes the type of relation predicted
to hold between the sentences in the pair, all the pairing combinations and their frequencies
in the data set. We stress that we constructed the pairs by following the procedure outlined in
order to generate a balanced distribution of possible sentence relations. However, the ultimate
assessment of semantic relatedness and entailment between sentence pairs was left to human
judges, as illustrated in the next section.

2.2 Relatedness and Entailment annotation

Each pair in the SICK data set was annotated to mark (i) the degree to which the two sentence
meanings are related (on a 5-point scale), and (ii) whether one entails the other. In particular, for
the entailment task three labels were considered: ENTAILMENT (if sentence A is true, sentence
B is true), CONTRADICTION (if A is true, then B is false), NEUTRAL (the truth of B cannot
be determined on the basis of A).

The ratings were collected through a large crowdsourcing study (see Marelli et al (2014b) for
all details), where each pair was evaluated by 10 different subjects, and the order of presentation
of the sentences was counterbalanced (i.e., 5 judgments were collected for each presentation
order). Swapping the order of the sentences within each pair served a two-fold purpose: (i)
evaluating the entailment relation in both directions and (ii) controlling possible bias due to
priming effects in the relatedness task. In order to clarify the task to non-expert participants,
while avoiding biasing their judgments with strict definitions, the instructions described the task
through examples of relatedness and entailment. Furthermore for the entailment task participants
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Table 3 Examples of sentences pairs with their gold relatedness scores (on a 5-point rating scale).

Relatedness score Example

1.6 A: “A man is jumping into an empty pool”

B: “There is no biker jumping in the air”

2.9 A: “Two children are lying in the snow and are making snow angels”

B: “Two angels are making snow on the lying children”

3.6 A: “The young boys are playing outdoors and the man is smiling nearby”

B: “There is no boy playing outdoors and there is no man smiling”

4.9 A: “A person in a black jacket is doing tricks on a motorbike”

B: “A man in a black jacket is doing tricks on a motorbike”

Table 4 Examples of sentences pairs with their gold entailment labels.

Entailment label Example

ENTAILMENT A: “Two teams are competing in a football match”

B: “Two groups of people are playing football”

CONTRADICTION A: “The brown horse is near a red barrel at the rodeo”

B: “The brown horse is far from a red barrel at the rodeo”

NEUTRAL A: “A man in a black jacket is doing tricks on a motorbike”

B: “A person is riding the bicycle on one wheel”

were explicitly asked to assume that both sentences referred to the same situation or event. As
we shall see, this instruction – crucial for correctly interpreting the sentences and judging their
entailments – was not always followed.

Once all the annotations were collected, the gold labels were calculated with two different
methodologies. For each pair, the relatedness gold score was computed as the average of the 10
ratings assigned by the participants. Table 3 shows examples of sentence pairs with different
degrees of semantic relatedness. As a measure of (inverse) inter–rater agreement, we computed
the average of the standard deviation of relatedness scores for each sentence pair, resulting in
SD = 0.84.4 This means that, on average, participants’ judgments varied ±0.84 rating points
around the final score assigned to each pair.

With regards to entailment gold labels, a majority vote schema was adopted. Pairs were
classified as CONTRADICTION when most participants indicated that “if sentence A is true,
sentence B is false” in both presentation orders; pairs were classified as ENTAILMENT when
most participants indicated that “if sentence A is true, sentence B is true” for the corresponding
presentation order; the remaining pairs were classified as NEUTRAL. Thus, a pair was classified
as NEUTRAL in two conditions: when most participants indicated that “the truth of B cannot be
determined on the basis of A” for the corresponding presentation order, and when the majority
label was CONTRADICTION only in one presentation order. Table 4 shows examples of sentence
pairs with different entailment relations. Inter–rater agreement for the entailment task was 0.87,

4 Inter–rater agreement figures given in this paper for both relatedness and entailment slightly differ from those
reported in (Marelli et al, 2014b), due to a small bug that has been fixed.
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Table 5 Distribution of sentences pairs across the two tasks according to the relatedness and entailment anno-
tations.

relatedness NEUTRAL CONTRADICTION ENTAILMENT TOTAL

1-2 range 922 (10%) 0 (0%) 1 (0%) 923 (10%)

2-3 range 1253 (13%) 118 (1%) 2 (0%) 1373 (14%)

3-4 range 2742 (28%) 994 (10%) 136 (1%) 3872 (39%)

4-5 range 678 (7%) 312 (3%) 2682 (27%) 3672 (37%)

TOTAL 5595 (58%) 1424 (14%) 2821 (28%) 9840 (100%)

computed as the average proportion of the majority vote across pairs and indicating that, as an
average, 87% of participants agreed with the majority vote in each pair.

In the relatedness task, participants’ ratings present a certain degree of variability. One may
thus challenge the reliability of these data, claiming that the responses are largely random.
Certainly, this seems unlikely for the overall data set, but may be more reasonable when con-
sidering the ratings in specific entailment classes. In CONTRADICTION pairs, for example, the
relatedness-response variance is 1.198, as opposed to the 0.718 variance of the full data set. To
clarify this point we ran a simulation study to estimate the rating distribution under a random-
response assumption. We computed the variance of 10 points randomly sampled from the 1-5
range (representing participants’ responses to a given pair) in 10,000 examples (i.e., the number
of pairs in the whole data set). The range of the resulting average variances, based on a total
of 20,000 of these simulations, was from 1.965 to 2.032. That is, if responses were given at the
chance level on a 5-point scale in a data set of this size, we would expect the average variance
value to be between 1.965 and 2.032.5 The observed variance values are out of this interval, in-
dicating that the distribution of the actual responses is virtually impossible at the chance level,
and supporting the reliability of participants’ responses.

2.3 Data set statistics

The resulting data set is presented in Table 5, which shows the gold data when considering the
relatedness and entailment results together: each cell in the table reports the number of sentence
pairs for each combination between relatedness classes and entailment labels. As the table shows,
the great majority of pairs in the ENTAILMENT relation are highly related (2682/2821 pairs
are in the highest relatedness range), and also CONTRADICTION pairs have high relatedness
scores (994/1424 contradictions are in the 3-4 range).

