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Abstract  

 

When a shift in writing style is noticed in a document, doubts arise about its 

originality. Based on this clue to plagiarism, the intrinsic approach to plagiarism 

detection identifies the stolen passages by analysing the writing style of the suspicious 

document without comparing it to textual resources that may serve as sources for the 

plagiarist. Character n-grams are recognised as a successful approach to modelling 

text for writing style analysis. Although prior studies have investigated the best 

practice of using character n-grams in authorship attribution and other problems, there 

is still a need for such investigations in the context of intrinsic plagiarism detection. 

Moreover, it has been assumed in previous works that the ways of using character n-

grams in authorship attribution remain the same for intrinsic plagiarism detection. In 

this paper, we study the effect of character n-grams frequency and length on the 

performance of intrinsic plagiarism detection. Our experiments utilise two state-of-

the-art methods and five large document collections of PAN labs written in English 

and Arabic. We demonstrate empirically that the low- and the high-frequency n-

grams are not equally relevant for intrinsic plagiarism detection, but their 

performance depends on the way they are exploited. 
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1 Introduction 

Plagiarism occurs when someone appropriates another person's ideas, words or work 

and pretends that they are his own1. Detecting plagiarism is a continuing concern 

within academia, and the last two decades have witnessed remarkable advances in 

automatic plagiarism detection tools. The majority of these tools adopt the so-called 

external plagiarism detection (EPD) approach (Potthast et al. 2009), which is the 

process of comparing the suspicious document with the potential sources of 

plagiarism to seek similar passages. However, there exist other approaches. One 

among them is citation-based plagiarism detection (CPD) (Gipp et al. 2011; Pertile 

et al. 2015), which is based on the assumption that the plagiarist uses patterns in citing 

references similar to the ones used in the source of plagiarism. This approach is 

applicable only to the documents that contain in-text citations and a bibliography 

section such as academic papers. Plagiarism could also be detected by authorship 

verification (AV). In this approach, the writing style of the whole suspicious 

document (van Halteren 2004) or its fragments (Burn-Thornton and Burman 2015) is 

compared to the one of a pre-compiled set of documents that are, unquestionably, 

written by the suspicious author. If the writing style is not the same, then it is likely 

that the actual author of the suspicious document is not the supposed one. This 

approach could be deployed in schools where it might be easy to create a database of 

students’ essays and then use it to build a writing style model for each student. 

Afterwards, these models are used to check the authorship of students’ subsequent 

submissions (van Halteren 2003). 

As is clear from the descriptions above, the availability of external resources, 

which are either plagiarism sources (in the case of EPD and CPD) or a corpus of texts 

written by the suspicious author (in the case of AV), is a crucial condition of the 

usability of the three approaches above. However, there exists a fourth approach, 

namely intrinsic plagiarism detection (IPD), which does not require any of the 

resources mentioned above. It is based rather on analysing the suspicious document 

solely with the aim to find internal evidence of plagiarism. Practically, this approach 

marks as plagiarised the passages whose writing style does not blend in with the whole 

document. Examples of such a case include a sloppily written paper involving some 

impressive sections, or a thesis where there exist, between its chapters, wide stylistic 

discrepancies. This paper addresses this approach.  

Typically, there exist two use cases of intrinsic plagiarism detection: 

Use case 1: Using IPD as an alternative to EPD when the source of plagiarism 

cannot be found (Kasprzak and Brandejs 2010; Meyer zu Eißen et al. 2007). This 

happens, for example, when the plagiarist borrows the text from a non-digitalised 

reference, asks someone else to write parts of his work for him, or tries to defeat the 

external plagiarism detector by substituting, in the stolen text, some characters by 

others, which look the same, from foreign alphabets2. Another circumstance could be 

added to this scenario, and it makes the IPD the only way to try to uncover plagiarism: 

it is the absence of other texts of the suspicious author; otherwise, detecting plagiarism 

could become an authorship verification problem.  

                                                           
1 Oxford Dictionary  
2 See (Heather 2010) and (Gillam et al. 2011) for further information on this kind of cheating. 
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Use case 2: Using IPD as a step in the source retrieval phase of external plagiarism 

detection. The idea is to search for plagiarism sources by using queries – to the search 

engine – extracted from the passages detected by an intrinsic method (Suchomel et al. 

2012). 

Since it is based on detecting stylistic changes, the intrinsic approach shows its 

limitation and fails to unveil plagiarism when the suspicious document is written 

entirely in one style. This case happens, for instance, when a plagiarist buys an essay 

from a paper mill.  

One of the most straightforward text representation approaches used in IPD 

methods is character n-grams. Some methods use them alone (Bensalem et al. 2014; 

Kestemont et al. 2011; Stamatatos 2009a), while others include additional features 

(Kern et al. 2012; Kuznetsov et al. 2016; Rao et al. 2011; Stein et al. 2011). Character 

n-grams are known to be a powerful and effective text representation in style analysis-

based tasks such as authorship attribution (Kešelj et al. 2003; Stamatatos 2016) and 

authorship verification (Brocardo et al. 2013; Jankowska et al. 2014). Their power 

comes from the fact that they are language-independent (i.e., extracting them is 

straightforward and does not require any non-trivial linguistic processing) and at the 

same time able to capture the morphological and syntactical features of the text 

(Houvardas and Stamatatos 2006; Kešelj et al. 2003).  

Several studies have investigated the best ways of exploiting character n-grams for 

stylistic analysis (Houvardas and Stamatatos 2006; Jankowska et al. 2014; Kešelj et 

al. 2003; Sapkota et al. 2015; Stamatatos 2013; Zečević 2011). However, many of 

these investigations concern authorship attribution, and there are almost no such 

studies in the context of intrinsic plagiarism detection. Therefore, an in-depth study 

is much needed, especially because IPD is still a challenging task that is far from 

being solved. This paper tries to shed light on the use of character n-grams to detect 

plagiarism intrinsically. Our principal goal is to investigate whether n-grams of 

different frequency are equivalent in terms of their relevance to intrinsic plagiarism 

detection. Our motivation to address this question is twofold: 

 to optimise the effectiveness of the task by using only the set of n-grams that leads 

to the best results, 

 to gain insight into the relation between the frequency of character n-grams and 

plagiarism. In other words, to try to describe plagiarism in terms of character n-

grams by considering their frequency ranges (frequent or infrequent). 

We conduct our investigation using two character-grams-based methods: our 

method (Bensalem et al. 2014) that we will describe in this paper, and the well-known 

IPD method of Stamatatos (2009a).  

The rest of this paper is structured as follows. Section 2 discusses the related 

research areas and surveys intrinsic plagiarism detection methods based on character 

n-grams. Sections 3 describes our method where selecting n-grams according to their 

frequencies is a core step. Sections 4 presents the datasets and the performance 

measures used in our experiments. In Section 5, the proposed method is compared to 

the state-of-the-art methods. Sections 6 and 7 analyse the sensitivity of intrinsic 

plagiarism detection performance to the character n-grams frequency and length in 

the context of our method and Stamatatos’ method, respectively. Finally, Section 8 

summarises the main insights gained from this study. 
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2 Related work 

2.1 Similar research areas 

In this section, we present some research areas that are closely related to intrinsic 

plagiarism detection (see Table 1 for a brief description). More precisely, we identify 

what makes these research areas similar to IPD.  

