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Abstract

1/0 bottlenecks are already a problem in many large-scale applications that manipulate huge datasets. This problem
is expected to get worse as applications get larger, and the 1/O subsystem performance lags behind processor and mem-
ory speed improvements. At the same time, off-the-shelf clusters of workstations are becoming a popular platform for
demanding applications due to their cost-effectiveness and widespread deployment. Caching 1/O blocks is one effective
way of alleviating disk latencies, and there can be multiple levels of caching on a cluster of workstations.

Previous studies have shown the benefits of caching — whether it be local to a particular node, or a shared global cache
across the cluster — for certain applications. However, we show that while caching is useful in some situations, it can
hurt performance if we are not careful about what to cache and when to bypass the cache. This paper presents compilation
techniques and runtime support to address this problem. These techniques are implemented and evaluated on an experi-
mental Linux/Pentium cluster running a parallel file system. Our results using a diverse set of applications (scientific and
commercial) demonstrate the benefits of a discretionary approach to caching for 1/O subsystems on clusters, providing as
much as 48% savings in overall execution time over indiscriminately caching everything in some applications.

Index Terms: 1/O, Clusters, File Systems, Compiler Optimizations, Caching.

1 Introduction

As processor speeds continue to advance at a rapid pace, accesses to the 1/O subsystem are increasingly becoming the
bottleneck in the performance of large-scale applications that manipulate huge datasets. This gap between CPU and 1/0
performance is exacerbated as we move to multiprocessor and cluster systems, where the compute power is potentially
multiplied by the number of CPUs available to a problem. While one could argue that we can similarly use a large number
of disks in parallel for improving 1/O bandwidth, the latency of seeking to the appropriate location and performing the
disk operation in addition to the overhead of the network transfer continues to hurt performance of many applications,
especially those with non-sequential access patterns. Large buffers in memory (referred to as caches throughout this
paper) are one way of alleviating this problem, provided we can achieve good hit rates. However, unlike the traditional
instruction/data caches that are provisioned in the hardware of processor architectures, 1/0O caches are implemented in
software and have much higher overheads. Further, the levels of 1/0 caching on some of the parallel environments
(including clusters) can span machine boundaries, requiring network messages for cache accesses. It is thus very important
to be able to determine what should go into an 1/0 cache and when we should avoid accessing it, apart from improving
the hit rate itself. This paper addresses this important problem, presenting the design, implementation, and evaluation of a
parallel file system’s 1/0 subsystem that provides two levels of discretionary caching. The paper demonstrates the benefits
of such discretionary caching mechanisms with compiler and runtime optimizations.

*Parts of this paper have appeared in the Proceedings of the 3rd IEEE/ACM Symposium on Cluster Computing and the Grid (CCGrid’'03). This
paper is an extension of these prior results, and includes a more extensive performance evaluation.



Clusters, put together with off-the-shelf workstations/PCs and networking hardware, are becoming the platform of
choice for demanding applications because of their cost-effectiveness, upgradeability, and widespread availability. Clus-
ters are finding their place in a plethora of environments, from academic departments to super-computing centers and even
to the commercial world (e.g., for database, web and e-commerce applications). These platforms can benefit not only from
the constantly improving processor/memory speeds, but also from the disk capacities and bandwidths. The multiple CPUs
and their memories on these systems can provide processing and primary storage parallelism, while the multiple disks
(one or more at each workstation or on a network) can provide secondary storage parallelism for both data access and data
transfer. One could either have disks attached to each cluster node with a SCSI-like interface (the corresponding node
has to be involved in data transfers to/from such disks), or have disks accessible by everyone over a storage area network.
While many of the issues/optimizations in this paper are applicable to both environments, we specifically focus on the
former which is usually much cheaper, and thus more prevalent, alternative for the 1/0 subsystem (and are intending to
investigate such issues for a storage area network in the future).

Many large-scale scientific applications are data-intensive, manipulating immense disk-resident data sets. These in-
clude applications from medical imaging, data analysis and mining, video processing, large archive maintenance, and so
on. Commercial services such as web, multimedia, and databases on clusters are also demanding on the 1/0 subsystem.
In addition, many high performance environments (particularly shared clusters within a department or a super-computing
center) not only handle one such application, but often have to deal with several (possibly I/O intensive) applications at
the same time in a time-shared manner. All these issues make 1/O optimizations an important and challenging problem
for off-the-shelf clusters.

While the parallelism offered by the numerous disks in a cluster can alleviate the 1/0 bandwidth problem, it does not
really address the latency issue which is largely limited by seek, rotational and network transfer costs. Caching data blocks
in memory is a well known way of reducing 1/O latencies, provided we can achieve good hit rates. 1/O caching is typically
implemented in software (not the disk/controller caches), and the overheads of cache lookup and maintenance can become
quite high. Further, it has been shown [16] that we may need multiple levels of caching. For instance, in PPFS [16], a
local cache at each node of the parallel system caters to the individual process requests at that node, and upon a miss goes
to a shared global cache (running on one or more nodes of the cluster) which can possibly satisfy requests that come from
different nodes. On such systems, the cost of going to the global cache — requiring a network message — and not finding
the data there (before going to the disk) might be quite substantial. For instance, as our raw performance results will show,
this approach turns out to be over twice as costly as directly getting the data from disk in several situations. Consequently,
it becomes extremely important to intelligently determine what to place in the caches and when to avoid (i.e., bypass) the
cache (particularly the caches whose look up costs are higher) on 1/O requests. This largely depends on the data access
patterns of the workload. To our knowledge, the issue of exploiting application behavior for such 1/0 cache optimizations
on clusters has not been studied previously. There has been similar work (e.g., [18]) in the context of hardware data CPU
caches, but the costs for 1/0O caching are of a much higher magnitude.