A further analysis of the gold relatedness scores and entailment labels was carried out to
investigate how they are distributed across the various pair types. The relatedness score dis-
tribution is summarized in Table 6. The Norm-Sim pairs (similar meaning) were judged to be
maximally related, followed by Norm-Contr (contrasting) and Norm-Diff (lexical overlap only).
This confirms what can be gleaned from Table 5: pairs conveying an opposite/contrasting mean-
ing (Norm-Contr) are judged as more related than pairs that have no strong meaning relation but
contain the same words (Norm-Diff ). The high relatedness scores obtained for opposite sentences
also highlights the difference between using similarity and relatedness (see Section 1). This trend

5 A comparable variance range is obtained running the same simulation on the number of CONTRADICTION
pairs (1424).



8 Luisa Bentivogli et al.

Table 6 Average relatedness scores (and corresponding standard deviations) for each pair type.

Type of pair Average relatedness (SD)

Norm-Sim same set 4.65 (.29)

Norm-Contr same set 3.59 (.44)

Norm-Diff same set 3.40 (.57)

Norm-Norm cross set 3.82 (.70)

Norm-Sim cross set 3.75 (.70)

Norm-Contr cross set 3.15 (.65)

Norm-Diff cross set 2.94 (.66)

Unrelated pairs 1.78 (.85)

Table 7 Distribution of entailment annotations across pair types.

Type of pair ENTAILMENT CONTRADICTION NEUTRAL

Norm-Sim same set 94.2% 0% 5.8%

Norm-Contr same set 0.9% 58.2% 40.9%

Norm-Diff same set 9.8% 1.9% 88.3%

Norm-Norm cross set 37.8% 0.2% 62%

Norm-Sim cross set 35% 0% 65%

Norm-Contr cross set 2.5% 16.9% 80.6%

Norm-Diff cross set 4% 0% 96%

Unrelated pairs 0.9% 0.3% 98.8%

could be observed both when comparing sentences belonging to the same expansion set, that
is, originating from the same source sentence (Norm a-Sim a, Norm b-Sim b, Norm a-Contr a,
Norm b-Contr b, Norm a-Diff a, Norm b-Diff b), and in pairs containing sentences from different
sets (Norm a-Sim b, Norm b-Sim a, Norm a-Contr b, Norm b-Contr a, Norm a-Diff b, Norm b-
Diff a), although the latter case is characterized by generally lower ratings and higher variance.
This was expected, since the STS source pairs were already capturing some degree of relatedness.
Unrelated pairs were assigned the lowest average ratings.

Distributions of the entailment labels are reported in Table 7 (percentage of assigned label
to pair type). The results generally match our expectations when considering pairs of sentences
from the same expansion set. The ENTAILMENT label is mostly assigned in case of Norm-
Sim pairs (similar meaning), the CONTRADICTION label in case of Norm-Contr pairs (con-
trast/contradiction), and the NEUTRAL label in case of Norm-Diff pairs (lexical overlap only).
We observe however a relatively high proportion of Norm-Contr pairs labeled NEUTRAL. In-
spection of the NEUTRAL Norm-Contr pairs reveals a significantly higher incidence of pairs of
sentences where subjects contained indefinite articles (72% vs. 19% in the CONTRADICTION
pairs). Our explanation is that for these pairs - despite the specific instructions requiring to
assume that both sentences refer to the same entity, situation or event - subjects tend to think
that, for instance, “A woman is wearing an Egyptian headdress” does not contradict “A woman
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is wearing an Indian headdress”, since one could easily imagine both sentences truthfully uttered
in a single scene, where two different women are wearing different headdresses. In the future,
a higher proportion of CONTRADICTION labels could be elicited by using grammatical and
possibly visual cues (pictures), to encourage co-indexing of the entities in the two sentences.

We observe a weaker link between expected and assigned labels among the cross-set pairs,
as most of the pairs belong to the NEUTRAL group. The influence of pair type can still be
observed, though: ENTAILMENT is assigned to 35% of the Norm-Sim cross-set pairs, whereas
CONTRADICTION is assigned to 16.9% of the Norm-Contr cross-set pairs. The preponderance
of NEUTRAL is not surprising either, as in the cross-set condition the original pairs were al-
ready different to start with. The transformation process brought them further apart, making
it less likely that the new pairs would describe situations similar enough to trigger contradic-
tion/contrast intuitions (indeed, we observed above that for the cross-set cases we have lower
relatedness ratings).

3 SemEval 2014 Task 1: Evaluation of compositional distributional semantic
models on full sentences through semantic relatedness and textual entailment

The SICK-based SemEval challenge6 involved two subtasks: predicting a continuous relatedness
score for SICK sentence pairs (a direct way to evaluate the extent to which CDSMs can quantify
the degree of semantic relatedness between sentences) and (ii) stating their entailment status
(ENTAIL, CONTRADICT or NEUTRAL).

3.1 SICK for SemEval

For the purpose of the tasks, the data set was randomly split into training and test set (50%
and 50%), ensuring that each relatedness range and entailment category was equally represented
in both sets. Table 8 shows the distribution of sentence pairs considering the combination of
relatedness ranges and entailment labels. The “TOTAL” column indicates the total number of
pairs in each range of relatedness, while the “TOTAL” row contains the total number of pairs in
each entailment class.

3.2 Evaluation metrics and baselines

Both subtasks were evaluated using standard metrics. In particular, the official measures chosen
to rank the participating systems were Pearson correlation (r) for the relatedness subtask and
accuracy for the entailment subtask. Furthermore, systems’ results were additionally evaluated
using Spearman correlation and Mean Squared Error (MSE) for relatedness and Precision, Recall,
and F measure for entailment.

Table 9 presents the performance of 4 baselines. The Majority baseline always assigns the
most common label in the training data (NEUTRAL), whereas the Probability baseline as-
signs labels randomly according to their relative frequency in the training set. The Overlap
baseline measures word overlap, again with parameters (number of stop words and ENTAIL-
MENT/NEUTRAL/CONTRADICTION thresholds) estimated on the training part of the data.
Since the Majority and Probability baselines require discrete distributions, they cannot be com-
puted for the relatedness task, where continuous scores are used. The code for computing the

6 http://alt.qcri.org/semeval2014/task1/
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Table 8 Distribution of sentence pairs across the Training and Test Sets according to the relatedness and entail-
ment annotations.

