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Abstract In modern data centers, energy consumption ac-
counts for a considerably large slice of operational expenses.
The existing work in data center energy optimization is fo-
cusing only on job distribution between computing servers
based on workload or thermal profiles. This paper under-
lines the role of communication fabric in data center en-
ergy consumption and presents a scheduling approach that
combines energy efficiency and network awareness, named
DENS. The DENS methodology balances the energy con-
sumption of a data center, individual job performance, and
traffic demands. The proposed approach optimizes the trade-
off between job consolidation (to minimize the amount of
computing servers) and distribution of traffic patterns (to
avoid hotspots in the data center network).

Keywords Network-aware scheduling · Energy-efficient ·
Data center · Cloud computing · Congestion

1 Introduction

Data centers are becoming increasingly popular for the pro-
visioning of computing resources. The cost and operational
expenses of data centers have skyrocketed with the increase
in computing capacity [7].

Energy consumption is a growing concern for data cen-
ters operators. It is becoming one of the main entries on a
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data center operational expenses (OPEX) bill [11, 28]. The
Gartner Group estimates energy consumptions to account
for up to 10% of the current OPEX, and this estimate is pro-
jected to rise to 50% in the next few years [14].

The slice of roughly 40% is related to the energy con-
sumed by information technology (IT) equipment [7], which
includes energy consumed by the computing servers as well
as data center network hardware used for interconnection. In
fact, about one-third of the total IT energy is consumed by
communication links, switching, and aggregation elements,
while the remaining two-thirds are allocated to computing
servers [29]. Other systems contributing to the data center
energy consumption are cooling and power distribution sys-
tems that account for 45% and 15% of total energy con-
sumption, respectively.

Early solutions implemented distributed algorithms for
making data center hardware energy efficient [6]. There are
two popular techniques for power savings in computing sys-
tems. The Dynamic Voltage and Frequency Scaling (DVFS)
technology, adjusts hardware power consumption accord-
ing to the applied computing load and the Dynamic Power
Management (DPM), achieves most of energy savings by
powering down devices at runtime. To make DPM scheme
efficient, a scheduler must consolidate data center jobs on
a minimum set of computing resources to maximize the
amount of unloaded servers that can be powered down (or
put to sleep) [22]. Because the average data center workload
often stays around 30%, the portion of unloaded servers can
be as high as 70% [23].

Most of the existing approaches for job scheduling in
data centers focus exclusively on the job distribution be-
tween computing servers [30] targeting energy-efficient [3]
or thermal-aware scheduling [32]. To the best of our knowl-
edge, only a few approaches have considered data center
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Fig. 1 Three-tier data center architecture

network and traffic characteristics for developing energy-
efficient data center schedulers [1, 26, 31].

Reference [1] identifies the problem associated with ex-
isting multi-path routing protocols in typical fat tree network
topologies. Two large traffic flows may be assigned to share
the same path if their hash values collide leaving other paths
under-loaded. The problem is solved with the introduction
of a complex central scheduler that performs flow differ-
entiation and analysis of flow traffic demands across the
data center network. Traffic-aware virtual machine place-
ment is proposed in [26]. Relying on the knowledge about
network topology, virtual machines are placed to optimize
traffic flows inside a data center network. The approach pre-
sented in [31], also allows job migration control during run-
time with a specifically designed network-aware scheduler.
The migration scheduler is aware of the migration delays
and bandwidth resources required.

This paper presents a data center scheduling methodol-
ogy that combines energy efficiency and network awareness.
The methodology is named DENS, which is an acronym for
data center energy-efficient network-aware scheduling. The
network-awareness refers to the ability of DENS approach
to receive and analyze a run-time feedback from the data
center switches and links as well as take decisions and ac-
tions based on the network feedback. The DENS method-
ology aims to achieve the balance between individual job
performances, job QoS requirements also defined in Ser-
vice Level Agreement (SLA), traffic demands, and energy
consumed by the data center. Data intensive jobs require
low computational load, but produce heavy data streams
directed out of the data center as well as to the neighbor-
ing nodes. Such data intensive jobs are typically produced
by popular video sharing or geographical information ser-
vices. The scheduling approach presented in this paper is
designed to avoid hotspots within a data center while min-
imizing the number of computing servers required for job

execution. In the proposed methodology, the network aware-
ness is achieved with the introduction of feedback channels
from the main network switches. Moreover, the proposed
methodology reduces computational and memory overhead
compared to previous approaches, such as flow differentia-
tion, which makes the proposed methodology easy to imple-
ment and port to existing data center schedulers.

