
Cluster Comput (2008) 11: 273–285
DOI 10.1007/s10586-008-0055-x

Time-sharing parallel applications through performance-targeted
feedback-controlled real-time scheduling

Bin Lin · Ananth I. Sundararaj · Peter A. Dinda

Received: 15 March 2008 / Accepted: 31 March 2008 / Published online: 25 April 2008
© Springer Science+Business Media, LLC 2008

Abstract Most parallel machines, such as clusters, are
space-shared in order to isolate batch parallel applications
from each other and optimize their performance. However,
this leads to low utilization or potentially long waiting times.
We propose a self-adaptive approach to time-sharing such
machines that provides isolation and allows the execution
rate of an application to be tightly controlled by the admin-
istrator. Our approach combines a periodic real-time sched-
uler on each node with a global feedback-based control sys-
tem that governs the local schedulers. We have developed
an online system that implements our approach. The system
takes as input a target execution rate for each application,
and automatically and continuously adjusts the applications’
real-time schedules to achieve those rates with proportional
CPU utilization. Target rates can be dynamically adjusted.
Applications are performance-isolated from each other and
from other work that is not using our system. We present
an extensive evaluation that shows that the system remains
stable with low response times, and that our focus on CPU
isolation and control does not come at the significant ex-
pense of network I/O, disk I/O, or memory isolation.

Keywords Time-sharing · Parallel computing · Real-time
scheduling · Feedback control

B. Lin (�) · A.I. Sundararaj · P.A. Dinda
Northwestern University, Evanston, USA
e-mail: binlin365@gmail.com

B. Lin
e-mail: b-lin@northwestern.edu

A.I. Sundararaj
e-mail: ais@northwestern.edu

P.A. Dinda
e-mail: pdinda@northwestern.edu

1 Introduction

Tightly-coupled computing resources such as clusters are
typically used to run batch parallel workloads. An appli-
cation in such a workload is typically communication in-
tensive, executing synchronizing collective communication.
The Bulk Synchronous Parallel (BSP) model [30] is com-
monly used to understand many of these applications. In the
BSP model, application execution alternates between phases
of local computation and phases of global collective com-
munication. If a thread on one node is slow or blocked due
to some other thread unrelated to the application, all of the
application’s threads stall.

To avoid stalls and provide predictable performance for
users, almost all tightly-coupled computing resources today
are space-shared. In space-sharing [27], each application is
given a partition of the available nodes, and on its parti-
tion, it is the only application running, thus ensuring com-
plete performance isolation between running applications.
Space-sharing introduces several problems, however. Most
obviously, it limits the utilization of the machine because
the CPUs of the nodes are idle when communication or I/O
is occurring. Space-sharing also makes it likely that appli-
cations that require many nodes will be stuck in the queue
for a long time and, when running, block many applications
that require small numbers of nodes. Finally, space-sharing
permits a provider to control the response time or execution
rate of a parallel job at only a very course granularity.

We propose a new self-adaptive approach to time-sharing
parallel applications on tightly-coupled computing resources
like clusters, performance-targeted feedback-controlled
real-time scheduling. The goals of our technique are to pro-
vide (1) performance isolation within a time-sharing frame-
work that permits multiple applications to share a node,
and (2) performance control that allows the administrator

mailto:binlin365@gmail.com
mailto:b-lin@northwestern.edu
mailto:ais@northwestern.edu
mailto:pdinda@northwestern.edu

274 Cluster Comput (2008) 11: 273–285

to finely control the execution rate of each application while
keeping its resource utilization automatically proportional to
execution rate. Conversely, the administrator can set a target
resource utilization for each application and have commen-
surate application execution rates follow.

In performance-targeted feedback-controlled real-time
scheduling, each node has a periodic real-time sched-
uler. The local application thread is scheduled with a
(period, slice) constraint, meaning that it executes slice sec-
onds every period. Notice that slice/period is the utilization
of the application on the node. Our implementation uses
our previously described [13] and publicly available VSched
tool. VSched is a user-level periodic real-time scheduler for
Linux that we originally developed to explore scheduling
interactive and batch workloads together.

Once an administrator has set a target execution rate for
an application, a global controller determines the appropri-
ate constraint for each of the application’s threads of execu-
tion and then contacts each corresponding local scheduler to
set it. The controller’s input is the desired application execu-
tion rate, given as a percentage of its maximum rate on the
system (i.e., as if it were on a space-shared system). The ap-
plication or its agent periodically feeds back to the controller
its current execution rate. The controller automatically ad-
justs the local schedulers’ constraints based on the error be-
tween the desired and actual execution rate, with the added
constraint that utilization must be proportional to the target
execution rate. In the common case, the only communica-
tion in the system is the feedback of the current execution
rate of the application to the global controller, and synchro-
nization of the local schedulers through the controller is very
infrequent.

It is important to point out that our system schedules the
CPU of a node, not its physical memory, communication
hardware, or local disk I/O. Nonetheless, in practice, we can
achieve quite good performance isolation and control even
for applications making significant use of these other re-
sources, as we show in our detailed evaluation. Mechanisms
for physical memory isolation in current OSes and VMMs
are well understood and can be applied in concert with our
techniques. As long as the combined working set size of
the applications executing on the node does not exceed the
physical memory of the machine, the existing mechanisms
suffice. Communication has significant computational costs,
thus, by throttling the CPU, we also throttle it. The interac-
tion of our system and local disk I/O is more complex. Even
so, we can control applications with considerable disk I/O.