SICK Training Set

relatedness CONTRADICTION ENTAILMENT NEUTRAL TOTAL

1-2 range 0 (0%) 0 (0%) 471 (10%) 471 (10%)

2-3 range 59 (1%) 2 (0%) 638 (13%) 699 (14%)

3-4 range 498 (10%) 71 (1%) 1344 (27%) 1913 (38%)

4-5 range 155 (3%) 1344 (28%) 352 (7%) 1851 (38%)

TOTAL 712 (14%) 1417 (29%) 2805 (57%) 4934 (100%)

SICK Test Set

relatedness CONTRADICTION ENTAILMENT NEUTRAL TOTAL

1-2 range 0 (0%) 1 (0%) 451 (9%) 452 (9%)

2-3 range 59 (1%) 0 (0%) 615 (13%) 674 (14%)

3-4 range 496 (10%) 65 (1%) 1398 (28%) 1959 (39%)

4-5 range 157 (3%) 1338 (28%) 326 (7%) 1821 (38%)

TOTAL 712 (14%) 1404 (29%) 2790 (57%) 4906 (100%)

Table 9 Performance of baselines. Figure of merit is Pearson (r) correlation for relatedness and accuracy for
entailment. NA = Not Applicable.

Baseline Relatedness (r) Entailment (accuracy)

Chance 0 33.3%

Majority NA 56.7%

Probability NA 41.8%

Overlap 0.63 56.2%

baselines - including full documentation - is freely available and can be downloaded from the
SemEval website.7

3.3 Submitted runs and results

Overall, 21 teams participated in the task. Participants were allowed to submit up to 5 runs for
each subtask and had to choose the primary run to be included in the comparative evaluation.
We asked participants to pre-specify a primary run to encourage commitment to a theoretically-
motivated approach, rather than a post-hoc performance-based assessment. Interestingly, some
participants used the non-primary runs to explore the performance level that could be reached
by exploiting weaknesses in the data that are not likely to hold in future tasks of the same kind
(for instance, the non-primary run 3 submitted by The Meaning Factory exploited sentence ID
ordering information). Participants also used non-primary runs to test smart baselines.

7 http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools.
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Table 10 Statistics for the relatedness and entailment subtasks. Relatedness values indicate the Pearson (r)
correlation while the entailment is shown as the percentage of accuracy.

Relatedness (r) Entailment (accuracy)

All runs Primary runs All runs Primary runs

Highest 0.842 0.828 84.6% 84.6%

Median 0.713 0.714 75.7% 77.1%

Average 0.707 0.719 74.7% 75.4%

Lowest 0.412 0.479 48.7% 48.7%

We received 17 primary submissions to the relatedness subtask (for a total of 66 runs) and 18
to the entailment subtask (65 runs). Table 10 gives some overall statistics about the task results,
calculated both (i) over all the submitted runs and (ii) considering only the primary run of each
participating group. In the relatedness subtask, 6 non-primary runs slightly outperformed the

Table 11 Table left: Primary run results for the relatedness subtask. Official ranking metric: Pearson correlation
(r); additional metrics: Spearman correlation (ρ) and Mean Squared Error (MSE). Table right: Primary run results
for the entailment subtask according to the official ranking measure Accuracy. Systems that are significantly better
with respect to the next-highest ranked system at p-value≤0.05 are marked with *. The table also shows whether
a system exploits composition information at either the phrase (P) or sentence (S) level, see Section 3.4 for a
detailed explanation.

Relatedness Task

ID Comp. r ρ MSE

ECNU run1 S 0.828 0.769 0.325

StanfordNLP run5 S 0.827 0.756 0.323

The Meaning Factory run1 S 0.827* 0.772 0.322

UNAL-NLP run1 0.804 0.746 0.359

Illinois-LH run1 P/S 0.799* 0.754 0.369

CECL ALL run1 0.780 0.732 0.398

SemantiKLUE run1 0.780* 0.736 0.403

RTM-DCU run1 0.764* 0.688 0.429

UTexas run1 P/S 0.714 0.674 0.499

UoW run1 0.711 0.679 0.511

FBK-TR run3 P 0.709 0.644 0.591

BUAP run1 P 0.697 0.645 0.528

UANLPCourse run2 S 0.693* 0.603 0.542

UQeResearch run1 0.642 0.626 0.822

ASAP run1 P 0.628* 0.597 0.662

Yamraj run1 0.535* 0.536 2.665

asjai run5 S 0.479 0.461 1.104

Entailment Task

ID Comp. Acc. (%)

Illinois-LH run1 P/S 84.6%

ECNU run1 S 83.6%

UNAL-NLP run1 83.1%

SemantiKLUE run1 82.3%

The Meaning Factory run1 S 81.6%*

CECL ALL run1 80.0%

BUAP run1 P 79.7%

UoW run1 78.5%

Uedinburgh run1 S 77.1%

UIO-Lien run1 77.0%

FBK-TR run3 P 75.4%

StanfordNLP run5 S 74.5%

UTexas run1 P/S 73.2%*

Yamraj run1 70.7%

asjai run5 S 69.8%

haLF run2 S 69.4%*

RTM-DCU run1 67.2%*

UANLPCourse run2 S 48.7%
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official winning primary entry, namely: The Meaning Factory’s run3 (Pearson 0.842), ECNU’s
run2 (0.839) and run5 (0.835), and StanfordNLP’s run4 (0.835) and run2 (0.831). In the entail-
ment subtask, the first ranked run was indeed primary. However, the second-top primary run by
the ECNU team was preceded by two non-primary runs by the same team.

The official ranking of primary runs are presented in Table 11.8 For the relatedness subtask,
the table reports Pearson (r) correlation results as well as additional results calculated using
Spearman (ρ) correlation and Mean Squared Error (MSE). For the entailment subtask, results
are reported in terms of Accuracy. We can see that in both tasks most systems performed well
above the best baselines from Table 9. As for the top-scoring systems, we witnessed a very
close finish in both subtasks, with 4 systems within 3 percentage points from the first-ranked
one in both cases. 4 of these 5 top systems were the same across the two subtasks. To better
understand the SemEval results, Table 11 also reports when the difference between an adjacent
pairing of systems is statistically significant. For the relatedness task we applied the Fisher’s r-to-
z transformation, while for entailment we used the chi-squared test (two-tailed tests). Differences
were considered statistically significant at p-value≤0.05. Note that significance was not calculated
for all pairs of systems, but only between systems that are adjacent in the ranking, i.e. we started
from the best scoring system and evaluated each run only with respect to the following one in
the rank. We can see that, both for relatedness and entailment, the difference between the top-
scoring systems are not statistically significant, meaning that it is impossible to draw a clear
individual “winner” for the evaluation exercise.

As regards the entailment task, Table 12 presents additional results in terms of Precision,
Recall, F-measure for each class. We can see that, overall, systems achieve the best results in
detecting the NEUTRAL pairs, while the identification of the ENTAILMENT pairs appears to
be the most challenging.

