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Abstract
Spanish is one of the most spoken languages in the world. Its proliferation comes 
with variations in written and spoken communication among different regions. 
Understanding language variations can help improve model performances on 
regional tasks, such as those involving figurative language and local context infor-
mation. This manuscript presents and describes a set of regionalized resources for 
the Spanish language built on 4-year Twitter public messages geotagged in 26 Span-
ish-speaking countries. We introduce word embeddings based on FastText, language 
models based on BERT, and per-region sample corpora. We also provide a broad 
comparison among regions covering lexical and semantical similarities and exam-
ples of using regional resources on message classification tasks.

Keywords  Linguistic resources · Semantic space · Spanish Twitter

1  Introduction

Communication is, at its core, an understanding task. Understanding a message 
implies that peers know the vocabulary and structure; i.e., the receiver obtains what 
the sender intended to say. Language is a determinant factor in any communica-
tion. Even people who speak the same language can find difficulties communicating 
information due to slight language variations due to regional variations, language 
evolution, cultural influences, and informality, to name a few.

A dialect is a language variation that diverges from its origin due to several 
circumstances. Dialects can differ regarding their vocabulary, grammar, or even 
semantics. The same sentence can be semantically different among dialects. In 
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contrast, people of different dialects may need help understanding sentences with 
the same meaning. This effect is notoriously complex for figurative language 
since it contains cultural and ideological references. Studying these dialects can 
help us understand the cultural aspects of each population and the closeness 
between them. In this sense, dialectometry studies the regional distribution of 
dialects. Similarly, dialectometric analysis has as its objective, through a compu-
tational approach, to analyze this distribution and provide a quantitative linguistic 
distance between each dialect or region of it Donoso et  al. (2017). Hence, the 
research in dialectology tries to understand language differences, innovations, or 
variations not only in space but also in time through several phenomena. Natural 
Language Processing (NLP) tools can analyze written communications automati-
cally. However, the support for regional languages is still in its early stages in 
NLP, particularly for languages different from English.

Another important aspect to discuss is about if dialects are directly related to 
space or geographical boundaries (Hoff, 2020). As Penny et  al. (2000) discuss 
that language people who live in different territory do not speak the same way 
because the neighboring locality plays a key role. Also, the social and historical 
language variations are discussed in Penny et al. (2000). In some way, with the 
analysis done we hope to contribute a little to this exciting discussion. A more 
linguistic comparison from Spanish variants in America could be found in Cotton 
and Sharp (1988).

On the other side, social media is a crucial component of our lives; Facebook, 
Twitter, Instagram, and Youtube are among the most used social networks that allow 
interaction among users in written form and other media. In particular, Twitter is a 
micro-blogging platform where most messages are intentionally publicly available, 
and developers and researchers can access these messages through an application 
programming interface (API). Twitter’s messages are known as tweets. Each tweet 
contains text and additional metadata like the user that wrote it and the geographic 
location where it was published. In the case of social media, where the source of 
the messages is informal, the errors are another source of variability in the lan-
guage. This kind of messaging may impose extra difficulties than in formal written 
documents.

Nonetheless, Twitter messages’ quality and socio-demographic representative-
ness have been continuously questioned (Crampton et al., 2013). Some authors have 
shown that despite the over-representation of some social groups, social media usage 
can still be of enormous usefulness and quality (Huang et al., 2016). Language and 
geographical information are crucial to understanding the geographies of this online 
data and how some information related to economic, social, political, and environ-
mental trends could be used (Graham et al., 2014).

It is easy to observe the relevance of having quality and realistic data for lan-
guage variations analysis or model generation with this background. Sometimes, 
it is difficult to have a regional-specific corpus. A large corpus is necessary to 
learn language models and achieve confident analysis; more data often imply 
better models. With this kind of resources acquired, for instance, from social 
media platforms, many potential research and applications have been made in 
many research areas, such as health (Paul & Dredze, 2011), environmental issues 
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(Mooney et al., 2009), emotion (Suhasini & Srinivasu, 2020), mental health (Fin-
fgeld-Connett, 2015), gender (Vashisth & Meehan, 2020), and misogyny (Frenda 
et al., 2019), among others.

There are several examples of linguistic resources attending specific tasks or 
applications, such as the study of Down syndrome in Escudero-Mancebo et  al. 
(2022). Also, on CKennedy et al. (2022), a corpus is proposed for hate-based rheto-
ric, or hate recognition. On Gruszczyński et al. (2022), the authors provide a corpus 
of up to 13.5 million tokens of Polish texts between 1601 and 1772. As can be seen, 
a variety of corpus has been generated by the community to deal with general or 
more specific NLP tasks.

On the other hand, the Spanish language variations are also studied in the NLP 
research community. For instance, in Gonçalves and Sánchez (2014), authors pre-
sent a crowdsourcing language diatopic variation using Twitter data with geoloca-
tion, employing tweets messages in Spanish for more than two years over the globe. 
The analysis was made with a set of pre-established words and counting each and 
its variations worldwide. In this sense, to know what regions are close to each other, 
the authors used the k-means clustering algorithm over these words frequencies and 
principal component analysis (PCA) to reduce data into two-dimensional space for 
visualization. The clustering approach identifies large macro-regions sharing lan-
guage characteristics.

Unfortunately, for the Spanish language, there are few works, contrary to some 
language variations from Europe, e.g., English dialects (Hovy et al., 2020), French 
dialects (Lamontagne & McCulloch, 2022) and Arabic (Alshutayri & Atwell, 2017), 
to name some.

One of the possible assumptions using Twitter is that the behaviors of English 
users generalize to other language users. In Hong et al. (2011) is presented a study 
using 62 million tweets over more than 100 different languages over four weeks. 
Applying an automatic language detection algorithm, they found that most of the 
data were in English (51%), and 39% was for other languages such as Japanese, Por-
tuguese, Indonesian, and Spanish.

The geographical region of a language helps to know how this language is used in 
a particular society. For instance, Spanish is a largely used language; nevertheless, 
it is used differently according to the country or even a more specific geographi-
cal location. Hence, the language could analyze at the regional level (Huang et al., 
2016; Rodriguez-Diaz et  al., 2018). In Rodriguez-Diaz et  al. (2018), the authors 
study Spanish language variations in Colombia. The analysis used unigram features, 
and the authors stated that it was challenging to compare Spanish variations against 
regions identified by other authors using classical dialectometry. Hence, in conclu-
sion, the authors said that automatic detection of dialectones is an adequate alter-
native to classical methods in dialectometry for automated language applications. 
A more current effort to deal with the Spanish Language on Twitter was presented 
by Huertas-Tato et al. (2022), which provides a powerful tool to take advantage of 
transformers generated with the native language. The authors test their solution with 
several classical NLP tasks.
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The number of articles related to other languages is also reduced. In Alshutayri 
and Atwell (2017), the Arabic dialects were classified using the WEKA tool1 reach-
ing an accuracy of 79% on their classification results. The used dataset contained 
210,915K tweets from some Arabic dialects and classified them considering their 
geographic location.