2.1.1 Anomaly detection 

Intrinsic plagiarism detection in its essence could be seen as an anomaly of authorship 

detection at fragment level (Guthrie et al. 2007), where plagiarism is the anomaly, 

and the text written in the plagiarist’s own style is the normal part. In fact, most of the 

current IPD methods are based on the assumption of anomaly detection that the 

normal data (original part) is the majority, and hence could be characterised, and the 

abnormal data (plagiarised part) is sparse and thus difficult to characterise. Therefore, 

methods based on this assumption build a writing style model of the whole suspicious 

document, and consider as plagiarism any fragment deviating from this general style 

(Mahgoub et al. 2015; Muhr et al. 2010; Oberreuter and Velásquez 2013; Stamatatos 

2009a; Suárez et al. 2010; Zechner et al. 2009). The major drawback of this perception 

emerges when the plagiarism constitutes the majority of the suspicious document. In 

this case, the model built from the suspicious document becomes unreliable to 

represent the suspicious author’s own style. In addition to that, if the source of 

plagiarism is only one (i.e., the plagiarised fragments are written in one style, and 

they constitute the majority of the document), a solution based on anomaly detection 

would mark the plagiarised part as original. 

2.1.2 Multi-author document segmentation 

This task consists of clustering/classifying the passages of a multi-author document 

according to authorship (Akiva and Koppel 2013; Aldebei et al. 2015, 2016; 

Table 1 Intrinsic plagiarism detection and its related research areas 

 

Intrinsic Plagiarism 
detection 

Given a suspicious textual document d, which passages are 
plagiarised without comparing d to potential sources of plagiarism? 

Authorship anomaly 
detection 

Given a textual document d, which passages are outliers? 

Multi-author document 
segmentation 

Given a textual document d of unknown authorship and a number N 
of authors, which passages are written by each author? 

Authorship verification 
Given a textual document d and a set of textual documents D 
written by an author A; is A the author of d? 

Plagiarism direction 
identification 

Given two textual documents that share one or more passages, 
which of them is the source, and which one is the suspicious? 

Linear text segmentation 
Given a textual document, what are the positions that represent a 
topic change? 

Speaker diarization 
Given an audio or video recording that encompasses an unknown 
number of speakers, who spoke when? 
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Giannella 2016; Glover and Hirst 1996; Graham et al. 2005; Koppel et al. 2011; 

Tschuggnall and Specht 2014). This should be done without employing any external 

text, which makes this problem very similar to IPD. It can be stated that three factors 

control the definition of this problem:  

 Whether the number of authors, N, is known.  

 Whether the mono-authorship (N = 1) is a possible case. 

 Whether the document is already segmented so that each segment is written 

by one author. 

The combination of the possible configurations yields distinct scenarios of this 

problem with different levels of complexity. The least complex scenario is: “N is 

known, and the document is already segmented3” (Akiva 2012; Brooke and Hirst 

2012; Kern et al. 2012). Hence, the task is merely to group segments written by each 

author. The most complex scenario is: “N is unknown, it could be equal to 1, and the 

document is not segmented”. In this case, the task should involve the prediction of N, 

the identification of the style shift positions, and the aggregation of fragments of 

similar style. Indeed, checking the existence of plagiarism in a document could be 

viewed as checking whether it is multi-author without possessing any information 

about the number of authors and the possible positions of writing style shift. 

Therefore, intrinsic plagiarism detection could be perceived as an authorship 

segmentation problem in its most complex scenario. In addition, IPD methods should 

decide which among the identified authorial parts are the plagiarism. On the other 

hand, if the number of the detected authors is one, the document should be marked as 

plagiarism-free.  

2.1.3 Authorship verification 

Given a document d of unknown authorship and a set of documents D written by an 

author A; the authorship verification task is to check whether A is the author of d. To 

this aim, d and D must be compared in terms of writing style. As suggested by Stein 

et al. (2011), intrinsic plagiarism detection problem is constituted of many instances 

of the authorship verification problem. To explain, in an IPD problem, (a) the question 

is to verify the authorship of a set of passages obtained via segmentation of the 

suspicious document. (b) The whole suspicious document itself represents the text 

against which the writing style of passages is compared. Although they are closely 

related, IPD is different from AV because of two reasons. First, intrinsic plagiarism 

detection deals usually with shorter texts (i.e., the segments), which makes the 

quantification of writing style more difficult. Second, the suspicious document (that 

plays the same role of the set of documents of known authorship in AV) is mingled 

with plagiarism. Thus, it does not represent the alleged author’s style faithfully as it 

is supposed to do.  

2.1.4 Plagiarism direction identification 

Given two documents that share one or more text fragments, this task is to determine 

which of them is the source and which one is suspicious. The proposed solutions to 

                                                           
3 For example, it might be known that each paragraph is written by one author and there would be no 
need to look for style shift at sentence level. 
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this problem (Grozea and Popescu 2010; Shrestha and Solorio 2015) are based on the 

idea that the plagiarised passage is more similar to the rest of the text in the source 

document than it is in the suspicious document. Thus, it is a matter of determining, 

for each document, whether the shared text fragment is an outlier, as done in intrinsic 

plagiarism detection. 

2.1.5 Linear text segmentation 

This task aims to segment the document into blocks according to topics so that the 

topical similarity is high between the sentences of the same block but low between 

the sentences of different blocks (Kern and Granitzer 2009). If the segmentation 

criterion is the writing style instead of the topic, the output will be the positions of the 

writing style shift. In this case, this task could be viewed as a segmentation module 

in intrinsic plagiarism detection. Recently, a shared task has been organised to address 

this research direction (Tschuggnall et al. 2017).  

2.1.6 Speaker diarization 

The research problems described above concern the textual documents. Recently, 

researchers noticed that intrinsic plagiarism detection is similar to speaker 

diarization 4  (Rosso et al. 2016; Stamatatos et al. 2016). This research problem 

concerns the identification of the different speakers in an audio or video recording 

(Anguera et al. 2012), which is similar, in its principle, to identifying the different 

authors in a textual document. Speaker diarization, in turn, is closely related, notably 

regarding techniques, to the problem of time series segmentation (Keogh et al. 2004).  

2.2 Character n-grams in intrinsic plagiarism detection methods 

Let us now get closer to the scope of our study. One of the crucial building blocks of 

any natural language processing application is text representation. Representing a text 

using its character n-grams requires decomposing it into all the possible sequences of 

n successive characters. For example, the 3-grams of the word possible are: pos, oss, 

ssi, sib, ibl, ble. The set of all the n-grams of a predefined length, n, extracted along 

with their frequencies from a given text, is referred to as the text’s n-gram profile. 

The following summarises intrinsic plagiarism detection methods that use character 

n-grams. 

Stamatatos’ (2009a) method represents the suspicious document and its fragments 

by 3-gram profiles5. The fragments are obtained through a sliding window, of around 

1000 characters, that moves by 200 characters in each step. Then, a style change 

function is computed based on the dissimilarity between the n-gram profile of the 

entire document and the one of each fragment. By comparing the standard deviation 

of this function values with a threshold parameter, the method predicts whether the 

given document is plagiarism-free or not. If it is not plagiarism-free, a fragment is 

                                                           
4  A shared task named Author Diarization has been organised in PAN16 lab 
(http://pan.webis.de/clef16/pan16-web/author-identification.html). It involves three subtasks: traditional 

intrinsic plagiarism detection, diarization with a given number of authors, and diarization with an unknown 

number of authors. 
5 The frequency of n-grams in this method is normalised. 
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marked as plagiarised if its style change value is higher than a defined threshold that 

can be controlled by a parameter named by the author sensitivity of plagiarism 

detection. 

Kestemont et al. (2011) hold the view that representing documents using all their 

n-grams is computationally expensive when dealing with long texts. Therefore, their 

method employs a predefined set of high-frequency 3-grams (extracted from a corpus) 

to represent the suspicious document fragments. This idea was inspired by authorship 

attribution research wherein high-frequency n-grams have been used successfully 

(Stamatatos 2009b). To detect outliers, this method uses the dissimilarity measure of 

Stamatatos (2009a) but computes it between each pair of the suspicious document 

fragments. 