3.4 Approaches

A summary of the approaches used by the systems to address the task is presented in Table 13.
In the table, systems in bold are those for which the authors submitted a paper: haLF (Ferrone
and Zanzotto, 2014), The Meaning Factory (Bjerva et al, 2014), UTexas (Beltagy et al, 2014),
Illinois-LH (Lai and Hockenmaier, 2014), ASAP (Alves et al, 2014), BUAP (León et al, 2014),
CECL (Bestgen, 2014), ECNU (Zhao et al, 2014), FBK-TR (Vo et al, 2014), RTM-DCU (Biçici
and Way, 2014), UIO-Lien (Lien and Kouylekov, 2014), UNAL-NLP (Jimenez et al, 2014), Se-
mantiKLUE (Proisl and Evert, 2014) and UoW (Gupta et al, 2014). For the others, we used
the brief description sent with the system’s results, double-checking the information with the
authors. In the table, “E” and “R” refer to the entailment and relatedness task respectively, and
“B” to both.

Almost all systems combine several kinds of features. To highlight the role played by com-
position, we draw a distinction between ‘compositional’ and ‘non-compositional’ features, to be
understood as follows. The standard definition of compositionality (see e.g. Pagin and West-
ersthl (2010)) is that the meaning of a complex expression is a function of the meaning of its
immediate constituents and their syntactic relations. Since not all compositional systems reach
the final sentential level, we use the term “phrase compositional” to refer to systems that stop
their composition at the level of phrases, and we use the term “sentence- compositional” to re-
fer to systems which compute a meaning for the whole sentence, but don’t necessarily assign a
meaning to intermediate syntactic units. Among the non-compositional features we count word

8 ITTK’s primary run could not be evaluated due to technical problems with the submission. The best ITTK’s
non-primary run scored 0.76 r in the relatedness task and 78.2% accuracy in the entailment task.
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Table 12 Primary run results for the entailment subtask in terms of Precision (P), Recall (R), F-measure (F1)
on Entailment, Contradiction, and Neutral classes.

Entailment Contradiction Neutral

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Illinois-LH run1 78.1 82.7 80.3 89.5 80.3 84.6 86.9 86.6 86.8

ECNU run1 81.0 72.8 76.7 91.3 77.4 83.8 83.2 90.7 86.8

UNAL-NLP run1 76.9 75.7 76.3 93.7 78.9 85.7 83.8 87.8 85.8

SemantiKLUE run1 80.9 66.9 73.2 94.6 75.0 83.7 80.6 92.0 86.0

The Meaning Factory run1 92.2 60.8 73.3 96.7 60.3 74.3 76.9 97.6 86.0

CECL ALL run1 67.6 80.5 73.5 93.0 73.9 82.4 85.0 81.3 83.1

BUAP run1 75.1 75.0 75.1 77.3 79.0 78.2 82.6 82.2 82.4

UoW run1 71.3 65.9 68.5 91.1 71.3 80.0 79.3 86.8 82.9

Uedimburgh run1 66.4 68.6 67.5 86.3 79.9 83.0 80.5 80.7 80.6

UIO-Lien run1 93.7 42.9 58.8 84.3 73.6 78.6 72.8 95.2 82.5

FBK-TR run3 59.4 86.8 70.5 90.2 74.4 81.6 86.1 69.9 77.2

StanfordNLP run5 66.3 64.1 65.2 76.6 71.5 74.0 77.8 80.5 79.1

UTexas run1 98.0 31.5 47.7 97.7 52.8 68.5 68.1 99.6 80.9

Yamaraj run1 69.1 32.3 44.0 55.7 61.1 58.3 74.5 92.7 82.6

asjai run5 56.8 49.3 52.8 72.7 50.0 59.3 74.3 85.2 79.4

haLF run2 55.2 63.8 59.2 85.3 64.4 73.4 74.7 73.5 74.1

RTM-DCU run1 56.7 68.2 62.0 undef. 0.0 undef. 72.7 84.0 78.0

UANLPCourse run2 43.2 60.1 50.3 9.2 15.8 11.7 83.4 51.5 63.7

overlap, word similarity, the presence of negative markers, etc. (see Table 13 for a schema of
the various features; for details, we refer the reader to the articles cited above). As the table
shows, thirteen systems used composition in at least one of the tasks; ten used composition for
full sentences and six for phrases, only. The best systems are among these thirteen systems. (See
also Table 11 which summarizes the results for the two tasks and reports also the information
about sentence-compositional (S) and phrase-compositional (P) features.)

Given our more general interest in the distributional approaches, in Table 13 we also classify
the different DSMs used as ‘Vector Space Models’, ‘Topic Models’ and ‘Neural Language Models’.
Furthermore, the different learning approaches used by the systems are reported, and the table
shows that the most adopted methods are SVM and Kernel methods.

Finally, Table 13 reports on the use of external resources in the task. One of the reasons to
create SICK was to have a compositional semantics benchmark that would not require too many
external tools and resources (e.g., named-entity recognizers, gazetteers, ontologies). Judging from
what the participants chose to use we think we succeeded, as only standard NLP pre-processing
tools (tokenizers, PoS taggers and parsers) and relatively few resources (mostly, WordNet and
paraphrase corpora) were used.

In general, several participating systems deliberately exploit ad-hoc features that, while not
helping a true understanding of sentence meaning, exploit some systematic characteristics of
SICK that should be controlled for in future releases of the data set. In particular, the Textual
Entailment subtask has been shown to rely too much on negative words and antonyms. The
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Table 13 Summary of the main characteristics of the participating systems. The table indicates whether a feature
or method is used by a system for either the Relatedness Task (R), the Entailment Task (E) or both tasks (B).
Participants marked in bold are those who submitted the system description paper. The last two columns report
the rank of each system for each of the two tasks.
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ASAP R R R R R R R R R 15 -

ASJAI B B B B B B B E B R B 17 15

BUAP B B B B E B E B 12 7

UEdinburgh B B B B B E R B - 9

CECL B B B B B B 6 6

ECNU B B B B B B B B B B B B B 1 2

FBK-TR R R R E B E E B R E R R E 11 11

haLF E E E E - 16

IITK B B B B B B B B B - -

Illinois-LH B B B B B B B B B B B 5 1

RTM-DCU B B B B B 8 17

SemantiKLUE B B B B B B B B 7 4

StandfordNLP B B R R R B E 2 12

The Meaning Factory R R R R R B E R E B B R 3 5

UANLPCourse B B B B B 13 18

UIO-Lien E E - 10

UNAL-NLP B B B B R B B 4 3

UoW B B B B B 10 8

UQeRsearch R R R R R R R 14 -

UTexas B B B B B B 9 13

Yamarj B B B B 16 14

Illinois-LH team reports that just by checking the presence of negative words (the Negation
Feature in the table) one can detect 86.4% of the contradiction pairs, and by combining Word
Overlap and antonyms one can detect 83.6% of neutral pairs and 82.6% of entailment pairs. This
approach, however, is obviously very brittle (it would not have been successful, for instance, if
word-rearranging had been optionally combined with negation in the creation of Diff sentences,
see Section 2.1 above).