Mocanu et  al. (2013) survey the linguistic landscape in the world using Twit-
ter. This landscape includes linguistic homogeneity or variations over countries that 
consider the touristic seasons. The method employed to identify language is the 
Chromium Compact Language Detector by Google; the authors also used the loca-
tion of the devices reported by tweets. As a result, it was possible to observe dis-
tributions of language on Twitter over several countries by month of the year and 
where touristic flow is evident.

Also, emoticons or emojis are effective communication symbols. Their usage has 
been studied in the literature. For instance, in Park et al. (2013), authors analyzed the 
semantic, cultural, and social aspects of their use on Twitter. Kejriwal et al. (2021) 
studied the use of emojis in terms of linguistic use and countries. The authors col-
lected tweets from 30 different languages and countries, and the authors found that 
emojis usage strongly correlates between language and country level, which means 
that emojis are used according to language and region. Another example of studying 
Emojis is presented in Li et al. (2019).

Other efforts have been made to exploit the regionalized models for a specific 
language variation; for instance, in Jimenez et al. (2018) where methods to identify 
regional words and provide their meaning is studied.

Our contribution is a set of regionalized resources for different variations of the 
Spanish language. We created and characterized regional vocabularies and regional 
semantic representations of them (i.e., word embeddings). Also, we learn and test 
language models based on BERT. We built these resources from an extensive col-
lection of public tweets from 2016 to 2019, written in 26 countries with a large basis 
of Spanish-speaking people. Regarding messages, we provide a sample of Twitter 
message identifiers divided by region such that researchers can retrieve them easily. 
Finally, we show some usage examples of our resources.

The rest of the manuscript is organized as follows. Section 2 describes our Twitter 
Spanish Corpora (TSC), used to generate our regional resources. Section 3 compare 
lexical traits among the corpora. Section  4 is dedicated to presenting our seman-
tic resources and their affinity analysis that includes visualizations and experimental 
evidence that support the use of regional word embedding models on regional tasks. 
Our resources based on language models are presented and compared in Sect.  5. 
Finally, Sect. 6 summarizes and discusses the implications of the TSC.

1  https://​www.​cs.​waika​to.​ac.​nz/​ml/​weka/.

https://www.cs.waikato.ac.nz/ml/weka/
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2 � Twitter corpora of the Spanish language

With 489 million native speakers in 2020,2 Spanish is one of the languages with 
a higher native speaking basis, just ranked behind Chinese Mandarin in terms of 
the number of native speakers. Twenty-one countries have the Spanish language 
as the official language (by law or de facto).3 Our corpora selected these regions, 

Table 1   Datasets’ statistics after filtering by retweets and ensuring at least five words per tweet

We show the origin country, the country code in ISO 3166-1 alpha-2 format reported by the Twitter API, 
the number of tweets, and the number of different users in the collected period

Country Code � � Number of users Number of tweets Number of tokens

Argentina AR 0.7563 1.8594 1376K 234.22 M 2,887.92 M
Bolivia BO 0.7509 1.8913 36K 1.15 M 20.99 M
Chile CL 0.7555 1.8874 415K 45.29 M 719.24 M
Colombia CO 0.7562 1.8993 701K 61.54 M 918.51 M
Costa Rica CR 0.7447 1.8595 79K 7.51 M 101.67 M
Cuba CU 0.7640 1.8677 32K 0.37 M 6.30 M
Dominican Republic DO 0.7544 1.8832 112K 7.65 M 122.06 M
Ecuador EC 0.7538 1.8968 207K 13.76 M 226.03 M
El Salvador SV 0.7494 1.9066 49K 2.71 M 44.46 M
Equatorial Guinea GQ – – 1K 8.93K 0.14 M
Guatemala GT 0.7498 1.9175 74K 5.22 M 75.79 M
Honduras HN 0.7486 1.8941 35K 2.14 M 31.26 M
Mexico MX 0.7557 1.8895 1,517K 115.53 M 1635.69 M
Nicaragua NI 0.7445 1.8535 35K 3.34 M 42.47 M
Panama PA 0.7559 1.8952 83K 6.62 M 108.74 M
Paraguay PY 0.7511 1.8815 106K 10.28 M 141.75 M
Peru PE 0.7583 1.8966 271K 15.38 M 241.60 M
Puerto Rico PR 0.7498 1.8433 18K 0.58 M 7.64 M
Spain ES 0.7648 1.9036 1278K 121.42 M 1908.07 M
Uruguay UY 0.7516 1.8346 157K 30.83 M 351.81 M
Venezuela VE 0.7614 1.8959 421K 35.48 M 556.12 M
Brazil BR 0.7681 1.9389 1604K 27.20 M 142.22 M
Canada CA 0.7652 1.9331 149K 1.55 M 21.58 M
France FR 0.9372 1.9324 292K 2.43 M 27.73 M
Great Britain GB 0.7687 1.9129 380K 2.68 M 34.62 M
United States of 

America
US 0.7666 1.8929 2,652K 40.83 M 501.86 M

Total 12 M 795.74 M 10,876.25 M

2  https://​blogs.​cerva​ntes.​es/​londr​es/​2020/​10/​15/​spani​sh-a-​langu​age-​spoken-​by-​585-​milli​on-​people-​and-​
489-​milli​on-​of-​them-​native.
3  https://​en.​wikip​edia.​org/​wiki/​List_​of_​count​ries_​where_​Spani​sh_​is_​an_​offic​ial_​langu​age.

https://blogs.cervantes.es/londres/2020/10/15/spanish-a-language-spoken-by-585-million-people-and-489-million-of-them-native
https://blogs.cervantes.es/londres/2020/10/15/spanish-a-language-spoken-by-585-million-people-and-489-million-of-them-native
https://en.wikipedia.org/wiki/List_of_countries_where_Spanish_is_an_official_language
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see Table 1; and we also considered five additional regions (US, CA, GB, FR, and 
BR) with well-known migration, business, and tourism activities of Spanish speak-
ers. The number of Twitter users varies with each country; since each country has 
different social, political, security, health, and economic conditions, we will avoid 
generalizations.

