
Optimizing MPI Collective Communication by

Orthogonal Structures

Matthias Kühnemann

Fakultät für Informatik

Technische Universität Chemnitz

09107 Chemnitz, Germany

kumat@informatik.tu–chemnitz.de

Thomas Rauber

Fakultät für Mathematik und Physik

Universität Bayreuth

95445 Bayreuth, Germany

rauber@uni–bayreuth.de

Gudula Rünger

Fakultät für Informatik

Technische Universität Chemnitz

09107 Chemnitz, Germany

ruenger@informatik.tu–chemnitz.de

Abstract

Many parallel applications from scientific computing use MPI collective com-
munication operations to collect or distribute data. Since the execution times of
these communication operations increase with the number of participating proces-
sors, scalability problems might occur. In this article, we show for different MPI
implementations how the execution time of collective communication operations can
be significantly improved by a restructuring based on orthogonal processor struc-
tures with two or more levels. As platform, we consider a dual Xeon cluster, a
Beowulf cluster and a Cray T3E with different MPI implementations. We show
that the execution time of operations like MPI Bcast or MPI Allgather can be re-
duced by 40% and 70% on the dual Xeon cluster and the Beowulf cluster. But also
on a Cray T3E a significant improvement can be obtained by a careful selection
of the processor groups. We demonstrate that the optimized communication oper-
ations can be used to reduce the execution time of data parallel implementations
of complex application programs without any other change of the computation and
communication structure. Furthermore, we investigate how the execution time of
orthogonal realization can be modeled using runtime functions. In particular, we
consider the modeling of two-phase realizations of communication operations. We
present runtime functions for the modeling and verify that these runtime functions
can predict the execution time both for communication operations in isolation and
in the context of application programs.

1

Contents

1 Introduction 3

2 Orthogonal structures for realizing communication operations 4

2.1 Realization using a two-dimensional processor grid 4

2.2 Realization using a hierarchical processor grid 7

3 MPI Performance results in isolation 8

3.1 Orthogonal realization using LAM-MPI on the CLiC 8

3.2 Orthogonal realization using MPICH on the CLiC 10

3.3 Orthogonal realization using LAM-MPI on the dual Xeon cluster 11

3.4 Orthogonal realization using ScaMPI on the Xeon cluster 12

3.5 Orthogonal realization on the Cray T3E-1200 12

3.6 Performance results for hierarchical orthogonal organization 14

3.7 Grid Selection . 15

4 Performance modeling of orthogonal group structures 16

5 Applications and runtime tests 21

5.1 Parallel Jacobi iteration . 21

5.2 Parallel Adams methods PAB und PABM 23

6 Related Work 25

7 Conclusion 26

2

1 Introduction

Parallel machines with distributed address space are widely used for the implementation
of applications from scientific computing, since they provide good performance for a rea-
sonable price. Portable message-passing programs can be written using message-passing
standards like MPI or PVM. For many applications, like grid-based computations, a data-
parallel execution usually leads to good performance. But for target machines with a large
number of processors, data parallel implementations may lead to scalability problems, in
particular when collective communication operations are frequently used for exchanging
data. Often scalability can be improved by re-formulating the program as a mixed task
and data parallel implementation. This can be done by partitioning the computations into
multiprocessor tasks and by assigning the tasks to disjoint processor groups for execution
such that one task is executed by the processors of one group in a data parallel way, but
different independent tasks are executed concurrently by disjoint processor groups [16].
The advantage of a group-based execution is caused by the communication overhead of
collective communication operations whose execution time shows a logarithmic or linear
dependence on the number of participating processors, depending on the communication
operation and the target machine.

Another approach to reduce the communication overhead is the use of orthogonal proces-
sor groups [14] which are based on an arrangement of the set of processors as a virtual two-
or higher-dimensional grid and a fixed number of decompositions into disjoint processor
subsets representing hyper-planes. To use orthogonal processor groups the application
has to be re-formulated such that it consists of tasks that are arranged in a two- or
higher-dimensional task grid that is mapped onto the processor grid. The execution of
the program is organized in phases. Each phase is executed on a different partitioning
of the processor set and performs communication in the corresponding processor groups
only. For many applications, this may reduce the communication overhead considerably
but requires a specific potential of parallelism within the application and a complete
rearrangement of the resulting parallel program.

In this article we consider a different approach to reduce the communication overhead.
Instead of rearranging the entire program to a different communication structure, we use
the communication structure given in the data parallel program. But for each collective
communication operation, we introduce an internal structure that uses an orthogonal ar-
rangement of the processor set with two or more levels. The collective communication is
split into several phases each of which exploits a different level of the processor groups.
Using this approach a significant reduction in the execution time can be observed for
different target platforms and different MPI implementations. The most significant im-
provement results for MPI Allgather() operations. This is especially important as these
operations are often used in scientific computing. Examples are iterative methods where
MPI Allgather() operations are used to collect data from different processors and to make
this data available to each processor for the next time step. The advantage of the approach
is that the application does not have to provide a specific potential of parallelism and that
all programs using collective communication can take advantage of the improved commu-
nication. Also no rearrangement of the program is necessary and no specific knowledge
about the additional implementation structure is needed, so that a data parallel imple-
mentation mainly remains unchanged.

The internal rearrangement of the collective communication operations is done on top of
MPI on the application programmers level. So, the optimization can be used on a large
range of machines providing MPI. As target platforms we consider a Cray T3E, a Xeon
cluster and a Beowulf cluster. As application programs we consider an iterative solution
method for linear equation systems and solution methods for initial value problems of

3

ordinary differential equations.
Furthermore, we consider the modeling of the parallel runtime with runtime functions that
are structured according to the orthogonal communication phases. This model is suitable
for data parallel programs [15] as well as for mixed task and data parallel programs [11],
and it can also be used for large and complicated application programs [8]. We investigate
the use of runtime functions for modeling the runtime of MPI collective communication
operations with the specific internal realization that is based on an orthogonal structuring
of the processors in a two-dimensional grid. Using the runtime functions, the programmer
can get an a priori estimation of the execution time to predict various runtime effects of
an orthogonal realization.
The rest of the paper is organized as follows. Section 2 describes how collective com-
munication operations can be arranged such that they consist of different steps, each
performed on a subset of the entire set of processors. Section 3 presents the improvement
in execution time obtained by such an arrangement on three different target platforms.
Section 4 presents runtime functions to predict the behavior of execution time for collec-
tive communication operation based on orthogonal group structure. Section 5 applies the
improved operations in the context of larger application programs and shows the resulting
improvements. Section 6 discusses related work and Section 7 concludes the paper.

2 Orthogonal structures for realizing communication

operations

The Message Passing Interface (MPI) standard has been defined in an effort to standardize
the programming interface presented to developers arcoss a wide variety of parallel ar-
chitectures. Many implementations of the standard are available, including highly-tuned
versions for proprietary massively-parallel processors (MPPs), such as the Cray T3E, as
well as hardware-independent implementations such as MPICH [4] and LAM-MPI [13],
which have been ported to run on a large variety of machine types.
Most MPI implementations have been ported to cluster platforms, since clusters of com-
modity systems connected by a high-speed network in a rather loosely-coupled MPP are
a cost effective alternative to supercomputers. As the implementations are not tuned
towards a specific architecture interconnection network, such realizations of MPI com-
munication operations can be inefficient for some communication operations on some
platforms. Especially the network topology is crucial for an efficient realization of a given
communication pattern. Furthermore, the latency and bandwidth of the interconnection
network determine the switch between different communication protocols, e.g. for short
and long messages.
In this section we describe how collective communication operations can be realized in
consecutive phases based on an orthogonal partitioning of the processor set. The resulting
orthogonal realizations can be used for arbitrary communication libraries that provide col-
lective communication operations. We demonstrate this for MPI considering the following
collective communication operations: a single-broadcast operation (MPI Bcast()), a gather
operation (MPI Gather()), a scatter operation (MPI Scatter()), a single-accumulation op-
eration (MPI Reduce()), a multi-accumulation operation (MPI Allreduce()) and a multi-
broadcast operation (MPI Allgather()).

2.1 Realization using a two-dimensional processor grid

We assume that the set of processors is arranged as a two-dimensional virtual grid with
a total number of p = p1 × p2 processors. The grid consists of p1 row groups R1, ..., Rp1

4

P

1

C 1 C

R

4P 5P

1P

3P
R 3

P0

R 2 2

2

Figure 1: A set of
6 processors arranged
as a two-dimensional
grid with p1 = 3 row
groups and p2 = 2
column groups in row-
oriented mapping.