Rather than implementing all the APIs/feature of a full-fledged parallel file system to investigate these issues, we start
with a publicly-available parallel file system — PVFS [5] — for Linux/Pentium clusters. We have considerably extended
this system to incorporate a kernel level cache module at each cluster node to cater to all the requests (possibly different
applications) coming from that node, which we refer to as the local cache. We also have implemented a shared global
cache (between processes running on different nodes of an application, or even across applications) that runs on one or
more nodes of the cluster. This global cache receives requests from the local cache and services them. If the lookup fails
in the global cache as well, the request is forwarded to one or more nodes whose disks are used for striping the data. The
experimental results presented in this paper are from a Pentium/Linux based cluster of workstations. Each node on this
cluster has a 800 MHz Intel Pentium-111 (Coppermine) microprocessor with 32KB of L1 cache, 256KB of L2 cache, and
128MB of PC-133 main memory. The global cache is run on one of the nodes that contains 384 MB of main memory.
Each node is also equipped with a 20GB Maxtor hard disk drive and a 32bit PCI 10/100Mbps 3-Com 3c59x network
interface card. All the nodes are connected through a Linksys Etherfast 10/100Mbps 16 port hub. Using this experimental
system, this paper investigates/illustrates the following issues:

e \We present several raw latency numbers for file reads and writes on this platform giving results for satisfying the
requests from different levels in the cache hierarchy, and compare it to the original PVFS implementation which
does not perform any explicit caching. Our results clearly demonstrate the benefit of caching. Even when missing
from the local cache, going to the global cache, and fetching the data turns out to be better than the original PVFS
in most cases. However, when we go via the global cache, only to find that the data is missing there, the overheads
are significantly worse than not performing any caching altogether (as in the original PVFS). We also present some
experimental data to show what hit rate is needed in the global cache to justify going through it.

e After pointing out the importance of discretionary data placement in the caches and bypassing them when needed,



we provide mechanisms within our system to explicitly specify whether a read/write should go through the lo-
cal/global cache. The bypass capabilities can be conveyed to our caching layers through a kernel ioctl() call, and
can be specified either by the application itself, or via the compiler or the runtime system.

e We show how simple compiler-based techniques are quite effective in benefiting from the caches, without incurring
the extra overheads, for statically analyzable applications. We specifically present two techniques, one which de-
termines what files should be accessed via the cache and what files should bypass the cache (which we refer to as
coarse-grain optimizations), and the other which performs such discretionary accesses at a finer granularity.

e While compile time analysis can be employed in applications with statically analyzable code, we present a simple
runtime approach for determining when to bypass the cache in situations where the codes are not readily analyzable
or the sources are not available.

o All these optimizations are extensively evaluated with several applications/traces to show how they can be beneficial
for improving cache behavior for parallel /0.

The rest of this paper is organized as follows. The next section identifies some work related to this paper. Section
3 describes the system architecture and implementation details of our 1/O subsystem on the Linux cluster, together with
some raw performance numbers. The compiler-based and runtime-based optimizations are evaluated and compared in
Sections 4 and 5. Finally, Section 6 summarizes the contributions of this paper and discusses directions for future work.

2 Related Work

Software work on high-performance 1/0 can be roughly divided into three categories: parallel file systems, runtime 1/0
libraries, and compiler work for out-of-core computations. A number of groups have studied automatic detection and
optimization of 1/0 access patterns (e.g., see [22, 24, 11, 21] and the references therein). Others have proposed parallel
file systems and 1/0O runtime systems that provide users/programmers with easy-to-use APIs [7, 35, 31, 26, 9]. While these
systems allow users/programmers to exploit optimizations for /O, it is still in general the user’s responsibility to select
which optimization to apply and determine the suitable parameters for it. Obviously, this puts a great burden on users, as
in most cases it is not trivial to select what optimization(s) to use and the accompanying parameters. Our work instead
tries to bring the advantages of 1/0 caching without much user effort.

Compilation of 1/O-intensive codes using explicit 1/O has also been the focus of some research (see [3, 1, 28] for
example techniques that target out-of-core datasets). Brezany et al. [3] have developed a parallel 1/0 system called VIPIOS
that can be used by an optimizing compiler. Bordawekar et al. [1, 2] have focussed on stencil computations that can be
re-ordered freely due to lack of flow-dependences. They have presented several algorithms to optimize communication
and to indirectly improve the 1/0 performance of parallel out-of-core applications. Palecnzy et al. [28] have incorporated
I/0 compilation techniques in Fortran D. The main philosophy behind their approach is to choreograph 1/0 from disks
along with the corresponding computation. Many of these studies have, however, specifically targeted massively parallel
processors (MPPs) and do not deal with selective data placement in caches. DPFS [32] is a parallel file system that collects
locally distributed unused storage resources as a supplement to the internal storage of a parallel system. In contrast, our
work is targeted for cluster environments with multiple levels of caching, that does not only benefit the processes of one
application, but can also benefit several applications sharing datasets (through a global cache).

There has been a considerable amount of prior work on optimizing I/0 and I/O caches [30, 10, 27, 29, 19, 20, 23, 33,
17, 4, 25, 13], some of which has been on clusters as well. Recently, [6, 40] have focused on buffer cache management
policies in a multi-level buffer cache system. [40] proposes primitives for maintaining exclusivity in multi-level buffer
caches, while [6] uses higher level cache eviction information to guide the placement of blocks in lower levels. Maybe
the most closely related work to ours are the approaches presented in three prior systems, namely, MPI-10 [14, 8], PVFS
[5], and PPFS [16]. MPI-10 [14] is an API for parallel 1/0 as part of the MPI-2 standard and contains features specifically
designed for 1/0 parallelism and performance. This API has been implemented for a wide variety of hardware platforms
including clusters [34]. The main optimizations in MPI-10 are for non-contiguous parallel accesses to shared data, mainly
at the user-level. As a result, the user needs to have a thorough understanding of the numerous programming interfaces
to invoke the appropriate routines. Since MPI-10 itself does not specify any caching functionality, its response time is
largely determined by the caching capabilities provided by the underlying file system or the MPI-1IO implementation.
PVFS [5] is a parallel file system for Linux clusters that presents three different APIs, and accommodates frequently used
UNIX file tools. Its optimizations for non-contiguous data are perhaps less powerful than MPI-10’s optimizations. The
work presented in this paper augments PVFS with a local and global caching capability, benefiting from its rich original
APIs. PPFS [16] is a user-level 1/O library that has been implemented for several parallel machines and clusters. This



system differs from the other two in that it offers runtime/adaptive optimizations (not just an API) as well in terms of
caching, prefetching, data distribution and sharing. The differences of our work from PPFS are in that we are examining
the benefits of compiler/runtime directed cache bypassing towards optimizing the hit rates of one or more applications
running on the cluster.