As mentioned, we collected publicly published tweets between 2016 and 2019 
using the Twitter stream API. Also, we limited our collection to geotagged mes-
sages marked by Twitter as written in Spanish. We decided to let out the corpus 
messages from the year 2020 and posteriors to avoid disturbances in social media 
regarding the COVID-19 pandemic. Please recall our objective is to build resources 
based on the language itself and not analyzing the pandemic event. Twitter stream 
API allows tweet retrieval in two ways. The first consists of using a language marker 
(lang=es, for Spanish) and a list of tracking words linked to the specified language. 
In this case, we can use Spanish stopwords4 to maximize the download process. The 
second strategy consists in using a language marker (lang=es, for Spanish) and geo-
graphical coordinates, these kinds of tweets are named geotagged Tweets. We spec-
ify worldwide coordinates to get tweets from everywhere. We use only geotagged 
tweets from the last strategy. These geotagged tweets have information such as coun-
try code corresponding to the country where the tweet was published, among other 
metadata. We rely on the information provided by Twitter about the country associ-
ated with each tweet.

To ensure a minimum amount of information in each tweet, we discard those 
tweets with less than five tokens, i.e., words, emojis, or punctuation symbols, fol-
lowing the strategy of Mikolov et al. (2013) for analyzing and learning from very 
large collections. We also removed all retweets to avoid duplication of messages and 
reduce foreign messages commented on by Spanish speakers. After this filtering 
procedure, we retain close to 800 million messages.

Table  1 shows statistics about our corpora describing aspects such as country, 
number of users, number of tweets, and number of tokens. The table shows that 
Spain, the USA, Mexico, and Argentina are countries with more users. Furthermore, 
they are also those with more tweets in the Spanish language, but the USA falls 
considerably in this aspect. A similar proportion is observed in the number of tokens 
column. However, Argentina has the highest number of tokens, above Mexico and 
Spain significantly.

The table also lists the coefficients for the expressions behind Heaps’ and Zipf’s 
laws. Both laws are broadly surveyed in the literature; for instance, Gelbukh et  al. 
(2001) and Schütze et  al. (2008,  Chapter  5) describe them and study their implica-
tions from a general perspective. In a nutshell, the laws describe how the vocabulary 
grows in text collections written in non-severe-agglutinated languages. Heaps’ law 
n� describes the sub-linear growth of the vocabulary on a growing collection of size 
n. Zipf’s law represents a power-law distribution where a few terms have very high 

4  Words that are so common in a language, such as articles, prepositions, interjections, and auxiliary 
verbs, among other typical words.
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frequencies, and many words occur with a shallow frequency in the collection. The 
expression that describes Zipf’s law is 1∕r� , where r is the rank of the term’s frequency.

Figure 1a illustrates the Heaps’ law in a small sample of regions of interest. One 
can observe its predicted sub-linearity and that Mexico has the lowest growth in its 
vocabulary size according to the number of tokens. On the contrary, the US corpus 
shows faster vocabulary growth, possibly explained due to the mix of languages in 
many messages.

Figure  1b shows Zipf’s law under a log-log scale and its quasi-linear shape. We 
can see slight differences among curves, more noticeable on both the left and right 
parts of the plot. The left part of the curves corresponds to those terms with very high 
frequency, and the right side is dedicated to those terms being rare in the collection. 
Notice that all these curves are similar but slightly different; this is not a surprise since 
we analyze variations of the same idiom, i.e., the Spanish language.

Fig. 1   The vocabulary growth and distribution of frequencies of 107 tokens over a sample of our Twitter’s 
Spanish language corpora

Fig. 2   Distribution of tweets and tweeters labeled as Spanish-speaking users around the world. Colors 
are related to the logarithmic frequencies in data collected from 2016 to 2019 with the public Twitter 
API stream. Darker colors indicate a high population; the logarithmic scale implies that only significant 
frequency differences produce color changes
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2.1 � Geographic distribution

Figure  2a illustrates the number of collected Spanish language tweets over the 
world. The color intensity is on a logarithmic scale, which means that slight vari-
ations in the color imply significant changes in the number of messages; countries 
with the darkest blue have the highest number of tweets in Spanish. This figure 
shows how American countries (in the south, central, and north) and the Iberian 
Peninsula have, as expected, more tweets in the Spanish language than the rest of 
the world.

Figure 2b shows the distribution of tweeters (users) per country. As in the pre-
vious image, we present a logarithmic scale in the intensity of color to represent 
the number of users. The differences between this figure and Fig.  2a are low, as 
expected, and follow the same distribution. Note the high intensity of American 
countries.

Also, it is essential to know whether the tweets come from persons living in the 
country or travelers. It might be impossible to completely answer this by looking 
only at the tweets. However, an approach that can provide insight into the locality 
of the tweets is to measure the ratio between the tweets produced by local users and 
the total number of tweets produced in each country, where each user is assigned to 
the country where more tweets have. For example, suppose a tweeter has 100 tweets 
in Mexico and 10 in Spain. In that case, that user is considered Mexican, and those 
published in Spain (considered there a tourist) are not considered, which means only 
the tweets produced in Mexico are counted.

Figure 3 presents the ratio between local tweets and the total number of tweets; 
it can be observed that Puerto Rico (PR) has the lowest ratio, meaning that most 
tweets come from foreigners. The second lowest is Equatorial Guinea (GQ), where 
more than 60% of its tweets are local. Then, there is a block of countries where 
Spanish is not the primary language. After the block comes Cuba, with 88% of its 
tweets produced by locals. The United States of America (US) has a ratio of 90%. 
From the Dominican Republic (DO) to the right have a percentage higher than 95%. 

Fig. 3   Ratio between the number of tweets produces by local tweeters and the total tweets in the country
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The median ratio in these countries is 98%. This effect could indicate most of the 
tweets are produced by residents.

3 � Lexical resources

This section describes and analyzes our Spanish Twitter Corpora (STC) in the lexi-
cal aspect, specifically from the vocabulary usage perspective. This analysis comple-
ments that given of the Heaps’ and Zipf’s laws and the information given in Table 1.

Fig. 4   Affinity matrix among Spanish regions’ vocabularies
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Figure 4 describes the procedure applied to obtain an affinity matrix of our Span-
ish corpora.5 For this purpose, we extracted the vocabulary of each corpus, i.e., a 
matrix that describes the similarities among corpora. The vocabulary was computed 
on the entire corpus after text normalizations described in the diagram. We also 
removed those terms with less than five occurrences in the corpus to remove the tail 
of the term-frequency distribution, similarly to Mikolov et al. (2013); Bojanowski 
et  al. (2017). The remaining terms are used to create a vector that represents the 
regional corpus.

The affinity matrix is computed using the cosine distance described in the flow 
diagram. Note that we select the cosine distance as metric due to the reminiscences 
of the traditional bag of words with our vocabulary representation, see (Schütze 
et  al., 2008) for more information about conventional vector models for informa-
tion retrieval. The heatmap represents the actual values in the matrix. This matrix 
is crucial for the rest of this analysis since it contains distances (dissimilarities) 
among all pairs of our Spanish corpora. Values close to zero (darker colors) imply 
that those regions are pretty similar, and lighter ones (close to one) are those regions 
with higher differences in their vocabularies. For instance, the affinity matrix can 
show us how Mexico (MX) is more similar to Honduras (HN), Nicaragua (NI), Peru 
(PE), and the USA (US). This behavior could be the geographical location of the 
countries, and therefore, a large migration or cultural interchange is made. On the 
other hand, Brazil (BR) and Equatorial Guinea (GQ) are among the most atypical 
countries with low similarities with the other countries.