2 Related work

Our work ties to gang scheduling, implicit co-scheduling,
real-time schedulers, and feedback control real-time sched-

uling. As far as we aware, we are the first to develop real-
time techniques for scheduling parallel applications that pro-
vide performance isolation and control. We also differ from
these areas in that we show how external control of re-
source use (by a cluster administrator, for example) can be
achieved while maintaining commensurate application exe-
cution rates. That is, we can reconcile administrator and user
concerns.

The core idea of gang scheduling [10, 21] is to make fine-
grain (time-sharing) scheduling decisions collectively over
the whole cluster. In essence, this provides the performance
isolation we seek, while performance control depends on
scheduler model. However, gang scheduling has significant
costs in terms of the communication necessary to keep the
node schedulers synchronized, a problem that is exacerbated
by finer grain parallelism and higher latency communica-
tion [11]. In addition, the code to simultaneously schedule
all tasks of each gang can be quite complex, requiring elab-
orate bookkeeping and global system knowledge [26].

Implicit co-scheduling [1] can achieve many of the bene-
fits of gang scheduling without scheduler-specific communi-
cation. It uses communication irregularities, such as blocked
sends or receives, to infer the likely state of the remote,
uncoupled scheduler, and then adjusts the local scheduler’s
policies to compensate. This is quite a powerful idea, but
it does have weaknesses. In addition to the complexity in-
herent in inference and adapting the local communication
schedule, the approach also doesn’t really provide a straight-
forward way to control effective application execution rate,
or resource usage.

The feedback control real-time scheduling project at the
University of Virginia [17–19, 24] had a direct influence on
our thinking. In that work, concepts from feedback control
theory were used to develop resource scheduling algorithms
to give quality of service guarantees in unpredictable envi-
ronments to applications such as online trading, agile man-
ufacturing, and web servers. In contrast, we use feedback
control theory concepts to manage a tightly controlled envi-
ronment, targeting parallel applications with collective com-
munication.

Feedback-based control was also used to provide CPU
reservations to application threads running on a single ma-
chine based on progress measurements [25], for control-
ling coarse-grained CPU utilization in a simulated virtual
server [32], for dynamic database provisioning for web
servers [2], and to enforce web server CPU entitlements to
control response time [16].

There are a wide range of implementations of periodic
real-time schedulers, for example [3, 20], including numer-
ous kernel extensions for Linux, for example [9, 23].

Cluster Comput (2008) 11: 273–285 275

Fig. 1 Structure of global
control

3 Local scheduler

In the periodic real-time model, a task is run for slice sec-
onds every period seconds. Using earliest deadline first
(EDF) schedulability analysis [14], the scheduler can deter-
mine whether some set of (period, slice) constraints can be
met. The scheduler then uses dynamic priority preemptive
scheduling with the deadlines of admitted tasks as priorities.

VSched is a user-level implementation of this approach
for Linux that offers soft real-time guarantees. It runs as
a Linux process that schedules other Linux processes. Be-
cause the Linux kernel does not have priority inheritance
mechanisms, nor known bounded interrupt service times, it
is impossible for a tool like VSched to provide hard real-
time guarantees to ordinary processes. Nonetheless, as we
show in an earlier paper [13], for a wide range of periods and
slices, and under even fairly high utilization, VSched almost
always meets the deadlines of its tasks, and when it misses,
the miss time is typically very small. VSched supports
(period, slice) constraints ranging from the low hundreds
of microseconds (if certain kernel features are available) to
days. Using this range, the needs of various classes of appli-
cations can be described and accommodated. VSched allows
us to change a task’s constraints within ∼1 ms.

The performance of VSched has been evaluated on sev-
eral different platforms. It can achieve very low deadline
miss rates up to quite high utilizations and quite fine res-
olutions. VSched can use over 90% of the CPU even on rel-
atively slow hardware and older kernels (Intel Pentium III,
2.4 kernel) and can use over 98% of the CPU on more mod-
ern configurations (Intel Pentium 4, 2.6 kernel).

4 Global controller

The control system consists of a centralized feedback con-
troller and multiple host nodes, each running a local copy
of VSched, as shown in Fig. 1. A VSched daemon is re-
sponsible for scheduling the local thread(s) of the applica-
tion(s) under the yoke of the controller. The controller sets

(period, slice) constraints using the mechanisms described
in Sect. 3. Currently, the same constraint is used for each
VSched. One thread of the application, or some other agent,
periodically communicates with the controller using non-
blocking communication.

4.1 Inputs

The maximum application execution rate on the system in
application-defined units is Rmax. The set point of the con-
troller is supplied by the user or the system administrator
through a command-line interface that sends a message to
the controller. The set point is rtarget and is a percentage of
Rmax. The system is also defined by its threshold for error,
ε, which is given as percentage points. The inputs �slice and
�period specify the smallest amounts by which the slice and
period can be changed. The inputs minslice and minperiod de-
fine the smallest slice and period that VSched can achieve
on the hardware.

The current utilization of the application is defined in
terms of its scheduled period and slice, U = slice/period.
The user requires that the utilization be proportional to the
target rate, that is, that rtarget − ε ≤ U ≤ rtarget + ε.