3.5 Lesson learned from SemEval and open questions

As explained in the introduction, SICK was built with the purpose of providing a suitable bench-
mark to evaluate computational semantic systems on their ability to reach meaning representa-
tions of sentences compositionally. To this effect, SICK sentences exhibit many cases of lexical
variation phenomena, active/passive and other syntactic alternations, impact of negation and
conjunction at various levels and other variations linked to the functional lexicon – all issues
that do not occur frequently in existing large data sets of sentences.
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SemEval 2014 was our test bed to see whether the way in which participants tackled SICK
reflected this goal. Therefore, we especially encouraged developers of compositional (distribu-
tional) semantic models to test their methods on SICK, though we welcomed developers of other
kinds of systems that could tackle sentence relatedness or entailment tasks (e.g., full-fledged RTE
systems).

First of all, it is interesting to compare the results obtained in our evaluation exercise with
those reported for other similar tasks offered to the community. For relatedness, we can compare
our task to the similarity task run on MSRvid (one of our data sources) at STS 2012 – though
the notion of ‘relatedness’ differs from that of ‘similarity’ (see Section 1). Judging from the
top-scoring results, the relatedness task appears to be more challenging, as the best STS 2012
Pearson correlation was r = 0.88, against r = 0.84 achieved by our participants. On the other
hand, if we consider the average score of all the systems, the performances of the two tasks are
aligned, with r = 0.70 on STS 2012 and r = 0.71 on SICK. As for the entailment task, we
can compare our task to the RTE Challenges. In particular, the most similar tasks are RTE-4
and RTE-5 (Bentivogli et al, 2009), since these data sets are annotated with the same three
entailment classes as SICK. Though the results of the tasks are not really comparable because
the RTE data sets are balanced with respect to the entailment classes while SICK is not, a
noticeable difference in the Accuracy results can be observed. The RTE-3 and RTE-4 median
values are 54.30% and 52.00% respectively, whereas the average values are 50.65% and 52.91%.
The entailment scores obtained on the SICK data set are considerably higher – 77.1% for the
median system and 75.4% for the average system. This overall performance pattern suggests that,
owing perhaps to the more controlled nature of the sentences, as well as to the purely linguistic
nature of the challenges it presents, the SICK task is “easier” than the RTE tasks.

Moreover, as noted in the description of the SemEval 2014 submissions, contrary to our
expectations no participant submitted purely compositional systems; all systems also exploited
non-compositional features. Still, the majority of the systems (13/21) used composition in at
least one of the subtasks. However, as discussed in Section 3.4, several participating systems
exploited some systematic characteristics of SICK, such as the presence of negative words and
antonyms. Based on this observation, we conjectured that most of the systems overfitted the
training data, in the sense that they became overly tuned to the limited syntactic structures
of the input, but also to the different proportions of the various types of sentence pairs (e.g.
the low number of pairs with similar lexicons but different meanings, or completely unrelated
meanings). The obvious question, at this point, is whether we can analyze the performance of the
systems more in detail, to better understand if it corresponds to a real ability to cope well with
all the different phenomena represented in SICK. To answer this question we carried out a new
analysis on a subset of SICK where the various conditions were balanced (see Section 4.1), under
the assumption that a system optimized to deal correctly with the patterns most commonly
represented in the data set would not be as successful when these proportions shift.

Furthermore, we conjectured that a purely compositional system would show more stability
in its performance across different benchmarks, since this system should be built in a more
principled way and its behavior should thus be independent on the specific aspects of the data set
against which it is evaluated. To check this conjecture, we contacted three of the best performing
systems which also used compositional features (ECNU, The Meaning Factory, and Illinois),
and obtained the output from their compositional features alone. Of course, we did not expect
high performance from these modules, but rather more stability when evaluated against the
whole SICK data set vs. the balanced one. Our last question is about the mistakes made by
participating systems. SICK and SemEval can help us shed light on those phenomena which are
still challenging for state-of-the art computational semantic models. To this end, we carried out
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a qualitative analysis of the pairs mistaken by the majority of the systems in the two subtasks
(see Section 4.2).

4 Learning more about SemEval systems: new analyses on SICK data

In this section we address the questions we raised based on the SemEval experience. In Section
4.1 we look at the stability issue: (a) can we analyse in greater detail the performance of the
systems to better understand if they correspond to a true ability to cope well with all the different
phenomena represented in SICK? And (b) is it true that a purely compositional system would
show more stability than a system that exploits other ad-hoc features when evaluated against
the whole SICK data set vs. the balanced one? In Section 4.2, we scrutinize the systems’ results
in order to detect which semantic phenomena current state-of-the-art systems fail to capture.

4.1 Systems’ results on SICK balanced data

As described in Section 2, SICK was created with the goal of offering a data set of sentence pairs
where each sentence is contrasted with either a (near) paraphrase (Norm-Sim), a contradictory
or strongly contrasting statement (Norm-Contr), another sentence with very high lexical overlap
but different meaning (Norm-Diff ), or a completely unrelated sentence (Unrel). The sentence
pairing mechanism adopted led to the creation of 8 classes of pairs addressing different linguistic
phenomena, namely Norm-Sim same set, Norm-Contr same set, Norm-Diff same set, Norm-
Norm cross set, Norm-Sim cross set, Norm-Contr cross set, Norm-Diff cross set, Unrelated (see
Tables 6 and 7). Since these classes are not uniformly distributed in SICK, we created a balanced
subset of the SICK test set, which is composed of 150 sentence pairs for each of the 8 classes, for
a total of 1,200 pairs,9 and we used it to carry out an additional evaluation of the primary runs
of the participating systems. The purpose of this new evaluation is to better understand if the
performance achieved on the full test set correspond to a real ability of the systems to cope well
with all the different phenomena represented in SICK or are due to the fact that the systems
adjusted to the unbalanced data set, giving more weight to more common phenomena.