Figure 5 illustrates the similarity between Twitter country vocabularies. Here we 
rely on Uniform Manifold Approximation and Projection (UMAP) algorithm (McI-
nnes & Healy, 2020), a non-linear dimension reduction technique that approximates 
the k nearest neighbor graph structure of a dataset in the projected low dimension. 
We applied UMAP projections (2D for spatial projection and 3D for colorizing 

Fig. 5   Spanish-language lexical 
similarity visualization among 
country’s vocabularies through 
a two-dimensional UMAP 
projection using the Cosine 
among vocabularies. The points 
were colorized using a 3D 
UMAP projection (normalized 
and interpreted as RGB). Both 
projections use three nearest 
neighbors, which emphasizes 
local features

5  Under our context, an affinity matrix is a pair-wise matrix of distances among different regions using 
a dissimilarity function. The ith row contains the distance of the i region vs. all regions; it has a zero 
diagonal.
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points) using the affinity matrix as input. Please recall that the affinity matrix rep-
resents similarities between regional vocabularies using the cosine distance as the 
metric. Please remember that the UMAP algorithm uses the affinity matrix to gener-
ate the low-dimensional projection. To our best knowledge, this is a novel approach 
to visualizing similarities among vocabularies. Still, we can find several uses of 
dimensional reduction techniques like tSNE (Wada & Iwata, 2018) for visualizing 
word meaning similarities in a single multi-language model. UMAP is a more recent 
non-linear dimensional reduction technique that typically performs faster than other 
non-linear alternatives like tSNE or ISOMAP with remarkable stability on projec-
tions (McInnes & Healy, 2020). Interested readers on alternatives are referenced to 
the recent literature (Anowar et al., 2021).

The figure shows how close or far each Spanish variation is among the entire cor-
pora. UMAP is parameterized by the number of nearest neighbors (knn) in the affin-
ity matrix. The number of neighbors accepts values between k = 2 and n, i.e., the 
number of elements in the collection. Small values of k capture local characteristics 
of the graph’s structure, while large k values capture global structures.

The figure shows the projection using 3nn6; we can see four well-defined clusters 
here. For instance, Uruguay (UY) is very close to Argentina (AR) in three figures, 
and this is the case in other countries, like Mexico (MX), Colombia (CO), and the 
United States (US); or Venezuela (VE), and Ecuador (EQ).

While some of these clusters support the idea that geographical similarities imply 
language similarities, there are notorious exceptions. Figure  6 shows a colorized 
map using the same colors encoding of Fig. 5. While it is possible to observe simi-
larities and divisions among North America, Central and South America, and Euro-
pean countries, there are essential differences. For instance, Colombia (CO), a South 
American country, has more similarities to Central American language variants.

Fig. 6   Regional Vocabulary in RGB representation

6  The value k = 3 was chosen after several tests, larger values capture more global characteristics, and 
k = 2 produce many sparse clusters (local characteristics).



1708	 E. S. Tellez et al.

1 3

Regarding our lexical features, Cuba and the Dominican Republic are close 
to Venezuela, Bolivia, and Ecuador. It is interesting to recall that these similari-
ties are present in Twitter and may vary from other data sources. Still, it could be 
helpful to take advantage of this knowledge.

Our collections are small for some countries, e.g., GQ, PR, and CU, which 
can introduce some possible issues in our analysis. For instance, it is possible to 
declare similarities that are non-meaningful. Please recall that the UMAP projec-
tion uses the k nearest neighbor graph (that takes the affinity matrix of Fig. 4 as 
input). Even when other regions do not select these regions as neighbors (please 
recall we used k = 3 ), these regions will have direct neighbors that can have 
enough data. For instance, Fig.  4 shows Cuba with a light row column, which 
means that most regions are seen relatively far, but it connects Bolivia. Bolivia 
has more strong connections that positioned Cuba on the map. Another effect 
occurs with Brazil that even when it has a large corpus, it contains a lot of mes-
sages mixing Spanish and Portuguese. It is pretty different from most regions but 

Fig. 7   Most popular emojis per Spanish-speaking country
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visible closer to FR and GB, and therefore, BR will be placed near them on the 
2D and 3D projections, see Fig. 5.

In addition, emojis are graphical symbols expressing an emotion or popular con-
cepts. Hence, they are a lexical resource that can also imply an emotional charge. 
Emojis compensate for the lack of facial expressions and other expressive ways of 
face-to-face conversations. Therefore, emojis are popular on social networks like 
Twitter since they are concise and friendly ways to communicate (Dresner & Her-
ring, 2010). The use of emojis is also dependent on the region, as illustrated in 
Fig. 7. The figure shows the 32 most used emojis in each country; skin tone mark-
ers were separated from composed emojis and counted in an aggregated way. Note 
that the most popular emojis have consensus in almost all regions. In top rank, we 
found the laughing face, the in love face, and the heart (love). Another symbol that 
deserves attention is the color-skin mask, which marks emojis with a skin hue. 
Regarding frequencies, lighter color-skin marks are more popular than darker ones; 
this information could have different meanings. For example, users identified as 
white people, or perhaps it is tricky to select the proper one with Twitter clients. The 
real reason behind this finding is beyond the scope of this manuscript but deserves 
attention.

4 � Semantic analysis and regional word embeddings

This section discusses the creation of regional semantic representations (word 
embeddings) for our Spanish language corpora and also analyze similarities between 
regions using visualization techniques. Word embeddings are vector representations 
of a vocabulary that capture the semantics of words learning how words are used 
in a large text corpus. Algorithms learns a high dimensional vector for each token 
using a distributional hypothesis: words used in similar contexts have similar seman-
tics. Therefore, if two vectors are close, both are semantically related; the contrary 
also becomes true, as two distant vectors are different semantically. In summary, 
embeddings are a popular and effective way to capture semantics from a corpus 
(Yang et  al., 2018). There exist several techniques to learn word embeddings, for 
instance, Word2Vec (Mikolov et al., 2013), FastText (Joulin et al., 2017; Bojanowski 
et al., 2017), and Glove (Pennington et al., 2014). Our resources are FastText mod-
els, to support out-of-vocabulary words, which are common in social network data. 
FastText is both a word representation generator and a text classification tool. It is 
an open-source library well-known for its broad language coverage.7 For instance, 
Grave et  al. (2018) trained word embeddings for 157 languages using Wikipedia 
(800 million tokens) and Common Crawl (70 billion tokens); these models include 
support for the Spanish language. Nonetheless, there is a lack of country-level lan-
guage support to our knowledge. Our resources are the first broad effort on this mat-
ter, making it possible to take advantage of regionalisms and Spanish dialects.