A A

1

A

A PP0 P2 4

P0 A

2

P P2 P3 P4 P1

A AA A A

5P0

B
ro

ad
ca

st

R1 R2 R3

leader group C1

root

Figure 2: Illustration of an orthogonal realiza-
tion of an single-broadcast operation with 6 pro-
cessors and root processor P0 realized by 3 con-
current groups of 2 processors each. In step (1),
processor P0 sends the message A within its col-
umn group C1; this is the leader group. In step
(2), each member of the leader group sends the
message within its row group.

and p2 column groups C1, ..., Cp2
with |Rq| = p2 for 1 ≤ q ≤ p1 and |Cr| = p1 for

1 ≤ r ≤ p2. The row groups provide a partitioning into disjoint processor sets. The
disjoint processor sets resulting from column groups are orthogonal to the row groups.
Using these two partitionings, the communication operations can be implemented in two
phases, each working on a different partitioning of the processor grid. Based on the
processor grid and the two partitionings induced, group and communicator handles are
defined for the concurrent communication in the row and column groups. Based on the
2D grid arrangement, each processor belongs to one row group and to one column group.
A row group and a column group have exactly one communication processor. Figure 1
illustrates a set of 6 processors P0, P1, ..., P5 arranged as p1 × p2 = 3 × 2 grid.
The overhead for the processor arrangement itself is very small. Only two functions to
create the groups are required and the arrangement has to be performed only once for an
entire application program.
Single-Broadcast In a single-broadcast operation, a root processor sends a block of
data to all processors in the communicator domain. Using the 2D processor grid as
communication domain, the root processor first broadcasts the block of data within its
column group C1 (leader group). Then each of the receiving processors acts as a root
in its corresponding row group and broadcasts the data within this group (concurrent
group) concurrently to the other broadcast operations. Figure 2 illustrates the resulting
two communication phases for the processor grid from Figure 1 with processor P0 as
root of the broadcast operation. We assume that the processors are organized into three
concurrent groups of two processors each, i.e., there are p1 = 3 row groups, each having
p2 = 2 members. Processors P0, P2 and P4 form the leader group.
Gather For a gather operation, each processor contributes a block of data and the root
processor collects the blocks in rank order. For an orthogonal realization, the data blocks
are first collected within the row groups by concurrent group based gather operations
such that the data blocks are collected by the unique processor belonging to that column
group (leader group) to which the root of the global gather operation also belongs to. In
a second step, a gather operation is performed within the leader group only and collects
all data blocks at the root processor specified for the global gather operation. If b is the
size of the original message, each processor in the leader group contributes a data block of

5

A2 A3 P4 A4 5A

2

G
at

he
r

1

P0 0A 1A A2 A3 A4 5A

0A 1A

0A 1A
Sc

at
te

r

2

1

P2

P3P2P1P0 P5P4

2A 3A 4A 5A

R1 R2 R3

1

root

leader group C

P0

Figure 3: Illustration of an orthogonal realization of a gather operation (upward) and a scatter
operation (downward) with 6 processors and root processor P0 for 3 concurrent groups R1, R2 and
R3 of 2 processors each. In step (1), for the gather operation, processors P0, P2, P4 concurrently
collect messages from its row groups. In step (2), the leader group collects the messages built up in
the previous step.

size b · p2 for the second communication step. The order of the messages collected at the
root processor is preserved. Figure 3 (upward) illustrates the two phases for the processor
grid from Figure 1 where processor Pi contributes data block Ai, i = 1, ..., 6.

Scatter A scatter operation is the dual operation to a gather operation. Thus, a scatter
operation can be realized by reversing the order of the two phases used for a gather
operation: first, the messages are scattered in the leader group such that each processor
in the leader group obtains all messages for processors in the row group to which it belongs
to; then the messages are scattered in the row groups by concurrent group-based scatter
operation, see Figure 3 (downward).

Single-Accumulation For a single-accumulation operation, each processor contributes
a buffer with n elements and the root processor accumulates the values of the buffer with
a specific reduction operation, like MPI SUM. For an orthogonal realization, the buffers
are first reduced within the row group by concurrent group-based reduce operations such
that the elements are accumulated in that column group to which the root of the global
reduce operation belongs to. In a second step, a reduce operation is performed within the
leader group, thus accumulating all values of the buffer at the specific root processor. The
numbers of elements are always the same which means that all messages in both phases
have the same size.

Multi-Accumulation For a multi-accumulation operation, each processor contributes
a buffer with n elements and the operation makes the result buffer available for each
processor. Using a 2D processor grid, the operation can also be implemented by the
following two steps: first, a group-based multi-accumulation operation is executed con-
currently within the row groups, thus making the result buffer available to each processor
of every row group. Second, concurrent group-based multi-accumulation operation are
performed to reduce this buffer within the column groups. The messages have the same
size in both phases.

Multi-Broadcast For a multi-broadcast operation, each processor contributes a data
block of size b and the operation makes all data blocks available in rank order for each
processor. Using a 2D processor grid, the operation can be implemented by the follow-
ing two steps: first, group-based multi-broadcast operations are executed concurrently
within the row groups, thus making each block available for each processor within column
groups, see Figure 4 for an illustration. Second, concurrent group-based multi-broadcast
operations are performed to distribute the data blocks within the column groups. For
this operation, each processor contributes messages of size b · p2. Again, the original rank
order of data blocks is preserved.

6

 P2 A2 A3

 P1 A0 A1

 P0 A0

 P1 A0

2
1

1C

2C

 P3

 P5

 P1 A0 A1 A4 A5A2 A3

A0 A1 A4 A5A2 A3

A0 A1 A4 A5A2 A3

 P3 A2 A3

 P5 A4 A5

 P2

 P4

 P0 A0 A1 A4 A5A2 A3

A0 A1 A4 A5A2 A3

A0 A1 A4 A5A2 A3
 P4 A4 A5

A3

A3

 P2 A2

 P A3

 P2 A2

 P3 A23

A

A

 P4 A4

 P5 A5

 P4 A4

 P5 A4

5

5

A1

A1

 P0 A0

 P1 A1

 P0 A0 A1

2

1R

3R

R

Figure 4: Illustration of an orthogonal implementation of multi-broadcast operation with 6 pro-
cessors and root processor P0. The operation may be realized by 3 concurrent groups R1, R2 and
R3 of 2 processors each and 2 orthogonal groups C1 and C2 of 3 processors each. Step (1) shows
concurrent multi-broadcast operations on row groups and step (2) shows concurrent multi-broadcast
operations on column groups.

A AA

A

A A

A

AP0

AP0 AA

P0 A

1

2

3

PP6 P8 10

P P8 P9 P10 P7

A AA A A

P6 11

P P2 4

P P2 P3 P4 P1

A AA A A

5P0

P8P4

Figure 5: Illustration of an MPI Bcast() operation with 12 processors and root processor P0 using
three communication phases.

2.2 Realization using a hierarchical processor grid

The idea from Section 2.1 can be applied recursively to the internal communication orga-
nization of the leader group or the concurrent groups, so that the communication in the
leader group or the concurrent groups can be performed by again applying an orthogonal
structuring of the group. This is illustrated in Figure 5 for a single-broadcast operation
with 12 processors P0, P1, ..., P11 and root processor P0. We assume that the processors
are organized in 6 concurrent groups of two processors each. The processors P0, P2, ..., P10

forming the original leader group are again arranged as three concurrent groups of two
processors such that the processors P0, P4 and P8 form a first-level leader group. This
results in three communication phases for the 12 processors as shown in Figure 5. Each
hierarchical decomposition of a processor group leads to a new communication phase.
For a fixed number of processors, the hierarchical decomposition can be selected such
that the best performance improvement results. For three decompositions, we use a total
number of p = p1 · p2 · p3 processors, where p1 denotes the size of the leader group; p2

and p3 denotes the size of the concurrent groups in the communication phases 2 and 3.
In Figure 5, the numbers are p1 = 3 and p2 = p3 = 2.

7

3 MPI Performance results in isolation

To investigate the performance of the implementation described in Section 2.1, we consider
communication on different distributed memory machines, a Cray T3E-1200, a Beowulf
cluster and a dual Xeon cluster. The T3E uses a three-dimensional torus network. The six
communication links of each node are able to simultaneously support hardware transfer
rates of 600 MB/s. The Beowulf Cluster CLiC (’Chemnitzer Linux Cluster’) is built up
of 528 Pentium III processors clocked at 800 MHz. The processors are connected by two
different networks, a communication network and a service network. Both are based on
the fast-Ethernet-standard, i.e. the processing elements (PEs) can swap 100 MBit per
second. The service network (Cisco Catalyst) allows external access to the cluster. The
communication network (Extreme Black Diamond) is used for inter-process communica-
tion between the PEs. On the CLiC, LAM MPI 6.3 b2 and MPICH 1.2.4 were used for
the experiments.
The Xeon cluster is built up of 16 nodes and each node consists of two Xeon processors
clocked at 2 GHz. The nodes are connected by three different networks, a service network
and two commmunication networks. The service network and one communication net-
work are based on the fast-Ethernet-standard and the functionality is similar to the two
interconnection networks of the CLiC. Additionally, a high performance interconnection
network based on Dolphin SCI interface cards is available. The SCI network is connected
as 2-dimensional torus topology and can be used by the ScaMPI (SCALI MPI) [3] library.
The fast-Ethernet based networks are connected by a switch and can be used by two
portable MPI libraries, LAM MPI 6.3 b2 and MPICH 1.2.4.
In the following, we present runtime tests on the three platforms. On the CliC and the
Cray T3E we present the results for 48 and 96 processors. For other processor numbers,
similar results have been obtained. For 48 processors 8 different two-dimensional virtual
grid layouts (2 × 24, 3 × 16, ..., 24 × 2) and for 96 processors 10 different grid layouts
(2× 48, 3× 32, ..., 48× 2) are possible. For the runtime tests, we have used message sizes
between 10 KBytes and 500 KBytes, which is the size of the block of data contributed (e.g.
MPI Gather()) or obtained (e.g. MPI Scatter()) by each participating processor. The
following figures show the minimum, average and maximum performance improvements
achieved by the orthogonal implementation described in Section 2.1 compared with the
original MPI implementation over the entire interval of message sizes.
For the dual Xeon cluster we present runtime tests for 16 and 32 processors for both
communication networks, i.e. for the Ethernet and the SCI interconnection network. For
the Ethernet network LAM MPI 6.3 b2 and for the SCI interface ScaMPI 4.0.0 have
been used. The processor layouts are similarly chosen, i.e. for 16 processors 3 different
two-dimensional grid layouts (2× 8, 4× 4, 8× 2) and for 32 processors 4 different layouts
(2 × 16, 4 × 8, 8 × 4, 16 × 2) are possible.