The rest of the paper is organized as follows. Section 2
summarizes the background knowledge on a typical data
center architecture, energy consumption models, and data
center network congestion. Section 3 presents the core of the
scheduling approach and defines the necessary components
of the proposed methodology. In Sect. 4, we will present and
discuss experimental results. Finally, Sect. 5 will conclude
the paper and outline directions for future work on the topic.

2 Background

2.1 Data center topology

Three-tier trees of hosts and switches form the most widely
used data center architecture [10]. It (see Fig. 1) consists
of the core tier at the root of the tree, the aggregation tier
that is responsible for routing, and the access tier that holds
the pool of computing servers (or hosts). Early data centers
used two-tier architectures with no aggregation tier. How-
ever, such data centers, depending on the type of switches
used and per-host bandwidth requirements, could typically
support not more than 5,000 hosts. Given the pool of servers
in today’s data centers that are of the order of 100,000 hosts
[24] and the requirement to keep layer-2 switches in the ac-
cess network, a three-tiered design becomes the most appro-
priate option.

Although 10 Gigabit Ethernet (GE) transceivers are com-
mercially available, in a three-tiered architecture the com-
puting servers (grouped in racks) are interconnected using
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1 GE links. This is due to the fact that 10 GE transceivers: (a)
are too expensive and (b) probably offer more capacity than
needed for connecting computing servers. In current data
centers, rack connectivity is achieved with inexpensive Top-
of-Rack (ToR) switches. A typical ToR switch shares two
10 GE uplinks with 48 GE links that interconnect comput-
ing servers within a rack. The difference between the down-
link and the uplink capacities of a switch defines its oversub-
scription ratio, which in the aforementioned case is equal to
48/20 = 2.4 : 1. Therefore, under full load, only 416 Mb/s
will remain available to each of the individual servers out of
their 1 GE links.

At the higher layers of hierarchy, the racks are arranged
in modules (see Fig. 1) with a pair of aggregation switches
servicing the module connectivity. Typical oversubscription
ratios for these aggregation switches are around 1.5:1, which
further reduces the available bandwidth for the individual
computing servers to 277 Mb/s.

The bandwidth between the core and aggregation net-
works is distributed using a multi-path routing technology,
such as the Equal Cost Multi-Path (ECMP) routing [33]. The
ECMP technique performs a per-flow load balancing, which
differentiates the flows by computing a hash function on the
incoming packet headers. For a three-tiered architecture, the
maximum number of allowable ECMP paths bounds the to-
tal number of core switches to eight. Such a bound also lim-
its the deliverable bandwidth to the aggregation switches.
This limitation will be waved with the (commercial) avail-
ability of 100 GE links, standardized in June 2010 [18].

Designing data center topologies is an extremely impor-
tant research topic. Fat-tree successors are constantly pro-
posed for large-scale data centers [15, 16]. However, the fact
that not even a single data center has been built (to this date)
based on such proposals, we constrict the scope of this paper
to the three-tiered architecture. Nevertheless, we must note
that all of the findings of this research will remain valid for
any or all types of data center topologies.

2.2 Energy models

Computing servers account for a major portion of data cen-
ter energy consumption. The power consumption of a com-
puting server is proportional to the CPU utilization. An idle
server consumes around two-thirds of its peak-load con-
sumption to keep memory, disks, and I/O resources run-
ning [8]. The remaining one-third changes almost linearly
with the increase in the level of CPU load.

There are two main approaches for reducing energy con-
sumption in computing servers: (a) DVFS [27] and (b)
DPM [4]. The DVFS scheme adjusts the CPU power (con-
sequently the performance level) according to the offered
load. The aforementioned is based on the fact that power
in a chip decreases proportionally to V 2 · f , where V is a

voltage, and f is the operating frequency. The scope of the
DVFS optimization is limited to CPUs. Therefore, comput-
ing server components, such as buses, memory, and disks
remain functioning at the original operating frequency. On
the contrary, the DPM scheme can power down computing
servers (that includes all components), which makes such a
technique very energy efficient. However, if there occurs a
need to power up (powered down) the server, a considerable
amount of energy must be consumed compared to the DVFS
scheme.