The feedback input rcurrent comes from the parallel appli-
cation we are scheduling and represents its current execution
rate as a percentage of Rmax. To minimize the modification
of the application and the communication overhead, our ap-
proach only requires high-level knowledge about the appli-
cation’s control flow and only a few extra lines of code.

4.2 Control algorithm

The control algorithm (or simply the algorithm) is respon-
sible for choosing a (period, slice) constraint to achieve the
goals of (1) keeping the error is within threshold (rcurrent =
rtarget ± ε), and (2) maintaining an efficient schedule (U =
rtarget ± ε).

The algorithm is based on the intuition and observation
that application performance will vary depending on which

276 Cluster Comput (2008) 11: 273–285

of the many possible (period, slice) schedules correspond-
ing to a given utilization U we choose, and the best choice
will be application dependent and vary with time. For exam-
ple, a finer grain schedule (e.g. (20 ms, 10 ms)) may result in
better application performance than coarser grain schedules
(e.g. (200 ms, 100 ms)). At any point in time, there may be
multiple “best” schedules.

The control algorithm attempts to automatically and dy-
namically achieve goals 1 and 2 in the above, maintaining
a particular execution rate rtarget specified by the user while
keeping utilization proportional to the target rate.

At startup, the algorithm is given an initial rate rtarget. It
chooses a (period, slice) constraint such that U = rtarget and
period is set to a relatively large value such as 200 ms. The
algorithm is a simple linear search for the largest period that
satisfies our requirements.

When the application reports a new current rate measure-
ment rcurrent and/or the user specifies a change in the target
rate rtarget, the error e = rcurrent − rtarget is recomputed, fol-
lowed by:

• If |e| > ε decrease period by �period and decrease slice
by �slice such that slice/period = U = rtarget . If period ≤
minperiod then we reset period to the same value as used
at the beginning and again set slice such that U = rtarget .

• If |e| ≤ ε do nothing.

It should be noticed that the algorithm always maintains the
target utilization and searches the (period, slice) space from
larger to smaller granularity, subject to the utilization con-
straint. The linear search is, in part, done because multiple
appropriate schedules may exist. We do not preclude the use
of algorithms that walk the space faster, but we have found
our current algorithm to be effective.

5 Evaluation

We now describe our evaluation of our implementation, fo-
cusing on correctness, response time, stability, multipro-
gramming, external load imbalance, scaling, and the effects
of I/O and memory contention.

5.1 Experimental framework

As mentioned previously, the Bulk Synchronous Parallel
(BSP [6]) model is used to characterize many of the batch
parallel workloads that run in tightly coupled computing
resources such as clusters. In most of our evaluations we
used a synthetic BSP benchmark, called Patterns, written
for PVM [5]. Patterns is described in more detail in a pre-
vious paper [8], but the salient points are that it can execute
any BSP communication pattern and run with different com-
pute/communicate (comp/comm) ratios and granularities. In

Fig. 2 Compute rate as a function of utilization for different
(period, slice) choices

general, we configure Patterns to run with an all-to-all com-
munication pattern on four nodes of our IBM e1350 cluster
(Intel Xeon 2.0 GHz, 1.5 GB RAM, Gigabit Ethernet inter-
connect, Linux 2.4.20). Each node runs VSched, and a sep-
arate node is used to run the controller. Note that all of our
results involve CPU and network I/O.

We also evaluated the system using the PVM implemen-
tation of the IS (Integer Sort) NAS benchmark developed
by White et al. [31]. IS performs a large integer sort, sort-
ing keys in parallel as seen in large scale computational
fluid dynamic (CFD) applications. Unlike Patterns, different
nodes in IS can perform different amounts of computation
and communication.

5.2 Range of control

To illustrate the range of control possible using periodic
real-time scheduling on the individual nodes, we ran Pat-
terns with a compute/communicate ratio of 1:2, making it
quite communication intensive. Note that this configuration
is conservative: it is far easier to control a more loosely cou-
pled parallel application with VSched. We ran Patterns re-
peatedly, with different (period, slice) combinations.

Figure 2 shows these test cases. Each point is an execu-
tion of Patterns with a different (period, slice), plotting the
execution rate of Patterns as a function of Patterns utiliza-
tion on the individual nodes. Notice the line on the graph,
which is the ideal control curve that the control algorithm is
attempting to achieve, control over the execution rate of the
application with proportional utilization (rcurrent = rtarget =
U). Clearly, there are choices of (period, slice) that allow us
to meet all of the requirements.

5.3 Schedule selection and drift

Although there clearly exist (period, slice) schedules that
can achieve an execution rate with (or without) proportional

Cluster Comput (2008) 11: 273–285 277

Fig. 3 Elimination of drift using global feedback control; 1:1
comp/comm ratio

utilization, we cannot simply use only the local schedulers
for several reasons:

• The appropriate (period, slice) is application dependent
because of differing compute/communicate ratios, gran-
ularities, and communication patterns. Making the right
choice should be automatic.

• The user or system administrator may want to dynam-
ically change the application execution rate rtarget. The
system should react automatically.

• Our implementation is based on a soft local real-time
scheduler. This means that deadline misses will inevitably
occur and this can cause timing offsets between different
application threads to accumulate.1 We must monitor and
correct for these slow errors. Notice that this is likely to
be the case for a hard local real-time scheduler as well if
the admitted tasks vary across the nodes.