3.1 Orthogonal realization using LAM-MPI on the CLiC

On the CLiC, the orthogonal implementations based on the LAM-MPI library lead to the
highest performance improvements for most collective communication operations.
The orthogonal realizations of an MPI Bcast(), MPI Allgather() and MPI Allreduce() op-
eration show the most significant performance improvements. All partitions show a con-
siderable improvement, but the largest improvements can be obtained when using a layout
for which the number of row and column groups are about the same. The MPI Bcast()
operation shows significant average improvements of more than 20% for 48 and 40% for 96
processors, respectively, using balanced grid layouts, see Figure 7 (left). The orthogonal
implementation of a MPI Allreduce() operation shows average improvements of more than

8

[3]

[2]

[3]

[2]

[3]

[3][2]

[1]

[1]

[2] [3]

[3] [4]

[3]

2

P P6

P0

root

P1

P4P3

0

P2P1P

P4

P6P5

5

P

R1 R2

7P3P

7P

Figure 6: Illustration of a MPI Bcast() operation with 8 processors P0, ..., P7 and root processor P0

using a binary tree algorithm. The figure shows a standard implementation using in LAM-MPI (left)
and an orthogonal realization with two groups R1 and R2 of 4 processors each (right). The processors
P0 and P4 form the leader group. The number in the squared bracket denotes the message passing
step to distribute the data block. The standard algorithm needs 4 and the orthogonal realization 3
message passing steps to distribute the block of data.

0 10 20 30 40 50 60

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Bcast by group communication
with 48 (bottom) and 96 processors (top) on CLiC (LAM−MPI)

minimum
average
maximum

0 1 2 3 4 5 6 7

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze
performance improvements of MPI_Gather by group communication
with 48 (bottom) and 96 processors (top) on CLiC (LAM−MPI)

minimum
average
maximum

Figure 7: Performance improvements by group-based realization of MPI Bcast() (left) and
MPI Gather() (right) with 48 and 96 processors on the CLiC (LAM-MPI).

20% for 48 and 30% for 96 processors, respectively, again using balanced group sizes, see
Figure 8 (left). The execution time of the MPI Allgather() operation can be dramatically
improved by an orthogonal realization, see Figure 8 (right). For some of the group par-
titionings, improvements of over 60% for 48 and 70% for 96 processors, respectively, can
be obtained. The difference between the minimum and maximum performance enhance-
ments are extremely small, which means that this method leads to a reliable improvement
for all message sizes.

The main reason for the significant performance improvements of these three collective
communication operations achieved by orthogonal realization is the specific implemen-
tation of the MPI Bcast() operation in LAM-MPI. The algorithm of the MPI Bcast()
operation to distribute the block of data does not exploit the star network topology of the
CLiC, but uses a structure describing a tree topology. In general, the orthogonal realiza-
tion leads to a better utilization of the network caused by a more balanced communcation
pattern. Figure 6 illustrates the message passing steps of a binary broadcast-tree with 8
processors P0, ..., P7 and demonstrates the benefits of an orthogonal realization.
Both the MPI Allgather() and the MPI Allreduce() operation in the LAM implementation
use a MPI Bcast() operation to distribute the block of data to all participating processors.
The MPI Allreduce() operation is composed of an MPI Reduce() and an MPI Bcast() op-
eration. First the root processor reduces the blocks of data from all members of the
processor group and broadcasts the result buffer to all processors participating in the

9

0 5 10 15 20 25 30 35 40 45

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Allreduce by group communication
with 48 (bottom) and 96 processors (top) on CLiC (LAM−MPI)

minimum
average
maximum

0 10 20 30 40 50 60 70 80

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Allgather by group communication
with 48 (bottom) and 96 processors (top) on CLiC (LAM−MPI)

minimum
average
maximum

Figure 8: Performance improvements of MPI Allreduce() (left) and MPI Allgather (right) by group
communication with 48 and 96 processors on the CLiC (LAM-MPI).

communication operation. The message size is constant for both operations. The improve-
ments correspond to the performance enhancements of the MPI Bcast() operation, since
the preceding MPI Reduce() operation with orthogonal structure leads to a small per-
formance degradation. The MPI Allgather() operation is composed of an MPI Gather()
and an MPI Bcast() operation. First the root processor collects blocks of data from all
members of the processor group and broadcasts the entire message to all processors par-
ticipating in the communication operation. The root processor broadcasts a considerably
larger message of size b ·p, when b denotes the original message size and p is the number of
participating processors. The dramatic improvements are again caused by the execution
of the MPI Bcast() operation for the larger message size.
The orthogonal implementation of the MPI Gather() operation shows a small, but per-
sistent average performance improvement for all grid layouts of more than 1% for 48 and
2% for 96 processors, respectively, see Figure 7 (right). There are only small variations
of the improvements obtained for different layouts, but using the same number of row
and column groups again leads to the best average performance. An average performance
degradation can be observed for the MPI Scatter() and the MPI Reduce() operation. Only
for specific message sizes, a small performance improvement can be obtained, not shown
in a figure.

3.2 Orthogonal realization using MPICH on the CLiC

The performance improvements on the CLiC based on the MPICH library are not as
significant as with LAM-MPI, but also with MPICH persistent enhancements by an or-
thogonal realization can be obtained for some collective communication operations.
The orthogonal implementations of the MPI Gather() and MPI Scatter() operations lead
to small, but persistent performance enhancements. For the MPI Gather() operation
more than 1% for 48 and 2% for 96 processors, respectively, can be obtained using bal-
anced grid layouts, see Figure 9 (left). Similar results are shown in Figure 9 (right) for
the MPI Scatter() operation. Depending on the message size up to 5% performance en-
hancements can be obtained with an optimal grid layout in the best case.

The orthogonal realization of the MPI Allgather() operation leads to very large per-
formance improvements for message sizes in the range of 32 KByte and 128 KByte, see
Figure 12 (left); for larger message sizes up to 500 KByte slight performance degrada-
tion between 1 % and 2 % can be observed. The main reason for the large differences
in the improvements depending on the message size are the different protocols used for
short and long messages. Both protocols are realized using non-blocking MPI Isend() and

10

0 1 2 3 4 5 6

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Gather by group communication
with 48 (bottom) and 96 processors (top) on CLiC (MPICH)

minimum
average
maximum

0 1 2 3 4 5 6 7

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Scatter by group communication
with 48 (bottom) and 96 processors (top) on CLiC (MPICH)

minimum
average
maximum

Figure 9: Performance improvements by group-based realization of MPI Gather() (left) and
MPI Scatter() (right) with 48 and 96 processors on the CLiC (MPICH).

MPI Irecv() operations. For messages up to 128 KBytes, an eager protocol is used where
the receiving processor stores messages that arrive before the corresponding MPI Irecv()
operation has been activated in a system buffer. This buffer is allocated each time that
such a message arrives. Issuing the MPI Irecv() operation leads to copying the message
from the system buffer to the user buffer. For messages that are larger than 128 KBytes,
a rendezvous protocol is used that is based on request messages send by the destination
processor to the source processor as soon as a receive operation has been issued, so that
the message can be directly copied into the user buffer. The reason for the large im-
provements for short messages shown in Figure 12 (left) is caused by the fact that the
asynchronous standard realization of the MPI Allgather() operation leads to an allocation
of a temporary buffer and a succeeding copy operation for a large number of processors
whereas the orthogonal group-based realization uses the rendezvous protocol for larger
messages in the second communication phase because of an increased message size b · p2.
Slight performance degradations between 1% and 2% can also be observed for the
MPI Reduce(), MPI Allreduce() and the MPI Bcast() operations by an orthogonal re-
alization which is not shown in a figure.

3.3 Orthogonal realization using LAM-MPI on the dual Xeon

cluster

The Xeon Cluster consists of 16 nodes with two processors per node. The processors
participating in a communication operation are assigned to the nodes in a cyclic order to
achieve a reasonable utilization of both interconnection networks. For runtime tests with
16 processors all 16 nodes are involved, i.e., processor i uses one physical processor of
node i for 0 ≤ i ≤ 15. When 32 processors participate in the communication operation,
node i provides the processors i and i + 16 for 0 ≤ i ≤ 15.
The performance results of the different communication operations are similar to the
performance enhancements using LAM-MPI on the CLiC. The main reason is that both
platforms use a star network topology, the same interconnection network (fast-Ethernet)
and the same realization of communication operation based on the LAM-MPI library.
Figure 10 shows as example that for an MPI Bcast() (left) and an MPI Allgather (right)
operation similar performance improvement as on the Beowulf cluster can be obtained.
Because of the specific processor arrangement of the cluster the performance improve-
ments of the various two-dimensional group layouts differ from the performance results
on the CLiC, such that a balanced grid layout does not necessarily lead to the best average
performance improvement. Concerning performance improvements and grid layouts sim-

11

0 5 10 15 20 25 30 35 40 45 50

2*8

4*4

8*2

2*16

4*8

8*4

16*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Bcast by group communication
with 16 (bottom) and 32 processors (top) on Xeon−Cluster (LAM−MPI)

minimum
average
maximum

0 10 20 30 40 50 60 70

2*8

4*4

8*2

2*16

4*8

8*4

16*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Allgather by group communication
with 16 (bottom) and 32 processors (top) on Xeon−Cluster (LAM−MPI)

minimum
average
maximum

Figure 10: Performance improvements by group-based realization of MPI Bcast() (left) and
MPI Allgather() (right) with 16 and 32 processors on the dual Xeon cluster (LAM-MPI).

ilar performance improvements on the CLiC can be observed for the remaining collective
MPI communication operations.