Switches form the basis of the interconnection fabric that
delivers job requests to the computing servers for execution.
Energy consumption of a switch depends on the: (a) type of
switch, (b) number of ports, (c) port transmission rates, and
(d) employed cabling solutions. The energy consumed by a
switch can be generalized by the following [25]:

Pswitch = Pchassis + nlinecards · Plinecard +
R∑

i=0

nports · Pr (1)

where Pchassis is the power consumed by the switch base
hardware, Plinecard is the power consumed by an active
linecard, and Pr corresponds to the power consumed by an
active port (transmitter) running at the rate r . In (1), only the
last component, Pr , scales with a switch’s transmission rate.
This fact limits the benefits of any rate adaptive scheme as
the combined consumption of switch transceivers accounts
for just 3–15% of switch’s total energy consumption [25].
Both Pchassis and Plinecard do not scale with the transmission
rate and can only be avoided when the switch hardware is
powered down (given that there is no traffic to be handled
by the switch).

Obviously, not all of the switches can dynamically be
put to sleep. Each core switch consumes a considerable
amount of energy to service large switching capacity. Be-
cause of their location within the communication fabric and
proper ECMP forwarding functionality, it is advisable to
keep the core network switches running continuously at their
maximum transmission rates. On the contrary, the aggrega-
tion switches service modules, which can be powered down
when the module racks are inactive. The fact that on aver-
age most of the data centers are utilized around 30% of their
compute capacity [23], it makes perfect sense to power down
unused aggregation switches. However, such an operation
must be performed carefully by considering possible fluctu-
ations in job arrival rates. Typically, it is enough to keep a
few computing servers running idle on top of the necessary
computing servers as a buffer to account for possible data
center load fluctuation [8].

2.3 Data center tasks models

In cloud computing incoming requests are typically gener-
ated for such applications like web browsing, instant mes-
saging, or various content delivery applications [9, 35]. The
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tasks tend to be more independent, less computationally in-
tensive, but have a strict completion deadline specified in
SLA. The majority of such requests can be classified ac-
cording to the amount of computing and communications
they require into three categories:

– Computationally Intensive Workloads (CIWs) model
High-Performance Computing (HPC) applications and
aim at solving advanced computational problems. CIWs
demand large amount of computing resources, but pro-
duce almost no data transfers in the interconnection net-
work of the data center. The process of CIW energy-
efficient scheduling should focus on the server power con-
sumption footprint trying to group the workloads at the
minimum set of servers as well as to route the traffic pro-
duced using a minimum set of routes. There is no dan-
ger of network congestion due to the low data transfer
requirements, and putting the most of the switches into
the sleep mode will ensure the lowest power of the data
center network.

– Data-Intensive Workloads (DIWs) produce almost no
load at the computing servers, but require heavy data
transfers. DIWs aim to model such applications like video
file sharing where each simple user request turns into a
video streaming process. As a result, the interconnection
network and not the computing capacity becomes a bottle-
neck of the data center for DIWs. Ideally, there should be
a continuous feedback implemented between the network
elements (switches) and the central workload scheduler.
Based on such feedback, the scheduler will distribute the
workloads taking current congestion levels of the commu-
nication links. It will avoid sending workloads over con-
gested links even if certain server’s computing capacity
will allow accommodating the workload. Such scheduling
policy will balance the traffic in the data center network
and reduce average time required for a task delivery from
the core switches to the computing servers.

– Balanced Workloads (BWs) aim to model the applica-
tions having both computing and data transfer require-
ments. BWs load the computing severs and communi-
cation links proportionally. With this type of workloads
the average load on the servers equals to the average load
of the data center network. BWs can model such appli-
cations as geographic information systems which require
both large graphical data transfers and heavy processing.
Scheduling of BWs should account for both servers’ load
and the load of the interconnection network.

2.4 Data center network congestion

Utilizing a communication fabric in data centers entails the
concept of running multiple types of traffic (LAN, SAN, or
IPC) on a single Ethernet-based medium [13]. On one side,

the Ethernet technology is cheap, easy to deploy, and rel-
atively simple to manage, on the other side, the Ethernet
hardware is less powerful and provisions for small buffer-
ing capacity. A typical buffer size in an Ethernet network is
in the order of 100 s of KB. However, a typical buffer size of
an Internet router is in the order of 100 s of MB [2]. Small
buffers and the mix of high-bandwidth traffic are the main
reasons for network congestion.