In Kuznetsov et al. (2016) method, each sentence is represented with a set of 

features, among others the frequency of the rarest n-grams, the frequency of the most 

frequent n-grams, and the mean of the relational frequency of n-grams. This latter is 

a new feature computed for each n-gram within a sentence. The more an n-gram is 

specific to a sentence (it appears in the sentence more than its occurrence in the rest 

of the document), the higher becomes its relational frequency. The authors reported 

that they determined the optimal lengths of n-grams (1, 3 and 4) after experimenting 

with different lengths. Next, gradient boosting regression trees are used to generate a 

model that combines features and predict a score for each sentence that represents its 

degree of mismatch with the style of the main author. Finally, all sentences with a 

score more than a certain threshold are marked as plagiarised. 

Character n-grams have been used as well in other IPD methods but not as the main 

features (Kern et al. 2012; Rao et al. 2011; Stein et al. 2011). Table 2 displays the 

lengths and frequencies of n-grams used in intrinsic plagiarism methods6. 

2.3 Discussion 

In the examined methods, in which the n-grams have been selected according to their 

frequencies, the selection of the n-grams was not justified rationally based on an 

understanding of n-grams properties nor empirically based on n-grams performance. 

                                                           
6 The table lists only the methods that provide information on the used character n-grams. 

Table 2 The frequency and length of character n-grams in intrinsic plagiarism detection methods 

 
 N-grams used to compute features References 

Frequency 

All n-grams regardless of their 
frequencies 

(Stamatatos 2009a) (Kuznetsov et al. 2016) 
(Kern et al. 2012) 

High-frequency n-grams (Kestemont et al. 2011) (Rao et al. 2011) 

(Kuznetsov et al. 2016) 

Low-frequency n-grams (Kuznetsov et al. 2016) 

Length 

1 (Kern et al. 2012) (Kuznetsov et al. 2016) 

2 (Kern et al. 2012) 

3 
(Stamatatos 2009a) (Kestemont et al. 2011) 
(Kern et al. 2012) (Kuznetsov et al. 2016)  

4 (Kuznetsov et al. 2016) 
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For example, in (Kestemont et al. 2011), representing the text using only the most 

frequent n-grams extracted from a corpus was based on an efficiency reason which is 

to reduce the computation. However, no experiment has been done to check the 

impact of this reduction of the number of the used n-grams on performance or to prove 

that high-frequency n-grams are more effective than the rest of n-grams with lesser 

frequency. In (Kuznetsov et al. 2016), the frequencies of both rare and frequent n-

grams in a sentence were among the features used to quantify the writing style 

incoherence between this sentence and the rest of the document. However, the 

rationale behind these choices has not been explained. 

On the other hand, it is worth to mention the work of Kuta and Kitowski (2014) 

who replicated Stamatatos’ (2009a) method with the aim of optimising its 

performance. The authors investigated the effectiveness of the most frequent n-grams 

(as they have been used in (Kestemont et al. 2011)) and unveiled their poor 

performance in IPD in comparison with the whole set of n-grams. However, the 

effectiveness of the low-frequency n-grams has not been investigated.  

 As stated in the introduction, our paper is an attempt to appraise the relation 

between IPD performance and the character n-grams’ frequency and length for 

performance optimisation and task understanding reasons. We conduct our analysis 

in the context of two state-of-the-art intrinsic plagiarism detection methods (our 

method and Stamatatos’ (2009a) method) where character n-grams have been 

exploited in distinct ways. Before starting the analysis, let us recall that Stamatatos’ 

method is a well-known IPD method and we provided a brief description of it in 

Section 2.2. As for our method, it was first introduced in the short paper (Bensalem 

et al. 2014), and we will provide a detailed description of it in the next section. 

3 N-grams frequency classes method 

We recall that in intrinsic plagiarism detection approach, a fragment is considered 

plagiarised if it deviates from the dominant writing style of the document. With 

respect to character n-grams, we posit that this deviation could emerge in two ways: 

(1) The suspicious fragment could be a text in which we notice the presence of n-

grams that are infrequent in the rest of the document, e.g., a punctuated 

passage while the rest of the document lacks punctuation. 

(2) The suspicious fragment could be a text in which we notice a lack of n-grams 

that are relatively frequent in the rest of the document, e.g., a passage where 

there is a lack of using the function word ‘of’ – because a preference of using 

noun adjuncts instead – while ‘of’ is abundant in the rest of the document. 

From the two aforementioned perspectives, we assume the following: given a 

document d, the proportion of its infrequent n-grams (the 1st perspective) and its 

frequent n-grams (the 2nd perspective) in a fragment of text s belonging to d could be 

a clue that may help to deduce whether s is plagiarised or not. 

Describing n-grams just by being frequent or infrequent is vague, hence the need 

for a systematic way to determine the frequency boundaries of each category. Thus, 

the method we are proposing (1) classifies n-grams according to their frequencies in 

a given document, (2) computes for each fragment the proportion of n-grams that 
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belong to a particular class, which quantifies the degree of the presence of the 

concerned subset of n-grams in that fragment, and (3) uses this proportion to reveal 

plagiarism as we stated in the assumption above. The following subsections provide 

further details on these three stages.  

3.1 N-gram classification 

N-gram frequency classes are created by grouping together the character n-grams 

of a particular length, n, that have similar frequencies in a given document. We 

represent the frequency class of an n-gram (or briefly n-gram class) by a natural 

number belonging to the interval [0..m − 1] such that m is the number of classes into 

which the character n-grams of a document are classified according to their 

frequencies in this document. 

Concretely, to classify the n-grams of a given document, d, into m classes, first, 

the document is represented by a 2 × l matrix (l is the total number of distinct n-grams 

extracted from d), where the first row contains the n-grams ngi (i = 1..l) and the second 

one contains their number of occurrences, freqi, in d. Let max_freq denote the 

maximum frequency, so:  

𝑚𝑎𝑥_𝑓𝑟𝑒𝑞 =  max  𝑓𝑟𝑒𝑞i , i = 1. . 𝑙.                                      (1) 

Then, the class of an n-gram, ngi, is: 

class 𝑛𝑔i = round(logbase(𝑓𝑟𝑒𝑞i)),                                 (2) 

where round is a function that turns the real result of the logarithm into the nearest 

integer, and base is a variable computed as follows: 

base =  √𝑚𝑎𝑥_𝑓𝑟𝑒𝑞𝑚−1
  .                            (3) 

By computing the base of the logarithm this way, the high-frequency n-grams in 

the document will be in the class m−1, and the low-frequency n-grams (e.g. the ones 

that appear only one time) will be in the class 0. If the number of classes is higher 

than two (m > 2), classes between 0 and m−1 will contain medium-frequency n-grams. 

Figure 1 illustrates an example of computing the n-gram classes of a document. 

3.1.1 Rationale 

In the literature, selecting the n-grams by considering their frequencies is usually 

controlled either by:  

(1) a threshold on the number of n-grams (Jankowska et al. 2014), e.g., selecting 

the 3000 most frequent  n-grams, or 

(2) a threshold on the frequency of n-grams (Stamatatos 2013), e.g., selecting n-

grams whose occurrence is higher than 500. 

These techniques are typically used to select n-grams based on their frequencies in 

a training corpus, whereas we are interested in selecting n-grams on the basis of their 

frequencies in separate documents of different sizes. Therefore, the above techniques 

do not suit our purpose since it might be impractical to set one threshold (on the n-

grams frequency or number) to select n-grams from documents of different sizes. For 
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example, while selecting the most frequent X n-grams makes sense for a long 

document, it leads to keeping all the n-grams of a document whose profile size is 

smaller than X n-grams. 