3.4 Orthogonal realization using ScaMPI on the Xeon cluster

In general, collective communication operations using the two-dimensional SCI torus are
significantly faster than operations using an Ethernet network. Depending on the specific
communication operation the SCI interface is by a factor of 100 faster than the Eth-
ernet network. Several collective communication operations using ScaMPI on SCI still
show performance improvements obtained by orthogonal group realization, see Figure 11
for an MPI Gather (left) and MPI Allgather (right) operation for smaller message sizes.
For MPI Scatter similar performance results like for MPI Gather can be observed. For
MPI Bcast and the accumulation operations slight performance degradations can be ob-
served. The assignment of processors participating in the communication operation to
the cluster nodes is done as described in Section 3.3.

0 10 20 30 40 50 60

2*8

4*4

8*2

2*16

4*8

8*4

16*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Gather by group communication
with 16 (bottom) and 32 processors (top) on Xeon−Cluster (SCALI)

minimum
average
maximum

0 2 4 6 8 10 12 14 16 18 20

2*8

4*4

8*2

2*16

4*8

8*4

16*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Allgather by group communication
with 16 (bottom) and 32 processors (top) on Xeon−Cluster (SCALI)

minimum
average
maximum

Figure 11: Performance improvements by group-based realization of MPI Gather() (left) for message
sizes in the range of 560 Byte and 64 KByte and MPI Allgather() (right) for message sizes between
100 KByte and 500 KByte on the Xeon cluster (ScaMPI).

3.5 Orthogonal realization on the Cray T3E-1200

The Cray T3E is a distributed shared memory system in which the nodes are intercon-
nected through a bidirectional 3D torus network. The T3E network uses a deterministic,

12

0 10 20 30 40 50 60 70 80 90 100

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Allgather by group communication
with 48 (bottom) and 96 processors (top) on CLiC (MPICH)

minimum
average
maximum

0 5 10 15 20 25 30 35 40 45 50

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Gather by group communication
with 48 (bottom) and 96 processors (top) on Cray T3E−1200

minimum
average
maximum

Figure 12: Performance improvements by group-based realization of MPI Allgather() for message
sizes in the range of 32 KByte and 128 KByte on the CLiC (MPICH) (left) and MPI Gather() for
messages sizes between 10 KByte and 500 KByte on the Cray T3E-1200 (right).

dimension-order, k-ary n-cube wormhole routing scheme [17]. Each node contains a table,
stored in dedicated hardware, that provides a routing tag for every destination node. In
deterministic routing, the path from source to destination is determined by the current
node address and the destination node address so that for the same source-destination
pair all packets follow the same path. Dimension-order routing is a deterministic rout-
ing scheme in which the path is selected that the network is traversed in a predefined
monotonic order of the dimensions in the torus. Deadlocks are avoided in deterministic
routing by ordering the virtual channels that a message needs to traverse. Dimension-
order routing is not optimal for k-ary n-cubes. Because of the wraparound connections,
messages may get involved in deadlocks while routing through the shortest paths. In
fact, messages being routed along the same dimension (a single dimension forms a ring)
may be involved in a deadlock due to a cyclic dependency. A non-minimal deadlock-free
deterministic routing algorithm can be developed for k-ary n-cubes by restricting the use
of certain edges so as to prevent the formation of cycles [5]. In general, when an algo-
rithm restricts message routing to a fixed path, it cannot exploit possible multiple paths
between source-destination pairs during congestion.
There considerations show that a standard MPI communication operation does not auto-
matically lead to an optimal execution time on the T3E. Furthermore, a rearrangement
of a processor set as smaller groups of processors may prevent congestions thus leading
to smaller execution times. This will be shown in the following runtime tests. The appli-
cation uses the virtual PE number to reference each PE in a partition and has no direct
access to logical or physical PE addresses. The hardware is responsible for the conversion
of virtual, logical and physical PE numbers.
For MPI Bcast() and MPI Allgather() operations, good performance improvements up
to 20% can be obtained when using suitable grid layouts for messages in the range of
10 KByte and 500 KByte. The execution times of the orthogonal realizations are quite
sensible to the grid layout and the specific message size, i.e. other grid layouts lead to
smaller improvements or may even lead to performance degradation. Moreover, there is
a large variation of performance improvements especially for large messages where mes-
sages of similar size may lead to a significant difference in the performance improvement
obtained. This leads to large differences between the minimum and maximum improve-
ment. In contrast, smaller message sizes in the range of 10 KByte and 100 KByte lead to
persistent average performance improvements for both operations, see Figure 13 for the
MPI Bcast() (left) and MPI Allgather() (right) operations.
For the MPI Gather() operation a significant performance improvement of more than

13

0 2 4 6 8 10 12 14 16 18 20

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Bcast by group communication
with 48 (bottom) and 96 processors (top) on T3E for small messages

minimum
average
maximum

0 10 20 30 40 50 60 70

2*24

3*16

4*12

6*8

8*6

12*4

16*3

24*2

2*48

3*32

4*24

6*16

8*12

12*8

16*6

24*4

32*3

48*2

performance improvements (in %)

gr
ou

p
nu

m
be

r
*

gr
ou

p
si

ze

performance improvements of MPI_Allgather by group communication
with 48 (bottom) and 96 processors (top) on T3E for small messages

minimum
average
maximum

Figure 13: Performance improvements by group communication of MPI Bcast() (left) and
MPI Allgather() (right) for message sizes in the range of 10 KByte and 100 KByte on the Cray
T3E-1200.

20% for 48 and 30% for 96 processors, respectively, can be obtained, see Figure 12 (right).
For small message sizes, a slight performance degradation can sometimes be observed.
Therefore there is no minimum improvement shown for most of the layouts in the figure.
For message sizes between 128 KBytes and 500 KBytes, the improvements obtained are
nearly constant. The runtimes for MPI Gather() operations increase more than linearly
with the number p of processors. which is caused by the fact that the root processor
becomes a bottleneck when gathering larger messages. This bottleneck is avoided when
using orthogonal group communication.
Slight performance degradations between 1% and 2% are obtained for the MPI Scatter(),
MPI Reduce() and MPI Allreduce() operations. Neither for smaller nor for larger message
sizes performance enhancements can be observed.

3.6 Performance results for hierarchical orthogonal organization

On the CLiC and T3E a sufficiently large number of processors is available to arrange
different grid layouts for three communication phases. For up to 96 processors, up to three
hierarchical decompositions according to Section 2.2 are useful and we present runtime
tests for 96 processors on the CLiC (with LAM-MPI) and on the Cray T3E. In particular, if
the original leader group contains 16 or more processors, it is reasonable to decompose this
again and the communication is performed in three instead of two phases. Compared to
the two-phase realization, a hierarchical realization of the MPI Bcast() and MPI Gather()
operation leads to additional and persistent performance improvements on the CLiC and
T3E.

Hierarchical realization using LAM-MPI on the CLiC Comparing a two-
dimensional with a three-dimensional realization for the MPI Bcast() operation, an ad-
ditional performance improvement of up to 15% can be obtained for the CLiC using
LAM-MPI. The additional average performance improvement lies above 10% for some
of the group partitionings, see Figure 14 (left). The hierarchical realization for the
MPI Gather() operation shows no additional performance improvements compared to
the two-dimensional realization, see Figure 14 (right). The resulting differences between
the minimum and maximum performance improvements are larger for all message sizes
than for two-phase realization.

Hierarchical realization on the Cray T3E-1200 For the MPI Bcast() operation all
group partitionings show an average performance improvement compared to the runtime

14

0 10 20 30 40 50 60
2/8/6
4/4/6
8/2/6

2/12/4
3/8/4
4/6/4
6/4/4
8/3/4

12/2/4
2/16/3

4/8/3
8/4/3

16/2/3
2/24/2
3/16/2
4/12/2

6/8/2
8/6/2

12/4/2
16/3/2
24/2/2

performance improvements (in %)

le
ad

er
 g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e

performance improvements of MPI_Bcast by hierarchical
group communication with 96 processors on CLiC (LAM−MPI)

minimum
average
maximum

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
2/8/6
4/4/6
8/2/6

2/12/4
3/8/4
4/6/4
6/4/4
8/3/4

12/2/4
2/16/3

4/8/3
8/4/3

16/2/3
2/24/2
3/16/2
4/12/2

6/8/2
8/6/2

12/4/2
16/3/2
24/2/2

performance improvements (in %)

le
ad

er
 g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e

performance improvements of MPI_Gather by hierarchical
group communication with 96 processors on CLiC (LAM−MPI)

minimum
average
maximum

Figure 14: Performance improvements by hierarchical group communication of MPI Bcast() (left)
and MPI Gather() (right) on the CLiC (LAM-MPI).