Any of the data center switches may become congested
either in the uplink direction or the downlink direction
or both. In the downlink direction, the congestion occurs
when individual ingress link capacities overcome individ-
ual egress link capacities. In the uplink direction, the mis-
match in bandwidth is primarily due to the bandwidth over-
subscription ratio, which occurs when the combined capac-
ity of server ports overcomes a switch’s aggregate uplink
capacity.

Congestion (or hotspots) may severely affect the ability
of a data center network to transport data. Currently, the
Data Center Bridging Task Group (IEEE 802.1) [17] is spec-
ifying layer-2 solutions for congestion control, termed IEEE
802.1Qau specifications. The IEEE 802.1Qau specifications
introduce a feedback loop between data center switches for
signaling congestion. Such a feedback allows overloaded
switches to hold off heavy senders from sending with the
congestion notification signal. Such a technique may avoid
congestion-related losses and keep the data center network
utilization high. However, it does not address the root of the
problem as it is much more efficient to assign data-intensive
jobs to different computing servers in the way that jobs avoid
sharing common communication paths. To benefit from such
spatial separation in the three-tiered architecture (see Fig. 1),
the jobs must be distributed among the computing servers
in proportion to the job communication requirements. Data-
intensive jobs, like ones generated by video sharing applica-
tions, produce a constant bit-stream directed to the end-user
as well as communicate with other jobs running in the data
center. However, such a methodology contradicts the objec-
tives of energy-efficient scheduling, which tries to concen-
trate all of the active workloads on a minimum set of servers
and involve minimum number of communication resources.
This tradeoff between energy-efficiency, data center network
congestion, and performance of individual jobs is resolved
using a unified scheduling metric presented in the subse-
quent section.

3 The DENS methodology

The DENS methodology minimizes the total energy con-
sumption of a data center by selecting the best-fit comput-
ing resources for job execution based on the load level and
communication potential of data center components. The
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communicational potential is defined as the amount of end-
to-end bandwidth provided to individual servers or group
of servers by the data center architecture. Contrary to tra-
ditional scheduling solutions [30] that model data centers
as a homogeneous pool of computing servers, the DENS
methodology develops a hierarchical model consistent with
the state of the art data center topologies. For a three-tier
data center, we define DENS metric M as a weighted com-
bination of server-level fs , rack-level fr , and module-level
fm functions:

M = α · fs + β · fr + γ · fm (2)

where α, β , and γ are weighted coefficients that define
the impact of the corresponding components (servers, racks,
and/or modules) on the metric behavior. Higher α values fa-
vor the selection of highly loaded servers in lightly racks.
Higher β values will prioritize computationally loaded racks
with low network traffic activity. Higher γ values favor se-
lection of loaded modules. The γ parameter is an important
design variable for job consolidation in data centers. Tak-
ing into account that α + β + γ must equal unity, the values
of α= 0.7, β= 0.2, and γ= 0.1 are selected experimentally
(see Sect. 4 for details) to provide a good balance in the eval-
uated three-tier data center topology.

The factor related to the choice of computing servers
combines the server load Ls(l) and its communication po-
tential Qr(q) that corresponds to the fair share of the uplink
resources on the ToR switch. This relationship is given as:

fs(l, q) = Ls(l) · Qr(q)ϕ

δr

(3)

where Ls(l) is a factor depending on the load of the indi-
vidual servers l, Qr(q) defines the load at the rack uplink
by analyzing the congestion level in the switch’s outgoing
queue q , δr is a bandwidth over provisioning factor at the
rack switch, and ϕ is a coefficient defining the proportion be-
tween Ls(l) and Qr(q) in the metric. Given that both Ls(l)

and Qr(q) must be within the range [0,1] higher ϕ values
will decrease the importance of the traffic-related compo-
nent Qr(q). Similar to the case of computing servers, which
was encapsulated in (3), the factors affecting racks and mod-
ules can be formulated as:

fr(l, q) = Lr(l) · Qm(q)ϕ

δm

= Qm(q)ϕ

δm

· 1

n

n∑

i=1

Ls(l) (4)

fm(l) = Lm(l) = 1

k

k∑

j=0

Lr(l) (5)

where Lr(l) is a rack load obtained as a normalized sum of
all individual server loads in the rack, Lm(l) is a module
load obtained as a normalized sum of all of the rack loads in