3 System Architecture

Our system builds on the architecture of the Parallel Virtual File System (PVFS) [5] since we did not want to re-invent
the APIs and mechanisms for providing a shared name space across the cluster, and facilities for distributing/striping the
file data across the disks of the cluster nodes. PVFS also provides seamless transparent access to several existing utilities
on normal file systems. Since all these provisions are already provided in a publicly distributed parallel file system, we
have opted to build upon this system in this work rather than re-implement all these features. We briefly go over some key
architectural features of PVFS and then discuss our contributions.

31 PVFES

The original PVFS is a mainly user-level implementation, i.e., there is a library (libpvfs) linked to application programs
which provides a set of interface routines (API) to distribute and retrieve data to/from the files striped across the cluster
nodes. In addition to the library, PVFS uses two other components, both of which run as daemons on one or more nodes
of the cluster. One of these is a meta-data server (called mgr), to which libpvfs sends requests for meta-data information
(access rights, directories, file attributes, etc.). In addition, there are several instances of a data server daemon (called 10D),
one on each of the machines whose disk is being used to store the data. This daemon (again running at the user level)
listens on sockets for requests from libpvfs functions on clients to read/write data from/to its local disk using normal Linux
file system calls. There are well-defined protocols for exchanging information between libpvfs and 10Ds. For instance,
when the user wants to read file data that is striped across several 10Ds, libpvfs converts this request into several requests
(one for each 10D involved), sends these requests to the I0Ds using sockets, waits for an acknowledgment from each of
them, following which it waits for the data sent by the 10Ds. This data is then collated and returned to the application
process. On a write, libpvfs sends out the requests, following which the relevant data is sent to each 10D. Each 10D then
sends back an acknowledgment indicating how much data was actually written to check for error conditions. The reader
is referred to [5] for further details on the functioning of PVFS.

3.2 Overview of System Architecture

As mentioned earlier, we would like to build on the existing capabilities provided by PVFS to leverage off its rich API
and features. Further, we wanted to provide our caching infrastructure in a fairly transparent fashion so that it is not even
apparent to a large part of the PVVFS implementation, leave alone the application. This implies that we need to intercept all
of the socket calls that libpvfs makes and provide caching at that point. It should be noted that our cache is meant only for
10D requests, and we do not cache any meta-data information at this time (i.e., they always go to the meta-data server).

Our system provides two levels of caching — a local cache at every node of the cluster where an application process
executes, and a global cache that is shared by different nodes (and possibly different) applications across the cluster, with
the possibility of skipping either of them as illustrated in Figure 1. The design and implementation of the local cache at
each node is described in an earlier work [38], and here we quickly go over it for completeness, and then concentrate on
the global cache.

Local Cache

There are two alternatives for implementing the local cache at each node. One option is to implement the caching within
the library that is linked with the application (user-level). However, with this approach we do not have the flexibility
of sharing cache data between application processes running on the same node. This is the reason why we opted to
implement the local cache within the Linux kernel (a dynamically-loadable module), that can be shared across all the
processes running on that node. Only when the request misses in this cache (either all or some of the request cannot
be satisfied locally), is an external request initiated out of that node, either to the global cache or to the I0Ds as will
be explained later. This cache is implemented using open hashing with second chance LRU replacement. There is a
dirty list (which keeps track of all the cache frames which have been modified while in cache), a free list (which keeps
track of all the unused cache frames), and a buffer hash to chain used blocks for faster retrieval and access. The hashing



function takes as parameters the inode number of the file and the block number to index the buffer hash table. There
are two kernel threads called flusher and harvester in the implementation. Writes are normally non-blocking (except the
sync_write explained later), and the flusher periodically propagates dirty blocks to the global cache/IOD. The harvester is
invoked whenever the number of blocks in the free list falls below a low water mark, upon which it frees up blocks till
the free list exceeds a high water mark. A block size of 4K bytes is used in our implementation. Note that such a kernel
implementation automatically allows multiple applications/processes to share this local cache, thus making more effective
use of physical memory.

Global Cache

The global cache, as explained earlier, adds one more level to the storage hierarchy before the disk at the 10D needs to
be accessed. There are numerous questions/alternatives when implementing the global cache and we go over them in the
following discussion, explaining the rationale behind the choices we make specifically in our implementation:

e Should there be a global cache for each file, or should all files share the same cache? While there may be some
possibility for detecting access patterns across datasets for optimizations, our current system uses a separate global
cache for each file. If there is little file sharing across applications, or even across parallel processes of the same
application, then the requests would automatically distribute the load more evenly with this approach.

e Should each application have its own global cache, or should we share a global cache across applications? Since
we would also like to be able to perform inter-application optimizations based on sharing patterns, we have opted
to share the global cache across applications. This can help one application (even its cold references) benefit from
the data brought in earlier by another from the cache. There is, however, the fear of worse miss rates if there is
interference because of such sharing, and these are points that our cache bypass mechanisms will address later. This
feature is one key difference between our system and PPFS [16] where the global cache is intended for optimizations
within the processes of a single application. At this point, we would like to mention that our system does suffer
from scalability issues and performance may start to drop beyond a particular number of client nodes due to the
centralized nature of the global cache. However, the focus of this work is on techniques for intelligent caching of
data in file-system caches and we are looking at scalable techniques as part of our future work. Further, providing
a separate global cache for each file as explained above can ease some of this bottleneck.

e Should we distribute the global cache across the cluster? While distribution is a good idea in terms of alleviating
contention, there are a couple of drawbacks. First, depending on the granularity of distribution, it may be difficult
to perform certain optimizations (such as prefetching) if one node is not the repository for all the file data. Second,
two levels (one between the 10Ds and the global caches, and one between the global caches and local caches) of
multiplexing and demultiplexing the data may be needed. We, instead, opted to have a centralized global cache
for each file. However, since we have a separate global cache for each file, we can have separate global caches on
different cluster nodes serving different files, and that can alleviate some of the contention problems which may
arise.

e Should the global cache be implemented as a user process or as a kernel module? The reason for a kernel level
implementation for the local cache is due to the need for trapping all application requests coming at that node from
the different processes via the PVFS calls. However, with the global cache, TCP/IP sockets are being explicitly used
for sending messages to it from the individual local caches regardless of which application process is making a call.
The convenience and flexibility (option of busy-waiting) of a user-level implementation has led us to implement the
global cache for a specified file as a stand-alone, user-level daemon running on a specified node of our cluster.