Figure 3 illustrates what we desire to occur. The target
application execution rate is given in iterations per second,
here being 0.006 iterations/second. The current execution
rate rcurrent is calculated after each iteration and reported
to the controller. This is Patterns running with a 1:1 com-
pute/communicate ratio on two nodes. The lower curve is
that of simply using VSched locally to schedule the appli-
cation. Although we can see that the rate is correct for the
first few iterations, it then drifts downward, upward, and

1For example, consider a two process version of an all-to-all BSP pro-
gram, and assume that a correct schedule (meeting (1) and (2)) has
been chosen. Now suppose that the first process misses a deadline. The
second process must then wait for the first, meaning it is likely some
portion of its slice will be unused, and a portion of its next slice will
be used to make up the difference. If the first process now gets slightly
more than its slice in the next scheduling point, the two processes are
out of sync, and the waiting will recur. Notice that the reverse is equally
likely to happen, and that these events can accumulate. We refer to this
process as “drift”.

once again downward over the course of the experiment.
The roughly straight curve is using VSched, the global con-
troller, and the control algorithm. We can see that the ten-
dency to drift has been eliminated using global feedback
control.

5.4 Evaluating the control algorithm

We studied the performance of the control algorithm using
three different compute/communicate ratios (high (5:1) ra-
tio, medium (1:1) ratio, and low (1:5) ratio), different target
execution rates rtarget , and different thresholds ε. In all cases
�period = 2 ms, where �period is the change in period ef-
fected by VSched when the application execution rate goes
outside of the threshold range, the slice is then adjusted such
that U = rtarget.

Figure 4 shows the results for high, medium, and low test
cases with a 3% threshold. We can see that the target rate is
easily and quickly achieved, and remains stable for all three
test cases. Note that the execution rate of these test cases
running at full speed without any scheduling are slightly dif-
ferent. rcurrent is calculated in the end of every iteration.

Next, we focus on two performance metrics:

• Minimum threshold: What is the smallest ε below which
control becomes unstable?

• Response time: for stable configurations, what is the typ-
ical time between when the target execution rate rtarget

changes and when the rcurrent = rtarget ± ε?

Being true for all feedback control systems, the error
threshold will affect the performance of the system. When
the threshold ε is too small, the controller becomes unstable
and fails because the change applied by the control system to
correct the error is even greater than the error. For our con-
trol algorithm, when the error threshold is < 1%, the con-
troller will become unstable. Figure 5 illustrates this behav-
ior. Note that while the system is now oscillating, it appears
to degrade gracefully.

Figure 6 illustrates our experiment for measuring the re-
sponse time. The target rate is changed by the user in the
middle of the experiment. Our control system quickly ad-
justs the execution rate and stabilizes it. It shows that the
response time is about 32 seconds, or two iterations, for
the case of 1:1 compute/communicate ratio. The average
response time over four test cases (1 high, 2 medium, and
1 low compute/communicate ratios) is 30.68 seconds. In all
cases, the control algorithm maintains U = rtarget as an in-
variant by construction.

5.5 Summary of limits of control algorithm

Figure 7 summarizes the response time, communication cost
to support the feedback control, and threshold limits of our

278 Cluster Comput (2008) 11: 273–285

Fig. 4 System in stable configuration for varying comp/comm ratio

Fig. 5 System in oscillation when error threshold is made too small;
1:1 comp/comm ratio

Fig. 6 Response time of control algorithm; 1:1 comp/comm ratio

control system. Overall we can control with a quite small
threshold ε. The system responds quickly, on the order of a
couple of iterations of our benchmark. The communication
cost is minuscule, on the order of just a few bytes per it-
eration. Finally, these results are largely independent of the
compute/communicate ratio.

The exceptionally low communication involved in perfor-
mance-targeted feedback-controlled real-time scheduling is
a natural consequence of the deterministic and predictable
periodic real-time scheduler being used on each node.

5.6 Dynamic target execution rates

As we mentioned earlier, using the feedback control mecha-
nism, we can dynamically change the target execution rates
and our control system will continuously adjust the real-time
schedule to adapt to the changes. To see how our system re-
acts to user inputs over time, we conducted an experiment
in which the user adjusted his desired target rate four times
during the execution of the Patterns application. As shown

Cluster Comput (2008) 11: 273–285 279

High (5:1) compute/communicate ratio Medium (1:1) compute/communicate ratio Low (1:5) compute/communicate ratio

Response Threshold Feedback Response Threshold Feedback Response Threshold Feedback
time limit comm. cost time limit comm. cost time limit comm. cost

29.16 s 2% 32 bytes/iter 31.33 s 2% 32 bytes/iter 32.01 s 2% 32 bytes/iter

Fig. 7 Response time and threshold limits for the control algorithm

Fig. 8 Dynamically varying execution rates; 1:1 comp/comm ratio

in Fig. 8, the control algorithm works well. After the user
changes the target rate, the algorithm quickly adjusts the
schedule to reach the target.

5.7 Ignoring external load

Any coupled parallel program can suffer drastically from ex-
ternal load on any node; the program runs at the speed of
the slowest node. We have previously shown that the peri-
odic real-time model of VSched can shield the program from
such external load, preventing the slowdown [13]. Here we
want to see whether our control system as a whole can still
protect a BSP application from external load.

We executed Patterns on four nodes with the target execu-
tion rate set to half of its maximum rate. On one of the nodes,
we applied external load, a program that contends for the
CPU using load trace playback techniques [4]. Contention is
defined as the average number of contention processes that
are runnable.