Furthermore, to investigate the hypothesis that a purely compositional system would show
more stability in its performance across different benchmarks, we also evaluated the compositional
runs contributed by ECNU, The Meaning Factory, and Illinois for the relatedness task and by
ECNU and Illinois for the entailment task.

The outcome of this evaluation is presented in Tables 14 and 15, where the official results
on the full SemEval test set are given together with the new results on the balanced subset
and the difference between the two. For the relatedness task, Table 14 shows a drop across
all the systems, demonstrating that they all overfit the training data. Interestingly, when we
compare the drops obtained by the compositional runs with their corresponding full-systems
(e.g., The Meaning Factory compositional run v.s. The Meaning Factory run1) we see that the
compositional modules are slightly more stable, suggesting that the other features of the systems
are more ad-hoc than the compositional one. For the entailment task the situation is somewhat
different, as Table 15 shows that 4 full systems out of 18 increase their performance. Again, quite
interestingly, the compositional feature of Illinois increases its performance while the full system
drops; similarly the compositional module of ECNU has a slightly lower drop than its full system.

9 Despite the fact that SICK test set contains a total of 4906 sentence pairs, we could not create a larger
balanced test set. Each class had to be composed of only 150 pairs since the Norm-Diff cross set class is very
small, containing only 168 pairs.
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A deeper analysis of the 4 full systems which improved their performance has been carried
out both on the full test set and the balanced subset, in order to observe the distribution of
results among the 8 sentence pair classes. The analysis of the “full test” results showed that
all the systems perform well on phenomena that are over-represented in the data set, namely
the “Norm-Diff cross set” and “Unrelated” classes (and also the “Norm-Diff same set” class for
UIO-Lien and Utexas systems). The analysis of the “balanced subset” results showed that the
accuracy proportion in the various classes is similar to that of the full test set, confirming that
the overall improvement in performance on the balanced subset is due to these systems being
more adept at dealing with the over-represented classes.

4.2 Qualitative analysis of the most difficult sentence pairs

In order to gain a deeper insight into the systems’ difficulties when approaching our tasks and
data set, we carried out a qualitative analysis of the most difficult sentence pairs in the SICK test

Table 14 Relatedness Task: systems’ Pearson correlation on the SICK balanced test set compared to results
obtained on the whole test set. Purely compositional runs and corresponding full systems are in bold and marked
with the same symbol.

r

ID Full Data set Balanced Data set Variation

asjai run5 0.479 0.473 -0.006

Yamraj run1 0.535 0.515 -0.020

The Meaning Factory compositional run F 0.608 0.583 -0.025

RTM-DCU run1 0.764 0.734 -0.030

UANLPCourse run2 0.693 0.658 -0.035

StanfordNLP run5 0.827 0.787 -0.040

ASAP run1 0.628 0.586 -0.042

The Meaning Factory run1 F 0.827 0.783 -0.044

ECNU compositional run � 0.754 0.701 -0.053

UTexas run1 0.714 0.660 -0.054

UQeResearch run1 0.642 0.585 -0.057

Illinois compositional run ♣ 0.463 0.397 -0.066

CECL ALL run1 0.78 0.711 -0.069

SemantiKLUE run1 0.78 0.711 -0.069

ECNU run1 � 0.828 0.758 -0.070

UNAL-NLP run1 0.804 0.734 -0.070

BUAP run1 0.697 0.625 -0.072

FBK-TR run3 0.709 0.633 -0.076

Illinois-LH run1 ♣ 0.799 0.719 -0.080

UoW run1 0.711 0.618 -0.093
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Table 15 Entailment Task: systems’ results on the SICK balanced test set compared to results obtained on the
whole test set. Purely compositional runs and corresponding full systems are in bold and marked with the same
symbol.

Accuracy (%)

ID Full Data set Balanced Data set Variation

RTM-DCU run1 67.2 70.4 +3.2

asjai run5 69.8 72.8 +3.0

UTexas run1 73.2 76.1 +2.9

UIO-Lien run1 77.0 78.3 +1.3

Illinois compositional run ♣ 65.0 65.6 +0.6

The Meaning Factory run1 81.6 81.3 -0.3

Uedinburgh run1 77.1 76.5 -0.6

Yamraj run1 70.7 69.7 -1.0

UANLPCourse run2 48.7 47.3 -1.4

StanfordNLP run5 74.5 72.8 -1.7

UNAL-NLP run1 83.1 81.0 -2.1

ECNU compositional run � 72.9 70.6 -2.3

FBK-TR run3 75.4 73.0 -2.4

UoW run1 78.5 76.0 -2.5

SemantiKLUE run1 82.3 79.7 -2.6

BUAP run1 79.7 77.0 -2.7

ECNU run1 � 83.6 80.8 -2.8

haLF run2 69.4 66.0 -3.4

Illinois-LH run1 ♣ 84.6 79.5 -5.1

CECL ALL run1 80.0 74.7 -5.3

set, i.e. those which were not not judged correctly by the majority of the systems. In particular,
we looked at pairs misjudged by more than 9 systems (viz., evaluated correctly by at most
8 systems). To work with cleaner data, we kept only those pairs which had low variance in
the crowdsourced judgments. This human-based criterion ensures that pair difficulty cannot be
trivially explained by ambiguities in the corresponding sentences, since this would result in higher
disagreement between annotators. In other words, the meanings of the pairs analysed below are
clear according to native speakers’ intuitions, so the challenge they present to automated systems
must depend on the linguistic phenomena they contain. ‘Low-variance pairs’ were defined by
means of quartile points. In the relatedness subtask, we removed those pairs where the SD in
human judgments was above 1.02. In the entailment subtask, we removed those pairs where the
agreement on the majority vote label was below 80%. In what follows, we refer to the pairs thus
selected as “reliable” data.
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Table 16 Entailment Task: statistics about the most difficult pairs in the data set and their distribution with
respect to (i) the data creation methodology (rows 1 to 8), and the (ii) gold entailment annotation (3 last rows).
The second column contains the distribution of the 4906 sentences pairs in the SICK test set. Out of these 4906
pairs, 3676 have low variance (lv), and their distribution is represented in the third column. The fourth column
indicates the number of the low variance pairs correctly classified by 8 or less systems.

whole-SICK lv-SICK lv, ok by max 8 syst

(tot: 4906) (tot: 3676) (tot: 366 – 9.9% of lv)