Indeed, our method classifies n-grams as a step towards their selection. Since the 

calculation of n-gram classes involves the variable maximum frequency, max_freq,  

(see the equations (1-3)), we obtain classes whose boundaries adapt automatically to 

the document length. Besides, the parameter number of classes, m, allows controlling 

the frequency boundaries of classes (and consequently the number of n-grams in each 

class) without the need to set a threshold. As illustrated in Fig. 2, when m = 2, around 

half of the document’s n-grams is assigned to the class 0, and the other half is assigned 

to the class 1. However, if m = 10, the number of n-grams in each class will be far 

less than half. To illustrate further, we also examined the n-grams frequencies in each 

class (of the same document used to create Fig. 2), and we observed that the class 0 

comprises even the n-grams that occur 34 times when m = 2; whereas, the class 0 

contains only the n-grams that occur once when m = 10. 

3.2 Features extraction 

The features we are introducing represent the Proportions of the N-grams Frequency 

Classes in a given fragment. We call them the NFCP features. The extraction 

procedure of these features comprises the following steps:  

(1) The document under processing, d, is segmented into fragments by the sliding 

window technique. Inspired by the segmentation strategy used in (Oberreuter and 

Velásquez 2013), we used different options for the window size depending on the 

document length, which are 100, 200 and 400 words applied to documents of 

fewer than 600 words, between 600 and 1800 words, and more than 1800 words, 

 
Fig. 1 Steps for computing the n-gram classes of a document. The parameter n is the length of n-grams 

and m is the number of classes. In this example m = 3 (class labels are from 0 to 2)  
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respectively. Let S denote the set of fragments, sp, extracted by setting the 

window step equal to the quarter of the window size (overlapping fragments), and 

let S’ be the set of the fragments, sq, extracted by setting the window step equal 

to its size (consecutive non-overlapping fragments). The n-gram frequencies, 

which are used to determine the classes, are computed on S’ in order not to be 

altered by the n-gram repetitions due to the overlapping fragments (see step 2). 

On the other hand, the NFCP features are computed for each fragment in S to 

increase the number of examples used for training and testing (see step 3). 

(2) The n-gram class document model is built as explained in Section 3.17 (refer back 

to Fig. 1 for an illustration). In this model, the frequency of an n-gram, ngi, used 

to compute its class, is the number of ngi occurrences in d such that it is counted 

once per each fragment sq ∈ S’. Therefore, the minimum value that could take a 

frequency is 1 if ngi appears only in one fragment, and its maximum value is |S’| 

(the number of non-overlapping fragments in d) if ngi occurs in each fragment 

sq ∈ S’, q = 1, …, |S’|. We choose this manner of computing the frequency (once 

per fragment) because it better reflects the distribution of an n-gram over the 

document. That is, this frequency indicates that the n-gram occurs in distinct parts 

of the document, as opposed to the frequency computed in the ordinary way that 

increases even if the n-gram’s occurrence is concentrated in one fragment. 

(3) The n-grams are extracted from each fragment sp ∈ S (the overlapping 

fragments), and each n-gram is represented with its class obtained from the 

document model.  

(4) Finally, we compute the proportion of each class in the fragment. Each proportion 

represents an NFCP feature. Figure 3 illustrates these steps. In this example, the 

fragment is represented by three NFCP features extracted from complementary 

                                                           
7 Numerals have not been considered when extracting n-grams. 

 

Fig. 2 The relation between the number of classes into which the n-grams are classified and the number of 
n-grams in the classes (these classes are computed on the 3-grams of suspicious-document03103 from the 

PAN-PC-11 corpus) 
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classes (for the sake of simplicity, although unrealistic, we suppose that the 

fragment contains only five n-grams). 

Unlike our previous work (Bensalem et al. 2014), we chose not to weight the n-

grams with their frequencies in the fragment when computing the proportion of each 

class. That is, each n-gram is considered once no matter how many times it appears 

in the fragment. Moreover, we subtracted from each feature the mean (computed on 

each document separately) of its values. We made those changes based on empirical 

results that proved the superiority, in terms of information gain, of the features 

generated using the method in its adjusted version. 

3.3 Plagiarism identification 

Once the suspicious document fragments are represented by features, a fundamental 

phase in the process of intrinsic plagiarism detection is to decide whether a fragment 

is plagiarised or original. This phase has been implemented in the literature methods 

using different techniques, notably clustering (Kern et al. 2012), supervised 

classification (Meyer zu Eißen et al. 2007), comparing the values of a high-level 

feature with a threshold (Oberreuter and Velásquez 2013; Stamatatos 2009a) and 

density-based classification (Stein et al. 2011). 

Our IPD method is based on supervised classification using Naïve Bayes 8 . 

Therefore, we built a training dataset where each fragment, sp ∈ S, is represented by 

the target feature and a selected set of NFCP features. The target feature value is either 

plagiarised if the intersection between sp and the plagiarism cases annotated in the 

corpus exceeds 50% of sp length in characters, or original otherwise. Subsequently, 

we used the training dataset to construct a classifier, which is then employed to 

                                                           
8 The used implementation of Naïve Bayes is the one of the software WEKA (Hall et al. 2009). We trained 

and tested other classification algorithms implemented on WEKA software, and the best results were 
obtained with Naïve Bayes. 

 

Fig. 3 Steps for extracting 3 NFCP features corresponding to 3 complementary classes 
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identify the plagiarised fragments in any given document.  

4 Datasets and performance measures 

We used for our experiments three evaluation corpora in English and one corpus in 

Arabic with its two parts training and test. The English corpora (Potthast, Stein, et al. 

2010) have been developed for the international competition on plagiarism detection 

(PAN)9 of the years 2009, 2010 and 2011 to evaluate the IPD methods (Potthast et al. 

2009, 2011; Potthast, Barrón-cedeño, et al. 2010). We used specifically the test part 

of each corpus10. The Arabic corpus (InAra) (Bensalem et al. 2013a, 2013b) has been 

built by ourselves, following PAN annotation standards, and has been used in 

AraPlagDet 201511, the first plagiarism detection competition on Arabic documents 

(Bensalem et al. 2015). 

These corpora are collections of annotated suspicious documents which have been 

created automatically by inserting, within a set of mono-authored documents (host 

documents), passages of different lengths borrowed from other texts. The inserted 

passage and the host document should have similar topics but written by different 

authors. Moreover, these suspicious documents comprise only verbatim cases of 

plagiarism. This is because disguising plagiarism may alter its writing style, which 

may further complicate its identification by the intrinsic approach. Table 3 shows 

statistics of the used corpora. 

As regards the performance measure, we use the f-measure for all the experiments 

in this paper, which is the harmonic average of the precision and recall12. Precisely, 

we use a version of precision and recall adapted by Potthast et al. (2010) for 

plagiarism detection evaluation. In these tailored measures, which became a standard 

for evaluating plagiarism detection methods, the plagiarised and detected fragments 

are expressed in terms of their lengths in characters. More precisely, we used the 

macro-averaged version where the precision and recall are computed at fragment level 

and then averaged. Their formulas are presented in the equations 4 and 5, where Act 

is the set of the plagiarism cases annotated in the corpus (the Actual cases) and Det is 

                                                           
9 http://pan.webis.de 
10 The corpora could be downloaded from: https://webis.de/data/data.html#pan-corpora 
11 http://misc-umc.org/AraPlagDet 
12 There is another performance measure of plagiarism detection, which is the granularity. This measure 
does not gauge the efficacy of the method to spot plagiarism but instead its ability to merge the overlapping 

and the adjacent detections into one segment. We did not use this measure in this paper because it is rather 

sensitive to the post-processing methods used to merge the identified plagiarism cases, which is outside 
our experiments’ scope. 