Figure 9 illustrates the results. At roughly the 15th itera-
tion, an external load is placed on one of the nodes in which
Patterns is running, producing a contention of 1.0. We note
that the combination of VSched and the feedback controller
are able to keep the performance of Patterns independent of
this load. We conclude that our control system can help a
BSP application maintain a fixed stable performance under
a specified execution rate constraint despite external load.

5.8 NAS IS benchmark

When we ran the NAS IS (Integer Sort) benchmark with-
out leveraging our control system, we observed that different

Fig. 9 Performance of control system under external load; 3:1
comp/comm ratio; 3% threshold

nodes have different CPU utilizations. This is very different
from the Patterns benchmark, which does roughly the same
amount of computation and communication on each node.
In our experiment, for a specific configuration of NAS IS
executing on four nodes, we observed an average utilization
of ∼28% for two nodes and ∼14% average utilization for
the other two nodes.

This variation has the potential to challenge our control
system, since in our model we assume the same target uti-
lization U on each node, and we apply the same schedule
on each node. We ran an experiment where we set the target
utilization to be half of the maximum utilization among all
nodes, i.e. 14%. Figure 10 illustrates the performance in this
case. We can see that the actual execution rate is successfully
brought to within ε of the target rate.

5.9 Time-sharing multiple applications

To see how well we can provide time-sharing for multiple
parallel applications, we simultaneously executed multiple
Patterns benchmarks on the same four nodes of our cluster.

Figure 11 shows the results of running two Patterns appli-
cations, each configured with a 1:1 compute/communicate
ratio. One was configured with a target rate of 30%, with the
other set to 40%. We can clearly see that the actual execu-
tion rates are quickly brought to within ε of the target rates
and remain there for the duration of the experiment.

Next, we consider what happens as we increase the
number of Patterns benchmarks running simultaneously. In

280 Cluster Comput (2008) 11: 273–285

Fig. 10 Running NAS benchmark under control system; 3% threshold

Fig. 11 Running of two Patterns benchmarks under the control sys-
tem, 1:1 comp/comm ratio

the following, each Patterns benchmark is set to execute
with identical 10% utilization. We ran Patterns with a 3:1
compute/communicate ratio. Figure 12 shows our results.
Each graph shows the execution rate (iterations/second) as
a function of the iteration, as well as the two 3% threshold
lines. Figure 12a contains two such graphs, corresponding to
two simultaneously executing Patterns benchmarks, (b) has
three, and so on.

Overall, we maintain reasonable control as we scale the
number of simultaneously executing benchmarks. Further,
over the thirty iterations shown, in all cases, the average ex-
ecution rate meets the target, within threshold.

We do notice a certain degree of oscillation when we run
many benchmarks simultaneously. Our explanation is as fol-
lows. When VSched receives and admits a new schedule
sent by the global controller, it will interrupt the current task
and re-select a new task (perhaps the previous one) to run
based on its deadline queue. As the number of parallel ap-
plications increases, each process of an application on an

individual node will have a smaller chance of running un-
interrupted throughout its slice. In addition, there will be a
smaller chance of each process starting its slice at the same
time.

The upshot is that even though the process will con-
tinue to meet its deadlines locally, it will be less synchro-
nized with processes running on other nodes. This results in
the application’s overall performance changing, causing the
global controller to be invoked more often. Because the con-
trol loop frequency is less than the frequency of these small
performance changes, the system begins to oscillate. How-
ever, the degradation is graceful, and, again, the long term
averages are well behaved.

5.10 Effects of local disk I/O

Although we are only scheduling the CPU resource, it is
clear from the above that this is sufficient to isolate and con-
trol a BSP application with complex collective communica-
tions of significant volume. Is it sufficient to control such an
application when it also extensively performs local disk I/O?

To study the effects of local disk I/O on our schedul-
ing system, we modified the Patterns benchmark to perform
varying amounts of local disk I/O. In the modified Patterns,
each node writes some number of bytes sequentially to the
local IDE hard disk during each iteration. It is ensured that
the data is written to the physical disk by using fsync()
call.

In our first set of experiments, we configured Patterns
with a very high (145:1) compute/communicate ratio, and
0, 1, 5, 10, 20, 40, and 50 MB per node per iteration of
local disk I/O. Our target execution rate was 50% with a
threshold of 3%. Figure 13 shows the results for 0, 1, 10, 20,
40 and 50 MB/node/iter. 5 is similar to 1 and 10. For up to
10 MB/node/iter, our system effectively maintains control of
the application’s execution rate. As we exceed this limit, we
develop a slight positive bias; the application runs faster than
desired despite the restricted CPU utilization. The dominant
part of the time spent on local disk I/O is spent waiting for
the disk. As more I/O is done, a larger proportion of appli-
cation execution time is outside of the control of our system.
Since the control algorithm requires that the CPU utilization
be equal to the target execution rate, the actual execution
rate grows.