Fig. 2 Computing server selection by DENS metric

this module, n and k are the number of servers in a rack and
the number of racks in a module respectively, Qm(q) is pro-
portional to the traffic load at the module ingress switches,
and δm stands for the bandwidth overprovisioning factor at
the module switches. It should be noted that the module-
level factor fm includes only a load-related component l.
This is due to the fact that all the modules are connected to
the same core switches and share the same bandwidth using
ECMP multi-path balancing technology.

The fact that an idle server consumes energy that is al-
most two-thirds of its peak consumption [8], suggests that
an energy-efficient scheduler must consolidate data center
jobs on a minimum possible set of computing servers. On
the other hand, keeping servers constantly running at peak
loads may decrease hardware reliability and consequently
affect the job execution deadlines [21]. To address the afore-
mentioned issues, we define the DENS load factor as a sum
of two sigmoid functions:

Ls(l) = 1

1 + e−10(l− 1
2 )

− 1

1 + e− 10
ε

(l−(1− ε
2 ))

. (6)

The first component in (6) defines the shape of the main
sigmoid, while the second component servers as a penal-
izing function aimed at the convergence towards the maxi-
mum server load value (see Fig. 2). The parameter ε defines
the size and the incline of this falling slope. The server load
l is within the range [0,1]. For the tasks having determinis-
tic computing load, l the server load can be computed as the
sum of computing loads of all of the running tasks. Alter-
natively, for the tasks with predefined completion deadline,
the server load l can be expressed as the minimum amount
of computational resource required from the server to com-
plete all the tasks right-in-time.

Being assigned into racks, the servers share the ToR
switch uplink channels for their communication demands.
However, defining a portion of this bandwidth used by a
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Fig. 3 Queue selection by DENS metric

given server or a flow at the gigabit speeds during runtime is
a computationally expensive task. To circumvent the afore-
mentioned undesirable characteristic, both (3) and (4) in-
clude a component, which is dependent on the occupancy
level of the outgoing queue Q(q) at the switch and scales
with the bandwidth over provisioning factor δ.

Instead of relying on the absolute size of the queue, the
occupancy level q is scaled with the total size of the queue
Qmax within the range [0,1]. The range corresponds to none
and full buffer occupancy. By relying on buffer occupancy,
the DENS metric reacts to the growing congestion in racks
or modules rather than transmission rate variations. To sat-
isfy the aforementioned behavior, Q(q) is defined using in-
verse Weibull cumulative distribution function:

Q(q) = e
−(

2q
Qmax

)
2

. (7)

The obtained function, illustrated in Fig. 3, favors empty
queues and penalizes fully loaded queues. Being scaled with
the bandwidth over provisioning factor δ in (3) and (4) it
favors the symmetry in the combined uplink and downlink
bandwidth capacities for switches when congestion level is
low. However, as congestion grows and buffers overflow, the
bandwidth mismatch becomes irrelevant and immeasurable.
The (7) is inspired by the Random Early Detection (RED)
[12] and Backward Congestion Notification (BCN) [5] tech-
nologies.

Figure 4 presents the combined fs(l, q) as defined
in (3). The obtained bell-shaped function favors selection
of servers with the load level above average located in racks
with the minimum or no congestion.

The following algorithm is used to compute the DENS
metric during runtime:

Fig. 4 Server selection by DENS metric according to its load and
communicational potential

DENS Algorithm

Initialization
set weighted coefficient α = 0.7, β = 0.2, γ = 0.1
set proportional coefficient ϕ = 2
get server load l

get queue size at access and aggregate switches q
Server selection

FOR all servers DO
compute server load Ls(l), rack load Lr(l), and
module load Lm(l)

compute communications potentials of rack Qr(q)

and module Qm(q)

compute metric factors related to servers fs(l, q),
racks fr(l, q), and modules fm(l)

compute DENS metric as a weighted sum of
fs(l, q), fr(l, q), and fm(l)

ENDFOR
Select server with highest DENS metric

4 Performance evaluation

4.1 GreenCloud simulator

For performance evaluation purposes, the proposed DENS
methodology was implemented in the GreenCloud simula-
tor [19, 20]. GreenCloud is a cloud computing simulator de-
veloped by us to capture data center communication pro-
cesses at the packet level. It is developed as an extension of
network simulator Ns2 [34] allowing it to exploit realistic
TCP/IP processes in a large variety of network scenarios.
GreenCloud offers users a detailed fine-grained modeling of
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Fig. 5 Structure of the GreenCloud simulator

the energy consumed by the elements of a data center, such
as servers, switches, and communication links.