Table 3 Statistics on the evaluation corpora 

 PAN-PC-09 PAN-PC-10 PAN-PC-11 InAra-Training InAra-Test 

Language English English English Arabic Arabic 

# documents  3092 4766 4753 1024 1024 

# plagiarism cases  10471 12851 11443 2833 2714 
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the set of the plagiarism cases detected by the method (the Detected cases). Let sact 

denote an actual case, and let sdet denote a detected case. The symbols |sact| and |sdet| 

are, respectively, the lengths of sact and sdet in characters. The symbols |Act| and |Det| 

are the number of actual and detected cases respectively.  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴𝑐𝑡, 𝐷𝑒𝑡) =
1

|Det|
 ∑

|⋃ (𝑠act ∩ 𝑠det)𝑠act∈𝐴𝑐𝑡 |

|𝑠det|
                      (4)

𝑠det∈𝐷𝑒𝑡

 

𝑟𝑒𝑐𝑎𝑙𝑙(𝐴𝑐𝑡, 𝐷𝑒𝑡) =
1

|𝐴𝑐𝑡|
 ∑

|⋃ (𝑠act ∩ 𝑠det)𝑠det∈𝐷𝑒𝑡 |

|𝑠act|
𝑠act∈𝐴𝑐𝑡

                          (5) 

5 Evaluation of the NFCP features-based method 

The proposed feature extraction method allows extracting, through one 

configuration, ⟨n, m〉, as many NFCP features as the chosen number of classes, m, 

from the n-grams of a determined length, n, of a given document. Let us call these 

features the complementary NFCP features since they are extracted from 

complementary n-gram classes. 

The first idea that came to our mind to evaluate our assumption that the proportions 
of the n-gram classes are relevant to identify plagiarism is to represent the fragments 

by m complementary NFCP features. Therefore, we created 90 training sets by 

parameterising the extraction method with all the possible pairs 

⟨n, m〉 ∈ [1..10] × [2..10]. The parameters we adopted for the test on English and 

Arabic texts are, respectively, the ones that yielded the highest f-measure through 

validation on PAN-PC-10 and InAra-Training, namely ⟨4, 3〉 for English texts and 

⟨1, 8〉 for Arabic texts. 

We tested the method on PAN-PC-09, PAN-PC-11 and InAra-Test. On the two 

English corpora, we compared it with Stamatatos (2009a) 13  and Oberreuter and 

Velásquez (2013) methods, which are the top-ranked methods in PAN09 and PAN11 

                                                           
13 The results of Stamatatos’ method on the PAN-PC-11 corpus are available in (Potthast et al. 2011). 

 

Fig. 4 F-measure of our method in comparison with the best methods in the PAN intrinsic plagiarism 
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competitions, respectively, and also with the method of Kestemont et al. (2011), being 

a character n-grams based method that has been evaluated on both corpora. On the 

Arabic corpus, the comparison is made with the method of Stamatatos (2009a)14 and 

the method of Mahgoub et al. (2015), which, to the best of our knowledge, is the only 

method tested previously on the InAra-Test corpus15. The methods of Stamatatos and 

Kestemont et al. are both based on a style dissimilarity function computed on 

character 3-grams as outlined in Section 2.2, whereas Oberreuter and Velásquez’s 

method compares word frequencies between the whole document and its segments. 

As for Mahgoub et al.’s method, it is based on computing the cosine distance between 

the document and its fragments represented by some syntactical and lexical features, 

such as parts of speech and stop words frequencies.  

As shown in Fig. 4, the performance of our method is comparable to that of state-

of-the-art approaches, which indicates that the NFCP are promising features to 

characterise plagiarism. 

6 Sensitivity analysis of NFCP features performance to n-grams 

frequency and length 

In this section, we examine the performance of the NFCP features extracted from 

different classes of n-grams. This examination is important for three reasons:  

 The first reason is to optimise the performance of the proposed feature extraction 

method. Therefore, one can use it readily without going through a tuning phase of 

the parameters ⟨n, m〉.  

 The second reason is to gain insight into the relation between the frequency of 

character n-grams and plagiarism. In Section 3, we presented two descriptions of 

plagiarism based on character n-grams: (1) it is the passage wherein we notice the 

presence of infrequent n-grams or (2) it is the passage wherein we notice the lack 

of frequent n-grams. However, it is still unknown which of them is the most 

pertinent description. In other words, what is the most relevant characteristic of a 

plagiarised fragment in terms of n-gram classes? Is it its relatively high proportion 

of the low-frequency n-grams or its relatively small proportion of the high-

frequency n-grams? Or maybe the proportion of medium frequency n-grams is the 

most discriminative. Alternatively, all n-grams, whatever their frequencies, may 

be equally important. The experiments in the present section allow answering 

these questions. 

 The third reason is to help choose the best performing subset of NFCP features 

(see Section 6.3). 

                                                           
14 The evaluation of Stamatatos’ method on InAra-Test is performed by ourselves using the original 

implementation of the method. 
15 In the AraPlagDet competition, participants were more interested in the external plagiarism detection 
approach. 
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6.1 Experimental setup 

As stated earlier, our approach of computing n-gram classes deals with two 

parameters ⟨n, m〉, which represent the length of n-grams and the number of classes, 

respectively. Since our goal is to study the effect of n-grams’ frequency and length 

on the performance of NFCP features, we extracted features by using all the possible 

values of the pair ⟨n, m〉 ∈ [1..10] × [2..10]. That is, each document is represented 

with ten distinct n-gram profiles corresponding to the different n-gram lengths (from 

1 to 10). Then, the n-grams of each profile are categorised into 2 classes, 3 classes …, 

and 10 classes. Therefore, the total number of classes (and consequently NFCP 

features) obtained from n-grams of a chosen length is 54 (∑ 𝑚)
10

𝑚=2
. Since our 

experiments concern ten different n-gram lengths, the total number of the resulted 

classes is 540 (54 × 10). We name the classes labelled 0 the low-frequency classes, 

and we name the classes labelled m-1 the high-frequency classes. The remainder of 

the classes are named medium-frequency classes. See Fig. 5 for an illustration.  

In total, features have been extracted from 12611 English documents and 2048 

Arabic documents including 34765 and 5547 plagiarism cases, respectively. Once the 

540 features have been extracted, we evaluated the performance of each of them 

 

Fig. 5 The 54 classes obtained from the n-grams of a document by classifying them into different number 

of classes, m. For example, when m = 2 (the top of the figure), this means that the n-grams of the document 

are classified into 2 classes labelled 0 and 1. The former represents n-grams of low frequency, and the latter 
represents n-grams of high frequency 

Table 4 Evaluation setting of NFCP features 

Training Test  

PAN-PC-09 
PAN-PC-10 

PAN-PC-11 

Iteration 1 

Iteration 2 

PAN-PC-10 
PAN-PC-09 

PAN-PC-11 

Iteration 3 

Iteration 4 

PAN-PC-11 
PAN-PC-09 

PAN-PC-10 

Iteration 5 

Iteration 6 

InAra-Training InAra-Test Iteration 1 

InAra-Test InAra-Training Iteration 2 
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separately from the others. Practically, for each language, a total number of 540 

classifiers (in each iteration), corresponding to the 540 NFCP features, have been 

trained and tested using the five datasets described in Section 5. Explicitly, cross-

validation has been performed between each couple of corpora, i.e., each corpus is 

used separately, on the one hand, for training a classification model and on the other 

hand, for testing the models trained on the other corpora of the same language. 