7  https://​fastt​ext.​cc/.

https://fasttext.cc/
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We use our Twitter corpora, divided by country, and apply our preprocessing 
step, described in Sect. 3, as input of the FastText algorithm. Before, we filtered out 
several messages: we removed messages with URLs, messages with less than seven 
tokens, and those produced by applications that use a template to write the tweet 
(e.g., Foursquare). We also removed retweeted messages. These decisions empha-
size that messages contain useful textual information and do not reference external 
data. The rationale of retweets and external data removal is that they may be of a 
different user, and we cannot be sure that the linked resource is located in the same 
region as the original message. These filters reduced our corpora in half (close to 
400 million messages).

Regarding the minimum size of seven tokens, the idea is to preserve some context 
for each token in the message; please recall that word embeddings learn the distri-
butional semantics of each word using its surrounding words. At the same time, we 
are unaware of a proper study about the phrase’s minimum length required to learn 
word embeddings. However, based on the FastText implementation that uses sliding 
windows of size five by default as context, preserving messages with at least seven 
tokens is a tradeoff between maintaining a large dataset and filtering out very short 
messages.

As commented, we created 26 word-embedding models, one per country, and 
learned 300 dimension vectors, which is almost a standard for pre-trained embed-
dings. We used the default values for the rest of the hyper-parameters of FastText. 
In addition, for comparing purposes, we use the entire corpora as a single corpus to 
create global word embeddings; the latter is the strategy of most pre-trained word 
embeddings. This embedding is used to show that regional word embeddings per-
form differently for regionalized tasks.8

Fig. 8   Number of common 
tokens shared by different coun-
tries or regions

8  These 27 embeddings are available in https://​ingeo​tec.​github.​io/​regio​nal-​spani​sh-​models/

https://ingeotec.github.io/regional-spanish-models/


1711

1 3

Regionalized models for Spanish language variations based…

4.1 � Word‑embedding similarity

Our semantic analysis requires an affinity matrix, as the lexical one given in the pre-
vious section. Therefore, we need a representation and a similarity measure to com-
pare word embeddings. Please note that regular word embeddings produced with 
neural networks will generate vectors that cannot be mixed. Please recall that in the 
first stage of learning each neural network, its parameters are randomly initialized. 
An optimizing algorithm is then used to minimize a loss function on the dataset, 
adjusting parameters and iterating until some objective is achieved. These two pro-
cedures, random initialization and optimizing for different datasets, make that two 
neural network models produce no proximal vectors for the same word, i.e., under 
the cosine distance. Despite vectors having identical numerical structures, e.g., 300 
dimensions, and components showing similar distributions, we cannot evaluate dis-
tances between points predicted in different models.

We propose using an intermediate representation and a distance function that 
captures similarities between these embeddings to measure the similarity between 
different countries. The core idea is to represent each embedding with a flattened 
version of the k nearest neighbor graph under a reduced set of tokens, i.e., tokens 
appearing in most word embeddings. Therefore, the similarity becomes linked to the 
neighborhood of each word (semantically similar words). The procedure to create 
this representation is the following:

•	 Select a common set of tokens; each token appears in at least five countries. This 
filtering reduces the vocabulary from more than a million tokens to nearly 200 
thousand tokens (vocsize). This selection corresponds to an inflection point in 
the tokens curve, (see Fig. 8). The core idea is to reduce the final representation 
dimensionality and increase the similarity between related words.

•	 Our representation requires constructing a k nearest neighbor graph for each 
country. We use dense vectors of the word embeddings closed to the common 

Fig. 9   Semantic similarities of our Spanish regional word embeddings. Countries are specified in their 
two letter ISO code. On the left, an affinity matrix where darker cells indicate higher similarities (small 
distances). On the right a two dimensional UMAP projection, near points indicate similarity
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tokens set, and we select k = 33 after probing several choices. This k value 
captures several similar terms and remains specific enough to let out different 
tokens. We used the cosine distance on the dense vectors.

•	 Finally, each country is represented as a high-dimensional vector that uses k 
entries per vocabulary word, one per neighbor in the common token set. Each 
token is then represented by its k nearest neighbors and weighted inversely to 
its distance.9 Note that each word embedding is represented with a very sparse 
high-dimensional vector, i.e., vocsize2 possible entries, and more than 3.8 million 
non-zero components.

The set of Spanish embeddings is compared with the cosine distance on the sparse 
vectors. We computed the affinity matrix shown in Fig.  9a using the procedure 
described above. As in the previous affinity matrix, darker colors represent a high 
similarity between the regionalized embeddings and the contrary with lighter colors.

Figure  9b shows a two-dimensional UMAP projection of our semantic rep-
resentation affinity matrix. The projection uses a 3 nearest neighbors graph as 
input; please recall that few neighbors capture local structures. The colors are 
computed by 3D reduction by applying the UMAP dimensional reduction to the 
same input; the resulting components create an RGB color set using a simple 
translation and scale procedure to compose values between 0 and 1. Both dis-
tances and colors describe a few well-defined groups. Please note that our ALL 
model is quite different from most points and similar to those regions with exten-
sive collections. This effect is available in word embedding models constructed 
on non-regional corpora; they learn semantic traits of most represented regions. 
On the contrary, it is necessary to mention that countries with few messages 

Fig. 10   Geographic visualization of regional embeddings. The 3D UMAP projection is encoded as RGB

9  We use the weighting form 0.5 + 1

1+d(u,v)
 for embedding vector u and its neighbor’s vector v, the lower 

the distance, the higher the weight.
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(e.g., CU, PR, and BO) could need more data to support the learning procedure; 
nonetheless, we decided to maintain them in the projection to learn about their 
similarity, yet under this advisor. On the other hand, we remove GQ since their 
small vocabulary produces numerical errors while computing its corresponding 
k nearest neighbor graph and UMAP projection.

Figure  10 shows the colormap computed from the previous dimensional 
reduction to colorize a world map obtaining a kind of map of semantic similarity 
of the Spanish language under our construction characteristics. We can observe 
how green colors group non-Spanish speaking countries (CA, FR, UK, and BR), 
except for PR, CU, and BO, in Fig. 9. Note that they correspond to our corpus 
with fewer messages and that Fig. 3 also indicates a high number of foreign mes-
sages. It is necessary to take these results with reservation since can be issues 
related to their sizes, as explained in Sect. 3 for the same set of collections.