Moreover, GreenCloud offers a thorough investigation
of workload distributions. Furthermore, a specific focus is
devoted to the packet-level simulations of communications
in the data center infrastructure, which provide the finest-
grain control and is not present in any cloud computing
simulation environment. Implemented energy-efficient op-
timization techniques include DVFS [27] and DPM [4] ap-
proaches. In addition, a set of energy monitoring tools oper-
ating in data center servers, switches, and other components
is included.

Figure 5 presents the structure of the GreenCloud simu-
lator mapped onto the simulated three-tier data center archi-
tecture. Computing servers implement single core process-
ing model that have a preset on a processing power in MIPS
(million instructions per second) or FLOPS (floating point
operations per second), have their own memory and disk
storage resources, and can follow different task scheduling
policies. Network switches and links provide communica-
tion fabric for workloads distribution. Their characteristics
may vary depending on the technology used for interconnec-
tion. For example, for data rates of up to 1 Gb/s energy pro-

files of network links and switches’ transceivers are driven
by twisted pair technology while for greater rates of 10 Gb/s
optical multimode transmitters are used.

For workload execution GreenCloud employs deadline-
based model, i.e. each task should be able to perform a speci-
fied amount of computations and transmit a given amount of
data before a specified deadline for successful completion.
The deadline aims at introducing Quality of Service (QoS)
parameters. On the communicational side each workload is
characterized by the size of the workload which should be
transmitted to the pool of servers for the workload execu-
tion as well as size of internal and size of external to the
data center transfers.

4.2 Simulation scenario

A three-tier tree data center topology comprised of 1536
servers arranged into 32 racks each holding 48 servers,
served by 4 core and 8 aggregation switches (see Fig. 1),
was used in all simulation experiments. We used 1 GE links
for interconnecting servers in the inside racks while 10 GE
links were used to form a fat-tree topology interconnecting
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access, aggregation, and core switches. The propagation de-
lay on all of the links was set to 10 ns.

The workload generation events are exponentially dis-
tributed in time to mimic typical process of user arrival. As
soon as a scheduling decision is taken for a newly arrived
workload it is sent over the data center network to the se-
lected server for execution. The size of the workload is equal
to 15 KB. Being fragmented, it occupies 10 Ethernet pack-
ets. During execution, the workloads produce a constant bi-
trate stream of 1 Mb/s directed out of the data center. Such a
stream is designed to mimic the behavior of the most com-
mon video sharing applications. To add uncertainties, during
the execution, each workload communicates with another
randomly chosen workload by sending a 75 KB message in-
ternally. The message of the same size is also sent out of the
data center at the moment of task completion as an external
communication.

The average load of the data center is kept at 30% that
is distributed among the servers using one of the three eval-
uated schedulers: (a) DENS scheduler proposed in Sect. 3
of this paper, (b) Green scheduler performing the best-effort
workload consolidation on a minimum set of servers, and
(c) a round-robin scheduler which distributes the workloads
equally.

The servers left by the schedulers idle are powered down
using DPM technique to reduce power consumption. A sim-
ilar technique is applied to the unused network switches
in aggregation and access networks. The core network
switches remain always operational at the full rate due to
their crucial importance in communications.

4.3 Simulation results

Figure 6 presents the server load distribution for all three of
the evaluated schedulers. Figure 7 reports a combined uplink
load at the corresponding rack switches. The Green sched-
uler consolidates the workload leaving the most (around
1016 on average) servers idle in the evaluated data center.
These servers are then powered down. However, the load
of the loaded servers (left part of the chart) is kept close to
the maximum and no consideration of network congestion
levels and communication delays is performed. As a con-
sequence, a number of workloads scheduled by the Green
scheduler produces a combined load exceeding ToR switch
forwarding capacity and causes network congestion. The
round-robin scheduler follows a completely opposite policy.
It distributes computing and communicational loads equally
among servers and switches; thereby the network traffic is
balanced and no server is overloaded. However, the draw-
back is that no server or network switch is left idle for pow-
ering down, making the round-robin scheduler as the least
energy-efficient.