Consequently, we obtained for each NFCP feature six classification results on English 

corpora and two classification results on the Arabic corpus as illustrated in Table 4. 

Then, the f-measure scores are averaged for each language to be used in our analysis. 

 

6.2 Results and discussion 

6.2.1 Sensitivity to n-gram frequency classes 

Figure 6 depicts the distribution of the f-measure of low-, medium-, and high-

frequency NFCP features. As shown in the figure, half of the least-frequent features 

have an f-measure of more than 0.28 and 0.17 on English and Arabic corpora, 

respectively. However, more than half of the medium and high-frequency features 

perform poorly as illustrated through their lower medians in comparison with the 

median of the least-frequent features. The high-frequency features, notably, are the 

most likely to perform poor as 75% of them have an f-measure less than 0.17 in 

English texts and less than 0.09 in Arabic texts. 

We can conclude from the above observations that the n-grams of a given fragment 

that do not appear frequently in the document are likely to assist in deciding whether 

it is plagiarised or not more than its n-grams that appear more frequently. In other 

words, the more an n-gram is frequent in the document, the less likely it is to be 

effective in detecting plagiarism intrinsically using NFCP features method.  

Finally, it is also interesting to observe that performance scores of the features in each 

super-class (i.e., low, medium or high) are spread out on relatively large intervals. We can 

 

Fig. 6 The distribution of performance of the NFCP features computed on English text (a) and Arabic 

text (b) 
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see in the figure that in the same super-class (in both Arabic and English corpora), there 

exist features that reached an f-measure higher than 0.25 and other features with an f-

measure lower than 0.15. This indicates that the NFCP features performance is 

influenced not only by the frequency of the selected n-grams (high, medium or low) but 

also by other parameters. Those parameters could be the number of classes into which 

n-grams are classified according to the frequency, which affects the number of the n-gram 

in each class, and obviously the length of n-grams. In the next subsections, we discuss the 

sensitivity of performance to these two parameters. 

6.2.2 Sensitivity to the number of classes  

The question addressed in this section is: when classifying n-grams into m classes in 

an experiment and into m’ classes in another experiment, will the performance of the 

NFCP features extracted from the same super-class (e.g. the class of low-frequent n-

grams) in both experiments be the same?  

The graphs in Fig. 7 represent line charts of the performance of the NFCP features 

as a function of the number of classes. The features of each super-class are plotted in 

separate graphs. Each line relates the performance of the features extracted from the 

same n-gram length. 

Recall that each point in the graphs is the average f-measure of one NFCP feature, 

which is computed using the scores obtained from the different test iterations. 

However, for the graphs of the medium-frequency features, each point represents the 

average f-measure of two or more features when the number of classes is greater than 

3. For example, classifying n-grams into four classes produces two medium-

frequency features. Therefore, what is plotted, in this case, is the average performance 

of the classes labelled 1 and 2. 

The graphs become easier to interpret by keeping in mind that the parameter 

number of classes (m) controls the number of n-grams in the obtained classes. 

Therefore, the increase in m on the y-axis of Fig. 7 can be interpreted as a reduction 

in the number of n-grams from which the NFCP feature is extracted.  

It can be seen from the graphs that the performance increases or decreases between 

2 classes and 6 classes, then it stabilises (with the low-frequency features) or 

continues to change slowly (with the medium- and high-frequency features) when m 

is above 6. 

A more in-depth observation of the graphs reveals that the sensitivity of 

performance to the number of classes varies according to the length of n-grams. For 

instance, to obtain the best low-frequency features, we need to classify n-grams into 

few classes (m ≤ 4) if the n-grams are relatively short (n ≤ 4 for English and n ≤ 3 for 

Arabic), but m shall be equal or greater than 6 if the n-grams are longer. Another 

example could be observed in the medium-frequency classes where 2- and 3-grams 

in Arabic in addition to 4-grams in English are not following exactly the general 

patterns. 

From the above comments, we can conclude that whatever the length of n-grams, 

there is no benefit from classifying them into more than 6 classes because this 

generates NFCP features that are either similar to or worse performing than the ones 

extracted from a smaller number of classes. Nonetheless, the optimal size of a class 
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(which is controlled by the chosen number of classes) depends on the frequency of n-

grams as well as their length. In detail, to obtain the best low-frequency features, we 

recommend classifying n-grams into 6 classes, except for the short n-grams as 

explained in the previous paragraph. On the other hand, we obtain the best medium- 

and high-frequency features by classifying n-grams into 3 or 2 classes, respectively 

 

Fig. 7 Sensitivity of NFCP features performance to the number of classes on English (left) and Arabic 

(right) 
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(with some exceptions as stated in the previous paragraph). Note that when n-grams 

are classified into only two classes – which is the configuration that produces the best 

NFCP features extracted from the high-frequency n-grams – the generated NFCP 

features from these two classes will be similar since the proportion of the high-

frequency n-grams in a fragment is one minus the proportion of the low-frequency n-

grams. All the above remarks are applicable for both Arabic and English. 

 
 

Fig. 8 Sensitivity of NFCP features performance to the n-gram length on English (left) and Arabic (right)  
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To elucidate the findings above using more-general words, let us recall again that 

the number of classes is a parameter specific to our method that allows controlling 

the number of n-grams in each class, which is in turn related to the frequency range 

of n-grams in this class (see Section 3.1.1). Based on that, the experiments described 

in this section are an attempt to understand the variation of the performance of the 

NFCP features according to the size and the frequency range of the selected subset of 

n-grams. The above findings recommend considering a large number of n-grams to 

extract the best NFCP features from the high-frequency n-gram (regardless of their 

length) or the low-frequency short n-grams16. In contrast, the frequency range of the 

low-frequency long n-grams producing the best NFCP features should be as small as 

possible (i.e., only the n-grams that occur once). 

6.2.3 Sensitivity to n-gram length 

The graphs in Fig. 8 represent line charts of the NFCP features’ performance as a 

function of the n-gram length. The f-measure plotted in this figure has been computed 

by applying the same averaging procedure as the one used for Fig. 7. 

The graphs show that the middle-sized low-frequency n-grams outperform the 

short and the long n-grams. This remark is true in both English and Arabic corpora. 

With regard to the high-frequency n-grams, generally speaking, the longer the n-

grams, the smaller the performance of the related features in Arabic and English17. 

This observation means that representing the suspicious document fragments with the 

proportion of the high-frequency short n-grams is more helpful in detecting 

plagiarism than representing them with the proportion of the high-frequency long n-

grams. 

The best performance of the features based on medium-frequency n-grams 

regardless of the number of classes is reached with unigrams in Arabic (as for the 

high-frequency n-grams). In English, n-grams of 5 to 7 characters are the best. 

A detailed observation reveals that the sensitivity to n-gram length is related to the 

language. That is, Arabic and English do not have exactly the same pattern of 

sensitivity to n-gram length. The best performing NFCP features are obtained with 

medium length n-grams in English (from 4 to 6). In Arabic, they have been obtained 

with even shorter n-grams (1-, 3- and 4-grams). Moreover, it seems that Arabic is 

more sensitive than English to the length of n-grams, for example, the long n-grams 

produce very poor performance in Arabic: beyond 6-grams all the features have an f-

measure under 0.2, which is not the case in English. Indeed, Arabic and English are 

different in terms of the distribution of word lengths. This distribution may have an 

impact on the meaningfulness of the linguistic information captured by the n-grams 

of a certain length. For example, most of the Arabic words are derived from roots of 

three characters. Consequently, many 3-grams represent word roots in Arabic, which 

is not the case in English. This fact, probably, explains the difference between the 

optimal parameters of the two languages. 