Each global cache in our system is, thus, a user level process serving requests to a specific file running on a cluster
node, to which explicit requests are sent by the local caches, and is shared by different applications. The internal data
structures and activities of the global cache are more or less similar with those for the local cache that were described
earlier. One could designate such global caches on different nodes (for each file), particularly on those nodes with larger
physical memory (DRAM). Consequently, this architecture is also well suited to heterogeneous clusters where one or
more nodes may have larger amounts of memory than the others.

Reads/Writes

Figure 1 gives a schematic overview of our system. Let us now briefly go over a typical read operation (there could be
some differences when one or more levels of caching are disabled as will be discussed later) to understand how everything



works when an application process on a node makes a read call, possibly to several blocks that span different IODs. The
original PVFS library on the client aggregates the requests to a particular IOD, before making a socket request (kernel
call) to the node running that 10D. Our local cache intercepts this call in the kernel and checks to see if all or even a part
of it can be satisfied locally. If the entire request can be satisfied without a network message, then the data is returned to
the PVFS library and the application proceeds. Otherwise, the local cache module accumulates a list of requests that need
to be fetched. A subsequent message is sent to the global cache with these requests (Note that this may change, and the
requests are directly sent to 10Ds if the global cache is bypassed). The multi-threaded global cache keeps listening on a
dedicated socket for requests, and upon receiving such a message looks up its data structure. If it can satisfy the requests
completely from its memory, it returns the data to the requesting local cache. Otherwise, it sends a request message to
each of the 10Ds holding corresponding blocks, stores the blocks in its memory when it gets responses from the 10Ds,
and then returns the necessary data to the requesting local cache. A write operation works similarly except that the writes
are propagated in the background (using the flusher thread described earlier), and control is returned back as soon as the
writes are buffered.

The above read and write operations are the most common, and can benefit significantly from spatial and tempo-
ral locality in the caches. However, with the presence of multiple copies for data blocks, there is the issue of coher-
ence/consistency. The above read/write mechanisms do not worry about consistency, and a read simply returns the value
in a version of the block that it finds (i.e., the write is only propagated to the global cache and 10D — any subsequent
read to the global cache/IOD will get this value, but a read from a node that already has this block in its local cache
will not get this latest value). While this may not pose a problem for many applications, where read-write sharing is not
common (as compared to read sharing) or where consistency is explicitly managed by the application itself, there are
certain applications where ensuring consistency is critical. Consequently, in our system, we also provide a special version
of the write, called sync_write, which not only propagates the writes to the global cache/IOD, but also invalidates the local
caches which have a copy (so that subsequent reads on those nodes can go out on the network and get the latest copy).
Coherence is maintained at a block granularity, and thus requires a directory entry per block to keep track of the local
caches that have a current copy of that block. We maintain this directory at both the global cache and the IOD. The need
for the latter would be more clear when we discuss global cache bypassing later. The actual set of local caches with a copy
would involve merging these two directory entries for a block. On a system where there is no global cache bypassing (all
requests go via the global cache), the directory at the 10D would be completely null. Local caches that bypass the global
cache would update the directory at the 10D rather than at the global cache. A sync_write is thus an additional overhead
(over normal writes), involving looking up the directory entries, and invalidating any copies, in addition to propagating
the write itself. It would thus be more prudent to use the normal writes as far as possible, and use sync_write only when
coherence is needed (or when one is not sure).

3.3 Performance of Primitives and Micro-benchmarks

Before we go any further into our optimizations, we would first like to present some raw latency numbers and micro-
benchmark results for read and write performance with the presence/absence of local/global caches. For these experiments,
the local cache size was fixed at 2MB (500 data blocks), while the global cache size was fixed at 40MB (10000 data
blocks). Also, a stripe size of 32KB was used in all our experiments.

Raw Latenciesfor Reads/Writes

In the first set of results (see Table 1), we give the read latencies for a file striped over different number of 10Ds (1 to 4). In
these tables, Pvf s denotes the read latency of the original PVFS system which does not use any caching (local or global).
Local Hit indicates the latency when the access is satisfied from local cache and Local M ss is the latency when
the access misses in the local cache and is satisfied from one or more I0Ds. The latter case thus captures the execution
on a system without a global cache. A obal Hit and A obal M ss, on the other hand, denote the cases when the
access misses in the local cache (i.e., a local cache lookup is still needed) and hits and misses, respectively, in the global
cache.

From these numbers, we clearly see that the local cache hits (Local Hi t) can substantially lower read costs com-
pared to the original PVFS implementation. On the other hand, if the locality is not good, causing us to miss in the local
cache (i.e., Local M ss), the performance becomes worse than the original PVFS for all request sizes because of the
overheads in looking up the local cache. Therefore, it is not only important to improve the hit behavior of the local cache,
but it is also meaningful to bypass the local cache on certain lookups if we feel that it is going to miss.

When we next move to the scenarios with the accesses to global cache (misses in local cache), we first see that the
global cache can lower access times, provided the data is present there, compared to the original PVFS without caching in
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Figure 1. System architecture. Nodes 1..n are the clients where one or more application processes run, and have a local
cache present. Upon a miss, requests are either directed to the global cache (one such entity for a file), or is sent directly
to 10D node(s) containing the data in the disk(s).
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Table 1: Read times (in ms) for different request sizes and number of 10Ds (|[IOD|).