Another large cluster is found with countries of all of Latin America (bottom 
of Fig.  9). Here we see at least two subclusters with meaningful geographical 
meaning HN, NI, SV, and GT. The other groups include DO, CR, and PA. Note 
that EC and PY are also included here. Finally, we found a cluster containing 
countries around the world. Note that the ALL word embedding is also placed 
in this cluster. This cluster seems to be composed of countries with larger col-
lections and other countries that are related to them. We found the AR, ES, CL, 
CO, UY, PE, US, VE, and MX here. Interestingly, we see the US here and not in 
the green cluster that agglutinates countries not having the Spanish language as 
an official or de facto language.

The semantic similarities between word embeddings can be of interest and 
can be the object of further research, but their practical usage is also of inter-
est. For instance, it is possible to know what countries can be mixed or inter-
changed without affecting the regional semantics significantly. A proper topic 
analysis could help clarify some of these clusters, but it is beyond the scope of 
this manuscript.

Table 2   Train distribution of the emoji-15 datasets. Since it is a 50-50 hold-out partition, the test set fol-
lows a similar distribution. We removed countries with a low number of examples
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4.2 � A regional task example: predicting emojis with Emoji‑15

Regional information can be used to improve understanding of formal and informal 
messages, using typical terms and expressions in some regions but not necessarily 
used in others. Our regional models can help improve some NLP tasks having these 
characteristics. We introduce the Emoji-15 classification task, a simple multiclass 
classification problem that predicts the emoji for given messages among 15 possible 
ones. This task involves identifying emotions and sentiments without a particular 
topic.

Its creation methodology is simple. We selected 15 popular emojis (see 
Sect.  3); we do not select the top 15 emojis per region, but a subset that gives 
some diversity in emotions. Also, we explicitly avoided the most popular emoji 
and skin tones from our selection. The selected emojis are listed in the first col-
umn of Table 2. We selected the datasets for training and test sets from 2020’s 
January and February; therefore, the corpus resources, training, and test sets are 
disjoint. We ensured that tweets contain at most one of these emojis (even when 

Table 3   Performance statistics of all benchmarks (countries)

Top-5 models are also listed and the rank position of the local model on solving the current benchmark

Country code Min
acc

Max
acc

Local  rank Top-5

1 2 3 4 5

AR 0.478 0.490 3 UY PY AR PE CO
BR 0.461 0.488 1 BR ALL DO PY CR
CA 0.293 0.353 18 CL ALL CO MX US
CL 0.426 0.449 1 CL US MX AR ES
CO 0.425 0.437 2 US CO VE EC GT
CR 0.369 0.388 9 US VE ALL MX CO
DO 0.338 0.381 13 US CO VE CL ALL
EC 0.380 0.414 9 MX US CL ALL CO
ES 0.475 0.486 1 ES AR MX US VE
FR 0.419 0.442 4 ALL GT EC FR PA
GB 0.347 0.376 23 ALL AR ES VE MX
GT 0.349 0.388 13 MX US ALL CO ES
HN 0.335 0.367 18 PE EC BR CR UY
MX 0.423 0.434 1 MX GT CR US CO
NI 0.337 0.372 18 VE CO CL MX US
PA 0.366 0.393 10 US CL VE CO PE
PE 0.380 0.420 9 MX ALL US AR CO
PY 0.424 0.442 1 PY US BR PE UY
SV 0.323 0.395 18 US CO MX CL VE
US 0.404 0.424 1 US MX CO ES CL
UY 0.435 0.457 1 UY US CO CL VE
VE 0.385 0.434 4 MX CO ES VE US
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they can have other emojis). Messages were also selected to be geotagged to one 
of our objective Spanish-speaking countries. We followed the same filtering pro-
cedure and preprocessing as made for the word embedding; note that we also 
masked emoji’s occurrences. That emoji was used as a label for the classification 
task.

We obtained a number of examples that were divided into a 50-50 holdout 
(proportion of label messages remain similar in train and test set); see Table 2 for 
more details. We removed four countries (BO, CU, GQ, and PR) from this task 
due to the low number of retrieved messages. For instance, we kept the statistics 
of Cuba in the table to show the lower limit cutting. The idea is to solve all-
region benchmarks with all-region models and quantify their performance and the 
pertinence of local models on local tasks.

The train partition was used to create one model per country and one for the 
entire set of messages (called ALL). Table  3 shows the accuracy performance 
scores of all models vs. all test databases. We can observe that some regions are 
more challenging to predict than others, e.g., CA achieves a maximum score of 
0.35 while AR achieves 0.49. One can observe that most accuracy scores are low 

Table 4   Average rank of all 
regional models along all 
countries datasets

Models with low average ranks are better

Model Voc size Avg  rank

US 292,465 4.23
CO 324,635 6.05
MX 438,136 6.27
CL 282,737 6.91
VE 271,924 7.00
ALL 1,696,232 8.45
PE 178,113 8.64
UY 200,032 8.73
EC 147,560 8.95
AR 673,424 9.41
ES 571,196 10.95
PY 124,162 11.14
BR 127,205 11.27
CR 103,086 12.50
PA 111,635 13.36
GT 95,252 13.64
DO 108,655 14.91
GB 82,418 18.00
NI 68,605 18.18
FR 69,843 18.91
CA 63,161 19.00
SV 73,833 19.14
HN 60,580 20.36
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but far from a uniform distribution (15 classes). The table shows the local mod-
el’s position in each country benchmark (local rank column). The best-perform-
ing model for a benchmark will rank as 1, the second-best as 2, and similarly for 
the rest. Note that small local rank values indicate that the local model (for that 
region) is efficient for its corresponding benchmark. The best five models for each 
country benchmark are also listed; we can observe how many geographically near 
regions perform well in their geographic neighborhoods. The average rank of the 
local model is 8.09 while the median is 6.5; these values support the idea that 
local models are useful on tasks where regional information can be used. Also, 
one can observe that not always more data (ALL model) is the best, in this case, it 
could be said that the geographical aspect is more relevant.

The average rank of a single model along all benchmarks indicates how well 
this model generalizes. Table  4 shows the performance of all models, along with 
all benchmarks, as its average rank. We can observe that some country models are 
outstanding, like the US model. In this sense, it is remarkable that models like the 
US or CO (both using a vocabulary of 300k tokens) perform better than huge ones. 
On the other hand, the ALL model is competitive; however, it is not the best (global 
6th regarding average rank). Please recall that we created the ALL model by merg-
ing the entire corpora into a single corpus, which is the typical construction; for 
instance, the ALL model contains close to 1.7 million tokens in its vocabulary.10

While these results apply to the regional task of predicting the most popular 
emojis, the evidence points out that local models are competitive options for solv-
ing tasks requiring local traits as emoji predictions (see Table 3). Even more, some 

Fig. 11   Loss and accuracy during training on the Masked Language Model task. The batch size is of 128 
tweets

10  Note that our vocabulary in Sect. 3 has more than 1.2 million tokens, and here we mentioned a larger 
one; this is the vocabulary recognized by the fastText parser. However, both vocabularies were computed 
using the same corpus. It is similar for other word embeddings listed in Table 4.
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regional models perform better than large ones, as shown in Table  4, which is 
remarkable.