In the second set of experiments, we fixed the local
disk I/O to 10 MB/node/iter (the maximum controllable
situation in the previous experiment) and varied the com-
pute/communicate ratio, introducing different amounts of
network I/O. We used a target rate of 50%. We used six
compute/communicate ratios ranging from 1240:1 to 1:4.
Figure 14 shows the results for 1240:1, 65:1, 2:1, 1:2 and

Cluster Comput (2008) 11: 273–285 281

Fig. 12 Running multiple
Patterns benchmarks; 3:1
comp/comm ratio; 3% threshold

282 Cluster Comput (2008) 11: 273–285

Fig. 13 Performance of control system with a high (145:1) comp/comm ratio and varying local disk I/O

Fig. 14 Performance of control system with 10 MB/node/iter of disk I/O and varying comp/comm ratios

1:3.5.2 For high to near 1:1 compute/communicate ratios,

2The selection of ratios are intended to cover an interesting range from
very compute intensive to very communication intensive behavior. The
more communication intensive the application is, the more difficult it
will be to control using just CPU scheduling.

our system can effectively control the application’s execu-
tion rate even with up to 10 MB/node/iteration of local I/O,
and degrades gracefully after that.

Our system can effectively control the execution rates of
applications performing significant amounts of network and
local disk I/O. The points at which control effectiveness be-

Cluster Comput (2008) 11: 273–285 283

gins to decline depends on the compute/communicate ratio
and the amount of local disk I/O. With higher ratios, more
local disk I/O is acceptable. We have demonstrated control
of an application with a 1:1 ratio and 10 MB/node/iter of
local disk I/O.

5.11 Effects of physical memory use

Our technique makes no attempt to isolate memory, but the
underlying node OS certainly does so. Is it sufficient? To
evaluate the effects of physical memory contention on our
scheduling system, we modified the Patterns benchmark so
that we could control its working set size. We then ran two
instances of the modified benchmark simultaneously on the
four nodes of our cluster. We configured the first instance
with a working set of 600 MB and a target execution rate
of 30%, while the second was configured with a working
set size of 700 MB and a target rate of 40%. The combined
active3 working set of 1.3 GB is slightly less than the 1.5 GB
of memory of our cluster nodes. Other processes on each
node had a total active working set of < 0.2 GB—memory
was not overcommitted and no thrashing occurred.

We used the control algorithm to schedule the two in-
stances, and Fig. 15 shows the results of this experiment, for
high (a) and medium (b) compute/communicate ratios. We
see that despite the significant use of memory by both in-
stances, our system maintains control of both applications’
execution rates.

Our results suggest that unless the total active working
set on the machine exceeds the physical memory size, phys-
ical memory use has little effect on the performance of our
scheduling system. It is important to point out that most OS
kernels, including Linux, have mechanisms to restrict the
physical memory use of a process. These mechanisms can
be used to guarantee that the physical memory pressure on
the machine does not exceed the supply. A virtual machine
monitor such as Xen or VMware provides additional con-
trol, enforcing a physical memory limit on a guest OS kernel
and all of its processes.

6 Discussion

We now address the issues and opportunities that arise
when considering the deployment of a performance-targeted
feedback-controlled real-time scheduling system for clus-
ters, such as we have discussed so far.

We assume that some agent provides the current and
maximum application performance rates. Ideally, these rates

3The patterns benchmark continuously accesses all of its allocated
memory pages.

Fig. 15 Running two Patterns benchmarks under the control system;
the combined working set size is slightly less than the physical memory

would be inferred by observing the application’s computa-
tion and communications traffic. Such inference, in a vir-
tual machine context, is a current topic of research in our
group [7, 22, 29].

Our algorithm and implementation uses a single schedule
across all the application threads. Although we have shown
that this is sufficient for some applications whose threads
have differing activities (e.g., NAS IS), a more general so-
lution would allow for a different schedule for each thread.
This would significantly increase the size of the search space
that the control algorithm would encounter. It is also im-
portant to note that we would no longer be able to assume
identical admission control decisions on each of the nodes,
and thus would have to apply new global scheduling deci-
sions to the local nodes as a distributed transaction with any
local scheduler being able to veto. Liu and Parashar [15]
describe contexts where such more complex scheduling de-
cisions would be needed.

In contrast to these issues, performance-targeted feed-
back-controlled real-time scheduling would create new op-

284 Cluster Comput (2008) 11: 273–285

portunities for cluster scheduling systems beyond just per-
mitting time sharing. For one, queuing systems that are try-
ing to pack new jobs onto the machine would have an addi-
tional degree of freedom to do so: the target application exe-
cution rate. By shrinking the execution rate of some running
job, or a prospective job, the queuing system could admit a
new job.

Beyond this, we might consider a model in which jobs
are described and written so as to maximize scheduling flex-
ibility in pursuit of the simple goal of having the parallel
job complete by a deadline. The job would be described in
terms of that deadline, a function describing the base execu-
tion rate as a function of the number of nodes, the job size
in terms of an integral of the execution rate for the mini-
mum number of nodes, and limits on the number of nodes
that could be used. Combined with performance-targeted
feedback-controlled real-time scheduling, the queuing sys-
tem now has several degrees of freedom over which it can
operate to meet the deadline:

• It can defer the admission of the job to the cluster.
• It can select the number of nodes the job will use when it

admits it into the cluster.
• It can select the initial application execution rate the

job will attempt to achieve (using performance-targeted
feedback-controlled real-time scheduling) when the job
is admitted. This would include an element of slack.

• As the job executes, the queuing system could vary its
execution rate when needed to allow other jobs admission.

An interesting question is how one would integrate
deadline-based jobs, as described in the preceding para-
graph, with jobs that have no deadline, but do have con-
strains on their execution rate, and with low priority jobs
that can execute at any rate. Is there a useful analog to the
notion of sporadic and aperiodic jobs from the classical real-
time systems context?