[ Request Size — [ 4K | 8K | 16K | 32K | 64K | 128K | 256K
[IOD[ =1

Pufs 100 | 227 | 431 | 948 | 1004 | 3852 | 54.04

Local Hit 067 | 068 | 072 | 080 | 097 | 159 | 285

Local Miss 125 | 228 | 461 | 954 | 2077 | 4423 | 67.54

Global Hit (Loca Miss) 143 | 171 | 244 4.26 814 | 1528 2591
Global Miss (Local Miss) | 200 | 285 | 586 | 1149 | 23.85 | 50.42 94.38

Required HR 1.59 0.50 0.45 0.27 0.30 0.33 0.58
[TOD[ =2

s T12 | 199 | 382 | 784 | 1416 | 2409 | 47.79

Local Hit 0.74 0.83 1.03 1.38 243 4.34 8.56

Local Miss 1.32 2.08 4.36 8.07 18.59 36.49 52.92

Global Hit (Loca Miss) 151 | 185 | 262 5.01 832 | 17.77 39.92
Global Miss(Local Miss) | 2.05 | 3.31 | 593 | 11.91 | 2478 | 49.06 | 109.36

Reguired HR 172 | 090 | 063 | 058 | 064 | 079 0.88
[TOD[ =3

PvTs 108 | 183 | 352 | 6.17 | 1200 | 2004 | 3686

Local Hit 075 | 084 | 1.01 | 141 | 242 | 450 8.67

Local Miss 131 | 235 | 448 | 819 | 1896 | 26.90 | 40.63

Global Hit (Local Miss) 123 | 166 | 245 4.80 867 | 19.26 39.38
Global Miss(Local Miss) | 1.87 | 3.36 | 6.30 | 12.06 | 30.71 | 54.14 | 100.34

Required HR 123 | 090 | 0.72 0.81 0.84 0.97 1.04
[IOD] =4

Pvfs 108 | 1.63 | 333 532 | 10.64 | 19.06 33.79

Local Hit 0.76 | 0.84 | 1.01 1.40 241 4.68 8.89

Loca Miss 132 | 218 | 450 861 | 1447 | 21.76 38.96

Global Hit (Local Miss) 148 | 167 | 2.80 4.70 9.10 | 19.50 38.87
Global Miss(Local Miss) | 1.88 | 3.87 | 6.10 | 12.33 | 26.07 | 49.62 | 107.63
Required HR 200 | 1.01 | 0.83 0.91 0.90 1.01 1.07

Table 2: Write times (in ms) for different request sizes and number of 10Ds (|[IOD)|).
[RequestSze— | 4K | 8K | 16K | 32K | 64K | 128K | 256K |

[TOD[ =1
Pfs 068 | 103 | 197 | 395 | 783 | 1594 | 3109
Caching 0.55 ‘ 0.56 ‘ 0.60 ‘ 0.96 ‘ 1.05 ‘ 176 ‘ 315
[TOD] =2
Pfs 068 [ 127 | 1.90 | 3.77 | 986 | 1544 | 2961
Caching 060 | 067 | 084 | 143 | 204 | 370 | 719
[TOD[ =3
Pvfs 068 | 104 | 1.85 | 362 | 823 | 15.74 | 2940
Caching 0.59 ‘ 0.68 ‘ 0.87 ‘ 1.37 ‘ 2.08 ‘ 401 ‘ 7.79
[TOD[ =4
Pvfs 068 | 102 | 195 | 358 | 8.18 | 1587 | 29.09
Caching 060 | 068 | 000 | 155 | 217 | 430 | 802

many cases (i.e., requests larger than 4KB). It is also better than fetching the data directly from 10Ds upon a local cache
miss (Local M ss). However, global cache miss costs are substantially higher than any of the other cases because of
the additional message hop and serialization overhead that occurs in the critical path and the associated lookup costs. This
suggests that if we want to incorporate and benefit from the global cache, it is very important to keep its hit rate quite
high. In fact, the Requi r ed HRrows in Table 1 give the minimum hit rates that are needed (for each request size) to tilt
the balance in favor of the global cache compared to the original PVFS. A value larger than 1 in these rows indicate that
it is impossible to generate better results than the original PVFS using that request size and the number of 10Ds. Figure 2
shows the same behavior plotted as a graph. This again means that we need to be very careful on what to put in the global
cache and when to avoid going through it. Further, we can observe that the benefits of global caching (look at the last row
showing required hit rate) are most significant when request sizes are not at either extreme. At very small request sizes,
the overhead of global caching itself is more significant. At the other end, large amounts of data can cause more capacity
misses, leading to poor temporal locality. Another point to note is that when the number of 10Ds involved in the access
increases, the cost of a global cache miss becomes even more significant. This is because the global cache has to amass
the data coming in from different IODs and then send them sequentially to the requester, while all the 10Ds could have
potentially sent them in parallel to the requester if the global cache was not involved.

Table 2 gives the times for write operations to return back to the application after they are issued with different number
of IODs involved. We compare the performance of the original PVFS code (denoted Pvf s) with our system having a local
cache (denoted Cachi ng). We are not separately giving the costs as in the read table (Table 1) for the other scenarios
as they are comparable to the scenario with a local cache (the writes are simply accumulated in the local cache, and a
background activity — flusher — propagates these writes to either the global cache or the 10D). We do not buffer writes



of an application, when there is not enough space left on the local cache. Hence the cost of writes whose sizes are greater
than the local cache size is comparable to the cost of the original PVFS implementation. We can see that write stall times
are significantly lower because of this feature as is to be expected. It is to be noted that the savings that will be presented
later in this paper with our optimizations are not a result of these non-blocking writes, since we show savings even over
the scenarios that cache everything in the local/global caches (which also performs non-blocking writes).

Micro-benchmark Results

While our later experiments will evaluate caching using real benchmarks, we wanted to stress the system along different
dimensions, and employed a micro-benchmark to do so. Our micro-benchmark is parameterized based on s (the maximum
size for a read/write operation in blocks, where a block is defined to be the same size as the granularity of the caches) and
o (the maximum offset within a file in blocks from which the next read/write is initiated). The micro-benchmark program
iteratively goes over a number of operations, randomly picking whether it is a read or a write with equal probability.
The size of this operation is also picked randomly between 1 and s blocks, and the starting offset within the file for the
operation is picked, again randomly, between 0 and o blocks. Note that a small value of o will automatically provide good
locality, and we can tune these parameters to mimic different access patterns.