5 � Language Models

Language Models (LM) are more sophisticated than word embedding models since 
they go beyond word semantics to context semantics and text generation. In more 
detail, Word2Vec, FastText, and Glove generate fixed embeddings for each word 
independently if the word can take different meanings depending on the context. For 
example, the word orange can be a fruit or a color, depending on the context. Lan-
guage Modeling is the task of predicting the next word given some context so they 
perform well in distinguishing homonyms.

In that sense, BERT (Devlin et  al., 2019) is an LM that has gained considera-
ble attention lately. It is a model that uses a series of encoders to generate embed-
dings for each word depending on its context. BERT differs from alternatives like 
ELMo (Peters et  al., 2018) because the same pre-trained model can be fine-tuned 
for different tasks. The pre-train on BERT uses the masked language model (MLM) 
task where each input sentence contains a mask token on 15% random words. Then, 
BERT was trained on a second task, the next sentence prediction (NSP) task, where 
the input has two sentences, with a separation token in between, and the task was to 
predict if the second sentence followed the first.

Our resources include regional pre-trained BERT-like models using the MLM 
task over tweets for the countries AR, CL, CO, MX, ES, UY, VE, and the US, i.e., 
larger ones. First, we applied the same preprocessing as detailed in Sect. 3 to our 
corpora. The pre-training was the same as the original BERT, where 15% of the 
tokens on each sentence were marked with a [MASK] token, and the model must 
predict them. We used the corresponding regional tweets from 2016 to 2019 to pre-
train each model. All the models had a series of two encoders with four attention 
heads each and output 512-dimensional embedding vectors. This configuration cor-
responds with the small-size model following the official BERT implementation 

Fig. 12   Comparison of the accuracy of the trained models on all the regions on MLM and emoticon pre-
diction tasks
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setup. We chose this setup based on the computational resources we had available. 
We name our model BILMA, for Bert In Latin America. We used a learning rate of 
10−5 with the Adam optimizer; the models for CL, UY, VE, and the US were trained 

Table 5   Predictions of the masked words over different regions. The color intensity indicates the prob-
ability of prediction
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for three epochs and AR, CO, MX, and ES for just one because of the size of their 
corpus. All the pre-trained models are available for download.11

Figure 11 shows the loss and accuracy of the MLM task during the training. We 
can see that the BILMA model for AR was trained on double the number of batches; 
that was because Argentina has double the corpus size. The rest of the models were 
trained on a similar number of batches.

In Fig.  12a, we compare the models predicting the masked words on all the 
regions over the test set of tweets used in Sect.  4.2. The test was to predict the 
[MASK] tokens correctly. Some interesting points to highlight are the follow-
ing. First, the Argentina model got very high scores on all the regions, even above 
their corresponding models for UY and CO. This might be because this model was 
trained for like double the data. Second, some models got better results in the ES 
region than theirs, like CL, CO, UY, VE, and the US. The US region got the worst 
outcomes for AR, CL, CO, ES, and UY models. Finally, CO and UY were the mod-
els with lower accuracy.

5.1 � BILMA’s performance on the Emoji‑15 regional task

We applied our BILMA models to our Emoji-15 task (see Sect. 4.2). For this mat-
ter, we fine-tuned the pre-trained language models to predict the emoticon by adding 
two linear layers to the first token of each sentence (the start-of-sentence token), so 
the output of the fine-tuned models was a probability distribution of the assigned 
emoticon, independent of its position. We split the tweets into 90% train and 10% 
validation and trained until the accuracy stalled. After that, we evaluated the test 
set; the results are presented in Fig. 12b. We can conclude that all the models got 
better results in their corresponding regions from the results. The AR, MX, and ES 
models got good results over all the regions; meanwhile, UY and VE got low scores. 
The prediction scores are similar to those found in Table 3; however, our regional 
FastText models are slightly better than our fine-tuned BILMA models. Nonethe-
less, BILMA models learn how people write in different regions, as it is exemplified 
in the rest of this section.

5.2 � Generating text with BILMA regional language models

As a qualitative and exemplification exercise, we present how each region model 
predicts the masked word for the same example phrase. In Table  5 we show the 
predictions for the masked token on a set of selected sentences. The color inten-
sity indicates the confidence of the model to predict the word. The first two exam-
ples are el/la [MASK] subio de precio (the [MASK] raised in price),12 here we can 

11  https://​ingeo​tec.​github.​io/​regio​nal-​spani​sh-​models/.
12  The article el indicates the masked word should be singular and masculine, and for la it should be 
singular feminine.

https://ingeotec.github.io/regional-spanish-models/
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see differences in how each region name their public transportation, in AR they use 
bondi, colectivo, in CL metro, micro, bus, in MX uber and ES metro, bus; we can 
also see the differences in how they called the cellphone service, in CO and MX 
is celular and in ES is movil. The third example is me gusta tomar [MASK] en la 
mañana (I like to drink [MASK] in the morning)13, here we can note that in AR 
and UY people prefer to drink mates meanwhile in MX, ES, VE, and the US drink 
coffee. The fourth phrase is vamos a comer [MASK] (let us eat [MASK]) where we 
can see the differences in the cuisine of the countries with dishes like asado, pizza, 
ñoquis, empanadas, milanesas, sushi, tacos, oreja, hamburguesa, arepa, torta. The 
last sentence is estoy en la ciudad de [MASK] (I am in [MASK] city). The results 
include a list of some of the larger cities in each region. This exercise is a proof 
of concept to show that the models of different regions can predict very different 
words, i.e., regional information. Note that the diversity of the predictions include 
dialect differences (celular vs movil) but also topical (tacos vs asado) and will 
depend on the input sentence.

6 � Conclusions

This manuscript proposes a set of regionalized resources for the Spanish language 
using Twitter as the data source. We collected messages from Twitter’s public 
streaming API from 2016 to 2019; messages must be tagged as being written in 
Spanish and geotagged to one of the 26 countries that use Spanish as one of their 
primary languages. The vocabulary of each corpus was extracted, characterized, and 
compared their similarity, defining a distance metric between them. We also produce 
visualizations and insightful information about lexical and semantical similarities of 
the Spanish language variations in Twitter messages.

On the other hand, we created regional semantic models using FastText and 
produced some visualizations of the semantic similarities among regions. We also 
create regional language models called BILMA, based on the well-known BERT 
transformer architecture. We give empirical evidence of the usefulness of regional 
models in regionalized text classification tasks (Emoji-15 task) and how this more 
careful data segmentation can yield better performances than the typical more-data-
is-better approach.