0 5 10 15 20 25 30
2/8/6
4/4/6
8/2/6

2/12/4
3/8/4
4/6/4
6/4/4
8/3/4

12/2/4
2/16/3

4/8/3
8/4/3

16/2/3
2/24/2
3/16/2
4/12/2

6/8/2
8/6/2

12/4/2
16/3/2
24/2/2

performance improvements (in %)

le
ad

er
 g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e

performance improvements of MPI_Bcast by hierarchical
group communication with 96 processors on Cray T3E−1200

minimum
average
maximum

0 10 20 30 40 50 60 70 80
2/8/6
4/4/6
8/2/6

2/12/4
3/8/4
4/6/4
6/4/4
8/3/4

12/2/4
2/16/3

4/8/3
8/4/3

16/2/3
2/24/2
3/16/2
4/12/2

6/8/2
8/6/2

12/4/2
16/3/2
24/2/2

performance improvements (in %)

le
ad

er
 g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e

performance improvements of MPI_Gather by hierarchical
group communication with 96 processors on Cray T3E−1200

minimum
average
maximum

Figure 15: Performance improvements by hierarchical group communication of MPI Bcast() (left)
and MPI Gather() (right) on the Cray T3E-1200.

tests with two communication phases for message sizes up to 500 KByte on the T3E, see
Figure 15 (left). For suitable grid layouts average improvements of more than 20% can be
obtained. Also for MPI Gather() the hierarchical realization with three communication
phases leads to additional performance improvements, see Figure 15 (right). The improve-
ments vary depending on the group partitionings. For some of the group partitionings,
additional improvements of over 60 % can be obtained.

Hierarchical realization on the Xeon cluster Figure 16 shows performance en-
hancements for four MPI communication operations obtained by a hierarchical orthogo-
nal grid layout with three communication phases. Since 32 processors are available three
different group layouts (2 × 8 × 4, 4 × 4 × 2, 8 × 2 × 2) are chosen for the Xeon cluster.
Figure 16 shows the additional performance improvements for the orthogonal realization
of MPI Bcast, MPI Allgather using LAM-MPI (left) and MPI Gather, MPI Scatter us-
ing ScaMPI (right). The orthogonal realizations using ScaMPI are obtained for smaller
message sizes in the range of 560 Byte and 64 KByte, see also Section 3.4.

3.7 Grid Selection

For a given machine and a given MPI implementation a different layout of the processor
grid lead to the largest performance improvement. A good layout of the processor grid
can be selected by performing measurements with different grid layouts and different
message sizes for each of the collective communication operations to be optimized.

15

0 10 20 30 40 50 60 70 80

2/8/2

4/4/2

8/2/2

2/8/2

4/4/2

8/2/2

performance improvements (in %)

le
ad

er
 g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e

performance improvements of MPI_Bcast (top) and MPI_Allgather (bottom) by hierarchical
group communication with 32 processors on Xeon cluster (LAM−MPI)

minimum
average
maximum

0 10 20 30 40 50 60

2/8/2

4/4/2

8/2/2

2/8/2

4/4/2

8/2/2

performance improvements (in %)

le
ad

er
 g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e
/ g

ro
up

 s
iz

e

performance improvements of MPI_Gather (top) and MPI_Scatter (bottom) by
hierarchical group communication with 32 processors on Xeon−Cluster (ScaMPI)

minimum
average
maximum

Figure 16: Performance improvements by hierarchical group communication of MPI Bcast(),
MPI Allgather() using LAM-MPI (left) and MPI Gather(), MPI Scatter() using ScaMPI (right) on
the Xeon cluster. The improvements for orthogonal realizations using ScaMPI (right Figure) are
obtained for message sizes between 560 Byte and 64 KByte.

The process of obtaining and analyzing the measurements can be automated such that
for each communication operation, a suitable layout is determined that leads to small
execution times. This process has to be done only once for each target machine and each
MPI implementation and the selected layout can then be used for all communication
operations in all application programs. In general, different optimal layouts may result
for different communication operations, but our experiments with LAM-MPI, MPICH
and Cray-MPI show that using the same number of row and column groups usually leads
to good and persistent improvements compared to the standard implementation of the
MPI operations.
Also, different grid layouts may lead to the best performance improvement when consider-
ing different message sizes for the same communicaton operation. Based on the measured
execution times of the communication operation, it is also possible to identify intervals
of message sizes such that a different grid layout is selected for a different interval of
message sizes, depending on the expected performance improvement. The measured data
also shows whether for a specific communication operation and for a specific message size,
no performance improvement is expected by an orthogonal realization so that the original
MPI implementation can be used. Based on the selection of appropriate grid layouts
in two- or multi-dimensional forms an optimized collective communication operation is
realized offering the best improvements possible using the orthogonal approach. The
result of the analysis step is a realization of the collective communication operations that
uses orthogonal realization with a suitable layout whenever it is expected that this leads
to a performance improvement compared to the given MPI implememtation.

4 Performance modeling of orthogonal group struc-

tures

In this section, we consider the performance modeling of the orthogonal realization of
collective communication operations using runtime functions. Runtime functions have
been successfully used to model the execution time of communication operation for various
communication libraries [7, 15]. The execution of an MPI Bcast broadcast operation, for

16

example, on the CLiC using LAM-MPI 6.3 b2 can be described by the runtime function

tsb(p, b) = (0.0383 + 0.474 · 10−6 · log2(p)) · b,

where b denotes the message size in bytes and p is the number of processors participating
in the communication operation. For the performance modeling of orthogonal implemen-
tations of collective communication operations we adopt the approach for modeling the
execution time of each phase of the orthogonal implementation in isolation. For each
phase we use the runtime functions of the monolithic standard MPI communication op-
erations from Table 1. The coefficients τ1 and tc can be considered as startup time and
byte-transfer time, respectively, and are determined by applying curve fitting with the
least-squares method to measured execution times. For the measurements, message sizes
between 10 KBytes and 500 KBytes have been used. In some of the formulas the startup
time is very small and can be ignored. In the following, we consider the modeling of
orthogonal realizations of some important MPI operations.
MPI Bcast For the broadcast operation the communication time is modeled by adding
the runtime function for the broadcast in the leader group (using the formula from Table
1 with p = p1) and the runtime function for the concurrent broadcast in the row groups
(using the formula from Table 1 with p = p2). The accurate predictions for the concurrent
groups and leader groups show that this approach can be used for all collective MPI
communication operations. The good prediction results of the two-phase performance
modeling also show that there is no interferences of concurrent communication operations
in the second communication phase. A possible interference would lead to a delayed
communication time and, thus, would require a different modeling approach.
For the single-broadcast operations, LAM-MPI uses two different internal realizations,
one for p ≤ 4 and one for p > 4. If up to 4 processors participate in the broadcast
operation, a formula results that depends linearly on p. For more than 4 processors a
formula with a logarithmic dependence on p is used, because the broadcast transmissions
are based on broadcast trees with logarithmic depth. The corresponding coefficients are
given in Table 2.
Figure 17 (left) shows the deviations between measured and predicted execution times for
single-broadcast on the CLiC for an orthogonal realization. For different group layouts
the deviations are gives separately for the leader group (LG) used in the first phase
and the for the concurrent groups (CG) used in the second phase. The bar total shows
the accumulated deviation of both communication phases. The figure shows minimum,
maximum, and average deviations between measured and predicted runtimes over the
entire interval of message sizes. The predictions are quite accurate but not absolutely
precise for some groups, because the depth of the broadcast tree remains constant for a
specific interval of processor sizes. This means that the communication time increases
in stages and the runtime formulas do not model these stages exactly. Figure 17 (right)

operation runtime function

MPI Bcast tsb lin(p, b) = (τ + tc · p) · b
tsb log(p, b) = (τ + tc · log2(p)) · b

MPI Gather tsc(p, b) = τ1 + (τ2 + tc · p) · b
MPI Scatter tga(p, b) = τ1 + (τ2 + tc · p) · b
MPI Reduce tacc lin(p, b) = (τ + tc · p) · b

tacc log(p, b) = (τ + tc · blog2(p − 1)c) · b
MPI Allreduce tmacc(p, b) = tacc(p, b) + tsb(p, b)
MPI Allgather tmb(p, b) = tga(p, b) + tsb(p, p · b)

Table 1: Runtime functions for collective communication operations on the CLiC

17

coefficients for broadcast and accumulation
CLiC Xeon cluster

operation formula p τ [µs] tc[µs] p τ [µs] tc[µs]

MPI Bcast tsb lin(p, b) ≤ 4 -0.085 0.092 - - -
tsb log(p, b) > 4 0.038s 0.474 > 1 -0.0005 0.0042

MPI Reduce tacc lin(p, b) ≤ 4 -0.103 0.105 - - -
tacc log(p, b) > 4 0.141 0.101 > 1 0.0116 0.0002

Table 2: Coefficients of the runtime function for MPI Bcast() and MPI Reduce() on the CLiC
(LAM-MPI) and on the dual Xeon cluster (ScaMPI).