Instead of presenting all the results, we discuss here one representative case with one 10D being employed, s = 2,
and for three different values of o: 10, 600, and 25000 (see Figure 3). Note that the locality progressively gets worse
from o = 10 to 0=25000. When the locality is very good (0=10), the working set is contained well within the local cache,
and the schemes which use the local cache perform much better than those without it. We also note that the global cache
alone scheme still does turn out to be better than the scheme without any caching. Even though the hit rates are quite
high for the global cache, its overheads cause it to perform much worse than for schemes with a local cache. At the other
end of the spectrum, when the locality becomes very poor (0=25000), the working set is not well exploited by any of the
caching schemes, and their associated overheads cause them to perform worse than a scheme without any caching. The
more interesting results are those for 0=600, where the working set overflows the local cache, but is captured by the global
cache (which is larger). Consequently, the two schemes which use a global cache provide much better performance than
a scheme without any caching or a scheme with just a local cache.
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Figure 3: Micro-benchmark running on 1 node, File striped on one 10D, s = 2, (a)o = 10, (b) 0 = 600, (c) o = 25000.

In the earlier experiment, the micro-benchmark is run on a single node. We have also run the same micro-benchmark
on different nodes, and the data being striped across different 10Ds (using a stripe size of 32KB). In Figure 4, we show
the results for one such scenario with three 10Ds used to distribute the data. We observe similar trends to those that we
saw earlier. The only slight difference with the poor locality situation (0=25000) is that the local cache alone execution is
not much worse than without any caches because the local cache overheads are not too significant.

3.4 Cache Bypass Mechanisms

The results in the previous subsection indicate that it is important to provision a local and a global cache for good per-
formance. However, our results also show that it is equally important to be very careful in deciding what data to place in
these caches and when to avoid/bypass them.

Our system provisions mechanisms for bypassing the local and/or global caches for a read or write. Our system does
not require any different read/write calls to specify that a cache needs to be bypassed since that can get cumbersome, and
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Figure 4: Micro-benchmark running on 2 nodes, File striped on three IODs, s = 2, (a) o0 = 10, (b) 0 = 600, (c) 0 = 25000.

it is not clear how such a mechanism can be effectively used by application programmers. Instead, we provide the notion
of a segment — a certain number of contiguous file blocks (unless explicitly stated otherwise, a segment of 4 blocks was
used in the experiments) — with a set of bits determining what actions to be performed on a read/write. For each operation
(read or write), we have two bits, one for specifying whether that operation for the segment needs to go through the local
cache and another for whether it needs to go through the global cache. We thus provide a segment-level granularity for
cache bypassing.

These (segment) bits can be set via a system call that updates a data structure in the underlying kernel module (imple-
menting the local cache) at each node. When a read/write call is made, this bitmap data structure is consulted to find out
whether to look up the local cache, and whether to route the request to the global cache or directly to the IOD. The system
call to set these bits can either be explicitly invoked by the application program or be invoked by instructions inserted into
the code by the compiler. These bits can also be set by the runtime system based on previous execution characteristics. In
the default configuration, all operations go via the local and global caches for all segments. The rest of this paper explores
the benefits of cache bypassing, and ways of initiating such bypassing with the compiler and the runtime system. While
it is also possible to adopt a user-based strategy where the application programmer sets these bits explicitly, we believe
that such an approach would be very difficult for the user (investigating profile based techniques and tools for doing this is
part of our future research agenda). Also, we specifically focus on bypass mechanisms for the global cache in this paper,
whose overheads on a miss are much more significant than the corresponding overheads for the local cache.

4 Compiler-directed Cache Bypass

Previous discussion emphasized the importance of careful management of the global cache space. An optimizing compiler
can help us identify what data should be brought into the global cache. It can achieve this using at least two different
strategies. We assume here that the data for each array corresponds to a different file. In the first strategy, the compiler
adopts a coarse-granular approach and determines the arrays that are used frequently program wide. It achieves this by
estimating (at compile time) the number of accesses to each array in the code. More specifically, for each loop nest,
the compiler counts the number of references to each array and multiplies these counts by the trip counts (the number
of iterations) of all enclosing loops. If there is a conditional flow of control (e.g., an if-statement) within the loop, the
compiler conservatively assumes that all possible branches are equally likely to be taken. Note that if we have profile
data on branch probabilities, it is straightforward to exploit it for obtaining a more accurate estimate. Another potential
problem is the compile-time unknown loop bounds. In such cases, the compiler can estimate the number of accesses
symbolically. Note that previous symbolic manipulation techniques (e.g., [15, 12]) can be used here for this purpose.
After doing such analysis, the compiler uses the global cache for reads/writes to the files (arrays) with the most references
(depending on how many such files can fit in the global cache).

An important drawback of this coarse-granular strategy is that it fails to capture short-term localities. For example,
in a given large, 1/O-intensive application, an array might be accessed very frequently in the first half of the application
and is not accessed in the second part. However, the strategy described above can continue to cache the segments of this
array in the second part of the application if the overall (program wide) access count of this array is larger than those of
the others. Our second strategy tries to eliminate this drawback of the coarse-grain method by managing the global cache
space in a nest basis focusing on segment granularity.

Specifically, in our second strategy, the compiler determines the blocks that will be accessed in each nest separately.
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The id’s of a subset of these blocks are then recorded at the loop header. This subset contains the most frequently used
blocks in the nest. By doing this, the second strategy tries to capture short-term localities and manages the global cache
space at a finer granularity. Then, the segments corresponding to the most frequently used blocks are cached. Note that
this approach can be expected to result in better global cache hit ratio than the first strategy. It should also be noted
that determining the blocks that will be accessed by a loop nest is possible as in our applications there is a one-to-one
correspondence between arrays declared in the program and disk-resident files (i.e., our applications use a separate file
for each array that they manipulate). Therefore, the compiler can associate the array elements with the blocks. Also, as in
the case of coarse-grain approach, this approach can take advantage of profile data (e.g., on branch probabilities) where
available. Further, again as in the previous case, it can employ symbolic expression [15, 12] manipulation when loop trip
counts are not known at compile time.