                                                           
16 As detailed in previous paragraphs, in this context, short n-grams means n ≤ 3 or n ≤ 4 for Arabic and 

English, respectively. The rest are called long n-grams. 
17 There is an exception with features computed by classifying n-grams into 2 classes in English where 
peak performance has been reached with 4-grams. 
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6.3 Combining NFCP features 

The experiments described in this section investigate the best performing subset of 

the NFCP features. Indeed, we attempted to address this question in Section 5 by 

searching the optimal subset of the complementary NFCP features exclusively. In this 

section, however, the features to combine are selected either on the basis of their 

individual performance (reported in Section 6) or by applying some well-known filter 

or feature reduction methods. In detail, the experiments we conducted are: 

A. Selecting the best feature of each n-gram super-class: In this experiment, we 

combined three features; each one is the best of the low-, the medium- and the 

high-frequency NFCP features, respectively. 

B. Selecting the best feature of each n-gram length: In this experiment, we combined 

ten features; each one is the best NFCP feature extracted from n-grams of a 

particular length n ∈ [1..10]. 

C. Using filter and feature reduction methods: More precisely, we used the principal 

component analysis (PCA), the correlation-based feature selection (Cbfs) and the 

information gain. We applied these techniques on 4 datasets where the text 

fragments are represented by different sets of the NFCP features, which are: (1) 

All the 540 NFCP features extracted by using the different configurations 

⟨n, m〉 ∈ [1..10] × [2..10]; (2) Only the high-frequency NFCP features (90 

features); (3) Only the low-frequency NFCP features (90 features); (4) Only the 

medium-frequency NFCP features (360 features). 

Since C involves several experiments, we will present only the results of the 

experiments that produce the best performance in each language, which are the PCA 

applied on the low-frequency NFCP features for English and the Cbfs applied on the 

low-frequency NFCP features for Arabic. A closer examination of the feature space 

resulted from using the above feature selection techniques revealed that the PCA 

reduced the 90 low-frequency features to one dimension, and the Cbfs retained only 

four low-frequency features. 

In all the experiments, we trained and validated the classifiers on PAN-PC-10 and 

InAra-Training and tested them on PAN-PC-11, PAN-PC-09 and InAra-Test. 

Ultimately, we compared the results of the above feature selection experiments with 

the performance of the entire set of the 540 NFCP features, the best complementary 

NFCP features (reported in Section 5), and the best single NFCP feature for each 

language presented in Table 5. 

We observe from Fig. 9 that the feature selection has slightly improved our 

previous results reported in Section 5 (i.e. the best complementary features), notably 

Table 5 The configurations that produce the best NFCP features 

 n m n-gram class 

English 5 5 0 

Arabic 3 4 0 
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in PAN-PC-11 and InAra-Test corpora where the performance increased from 0.30 to 

0.34 and from 0.33 to 0.37, respectively. Interestingly, all the results obtained by 

feature selection, no matter which technique was used, are better than the results 

obtained by using the whole set of the 540 NFCP features without feature selection. 

This suggests that a solution based on NFCP features could be efficient since it is not 

necessary to use a broad set of features – which is computationally expensive – to 

achieve even better results.  

Another interesting observation is that the best NFCP feature alone performs as 

good as some combination of features, notably in the English corpora. This could be 

attributed to the fact that an NFCP feature is a high-level feature extracted from many 

basic features and therefore, it is informative enough even when used alone. 

7 Sensitivity analysis of Stamatatos’ method performance to n-grams 

frequency and length 

This section explores how selecting n-grams of a particular length according to their 

frequencies affects Stamatatos’ (2009a) method performance. Thus, this exploration 

allows checking the possibility of improving the performance of the method by 

removing a subset of n-grams from the profile and/or changing the length of n-grams.  

Before starting our analysis, let us remind the reader that our method and the one 

of Stamatatos utilise character n-grams to compute different high-level features: the 

proportion of the n-grams frequency classes and a dissimilarity measure, respectively. 

Therefore, comparing the analysis of this section with the one presented in Section 6 

will enable us to discern whether the performance of a particular subset of n-grams is 

method-dependent or not. For instance, we showed that the least frequent n-grams 

produce the best NFCP features, but will they lead to optimal performance of 

Stamatatos’ dissimilarity measure? Accordingly, addressing this question is another 

objective of this section. 

 

Fig. 9 Performance of combined NFCP features selected using different techniques 
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7.1 Experimental setup 

Stamatatos’ original method represents each document by almost all18 its character n-

grams regardless of their frequencies. Since we aim to analyse the effect of selecting 

n-grams on the performance of this method, we measured the variation of the f-

measure according to the size of the selected set of n-grams. Therefore, we 

represented each document by sub-profiles of different sizes resulted from keeping 

only a proportion of the entire profile. Extracting the sub-profiles is based on the 

cumulative percentages that we computed on the frequency distribution table of the 

n-gram frequencies by starting once from the least frequent n-grams and once from 

the most frequent ones. See an example in Table 6.  

The size of the created sub-profiles is represented by a percentage X%, where 

X ∈ {10, 20, …, 90} (100% represents the full profile). A sub-profile is said to be of 

a size X% of the whole profile if the cumulative percentage of its n-grams belongs to 

the interval ]X−10%, X%]. Note that if a document contains a large proportion of n-

grams of a certain frequency, we cannot extract from it all the nine sub-profiles 

corresponding to the sizes indicated above. For example, in the document of Table 6, 

the first sub-profile – created by starting the selection of n-grams from the least 

frequent ones – constitutes already almost 70% of the full profile. Therefore, the sub-

profiles that comprise 10% to 60% of the n-grams are not created for this document 

because they will contain only a subset of n-grams whose occurrence is 1; however, 

we chose to create the sub-profiles by keeping (or discarding) all the n-grams of a 

particular frequency. Afterwards, if a sub-profile of a certain size could not be created 

for 25% or more of the total number of documents, we ignore the associated results. 

We used the original implementation of the method 19  with the following 

modifications:  

 We added a filter that cuts the profiles of the document and its fragments by taking 

into account the n-grams frequencies as explained above. 

 We adjusted the size of the sliding window to be 1500 characters (instead of 

1000)20 in order to approximate to its size in our method, and so this parameter 

                                                           
18 Some non-alphabetic n-grams such as n-grams of numerals are discarded. 
19 We are so grateful to the author of the method Efstathios Stamatatos for sending us its code. 
20 We also adjusted another parameter of the method called Real window length threshold to 2250 instead 
of 1500 to make it appropriate to the new window size. 

Table 6 Cumulative percentages computed on the 3-grams of the suspicious-document01020 of PAN-PC-09 

Cumulative percentage computed by starting 

from the least frequent n-grams 

 

Cumulative percentage computed by starting 

from the most frequent n-grams 

N-gram’s 
frequency f 

# n-grams 
whose frequ. = f 

Cumulative 
percentage 

N-gram’s 
frequency f 

# n-grams 
whose frequ. = f 

Cumulative 
percentage 

1 412 69.36% 17 1 0.17% 

2 101 86.36% … … … 

…. … … 2 101 30.64% 

17 1 100% 1 412 100% 
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would less affect the analysis of the results.  

 Since our experiments deal with Arabic in addition to English, and the original 

code supports only ASCII characters, we adapted the method to work with Arabic. 

 For each experiment, we tuned the two parameters that control the plagiarism 

detection in the method (see the description of the method in Section 2.2) using 

around 200 documents from PAN09 competition training corpus for English texts 

(as done in the evaluation of the original method) and around 200 documents from 

InAra-Training for Arabic texts. We opted for the parameter-tuning phase instead 

of using the original parameters because preliminary experiments showed that the 

optimal parameters vary according to the sub-profile size and the length of n-

grams. For instance, an experiment with the entire document’s profile and another 

with 50% of it require the use of different parameters to achieve the best results. 