0 2 4 6 8 10 12 14 16 18 20
LG 02
CG 48

total

LG 03
CG 32

total

LG 04
CG 24

total

LG 06
CG 16

total

LG 08
CG 12

total

LG 12
CG 08

total

LG 16
CG 06

total

LG 24
CG 04

total

LG 32
CG 03

total

LG 48
CG 02

total

deviation (in %)

le
ad

er
 g

ro
up

 (
LG

),
 c

on
cu

rr
en

t g
ro

up
 (

C
G

)

deviation between measured and predicted runtimes
of MPI_Bcast with group communication on CLiC (LAM−MPI)

minimum
average
maximum

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 40 60 80 100 120

ru
nt

im
e

in
 s

ec
on

ds

processors

MPI_Bcast on CLiC with
measurement 100 KB
measurement 200 KB
measurement 300 KB
measurement 400 KB
measurement 500 KB

prediction 100 KB
prediction 200 KB
prediction 300 KB
prediction 400 KB
prediction 500 KB

Figure 17: Deviations between measured and predicted runtimes for 96 processors (left) and mod-
eling (right) of MPI Bcast() on the CLiC.

shows the measured and predicted runtime of the single-broadcast operation as a function
of the number of processors for fixed message sizes given in the key.
Figure 18 (left) shows the predictions for the dual Xeon cluster using ScaMPI and in
Table 2 the coefficients of the runtime functions are shown.
MPI Gather The coefficients of the runtime functions for the CLiC are shown in Table
3. The predictions fit the measured runtimes quite accurately, see Figure 19 (left). The
approximations are quite accurate for the entire interval of message sizes. The average
deviations between measured and predicted runtimes lie clearly below 3 % in most cases.
On the T3E, the runtimes of MPI Gather() operations increase more than linearly with the
number p of processors. This effect might be caused by the fact that the root processor is
a bottleneck when gathering larger messages. This observation can be used to obtain good
performance improvements by orthogonal realizations. To capture the sharp increases of
the runtimes we use different runtime functions for different message sizes. Each increase
can be captured by a specific formula, see Table 4. The use of a specific formula depends on
the root message size which is the size of the message that the root processor is gathering

coefficients for gather and scatter
CLiC Xeon cluster

operation τ1(V)[s] τ2(V)[µs] tc(V)[µs] τ1(V)[s] τ2(V)[µs] tc(V)[µs]

MPI Gather 0.009 -0.0825 0.0929 0.00 -0.0056 0.0040
MPI Scatter 0.00 -0.0730 0.0897 0.00 -0.0032 0.0039

Table 3: Coefficients for runtime function of MPI Gather() and MPI Scatter() on the CLiC (LAM-
MPI) and on the dual Xeon cluster (ScaMPI).

18

runtime functions of gather/scatter operations on Cray T3E-1200
MPI Gather

No. p n[kbyte] runtime function

1 002 - 128 ≤ 8448 T1(p, b) = (τ2 + tc · p) · b
2 017 - 032 > 8448 T2(p, b) = τ1 + (τ2 + tc · p) · b
3 033 - 128 > 8448 T3(p, b) = τ1 + (τ2 + tc · p) · b

MPI Scatter T (p, b) = (τ2 + tc · p) · b

Table 4: Runtime functions of MPI Gather() and MPI Scatter() on Cray T3E

operation No. τ1(V)[s] τ2(V)[µs] tc(V)[µs]

MPI Gather 1 - -0.00134 0.00308
2 -0.020 0.0157 0.00505
3 -0.036 0.0265 0.00617

MPI Scatter - - 0.0002453 0.00297

Table 5: Coefficients for runtime function of MPI Gather() and MPI Scatter() on Cray T3E-1200.

from all members of the processor group. Above 8448 KBytes a different runtime formula
is used. For the first formula no startup-time is necessary. The values of the coefficients
are shown in Table 5. The prediction for the dual Xeon cluster using ScaMPI are given in
Figure 18 (right), the coefficients of the runtime function are shown in Table 3. Figure 19
(right) shows the deviations between measured and predicted runtimes on the T3E. The
approximations are quite accurate for the entire interval of message sizes. The average
deviations of 16 different processor groups (leader and concurrent groups are modeled
separately) are clearly below 3 %.
MPI Scatter The runtime formulas for the predictions of the scatter operations are also
given in Table 4. The values of the coefficients are shown in Table 5. The approximations
of the scatter operation show the best results on both systems. On the CLiC the pre-
dictions fit the measured runtimes very accurately with an average deviations below 2 %
for most processor groups over the entire interval of all message sizes, see also Figure 20
(left). The deviations of the leader group lies below 1 % for almost all group sizes. The
deviations between measurements and predictions of the MPI Scatter() operation on the
Cray T3E-1200 are shown in Figure 20 (right).
MPI Reduce The modeling of MPI Reduce() operations is performed with the formula

0 2 4 6 8 10 12

LG 02

CG 16

total

LG 04

CG 08

total

LG 08

CG 04

total

LG 16

CG 02

total

32

deviation (in %)

le
ad

er
 g

ro
up

 (
LG

),
 c

on
cu

rr
en

t g
ro

up
 (

C
G

)

deviation between measured and predicted runtimes
of MPI_Bcast with group communication on Xeon cluster (ScaMPI)

minimum
average
maximum

0 2 4 6 8 10 12

LG 02

CG 16

total

LG 04

CG 08

total

LG 08

CG 04

total

LG 16

CG 02

total

32

deviation (in %)

le
ad

er
 g

ro
up

 (
LG

),
 c

on
cu

rr
en

t g
ro

up
 (

C
G

)

deviation between measured and predicted runtimes
of MPI_Gather with group communication on Xeon cluster (ScaMPI)

minimum
average
maximum

Figure 18: Deviations between measured and predicted runtimes for MPI Bcast() (left) and
MPI Gather() (right) on the dual Xeon cluster using ScaMPI.

19

0 2 4 6 8 10 12 14 16 18 20
LG 02
CG 48

total

LG 03
CG 32

total

LG 04
CG 24

total

LG 06
CG 16

total

LG 08
CG 12

total

LG 12
CG 08

total

LG 16
CG 06

total

LG 24
CG 04

total

LG 32
CG 03

total

LG 48
CG 02

total

deviation (in %)

le
ad

er
 g

ro
up

 (
LG

),
 c

on
cu

rr
en

t g
ro

up
 (

C
G

)
deviation between measured and predicted runtimes
of MPI_Gather with group communication on CLiC (LAM−MPI)

minimum
average
maximum

0 2 4 6 8 10 12
LG 02
CG 48

total

LG 03
CG 32

total

LG 04
CG 24

total

LG 06
CG 16

total

LG 08
CG 12

total

LG 12
CG 08

total

LG 16
CG 06

total

LG 24
CG 04

total

LG 32
CG 03

total

LG 48
CG 02

total

deviation (in %)

le
ad

er
 g

ro
up

 (
LG

),
 c

on
cu

rr
en

t g
ro

up
 (

C
G

)

deviation between measured and predicted runtimes
of MPI_Gather with group communication on Cray T3E−1200

minimum
average
maximum

Figure 19: Deviations between measured and predicted runtimes for MPI Gather() on the CLiC
(left) and Cray T3E-1200 (right) for 96 processors.

0 1 2 3 4 5 6 7 8
LG 02
CG 48

total

LG 03
CG 32

total

LG 04
CG 24

total

LG 06
CG 16

total

LG 08
CG 12

total

LG 12
CG 08

total

LG 16
CG 06

total

LG 24
CG 04

total

LG 32
CG 03

total

LG 48
CG 02

total

deviation (in %)

le
ad

er
 g

ro
up

 (
LG

),
 c

on
cu

rr
en

t g
ro

up
 (

C
G

)

deviation between measured and predicted runtimes
of MPI_Scatter with group communication on CLiC (LAM−MPI)

minimum
average
maximum

0 1 2 3 4 5 6 7 8
LG 02
CG 48

total

LG 03
CG 32

total

LG 04
CG 24

total

LG 06
CG 16

total

LG 08
CG 12

total

LG 12
CG 08

total

LG 16
CG 06

total

LG 24
CG 04

total

LG 32
CG 03

total

LG 48
CG 02

total

deviation (in %)

le
ad

er
 g

ro
up

 (
LG

),
 c

on
cu

rr
en

t g
ro

up
 (

C
G

)
deviation between measured and predicted runtimes
of MPI_Scatter with group communication on Cray T3E−1200

minimum
average
maximum

Figure 20: Deviations between measured and predicted runtimes for MPI Scatter() on the CLiC
(left) and Cray T3E-1200 (right) for 96 processors.

from Table 1. LAM-MPI uses a different internal realization for p ≤ 4 than for p >
4. The specific values for the coefficients are shown in Table 2 for both cases. The
communication time of a reduce operation increases in stages, because the number of
time steps to accumulate an array depends on the depth of the reduce tree. A detailed
analysis shows that the number of processors can be partitioned into intervals such that for
all processor numbers within an interval reduce trees with the same depth are used. The
predictions are very accurate and the average deviations between measured and predicted
runtimes lie below 3 % for most cases.
MPI Allreduce In LAM-MPI the MPI Allreduce() operation is composed of an
MPI Reduce() and an MPI Bcast() operation. First the root processor reduces the block
of data from all members of the processor group und broadcasts the reduced array to all
processors participating in the communication operation. The size of the array is con-
stant in both phases. Figure 21 shows specific measured and predicted runtimes with
fixed message sizes.
MPI Allgather In LAM-MPI the MPI Allgather() operation is composed of an
MPI Gather() and an MPI Bcast() operation. At first the root processor gathers a block
of data from each member of the processor group und broadcasts the entire message to all
processors participating in the communication operation. The entire message has size p·b,

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

12*8 8*12 6*16 4*24 3*32 2*48

ru
nt

im
e

in
 s

ec
on

ds

group number * group size

modeling of MPI_Allreduce with concurrent groups on CLiC
measurement 100 KB
measurement 200 KB
measurement 300 KB
measurement 400 KB
measurement 500 KB

prediction 200KB
prediction 200KB
prediction 300KB
prediction 400KB
prediction 500KB

0

5

10

15

20

25

30

35

40

45

50

16*6 8*12 6*16 4*24 3*32 2*48

ru
nt

im
e

in
 s

ec
on

ds

group number * group size

modeling of MPI_Allgather with concurrent groups on CLiC
measurement 100 KB
measurement 200 KB
measurement 300 KB
measurement 400 KB
measurement 500 KB

prediction 100 KB
prediction 200 KB
prediction 300 KB
prediction 400 KB
prediction 500 KB

Figure 21: Measured and predicted runtimes for concurrent groups of MPI Allreduce() (left) and
MPI Allgather() (right) on the CLiC.

when b denotes the original message size and p the number of involved processors. Figure
21 shows measured and prediced runtimes with fixed message sizes. The predictions fit
the measured runtimes quite accurately. The deviations between measured and predicted
runtimes lies below 5 % in most cases.