Norm-Norm cross set 426 320 46 (14%)

Norm-Sim cross set 823 625 97 (15%)

Norm-Contr cross set 793 517 61 (11.7%)

Norm-Diff cross set 168 146 4 (2.7%)

Norm-Sim same set (paraphrases) 954 797 70 (8.7%)

Norm-Contr same set (negations) 985 616 51 (8.2%)

Norm-Diff same set (scrambled words) 180 119 35 (29.4%)

Unrel 577 536 2 (0.3%)

CONTRADICTION 712 584 75 (12.8%)

NEUTRAL 2790 1973 80 (4%)

ENTAILMENT 1404 1119 211 (18%)

4.2.1 Entailment Task

Out of the 4906 pairs, 3676 pairs (74.9%) have low variance in the Entailment Task. Details about
their distribution among the different classes of pairs are reported in Table 16, which shows the
Unrelated and the Norm-Diff cross pairs to be the easiest pairs to be judged by humans (536
pairs out of 577 and 146 pairs out of 168, respectively, have low variance). Out of the 3676 pairs
with low variance, 366 are evaluated correctly by only 8 systems or less. We take them to be the
difficult cases for the Entailment Task. Again, the reliable Unrelated pairs and the reliable Norm-
Diff cross set pairs are among the easiest for the systems (2/536 and 4/146, respectively, are in
the set of difficult pairs). As expected, the Norm-Diff same-set pairs (where the sentences in the
pair have a high lexical overlap but are not connected by an entailment relation) turn out to be
the most difficult: 35 pairs out of the 119 with low variance (29.4%) are misjudged by more than
9 systems. Finally, the majority of these 366 difficult pairs stand in the ENTAILMENT relation
(211/366, viz. 57.6%), confirming the results obtained by the Precision, Recall and F-measure
evaluation (see Table 12) computed over the full test set. Further details about the distribution
of the most difficult sentence pairs for each class are reported in Table 17.

A qualitative analysis of the pairs has been carried out to better understand the characteristics
of the sentences for each class. Examples of the data scrutinized are given in Table 18.

Contradiction. We have looked into the systems’ answers and found out that most of these
sentence pairs (71/75) have been considered as NEUTRAL by the majority of the systems. Most
of these sentence pairs involve several linguistic phenomena besides the one that generates the
contradiction, making it difficult for systems to recognize that between the sentences in the pairs
there is indeed a relation, and that one sentence contradicts the other.

Neutral. The sentence pairs in this class are mostly sentence pairs which share many words
though describe different events, such as in the examples presented in Table 18.
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Table 17 Entailment Task: for each class, the distribution of the low variance pairs correctly classified by 8
systems with respect to the data creation methodology.

CONT (Tot: 75) NEUT (Tot: 80) ENT (Tot: 211)

Norm-Norm cross set 0 2 44

Norm-Sim cross set 0 7 90

Norm-Contr cross set 47 9 5

Norm-Diff cross set 0 4 0

Norm-Sim same set (paraphrases) 0 7 63

Norm-Contr same set (negation) 27 23 1

Norm-Diff same set (scrambled words) 1 28 6

Unrel 0 0 2

Table 18 Examples of the most difficult pairs in the Entailment Task.

Sentence A Sentence B

Contradiction “A woman is driving a car and is talking to the “The woman and the man are not
man who is seated beside her” travelling by car”

“Runners are competing in a race “Runners are not taking part in the race”

“There is no small guinea pig gnawing and eating “A guinea pig is eating a carrot”
a piece of carrot on the floor”

Neutral A person in a black jacket is doing tricks on a “A person on a black motorbike is
motorbike” doing tricks with a jacket”

“A man is playing soccer” “A soccer man is playing piano”

“The picture of a man is being taken near a lake” “A man is taking pictures of a lake”

Entailment “A man is talking to a woman ” “A man and a woman are speaking”

“Two children and an adult are standing next to “Three people are standing next to
a tree limb” a tree limb”

“A man and two women in a darkened room are “The group of people is sitting in a
sitting at a table with candle” room which is dim”

“Someone is feeding an animal” “Someone is giving food to an animal”

Entailment. The analysis of this class is the one most revealing of linguistic phenomena. Among
the 211 difficult entailing pairs we have identified two main groups. First, the similarity present
in these cases are mostly based on the substitution of a noun (15) or verb (30) with a synonym
or a hierarchically related word (e.g. a hypernym or hyponym). We also noticed that in the case
of the cross set pairs, the substitution often involves both a noun and the verb. The second
interesting fact is that there are several cases of coordination. While coordination is common in
the SICK data set, the problematic cases specifically require reasoning about its relation with
quantity (e.g. two children and an adult amount to three people). Another source of confusion
is the comitative construction (Aplur do P ⇒ A do(es) P with another A; if “some women are
dancing and singing” then “a woman is dancing and singing with another woman”).



SICK Through the SemEval Glasses 21

Table 19 Relatedness Task: statistics about the most difficult pairs in the data set and their distribution with
respect to (i) the data creation methodology (rows 1 to 8), and (ii) the gold relatedness scores (3 last rows) The
second column contains the distribution of the 4906 sentences pairs in the SICK test set. Out of these 4906 pairs,
3677 have low variance (lv), and their distribution is represented in the third column. The fourth column indicates
the number of the low variance pairs correctly predicsted by 8 or less systems.

whole-SICK lv-SICK lv and ok by max 8 syst

(tot: 4906) (tot: 3677) (tot: 275 – 7.4% of lv)

Norm-Norm cross set 426 383 33 (8.6%)

Norm-Sim cross set 823 745 65 (8.7%)

Norm-Contr cross set 793 456 35 (7.6%)

Norm-Diff cross set 168 127 12 (9.4%)

Norm-Sim same set (paraphrases) 954 950 16 (1.6%)

Norm-Contr same set (negation) 985 419 11 (2.6%)

Norm-Diff same set (word scrambled) 180 127 23 (18.1%)

Unrel 577 470 80 (17%)

Rel score x ≤ 2 473 451 97 (21.5%)

Rel score 2 < x < 4.5 3483 2276 133 (5.8%)

Rel score 4.5 ≤ x 950 950 45 (4.73%)

4.2.2 Relatedness task

Out of 4906 pairs, 3677 pairs (74.9%) have low variance and out of these, 275 are predicted
correctly by at most 8 systems. A system prediction in a pair was deemed as correct when the
absolute difference between the predicted score and the gold standard was lower than 1. As shown
in Table 19, the same-set Norm-Sim pairs come out as the easiest pairs to be judged by humans
(only 4 of them had high variance). As for the entailment task, the pairs obtained by word
scrambling (Norm-Diff same-set) turn out to be among the most difficult ones for systems, with
only 23/127 (18.1%) reliable pairs guessed correctly by at most 8 systems. To better analyze the
set of the 275 difficult pairs, we divided them into three groups based on their gold relatedness
score: low related pairs (score ≤2), pairs whose score is above 2 but below 4.5, and highly related
pairs (score ≥4.5). It is interesting to note that the low related pairs, while being quite easy to
judge by humans (low variance), are the most difficult pairs for systems. Further details about
the distribution of the most difficult sentence pairs for each class are reported in Table 20, while
examples of the analyized data are given in Table 21.