In the above, we have primarily considered how to in-
tegrate performance-targeted feedback-controlled real-time
scheduling into a batch execution context in which con-
straints are supplied when the job is submitted. We could
also imagine a context in which jobs are submitted with min-
imal constraints and their owners can dynamically adjust
their execution speed and concomitant resource demands.
For example, an owner (or his agent) could optimize his per-
sonal utility function combining execution rate/completion
time and the system’s demand-driven pricing of the re-
sources. In a related projects, we consider how to automat-
ically solve such dynamic optimization problems [28], and
how to let users pose and solve them [12].

7 Conclusions

We have proposed, implemented, and evaluated a new self-
adaptive approach to time-sharing parallel applications on

tightly coupled compute resources such as clusters. Our
technique, performance-targeted feedback-controlled real-
time scheduling, is based on the combination of local
scheduling using the periodic real-time model and a global
feedback control system that sets the local schedules. The
approach performance-isolates parallel applications and al-
lows administrators to dynamically change the desired ap-
plication execution rate while keeping actual CPU utiliza-
tion automatically proportional to the application execu-
tion rate. Our implementation takes the form of a user-level
scheduler for Linux and a centralized controller. Our evalu-
ation shows the system to be stable with low response times.
The thresholds needed to prevent control instability are quite
reasonable. Despite only isolating and controlling the CPU,
we find that memory, communication I/O, and local disk I/O
follow.

Acknowledgements This work is in part supported by NSF Awards
ANI-0093221, ANI-0301108, EIA-0224449, CNS-0720691, and CNS-
0709168, by DOE award DE-AC05-00OR22725 via ORNL, and by
gifts from VMware, Dell, and Symantec.

References

1. Arpaci-Dusseau, A.C., Culler, D.E., Mainwaring, A.: Scheduling
with implicit information in distributed systems. In: Proceedings
of the 1998 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, May 1998

2. Chen, J., Soundararajan, G., Amza, C.: Autonomic provisioning
of databases in dynamic content web servers. In: Proceedings of
the 3rd IEEE International Conference on Autonomic Computing
(ICAC), June 2006

3. Chu, H.-H., Narhstedt, K.: CPU service classes for multimedia ap-
plications. In: Proceedings of the IEEE International Conference
on Multimedia Computing and Systems, June 1999

4. Dinda, P.A., O’Hallaron, D.R.: Realistic CPU workloads through
host load trace playback. In: Proc. of 5th Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers (LCR),
May 2000

5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Mancheck, R.,
Sunderam, V.: PVM: Parallel Virtual Machine. MIT Press, Cam-
bridge (1994)

6. Gerbessiotis, A.V., Valiant, L.G.: Direct bulk-synchronous parallel
algorithms. J. Parallel Distrib. Comput. 22(2), 251–267 (1994)

7. Gupta, A.: Black Box methods for inferring parallel applications’
properties in virtual environments, Ph.D. thesis, Northwestern
University, Department of Electrical Engineering and Computer
Science, June (2008)

8. Gupta, A., Dinda, P.A.: Inferring the topology and traffic load of
parallel programs running in a virtual machine environment. In:
Proceedings of the 10th Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP), June 2004

9. Ingram, D., Childs, S.: The Linux-srt integrated multimedia op-
erating system: bringing qos to the desktop. In: Proceedings of
the IEEE Real-time Technologies and Applications Symposium
(RTAS), May–June 2001

10. Jette, M.: Performance characteristics of gang scheduling in
multiprogrammed environments. In: Proceedings of the 1997
ACM/IEEE Conference on Supercomputing (SC), November
1997

Cluster Comput (2008) 11: 273–285 285

11. Hyoudou, K., Kozakai, Y., Nakayama, Y.: An implementation of
concurrent gang scheduler for pc cluster systems. In: Proceedings
of the IASTED International Conference on Parallel and Distrib-
uted Computing and Networks, February 2004

12. Lin, B.: Human-driven optimization. Ph.D. thesis, Northwestern
University, Department of Electrical Engineering and Computer
Science, July (2007). Available as Technical Report NWU-EECS-
07-04

13. Lin, B., Dinda, P.: Vsched: Mixing batch and interactive virtual
machines using periodic real-time scheduling. In: Proceedings of
ACM/IEEE SC 2005 (Supercomputing), November 2005

14. Liu, C.L., Layland, J.W.: Scheduling algorithms for multipro-
gramming in a hard real-time environment. J. ACM 20(1), 46–61
(1973)

15. Liu, H., Parashar, M.: Enabling self-management of component
based high-performance scientific applications. In: Proceedings
of the 14th IEEE International Symposium on High Performance
Distributed Computing (HPDC), July 2005

16. Liu, X., Zhu, X., Singhal, S., Arlitt, M.: Adaptive entitlement con-
trol of resource containers on shared servers. In: Proceedings of
the IFIP/IEEE International Symposium on Integrated Network
Management, May 2005

17. Lu, C., Stankovic, J.A., Abdelzaher, T.F., Tao, G., Son, S.H., Mar-
ley, M.: Performance specifications and metrics for adaptive real-
time systems. In: Proceedings of 21st IEEE Real-Time Systems
Symposium (RTSS), November 2000