5 Applications and runtime tests

To investigate the efficiency improvement of the approach for entire application programs,
we consider parallel implementations of the Jacobi iteration with and without optimized
communication in section 5.1. In section 5.2 we consider a complex application program,
the parallel Adams methods PAB and PABM to show the performance improvements by
concurrent group communication.

5.1 Parallel Jacobi iteration

We consider three different ways to implement the Jacobi iteration in a data parallel
way based on a row-wise and a column-wise distribution of the matrix A. For both
distributions the computational work for computing the new entries of the next iteration
vector x(k) is the same and is equally allocated to the processors. For systems of size n each
processor performs p

n
p
q×n multiplications and about the same number of additions in each

iteration. But because each processor computes different parts and each processor needs
the entire new iteration vector x(k) in the next iteration step, different communication
operations are required for the implementations. In the row-wise distribution of A each
processor computes p

n
p
q scalar products yielding p

n
p
q components of the new iteration

vector. To provide the entire vector to each processor for the next step a multi-broadcast
operation (MPI Allgather()) is performed. The execution time of the row-wise Jacobi
iteration with p processors and a system size n can be modeled by the formula

Trow(p, n) = 2 ·
n2

p
· top + Tmb(p,

n

p
) (1)

where top denotes the time for the execution of an arithmetic operation and Tmb denotes
the runtime formula of the multi-broadcast operation, see Table 1.
In the column-wise distribution of A each processor computes a new vector d of size n.
Addition of all those vectors gives the new iteration vector x. Since the vectors d are

21

12000 24000 36000 48000 60000 72000
0

5

10

15

20

25

30

35

40

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
t (

in
 %

)

performance improvements of Jacobi iteration
by orthogonal group communication with 96 processors on CLiC (LAM−MPI)

row−wise (MPI_Allgather)
column−wise (MPI_Allreduce)
column−wise (MPI_Bcast)

960 1200 1440 1680 1920 2160
0

5

10

15

20

25

30

35

40

45

50

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
t (

in
 %

)

performance improvements of Jacobi iteration
by orthogonal group communication with 96 processors on Cray T3E−1200

row−wise (MPI_Allgather)
column−wise (MPI_Allreduce)
column−wise (MPI_Bcast)

Figure 22: Performance improvements of the Jacobi iteration by orthogonal group communication
on the CLiC (LAM-MPI) (left) and for smaller system sizes on the T3E (right).

12000 24000 36000 48000 60000 72000
0

5

10

15

20

25

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
t (

in
 %

)

performance improvements of Jacobi iteration by orthogonal
group communication with 32 processors on Xeon cluster (LAM−MPI)

row−wise (MPI_Allgather)
column−wise (MPI_Allreduce)
column−wise (MPI_Bcast)

12000 24000 36000 48000 60000 72000
0

5

10

15

20

25

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
t (

in
 %

)

performance improvements of Jacobi iteration by orthogonal
group communication with 32 processors on Xeon cluster (ScaMPI)

row−wise (MPI_Allgather)
column−wise (MPI_Gather)
column−wise (MPI_Bcast)

Figure 23: Performance improvements of the Jacobi iteration by orthogonal group communication
on the Xeon cluster with LAM-MPI (left) and with ScaMPI (right).

located in different address spaces, collective communication is required to perform the
addition. There are two possibilities.
Using an MPI Allreduce() and an MPI Allgather() operation results in the execution time

Tcol mb(p, n) = 2 ·
n2

p
· top + Tmacc(p, n) + Tmb(p,

n

p
) (2)

where Tmacc denotes the time of an MPI Allreduce() operation.
Using an MPI Reduce() operation and then an MPI Bcast() operation results in the run-
time

Tcol sb(p, n) = 2 ·
n

p
· (n − 1) · top + Tacc(p, n) + Tsb(p, n) (3)

where Tacc denotes the runtime formula of an MPI Reduce() operation, see Table 1.

Optimized communication operations Each original collective communication op-
eration can be replaced by the optimized version using concurrent communications on
disjoint subsets of processors.
Thus, when using a 2D orthogonal structure the multi-broadcast operation Tmb in Equa-
tion (1) and (2) can be replaced by:

Tmb(p,
n

p
) = Tmb(p1,

n

p
) + Tmb(p2,

n · p1

p
) (4)

22

4*5
4*10

4*15
4*20

4*25 5000

10000

15000

20000

25000

0

2

4

6

8

10

system size

modeling of row−wise Jacobi iteration with orthogonal groups on CLiC

processors p=p1*p2

ru
nt

im
e

(in
 s

ec
)

measurement
prediction

2*10
2*20

2*30
2*40

2*50 5000
10000

15000
20000

25000
0

2

4

6

8

10

system size

modeling of column−wise Jacobi iteration with orthogonal groups on CLiC

processors p=p1*p2

ru
nt

im
e

(in
 s

ec
)

measurement
prediction

Figure 24: Modeling of row-wise (left) and column-wise (right) orthogonal realization of Jacobi
iteration on the CLiC (LAM-MPI).

where p = p1 · p2. The runtime formula of the single-broadcast operation in equation (3)
can be replaced analogously by

Tsb(p, n) = Tsb(p1, n) + Tsb(p2, n). (5)

Figure 22 shows the performance improvements obtained by a 2D orthogonal structure
for the CLiC with LAM-MPI (left) and the T3E (right) for the three implementation
variants described. Figure 23 shows the improvements for the dual Xeon cluster using
LAM-MPI (left) and ScaMPI (right). For the parallel realization using ScaMPI a specific
implementation with MPI Gather and MPI Scatter instead MPI Allreduce is shown in
Figure 23 (right). The improvements are obtained for a large range of system sizes using
balanced grid layouts. Figure 24 compares the performance measurements and predictions
obtained by a 2D orthogonal processor structure for the CLiC. The figure shows that the
predictions fit the measurements quite good.

5.2 Parallel Adams methods PAB und PABM

Parallel Adams methods are variants of general linear methods for solving ordinary dif-
ferential equations (ODEs) y′(t) = f(t,y(t)) proposed in [19]; the name was chosen due
to a similarity of the stage equations with classical Adams formulas. General linear
methods compute several stage values yκ,i in each time step κ which correspond to nu-
merical approximations of yκ,i = y(tκ + aih) with abscissa vector (ai), i = 1, ..., K, and
stepsize h = tκ − tκ+1. The stage values of one time step are combined in the vector
Yκ = (yκ,1, ...,yκ,K); for an ODE system of size n, this vector has size n · K.
We consider an explicit Parallel Adams-Bashforth (PAB) and an implicit parallel Adams-
Moulton (PABM) method. The implicit methods use fix-point iteration with the PAB
method as predictor. The resulting methods have the advantage that the computations
of the parallel stages within each time step are completely independent from each other.
Strong data dependencies only occur at the end of each time step. In a data parallel
implementation of the PAB method, the stage values are computed one after another with
all processors available. The computation includes K function evaluations of function f,
the computation of new stage values, and K multi-broadcast operations. The resulting
communication overhead within one time step is given by

CPAB(n, p) = K · Tmb(p, n/p).

23

8 16 32 48 64 96 128 8 16 32 48 64 96 128 8 16 32 48 64 96 128
0

10

20

30

40

50

60

70

80

90

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds

PABM−method for K=8 on CLiC (MPICH)

n=80000 n=180000 n=320000

data parallel
data parallel orthogonal
task parallel
task parallel orthogonal

4 8 16 24 32 4 8 16 24 32 4 8 16 24 32
0

2

4

6

8

10

12

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds

PABM−method for K=8 on Xeon cluster (ScaMPI)

n=80000 n=180000 n=320000

data parallel
data parallel orthogonal
task parallel
task parallel orthogonal

Figure 25: Runtime per time step of the PABM-method for K = 8 by orthogonal group communi-
cation on the CLiC using MPICH (left) and on the dual Xeon cluster using ScaMPI (right).

5000 20000 45000 80000 180000
0

10

20

30

40

50

60

70

80

90

100

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 (
in

 %
)

group number / group size

performance improvements of PAB−method
by orthogonal group communication with 96 processors on CLiC (LAM−MPI)

2/48
3/32
4/24
6/16
8/12
12/8
16/6
24/4
32/3
48/2

5000 20000 45000 80000 180000
0

10

20

30

40

50

60

70

80

90

100

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 (
in

 %
)

group number / group size

performance improvements of PABM−method
by orthogonal group communication with 96 processors on CLiC (LAM−MPI)

2/48
3/32
4/24
6/16
8/12
12/8
16/6
24/4
32/3
48/2

Figure 26: Performance improvements of the data parallel PAB-method (left) and PABM-method
(right) by orthogonal group communication on the CLiC (LAM-MPI).

The computation time of one time step is given by

TPAB(n, p) = K · (n/p · Teval(f) + (2K + 1) · n/p · top)

where Teval(f) is the time for evaluating one component of f .
The PABM method uses the PAB method as predictor and uses the PAM method for a
fixed number I of iterations in the corrector step. This implementation strategy results
in the following communication overhead within one time step:

CPABM(n, p) = K · I · Tmb(p, n/p).

The computation time is:

TPABM(n, p) = K · I · n/p · Teval(f) + K · (2K + 1) · n/p · top + K · I · 3 · n/p · top.