We implemented both these strategies using the SUIF compiler infrastructure [39] and evaluated them using codes
where data access patterns are statically analyzable. SUIF consists of a small, clearly documented kernel and a toolkit of
compiler passes built on top of the kernel. The strategies that were described above have been implemented as SUIF passes
that performs the required analysis and writes the output to a file. We present here results with 1/0O-intensive versions of two
Spec benchmarks: t ontat v and vpent a. While the original codes manipulate arrays directly in memory, we extended
them to read/write these arrays from data files explicitly, before manipulating them in memory. The results are shown for
t ontat v in Figures 5 and 6(a) as a function of the problem size (local cache size of 400KB, global cache sizes of 20
MB and 200 MB) and as a function of the global cache size (keeping the problem size fixed at 1500 - this corresponds to
matrices of size 1500*1500 doubles manipulated in the application), respectively. The corresponding results for vpent a
are given in Figures 7 and 6(b). In each of these figures, we compare the performance of four different executions: (a)
a scheme with no caching (and hence no compiler optimizations for 1/0); (b) a scheme with local and global caches
without any compiler optimizations for 1/0; (c) a scheme with local and global caches in conjunction with coarse-grain
(file level) compiler optimizations, and (d) a scheme with local and global caches in conjunction with fine-grain compiler
optimizations.

(@) (b)
T T
—& No Caching —&— No Caching
a0l ¢ Local & Global B < Local & Global
—+ CoarseGrain 300 —+ CoarseGrain
+ - FineGrain y + - FineGrain

Timeto Completein seconds
Timeto Completein seconds

. . 0 . .
500 1000 1500 2000 500 1000 1500 2000
Problem Size Problem Size

Figure 5: t ontat v: impact of problem size (a) Global cache is 20MB, (b) Global cache size is 200MB.

Examining Figure 5(a), we find evidence in the earlier arguments that blindly caching everything in the local and
global caches can sometimes worsen performance. Specifically, we observe that the No Cachi ng alternative does better
than the Local & @ obal option (i.e., caching everything indiscriminately), especially at larger problem sizes. The
overheads of going to the global cache and not finding the required blocks in it contribute to this behavior. Performing
compiler optimizations at the coarse (file) granularity does give better performance than caching everything, but it still
does worse than not caching anything. However, we can see that the fine granular approach, gets the benefits of the global
cache, and does turn out to be a better alternative than not caching (because it avoids consulting the global cache when it
feels the data may not be present). This benefit improves as the problem size gets larger (relative to the global cache size).
Evidence for the last statement is further substantiated when we examine the executions with a much larger global cache
in Figure 5(b). Here, the hit rates in the global cache are much higher, and the always cache option is a better idea. As the
global cache gets larger, the selectively cache option can possibly limit some data from benefiting from this compared to
caching everything. All these observations are reiterated when we look at the impact of global cache capacity for a fixed
problem size in Figure 6(a). The benefits of selective caching/bypassing is much more significant at small cache sizes,
and the always cache option becomes better only with larger global caches. The results for vpent a (given in Figures
7 and 6(b) are similar to many of those observed with t ontat v, except that the magnitude of the differences are less
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pronounced because its 1/O traffic is lower.

In summary, we find that discretionary caching becomes very important when the problem sizes of applications get
large enough, and the working sets cause more thrashing in the global cache. We find that a compiler based technique
for modulating what to place/bypass in the global cache can alleviate some of these thrashing problems and help us reap
the benefits of a global cache. Of the two different policies that we tried, we find that a finer granularity of control is a
better option than file level control. This is because not all blocks within a file may have the same access pattern or access
frequency.

5 Runtime Cache Bypass

So far, we have evaluated two compiler-based strategies (coarse-grain and fine-grain) where our compiler decided what to
place in the global cache and when to bypass it. There are many cases where such a compiler-based strategy may not be
desirable or even applicable. For example, when we do not have the source code of the application, we cannot analyze the
program and determine its access pattern statically. Similarly, in some cases, the application code might be available but
the access pattern it exhibits may not be amenable to compiler analysis (e.g., due to array-subscripted array references,
non-affine subscript functions, or pointer arithmetic). However, in these and similar cases, it might be still possible to
optimize the application using a runtime technique. A runtime technique tries to evaluate block access frequencies at
runtime and makes cache bypassing decisions dynamically.

In this section, we investigate the effectiveness of a runtime strategy for managing global cache. Along similar lines,
there has been prior work [18] in the context of processor data caches for runtime bypassing using access counters.
However, in this study, we examine a much simpler strategy since there are some problems when implementing schemes
such as (e.g., [18, 36]) on our platform where we have multiple levels of caches and a miss from the local cache may not
at all go through the global cache. Our strategy is based on the idea of having counters with segments. Specifically, we
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associate a counter with each segment that keeps the number of times the segment is accessed. These counters are called
segment counters. When a block needs to be brought into global cache, its segment counter is compared with a pre-set
threshold value. If the value of the segment counter is larger than the threshold, the block is placed into the global cache;
otherwise, the cache is bypassed. When the local cache gets this block, it is told (either in the read response or the write
acknowledgment) to avoid going through the global cache if it needs to be bypassed subsequently. The rationale behind
this approach is that when a block is not accessed frequently enough, placing it into the global cache can cause a useful
(i.e., more frequently used than the block in question) block to be discarded. It should be noted that we do not perform any
checks when the block is accessed for the first time (counter reads zero), and only subsequently does this scheme kick in.
When a new block is accessed, the harvester on the global cache examines all currently residing blocks to find a candidate
for replacement whose counter is below the threshold (and does some aging of counters when doing so). Finally, in our
current implementation, the decision for a block (whether to bypass or not) is made only once and we do not re-evaluate
the choice once we decide to bypass the global cache for a block.

The results with this strategy are given in Figure 8 for a global cache size of 20 MB with two different threshold values
— high (20) and low (3) for the same two applications examined earlier. We find that the runtime strategy improves the
performance of global caching for both these extremes. The benefits are better at larger problem sizes where cache
thrashing becomes more significant and we need to be careful on what to put in the global cache. This is also the reason
why when we go to larger problem sizes, the more aggressive runtime approach (i.e., the one with the higher threshold
value) does better than the one with the smaller threshold.
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Figure 8: Runtime cache bypassing (global cache size is 20 MB) (a) t ontat v. (b) vpent a.