18. Lu, C., Stankovic, J.A., Tao, G., Son, S.H.: Feedback con-
trol real-time scheduling: framework, modeling, and algorithms.
Real-Time Syst. J. Control-Theor. Approach. Real-Time Comput.
23(12), 85–126 (2002) (special issue)

19. Lu, C., Wang, X., Koutsoukos, X.: Feedback utilization control in
distributed real-time systems with end-to-end tasks. IEEE Trans.
Parallel Distrib. Syst. 16(6), 550–561 (2005)

20. Nieh, J., Lam, M.: The design, implementation, and evaluation of
SMART: a scheduler for multimedia applications. In: Proceedings
of the 16th ACM Symposium on Operating Systems Principles,
October 1997

21. Ousterhout, J.: Scheduling techniques for concurrent systems. In:
Proceedings of the 3rd International Conference on Distributed
Computing Systems (ICDCS), October 1982

22. Prosnitz, B.: Black box no more: reconstruction of internal vir-
tual machine state. Tech. Rep. NWU-EECS-07-01, Northwestern
University, Department of Electrical Engineering and Computer
Science, March (2007)

23. Brandt, S.A., Banachowski, S., Lin, C., Bisson, T.: Dynamic in-
tegrated scheduling of hard real-time, soft real-time and non-real-
time processes. In: Proceedings of IEEE Real-Time Systems Sym-
posium, December 2003

24. Stankovic, J.A., He, T., Abdelzaher, T.F., Marley, M., Tao, G., Son,
S.H., Lu, C.: Feedback control scheduling in distributed real-time
systems. In: Proceedings of IEEE Real-Time Systems Symposium
(RTSS), December 2001

25. Steere, D.C., Goel, A., Gruenberg, J., McNamee, D., Pu, C.,
Walpole, J.: A feedback-driven proportion allocator for real-rate
scheduling. In: Proceedings of the 3rd USENIX Symposium on
Operating Systems Design and Implementation, February 1999

26. Strazdins, P., Uhlmann, J.: A comparison of local and gang
scheduling on a beowulf cluster. In: Proceedings of the IEEE In-
ternational Conference on Cluster Computing, September 2004

27. Subhlok, J., Gross, T., Suzuoka, T.: Impact of job mix on opti-
mizations for space sharing schedulers. In: Proceedings of Super-
computing ’96, November 1996

28. Sundararaj, A.: Automatic, run-time and dynamic adaptation of
distributed applications executing in virtual environments. Ph.D.
thesis, Northwestern University, Department of Electrical Engi-
neering and Computer Science, December (2006). Available as
Technical Report NWU-EECS-06-18

29. Sundararaj, A., Gupta, A., Dinda, P.: Increasing application per-
formance in virtual environments through run-time inference and
adaptation. In: Proceedings of the 14th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC), July
2005

30. Valiant, L.G.: A bridging model for parallel computation. Com-
mun. ACM 33, 8 (1990)

31. White, S., Alund, A., Sunderam, V.S.: Performance of the NAS
parallel benchmarks on PVM-Based networks. J. Parallel Distrib.
Comput. 26(1), 61–71 (1995)

32. Xu, W., Zhu, X., Singhal, S., Wang, Z.: Predictive control for dy-
namic resource allocation in enterprise data centers. In: Proceed-
ings of the IEEE/IFIP Network Operations and Management Sym-
posium (NOMS), April 2006

Bin Lin is a senior software engi-
neer in Intel Corporate. He holds
a B.S. in computer science from
the University of Science and Tech-
nology of China, and a Ph.D. in
electrical engineering and computer
science from Northwestern Uni-
versity. His research focuses on
human-driven approach to com-
puter system problems, virtualiza-
tion and adaptation for operating
systems and distributed systems.
More information can be found on
his website at Northwestern Uni-
versity, and he can be reached at
binlin365@gmail.com.

Ananth I. Sundararaj is a Program
Manager at Microsoft Corporation.
He holds a B.E. in Computer Sci-
ence and Engineering from Mani-
pal Institute of Technology, India,
a M.S. in Computer Science from
Stevens Institute of Technology and
a Ph.D. in Computer Science from
Northwestern University. His re-
search interests lie in the broad ar-
eas of computer networks and dis-
tributed systems with a focus on
distributed computing using virtual
machines and internet technologies
and applications. He can be reached
at sundararaj_ai@hotmail.com.

Peter A. Dinda is an associate pro-
fessor in the Department of Elec-
trical Engineering and Computer
Science at Northwestern Univer-
sity He holds a B.S. in electri-
cal and computer engineering from
the University of Wisconsin and
a Ph.D. in computer science from
Carnegie Mellon University. His
current research focuses on virtual-
ization, adaptive systems, program-
ming systems for sensor networks,
and human-directed approaches to
computer systems problems. More
information can be found on pdinda.
org, and he can be reached at
pdinda@northwestern.edu.

	Time-sharing parallel applications through performance-targeted feedback-controlled real-time scheduling
	Abstract
	Introduction
	Related work
	Local scheduler
	Global controller
	Inputs
	Control algorithm

	Evaluation
	Experimental framework
	Range of control
	Schedule selection and drift
	Evaluating the control algorithm
	Summary of limits of control algorithm
	Dynamic target execution rates
	Ignoring external load
	NAS IS benchmark
	Time-sharing multiple applications
	Effects of local disk I/O
	Effects of physical memory use

	Discussion
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