We provide access to our vocabularies, word embeddings, language models, and 
corpora sample through the project site (available in https://​ingeo​tec.​github.​io/​regio​
nal-​spani​sh-​models/). The necessary packages (BILMA) and all scripts used to gen-
erate our resources, open-sourced under the MIT license, are also reachable under 
the same site.

13  tomar could mean to take or to drink.

https://ingeotec.github.io/regional-spanish-models/
https://ingeotec.github.io/regional-spanish-models/
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6.1 � Limitations and further research

While the regional models seem promising tools for many tasks that require 
understanding regionalisms and idiosyncrasies, the use of multiple models can 
be cumbersome for real-world systems, not to mention the necessary computing 
units needed to handle many models. It is necessary to create models that can 
shift their region depending on a regional context. This approach requires further 
research.

Our Spanish corpora could be more balanced concerning countries. Some 
countries have too many elements, while others like GQ, CU, PR, and BO need to 
be bigger to have reliable semantic models (i.e., word embeddings and language 
models). More research and data collection are needed to improve resources in 
these regions.

Our region similarity comparisons are based on lexical and semantic properties 
of vocabularies computed and learned from Twitter messages. While it is not our 
goal, the presented projections could compare topics and other internal knowl-
edge in the resources. Proper topic analysis is beyond the scope of this study 
and requires further research. Similarly, it is possible to mine our resources, i.e., 
language models, semantic, lexical features, corpus, etc., to perform data-driven 
social sciences research, i.e., research about gender inequality or race perception. 
All these topics require more research.

The methodology and implementation of this manuscript are open to improve-
ments. For instance, countries with relatively few examples require different strat-
egies to be competitive. It is also essential to find ways to collect better data and 
discard the bad ones, such that results become more reliable for small collections. 
In the same sense, comparing vocabularies and embeddings created from datasets 
with such disparate sizes require robust normalization methods that we barely 
sketched. Our long-term goal is to update our resources using more and more 
data and novel language models as they appear in the literature.

Appendix

BILMA language model usage

In order to use our BILMA models, we need to download one first, we will also 
need the vocabulary file.

To clone the repository, download the model and install dependencies, in a 
linux terminal just type the following commands:
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and now we have the python package and its dependencies, the model and the 
vocabulary file (shared to all BILMA models). In particular, this example down-
loads the MX model that was trained with one epoch on the MLM task and fine-
tuned on the Emoji-15 task for 13 epochs.

We need to run a Python 3 console and load the BILMA model.

this BILMA model has two outputs, the first with shape (bs, 280, 29025) 
where bs is the batch size, 280 is the max length and 29025 is the size of the 
vocabulary. This output is used to predict the masked words. The second output 
has shape (bs, 15) which corresponds to the predicted emoji.

The next step is tokenizing some messages as follows:

the prediction is made as follows:

finally, the predicted emojis can be displayed with:

this produces the output: , each emoji corresponds to 
the most probable one for each message in texts.
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Cut off N

This section presents a methodology that addresses the minimum token frequency to be 
kept in the analysis.

The idea is to compute the confidence interval of a Bernoulli variable and select 
the minimum frequency f (number of times the token appears in the corpus) that sets 
the interval in a feasible region. Let p be the probability of seeing a particular token, 
assuming p̂ is Gaussian distributed. The confidence interval is p̂ ± 𝛼se(p̂), where se 
is the standard error of p̂ , and � is the percent point function with parameter 1 − c

2
, 

where 1 − c represents the confidence, e.g., � ≈ 2 gives approximately a 95% confi-
dence interval.

The following equations show that under the assumption made, the frequency f 
(number of times the token appears in the corpus) must be greater or equal to N�2

N+�2
 that 

in the limit when N tends to infinity corresponds to �2.

(1)p̂ − 𝛼se(p̂) ≥0

(2)p̂ − 𝛼

√

p̂(1 − p̂)
√

N
≥0

(3)
√

Np̂ − 𝛼
√

p̂(1 − p̂) ≥0

(4)
√

Np̂ ≥𝛼
√

p̂(1 − p̂)

(5)
√

Np̂ ≥

√

𝛼2p̂(1 − p̂)

(6)Np̂2 ≥𝛼2p̂(1 − p̂)

(7)Np̂2 − 𝛼2p̂(1 − p̂) ≥0

(8)p̂(Np̂ − 𝛼2(1 − p̂)) ≥0

(9)Np̂ − 𝛼2(1 − p̂) ≥0

(10)Np̂ − 𝛼2 + 𝛼2p̂ ≥0

(11)p̂(N + 𝛼2) ≥𝛼2

(12)p̂ ≥
𝛼2

N + 𝛼2
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Removing regions with relatively small datasets

A possible issue to attend to in our work is the need for more data in some regions, 
e.g., Equatorial Guinea (GQ), Cuba (CU), and Puerto Rico (PR). Another possible 
source of problems is the mix of languages in the collection, like Brazilian (BR) 
Portuguese; please recall that we use the country label provided by Twitter and that 
Spanish and Portuguese languages have significant lexical similarities that can intro-
duce errors in automatic detectors. This appendix studies the effect of removing 
these regions in the similarity analysis presented in Sects. 3 and 4.

To analyze if these issues have an impact on our results and analysis, we pro-
ceeded to redo a section of our experiments, removing three small data countries, 
Cuba, Puerto Rico, and Equatorial Guinea. We also remove the Brazil corpus, which 
does not identify as Spanish-speaking but also shows essential divergences in its 
vocabulary similarities, see Fig. 4.

With the reduced corpora, we compute the UMAP-based visualization on both 
lexical and semantic representations; see Figs. 5 and 9 as original ones.

As the results of these new computations, Fig.  13a and b show that removing 
low-represented regions and others like BR does not produce a significant change 
in the structure of the projections, i.e., the close regions are almost preserved as 
well the clusters of regions. For instance, the lexical visualization kept almost all 
cluster structures during semantic projection. However, it transfers Honduras (HN) 

(13)f ≥
N�2

N + �2

Fig. 13   Two-dimensional UMAP projections of regional vocabularies (left side) and word embeddings 
(right side) removing CU, PR, GQ, and BR (regarding Figs.  5 and 9). Colors also capture similarity 
using a 3D UMAP projection of the same data. Nonetheless, the similarity between figures is undefined
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from one group to another. Still, the HN’s color remains close to those elements 
in its previous cluster, i.e., with NI (Nicaragua) and SV (El Salvador). The lack of 
enough data for some regions barely changes the entire perspective of the similarity 
matrix and the UMAP projection. On the other hand, the atypical vocabulary of BR 
also has a low impact since it is far from the rest of the regions, and these regions 
do not select them in their knn sets. Therefore, its removal barely affects the final 
projection.
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