Figure 25 (left) shows the runtime per step of the PABM -method with and without
orthogonal structure on the CLiC based on the MPICH library for different implemen-
tations. As application, an ODE system has been used that results from the spatial
discretization of a reaction-diffusion equation. This is a sparse ODE system, i.e., the
evaluation time of one component of f is constant. We consider a data parallel, an or-
thogonal data parallel, a task parallel and an orthogonal task parallel implementation

24

50 200 800 5000 20000 45000 80000
0

10

20

30

40

50

60

70

80

90

100

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 (
in

 %
)

group number / group size

performance improvements of PAB−method
by orthogonal group communication with 96 processors on Cray T3E−1200

2/48
3/32
4/24
6/16
8/12
12/8
16/6
24/4
32/3
48/2

50 200 800 5000 20000 45000 80000
0

10

20

30

40

50

60

70

80

90

100

system size n

pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 (
in

 %
)

group number / group size

performance improvements of PABM−method
by orthogonal group communication with 96 processors on Cray T3E−1200

2/48
3/32
4/24
6/16
8/12
12/8
16/6
24/4
32/3
48/2

Figure 27: Performance improvements of the data parallel PAB-method (left) and PABM-method
(right) by orthogonal group communication for small system sizes with 96 processors on the Cray
T3E-1200.

for varying processor numbers and different system sizes. The orthogonal realizations are
obtained by replacing the original MPI communication operation by the corresponding
group-based operations. The program structure of the original data parallel implemen-
tation is not rearranged. Figure 25 shows a significant performance improvement based
on the orthogonal realization of the MPI Allgatherv() operation. For the orthogonal task
parallel implementation a rearrangement of the program structure is required, yet this
variant is the fastest implementation.
For the sparse ODE systems considered, only the orthogonal realizations lead to speedup
values. For dense ODE systems that arise, e.g., from spectral methods, all versions lead
to speedup values. But the difference between the execution time is not as significant as
for the sparse case, since the computation time dominates the communication time.
Figures 26 and 27 show the performance improvements obtained for the PAB and PABM
methods by a 2D orthogonal realization of the communication operations on the CLiC
(LAM-MPI) and the T3E, respectively. The figures show the improvements of the data
parallel implementation with orthogonal structure compared to the original data parallel
variant for different system sizes. Figure 27 shows the PAB and PABM methods for small
system sizes on the Cray T3E, confirming the performance improvements of orthogonal
communication operations for small message sizes in isolation on this platform. Figure 25
(right) presents the execution times of the PABM method on the dual Xeon cluster using
ScaMPI showing that the execution times can be improved by an orthogonal realization
of the communication operations. Figure 28 shows the performance measurements and
predictions obtained by a 2D orthogonal structure for the PAB-method (left) and the
PABM-method (right) for a wide range of system sizes and participating processors on
the Cray T3E-1200. The figure shows that the predictions fit the measurements quite
good. The deviations between the predicted and measured runtime lie below 12% for the
most cases.

6 Related Work

Related work comes from different research directions, including programming models and
software support for scientific computing, parallel languages and libraries, and mixed task
and data parallelism [2, 18]. Many environments for scientific computing are extensions
to the HPF data parallel language. A good overview can be found in [6]. The HPF-2
standard supports the execution of tasks defined as computations on subranges of arrays

25

20
40

60
80

100
1

2
3

4
5

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

system size

modeling of PAB−method for K=4 on Cray T3E−1200

processors

ru
nt

im
e

(in
 s

ec
)

measurement
prediction

20
40

60
80

100

1

2

3

4

5

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

system size

modeling of PABM−method for K=4 on Cray T3E−1200

processors

ru
nt

im
e

(in
 s

ec
)

measurement
prediction

Figure 28: The measured and predicted runtime of the PAB-method (left) and PABM-method for
K=4 on the Cray T3E-1200.

on processor groups also defined as parts of the processor grid. Another example is HP-
Java which adopts the data distribution concepts of HPF but uses a high level SPMD
programming model with a fixed number of logical control threads and includes collective
communication operations encapsulated in a communication library. A language descrip-
tion is given in [20]. The concept of processor groups is supported in the sense that global
data distributed over one process group can be defined and that the program execution
control can choose one of the process groups to be active. In contrast, our approach pro-
vides processor groups which can work simultaneously and, thus, can exploit the potential
parallelism of the application and the machine resources allocated more efficiently. Hence,
orthogonal processor groups seem to provide the right level for applications with medium
or fine-grained potential parallelism.
LPARX is a parallel programming system for the development of dynamic, nonuniform
scientific computations supporting block-irregular data distributions [9]. KeLP extends
LPARX to support the development of efficient programs for hierarchical parallel comput-
ers such as clusters of SMPs [1, 6]. In comparison to our approach, LPARX and KeLP are
more directed towards the realization of irregular grid computations whereas our approach
is based on regular grids using different partitions of the same set of processors. KeLP has
been extended to KeLP-HPF which uses an SPMD program to coordinate multiple HPF
tasks and, thus, combines regular data parallel computations in HPF with a coordination
layer for irregular block-structured features on one grid [12]. An API for adaptive mesh
algorithms based on LPARX is presented in [10].
Orthogonal processor groups have been used in [14] for the implementation of application
programs by restructuring these programs as task grids such that the application consists
of communication phases in the hyper-planes of the grid. This reduces the communication
overhead considerably, but requires the restructuring of the application. In contrast, the
approach presented in this paper restructures the internal organization of the communi-
cation operation, so that no restructuring of the application is required at all. This allows
the use in arbitrary data parallel programs.

7 Conclusion

In this paper, we have shown that the execution time of MPI collective communication
operations can be significantly reduced by a restructuring of the communication operation

26

based on a hierarchical decomposition into phases such that each phase realizes a part
of the communication operation. As platforms, we have used a Cray T3E, a Beowulf
cluster and a dual Xeon cluster. On all platforms, large performance improvements have
been observed for optimized communication operations in isolation and also for entire
application programs using those communication operations. The orthogonal realization
of collective communication operations can be used to reduce scalability problems in
data parallel implementations by replacing the communication operations. This avoids a
restructuring the entire communication and computation structure of the application, thus
reducing the programming effort for parallel machines with a large number of processors
significantly.

Acknowledgment

We thank the NIC Jülich for providing access to a Cray T3E.

References

[1] S.B. Baden and S.J. Fink. A Programming Methodology for Dual-Tier Multicom-
puters. IEEE Transactions on Software Engineering, 26(3):212–226, 2000.

[2] H. Bal and M. Haines. Approaches for Integrating Task and Data Parallelism. IEEE
Concurrency, 6(3):74–84, July-August 1998.

[3] Scali / ScaMPI commercial MPI on SCI implemetation. http://www.scali.com/.

[4] LAM/MPI Parallel Computing. http://www.lam-mpi.org/.

[5] W.J. Dally and C.L. Seitz. Deadlock free message routing in multiprocessor inter-
connection networks. IEEE Trans. on Computers, 36(5):547–553, 1987.

[6] S.J. Fink. A Programming Model for Block-Structured Scientific Calculations on
SMP Clusters. PhD thesis, University of California, San Diego, 1998.

[7] K. Hwang, Z. Xu, and M. Arakawa. Benchmark Evaluation of the IBM SP2 for
Parallel Signal Processing. IEEE Transactions on Parallel and Distributed Systems,
7(5):522–536, 1996.

[8] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, and M. Gittings. Pre-
dictive Performance and Scalability Modeling of a Large-Scale Application. In Proc.
of IEEE/ACM SC2001, 2001.

[9] S.R. Kohn and S.B. Baden. Irregular Coarse-Grain Data Parallelism under LPARX.
Scientific Programming, 5:185–201, 1995.

[10] S.R. Kohn and S.B. Baden. Parallel Software Abstractions for Structured Adaptive
Mesh Methods. Journal of Parallel and Distributed Computing, 61(6):713–736, 2001.

[11] M. Kühnemann, T. Rauber, and G. Rünger. Performance Modelling for Task-Parallel
Programs. In Communication Networks and Distributed Systems Modeling and Sim-
ulation (CNDS’02), pages 148–154, 2002.

[12] J. Merlin, S.Baden, St. Fink, and B. Chapman. Multiple data parallelsim with HPF
and KeLP. J. Future Generation Computer Science, 15(3):393–405, 1999.

27

[13] MPICH-A Portable Implementation of MPI. http://www-
unix.mcs.anl.gov/mpi/mpich.

[14] T. Rauber, R. Reilein, and G. Rünger. ORT – A Communication Library for Or-
thogonal Processor Groups. In Proc. of the ACM/IEEE SC 2001. IEEE Press, 2001.

[15] T. Rauber and G. Rünger. PVM and MPI Communication Operations on the IBM
SP2: Modeling and Comparison. In Proc. 11th Symp. on High Performance Com-
puting Systems (HPCS’97), 1997.

[16] T. Rauber and G. Rünger. Library Support for Hierarchical Multi-Processor Tasks.
In Proc. of the Supercomputing 2002, Baltimore, USA, 2002.

[17] Cray Research Web Server. http://www.cray.org/.

[18] D. Skillicorn and D. Talia. Models and languages for parallel computation. ACM
Computing Surveys, 30(2):123–169, 1998.

[19] P.J. van der Houwen and E. Mesina. Parallel adams methods. J. of Comp. and App.
Mathematics, 101:153–165, 1999.

[20] G. Zhang, B. Carpenter, G.Fox, X. Li, and Y. Wen. A high level SPMD programming
model: HPspmd and its Java language binding. Technical report, NPAC at Syracuse
University, 1998.

28