Next, we perform a sensitivity study of the runtime technique that depends on two tuneable parameters namely —
threshold value and segment size. Figure 9(a) captures the performance of the runtime strategy as a function of the
threshold value for t ontat v. We observe that typically threshold values in the range of 20-50 lead to better performance
since they are more effective in weeding out what should not be put in the global cache, without defaulting to the No
Cachi ng strategy. Consequently, we use threshold values in this range in the next few experiments.

Recall that so far we have fixed segment size to be four blocks. To study the sensitivity of our runtime strategy to the
segment size, we conducted another set of experiments where we used different segment sizes ranging from 2 blocks to
64 blocks. The results are illustrated in Figure 9(b) for vpent a. Note that each bar in these graphs is normalized to the
4 block segments. These results indicate that selecting a suitable segment size is important. In particular, working with
very small or very large segment sizes may not be a good idea. When the segment size is very large, the blocks in a given
segment do not exhibit uniform locality, therefore, a segment-wide decision might be the wrong (suboptimal) choice for
many blocks in the segment. Similarly, if the segment size is very small, we witness an increased traffic through the global
cache (which in turn hurts the performance). It should also be stressed that a small segment size means more bookkeeping
and more runtime overhead. Similar results have been obtained with other applications as well and they are not explicitly
given here.

Having examined both compiler (static) based and runtime optimizations for the same two applications, one could ask
how the two compare in terms of effectiveness. We plot the local and global cache hit rates for different problem sizes for
the same two applications under four different execution scenarios, (a) a scheme which blindly caches everything without
any optimization for 1/O, (b) a static compiler-driven scheme that caches file blocks at a coarse granularity (file level), (c)
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a static compiler driven scheme that caches file blocks at a finer granularity (block level), and (d) a scheme which makes
cache bypassing decisions at runtime, and the results are given in Figures 10 and 11 where the hit rates in the two caches
are given fort ontat v and vpent a. As is to be expected, in such applications where all the information can be statically
gleaned, the compiler based techniques can be anticipated to perform better than their runtime counterpart, since the latter
requires a warm-up period before it attempts bypassing. However, the benefits of the runtime approach will be felt more in
non-analyzable applications, or those in which we do not have source codes to perform these optimizations. We illustrate
this by studying the effectiveness of the runtime optimizations on a set of parallel I/O traces, where this option is the only
choice.
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Figure 10: t ontat v:Variation of Cache Hit rates with problem size

The traces used in this part of our experiments are from [37], which capture several diverse set of application executions
(scientific and commercial). We evaluated the runtime strategy using the traces for the following six applications :

e LU: This application computes the dense LU decomposition of an out-of-core matrix. It performs I/O using syn-
chronous read/write operations.

e Chol esky: This application computes Cholesky decomposition for sparse, symmetric positive-definite matrices.
It stores the sparse matrix as panels. This application performs /O using synchronous read/write operations.

e Ti tan: Thisis a parallel scientific database for remote-sensing data.
e M ni ng: This application tries to extract association rules from retail data.

e Pgrep: This application is a parallelization of agrep program from the University of Arizona.
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e DB2: This is a parallel RDBMS (Relational Database Management System) from IBM.

In the above experiment, we fixed the size of the local cache to 2MB, and the size of the global cache was fixed at 4AMB
and the threshold values were selected between 10 and 25. Figure 12 shows the execution time of the runtime optimized
system normalized with respect to the system that uses local and global caching without runtime bypass. We can see that
the optimized system benefits all but one of the six applications, with the benefits (reductions in execution times) ranging
between 4% and 48%. The benefits are particularly significant in applications with poor locality (such as DB2 and LU).
These results reiterate the importance of managing/bypassing the global cache with an effective runtime strategy.
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For the above experiment, the hit rates of the local and global caches are shown in Figure 13. As before, we don’t see
too much of variance in the local cache hit rates, and the performance improvement can be attributed to improved global
cache hit rates with the runtime technique.

6 Concluding Remarksand Future Work

Caching for 1/0 is widely recognized as being critical for performance enhancements in large codes. Such caching is
typically done at multiple levels — at the client nodes, at the server nodes, and perhaps even in between. Each has its
advantages and drawbacks. This paper has shown that one should not indiscriminately cache all data at all levels of
the caching hierarchy. We have demonstrated this by extending an off-the-shelf parallel file system for clusters, with a
local cache at each node and a shared global cache. We have also provisioned mechanisms for bypassing each of these
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caches for a read/write operation at a fine granularity. One could use such mechanisms either explicitly by the application
(perhaps some profile based tools could be useful here), or could be exploited by the compiler or the runtime system. In
this paper, we have presented both compile-time and runtime based strategies to exploit global cache bypassing. Using
both statically analyzable codes, as well as several public-domain 1/O traces, coming from diverse domains, we have
demonstrated the benefits of discretionary caching with these techniques. It should be noted that several of the previously
proposed 1/0 optimizations such as prefetching, data striping/distribution, etc. can be used in conjunction with the ideas
and discussions in this paper.

There are several interesting directions for future work. As mentioned previously, the scalability of the global cache
with additional client nodes may turn out to be a problem and we are currently looking at scalable solutions to see if
we can apply the techniques presented here at the 1/O server nodes. We have only presented and evaluated a simple
runtime strategy, and even that has turned out to be quite effective. We are currently exploring more sophisticated runtime
schemes with this approach. We have used a shared nothing architecture for the experimental studies, and it would
be interesting to study the applicability and benefits to systems with a shared storage architecture (perhaps including
a storage area network). An important goal of our future optimizations is to be able to detect access patterns across
different simultaneously running applications for 1/0 and cache optimizations. We are also interested in developing
performance monitoring and profiling tools to better determine what, when, and where to cache data blocks. Finally, work
is also underway in extending our compiler analysis to capture 1/0 access patterns inter-procedurally and applying more
aggressive (global) optimizations.
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