Likewise, the optimal thresholds used with 2-grams differ from those used with 

4-grams. Hence, employing the same parameters for all the experiments may 

invalidate our analysis. 

7.2 Results and discussion 

Each bar in Fig. 10 represents the average of the f-measure computed on the three 

PAN corpora for English and the two parts (training and test) of the InAra corpus for 

Arabic (as done in the previous experiments). Note that the performance associated 

with some sub-profile sizes is not depicted. For instance, there are no bars for some 

sub-profiles in the charts of 10-grams. This is because, for numerous documents, it 

was not applicable to create sub-profiles with these sizes as explained in the 

experimental setup. 

The charts show that the optimal performance of the method is attainable by 

representing the documents using all their n-grams. Accordingly, cutting the profile, 

either by keeping only the least or the most frequent n-grams, affects the performance 

negatively. To illustrate this fact, we compare the left bars of each n-gram length 

chart, which represent the performance of the least or the most frequent n-grams, with 

the extreme right bar, which depicts the performance of the full profile. Let us take 

the case of 4-grams on the English text. It can be seen that the f-measure obtained by 

using the full profile is 0.32, but it drops to 0.14 when keeping only the 50% least 

frequent n-grams (see the graph En-1) and to 0.25 when keeping only the 50% most 

frequent n-grams (see the graph En-2).  

Despite the necessity to retain all the n-grams to reach optimal performance, it is 

worth mentioning that in this method the least frequent n-grams are less relevant than 

the most frequent ones. The following observations illustrate this statement: 

 For most n-gram lengths, the 50% most frequent n-grams outperform the 50% 

least frequent n-grams. For instance, see the charts of 3-grams for English and 

Arabic where this is readily noticeable (refer back also to the example mentioning 

4-grams in the previous paragraph). 

 The performance achieved by using only the 10% most frequent n-grams (see the 

extreme left bars of each chart in En-2 and Ar-2) is generally higher than the 

performance obtained by using the very least frequent n-grams (labelled with * in 

the charts En-1 and Ar-1), which constitute a significant proportion of the profile, 

notably when n ≥ 3. 
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 In Arabic documents specifically, it is obvious that the performance of a small 

subset of the most frequent n-grams (e.g., 10% of the full profile) is almost equal 

to the performance of the whole set of n-grams (see the graph Ar-2). Conversely, 

this is not the case for the least frequent n-grams (see the graph Ar-1). 

Concerning the optimal n-grams’ length, 4-grams and 5-grams yield the best 

performance in English and Arabic, respectively. 

Based on the above analysis, we recommend keeping in the profile all the n-grams 

regardless of their frequencies (as done in the original method) since they are all 

together essential to reach the optimal results of this method. If it is necessary to 

 
(En-1) 

(En-2) 

(Ar-1) 

(Ar-2) 

Fig. 10 Sensitivity of Stamatatos’ method performance to the size of the selected subset of the n-grams 
(in percentage) and n-gram length. N-grams are selected from profiles sorted according to frequencies 

starting from the least frequent n-grams (En-1 and Ar-1) or the most frequent n-grams (En-2 and Ar-2). 

The performance is computed on English (En-1 and En-2) and Arabic (Ar-1 and Ar-2) documents. In the 
charts En-1 and Ar-1, the values of the x-axis labelled with an asterisk (*) represent the sizes of sub-

profiles that contain only n-grams whose frequency = 1 whatever their proportion in the document’s full 

profile. 
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reduce the number of n-grams, then removing the least frequent n-grams would be 

less harmful than removing the most frequent ones, especially in Arabic documents.  

A by-product of these experiments is the increase of the f-measure from 0.31 to 

0.35 on PAN-PC-09, from 0.21 to 0.29 on PAN-PC-11 and from 0.26 to 0.33 on 

InAra-Test. These results are obtained by using 4-grams for English and 5-grams for 

Arabic and a window length of 1500 characters instead of the original configuration 

(3-grams with a window length of 1000 characters for both languages).  

By comparing the behaviour of n-grams in this method and our method (described 

in Section 6), we can perceive that the n-grams that lead to the optimal results are not 

the same for the two methods. Below are some details: 

 The least frequent n-grams alone produce the best NFCP features but a poor 

dissimilarity measure. 

 It is not necessary to extract NFCP features from n-grams of different frequency 

ranges to attain competitive performance. However, achieving optimal 

performance of Stamatatos’ method requires the use of all the n-grams regardless 

of their frequencies. 

 The best n-gram length is specific to each method.  

The conclusion we can draw from this comparison is that in the context of intrinsic 

plagiarism detection, the effectiveness of a subset of character n-grams in a method 

does not guarantee its effectiveness in other methods. 

8 Summary and conclusion  

Although several papers have investigated the best ways of using character n-

grams to solve diverse research problems, there is a lack of such studies in the context 

of intrinsic plagiarism detection. This paper is an attempt to narrow this gap by 

examining the sensitivity of intrinsic plagiarism detection performance to two factors: 

n-gram frequency and n-gram length. We conducted our study on five large 

collections of English and Arabic documents that have been used in the intrinsic 

plagiarism detection competitions of the PAN Lab. 

Our experiments manipulated two intrinsic plagiarism detection methods, which 

are based exclusively on character n-grams, but these low-level features are exploited 

in each method differently. The first method, which is the one we presented in this 

paper, classifies the n-grams according to their frequencies in the given suspicious 

document. Then, it represents each fragment of the document by the proportion of its 

n-grams belonging to a particular class. We called this proportion the NFCP feature. 

The second method (Stamatatos 2009a), which is a seminal state-of-the-art method, 

represents the suspicious document fragments by a dissimilarity measure between 

their n-grams and the n-grams of the entire document.  

Concerning the first factor of our study, which is the n-grams frequency, our 

experiments showed that the best NFCP features are obtained from the least frequent 

n-grams. This means that the proportion of the least frequent n-grams of a document 

in its fragments is a relevant clue to determine whether they are plagiarised. However, 

this class of n-grams (i.e., the least frequent ones) becomes less helpful in Stamatatos’ 

method wherein the high-frequency n-grams contribute more, comparatively, to 
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producing a discriminative dissimilarity measure. Besides, retaining all the n-grams, 

regardless of their frequencies, is the way to achieve the optimal performance. Taken 

together, these results show that the relevance of a subset of character n-grams 

(selected based on their frequencies) to characterising plagiarism is not absolute. It is 

rather relative to how the n-grams are harnessed. In other words, the performance of 

a subset of character n-grams, selected according to their frequencies, in intrinsic 

plagiarism detection is method-dependent. 

Concerning the second factor of our study, which is the n-grams length, our results 

are in line with the fact that the optimal length varies according to the language. 

Moreover, our experiments showed that this parameter is also method-dependent. 

That is, even in the same language, the optimal n-gram length varies for each method. 

On the other hand, the experiments described in this paper demonstrated the 

possibility to achieve state-of-the-art performance by using the character n-grams 

solely. Nevertheless, we believe that it would be beneficial to utilise them along with 

other features to capture further characteristics of plagiarism that might be missed 

when representing the text by the character n-grams alone. In this context, the NFCP 

features proposed in this paper and Stamatatos’ dissimilarity measure, being high-

level features that encapsulate many n-grams in a single value makes them well suited 

to be used alongside other features in machine learning-based methods without 

causing an increase of the feature space dimensionality. Thus, our study is a roadmap 

for researchers interested in including character n-grams into intrinsic plagiarism 

detection methods. Finally, as future work, it would be interesting to employ the 

NFCP features in other tasks whose goal is the textual outlier detection such as 

authorship verification. 
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