The DENS methodology achieves the workload consol-
idation for power efficiency while preventing computing

Fig. 6 Server workload distribution performed by DENS, green, and
round-robin schedulers

Fig. 7 Combined uplink traffic load at the rack switches

servers and network switches from overloading. In fact, the
average load of an operating server is around 0.9 and the
average load of the rack switch uplink is around 0.95. Such
load levels ensure that no additional delays in job commu-
nications are caused by network congestion. However, this
advantage comes at a price of a slight increase in the num-
ber of running servers. On average, DENS scheduler left 956
servers as opposed to 1016 servers left idle by the Green
scheduler.

To explore the uplink load in detail, we measured the traf-
fic statistics at the most loaded switch ToR switch (the left-
most in Fig. 7). Figure 8 presents a combined ToR switch
uplink load evolution, while Fig. 9 presents the uplink queue
evolution at the same switch for the first 15 seconds of simu-
lation time. Under the Green scheduler, the link is constantly
overloaded and the queue remains almost constantly full,
which causes multiple congestion losses. All queues were
limited to 1000 Ethernet packets in our simulations. Under
the DNS scheduler, the buffer occupancy is mostly below
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Fig. 8 ToR switch uplink load

Fig. 9 ToR switch uplink buffer occupancy

the half of its size with an average of 213 packets, displayed
with a dashed line in Fig. 9. At certain instances of time the
queue even remains empty having no packets to send. This
fact results in a slightly reduced uplink utilization level of
0.95.

Table 1 compares the impact of different scheduling poli-
cies on the level of data center energy consumption. The data
is collected for an average data center load of 30%. The most
energy inefficient is a round-robin scheduler. It does not al-
low any of the servers or network switches to be powered
down for the whole duration of data center operation.

The Green scheduler is the most efficient. It releases
around two-thirds of servers and network switches, which
considerably reduces the energy consumption levels. With
the Green scheduler, the data center energy consumption is
slashed in half compared to when a round-robin scheduler
is utilized. The DENS methodology when compared to the
Green scheduler adds around: (a) 4% to the total data cen-
ter consumption, (b) 3% in servers’ energy consumption,
and (c) 1% in switches’ energy consumption. This slight

Table 1 Data center energy consumption

Parameter Power consumption (kW·h)

Round
Robin
scheduler

Green
scheduler

DENS
scheduler

Data center 417.5 K 203.3 K (48%) 212.1 K (50%)

Servers 353.7 K 161.8 K (45%) 168.2 K (47%)

Network switches 63.8 K 41.5 K (65%) 43.9 K (68%)

increase in energy consumption is justified by the need of
additional computing and communicational resources, de-
tected by DENS methodology, and required for keeping the
quality of job execution at the desired level. In contrast to the
Green scheduler, DENS methodology uses network aware-
ness to detect congestion hotspots in the data center network
and adjust its job consolidation methodology accordingly. It
becomes particularly relevant for data intensive jobs which
are constrained more by the availability of communication
resources rather than by the available computing capacities.

5 Conclusions

This paper underlines the role of communication fabric in
data center energy consumption and presents a methodol-
ogy, termed DENS, that combines energy-efficient schedul-
ing with network awareness. The DENS methodology bal-
ances the energy consumption of a data center, individual
job performance, and traffic demands. The proposed ap-
proach optimizes the tradeoff between job consolidation (to
minimize the amount of computing servers) and distribution
of traffic patterns (to avoid hotspots in the data center net-
work). DENS methodology is particularly relevant in data
centers running data-intensive jobs which require low com-
putational load, but produce heavy data streams directed to
the end-users.

The simulation results obtained for a three-tier data cen-
ter architecture underline DENS operation details and its
ability to maintain the required level of QoS for the end-user
at the expense of the minor increase in energy consumption.
Future work will focus on the implementation and testing of
DENS methodology in realistic setups using testbeds. The
design and specification of DENS metric is tight to the un-
derlining data center architecture. In this paper it was the
most widely used nowadays three-tier architecture. How-
ever, the adaptation of DENS approach to other existing and
upcoming data center architectures is already on-going.
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