Relatedeness score ≤2 (tot: 97). These cases are mostly labeled NEUTRAL (96/97) and mostly
belong to the “Unrelated” class. (74/97). Among these 97 pairs we identify two cases: (a) sentence
A and B share the same syntactic structure, with only the object (and sometimes the subject)
or the verb changing; (b) there is a negation in sentence A or B. These aspects make them
superficially similar, leading systems that cannot truly capture their meaning to regard them
as highly related (See Table 21 for some examples). Interestingly, even the Unrelated pairs (tot:
74) are of these sort due to the high similarity of the images/videos they describe (they share
actions and subjects) and the simplicity of the description (a woman/man/child doing something
(playing/running etc.).
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Table 20 Relatedness Task: for each relatedness score range, the distribution of the low variance pairs correctly
classified by 8 systems with respect to the data creation methodology

Rel score x ≤ 2 Rel score 2 < x < 4.5 Rel score 4.5 ≤ x

(tot: 97) (tot: 133) (tot: 45)

Norm-Norm cross set 2 24 7

Norm-Sim cross set 5 41 19

Norm-Contr cross set 12 22 1

Norm-Diff cross set 3 7 2

Norm-Sim same set (paraphrases) 0 3 13

Norm-Contr same set (negation) 0 9 2

Norm-Diff same set (scrambled words) 1 21 1

Unrel 74 6 0

Table 21 Examples of the most difficult pairs in the Relatedness Task.

Sentence A Sentence B

Rel score x ≤ 2 “A man is playing baseball with a flute” “A man is playing soccer”

“A cat is looking at a store counter” “A dog is looking around”

“Broccoli are being cut by a woman” “A man is cutting tomatoes”

“There is no man playing a game on the grass” “A man is playing the guitar”

Rel score 2 < x < 4.5 “The woman is penciling on eyeshadow” “A woman is putting
cosmetics on her eyelid”

“A dog is chasing a ball in the grass” “A dog with a ball is being chased
in the grass”

“A man is breaking a wooden hand” “A man is breaking wooden boards
against a board” with his hand”

“The man is riding a horse” “A horse is riding over a man”

Rel score 4.5 ≤ x “A man is riding on one wheel “A person is performing tricks
on a motorcycle” on a motorcycle”

“The man is using a sledgehammer to break” “A man is breaking a slab of concrete
a concrete block that is on another man” with a sledge hammer”

“Many people are skating in an ice park” “An ice skating rink placed outdoors
is full of people”

Relatedness score between 2 and 4.5 (tot: 133). This class includes a broad range of intermediate
relatedness scores, which makes it difficult to highlight regularities or characteristics phenomena.
Furthermore, as we can see in Table 20, difficult pairs are not concentrated in some specific type
pairs, but are distributed among all the types. However, looking into the systems’ responses we
found out that – despite the variety of appraches adopted by the participating systems – all of
them fail in a similar way, that is, for each case, all systems agree in assigning a lower (or higher)
score than the gold score.
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Relatedness score ≥4.5 (tot: 45). There are 41 ENTAILMENT, 1 NEUTRAL and 3 CONTRA-
DICTION cases in this group. 40/45 are guessed correctly by a maximum of 8 systems for the
Entailment Task as well. They have very little word overlap (e.g., A: “a man is riding on one
wheel on a motorcycle”; B: “a person is performing tricks on a motorcycle”, see Table 21) or are
the same cases discussed for the Entailment Task (Table 18).

5 Conclusion

In this paper we presented new observations on the task “Evaluation of Compositional Distri-
butional Semantic Models on Full Sentences through Semantic Relatedness and Entailment”,
organized within SemEval-2014 as Task 1. Moreover, we used the SemEval experience to analyse
the SICK data set used in the evaluation campaign.

In SemEval Task 1, two subtasks were offered: (i) predicting the degree of relatedness between
two sentences, and (ii) detecting the entailment relation holding between them. The task has
raised noticeable attention in the community: 17 and 18 submissions for the relatedness and
entailment subtasks, respectively, for a total of 21 participating teams. Participation was not
limited to compositional models but the majority of systems (13/21) used composition in at least
one of the subtasks. Looking at SemEval results we conjectured that most of the participating
systems overfitted the training data and that that a purely compositional system would show
more stability in its performance across different benchmarks. We tried to verify these conjectures
by evaluating the systems and the purely compositional modules which were part of the best
performing systems against a balanced subset of SICK test set. The results were suggestive,
though not conclusive.

Next, we used SICK and SemEval to shed light on the issue of which phenomena are still
challenging for state-of-the-art computational semantic models. Both for the entailment and
the relatedness task, pairs generated by words scrambling turned out to be among the most
difficult ones, confirming the failure of systems to truly capture sentence meaning. Interestingly,
we found out that most of the systems fail to handle cases involving coordination, specifically
those cases that require reasoning about its relation with plurality (e.g. two children and an
adult amount to three people) and groups (e.g. Two teams are competing . . . vs. Two groups of
people are playing . . . ), but also cases of verbs or verb phrases with similar meanings beyond
lexical similarity (e.g. riding on one wheel vs. performing tricks). More generally, it seems to
us that the strategy of artificially creating meaningful pairs generated with word scrambles,
argument inversions and lexical substitutions (as in our Norm-Diff ) is a promising avenue to
create new data sets that can push the field of computational semantic toward a deeper, more
flexible analysis of human language. We believe that this strategy would be further enhanced
if the range of constructions is increased (including e.g. parenthetical expressions, comitatives,
multiple quantifiers, comparatives) and if negative words are added to the mix, foiling simple
word-based strategies, which—despite their apparent good success/complexity rate— ultimately
propose a deeply unsatisfactory model of what computational semantics should be.
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