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Abstract A real challenge sits in front of the business solutions these days, in the
context of the big amount of data generated by complex software applications: e�-
ciently using the given limited resources to accomplish specific operations and tasks.
Depending on the type of application dealing with, when trying to deliver a certain
service in a specific time and with a limited budget, a sequential application may
be redesigned in a convenient way so that it will become scalable and able to run
on multiple resources. In this context, Many Task Computing (MTC) model brings
together loosely coupled applications, composed of many dependent/independent
tasks, which will work together for a common result. When asking for a certain
service, the most frequently constraints addressed by the user are deadline and
budget. However, depending on the tasks nature used in MTC, other constraints
may also occur: tasks may be data intensive or computing intensive, independent
or dependent, uni-processor or multi-processor. In this context, we propose a multi-
objective scheduling algorithm of many tasks in Hadoop for Big Data processing,
named MOMTH. The algorithm evaluation was realized in Scheduling Load Simula-
tor, integrated in Hadoop and easy to use. We compared the proposed algorithm with
FIFO and Fair Schedulers and we obtained similar performance for our approach.
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1 Introduction

We are facing an explosion of data generation by almost everything that surrounds
us: mobile devices, software applications, wireless sensors, electronic equipments and
so on. A frequent situation of big data generation is met in the meteorological appli-
cations, were a simple mistake in data interpretation can lead to natural disasters.
Normally one would think that these are the situations when dealing with big data.
Actually, is not. A well-known co�ee-shop has decided to improve it’s image in front
of the customers by using all the data obtained from simply selling the co�ee in his
own benefit. The data was analyzed and various solutions and models were proposed
by researchers. In the end, the results were amazing: they managed to turn disloyal
customers into loyal customers. What can we conclude from the two above examples
is that there is value in every data and for every business case, not matter if we
are talking about complex scientific applications or about simply restaurants. The
challenge is: how we unlock it in an e�cient way by keeping in mind all the con-
straints that a customer may raise? The two most common constraints are time and
budget, which are always limited. However there are also other constraints like: data
dependency or computational dependency. Not only once, the customer applications
needed to deal with are complex, based on other smaller applications, dependent or
independent, with specific business case constraints. In this case we need to find a
solution for transforming all this sequential tasks in a such way that will decrease
the execution time and it will minimize the number of resources used.

The goal of this paper is to design a multi-objective scheduling algorithm for
many tasks, in Hadoop, named MOMTH (Multi-Objective scheduling algorithm of
Many Tasks in Hadoop). In general, many complex problems are treated as sigle-
objective optimization problem instead multi-objective problem by transforming all
but one objectives into constraints. The novelty of current approach is that we will
consider objective functions related to users and resources in the same time and
constraints like deadlines (scheduling in due time) and budget. This paper presents
an extended approach of MOMC algorithm [16]. The experimental results were driven
in the Scheduling Load Simulator, already implemented in the Hadoop framework.
The simulator takes the workload from the jobs history and shows in real time the
obtained results based on di�erent metrics.

O�ering support for Big Data computation, Hadoop was chosen as the business
bottom level for many software companies existing on the market. Since every com-
pany has it’s own needs and requirements, each personalized and built their own
scheduler. Although, the most popular methods are: FIFO scheduler, Fair scheduler
and Capacity scheduler [18] [7]. It is important to mention that there are also other
schedulers, with other objectives:scheduling to meet deadline [8], the total budget,
data dependencies, computational dependency, etc. [19].

The killer application chosen to evaluate MOMTH algorithm is MobiWay, a col-
laboration platform that expose interoperability between a large number of sensing
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mobile devices and a wide-range of mobility applications, in order to provide use-
ful information about the mobility like tra�c conditions in a certain area or less
crowded places. MobyWay is an obvious application based on the MTC Model: it
bring together less coupled applications (taxi companies, delivery fleets) that will
work together of a common purpose.

The rest of the paper is structured as follows. The second section describes the
existing schedulers in Hadoop: FIFO, Fair Scheduler, Capacity Scheduler and HOD
Scheduler. It also take a short overview of the existing solutions for multi-objective
and many tasks computing scheduling. The following section introduces the proposed
algorithm, MOMTH, by presenting the mathematics model behind it. MOMTH algo-
rithm is based on two objectives: avoiding resource contention and having an optimal
workload of the cluster, and two constraints: deadline and budget. The next section
is dedicated to the experimental results and the used metrics, organized in two sub-
sections: one that will focus more on the evaluation metrics and experimental setup
and the other one that will presents the results, compared with FIFO and Fair algo-
rithm. The final section will sum up the main ideas highlighted and it will propose
further investigations.

2 Related Work

Many Tasks Computing (MTC) represents the connection between two novel com-
puting paradigms: high throughput computing and high performance computing [12].
It di�ers from high throughput computing by using multiple computing resources
for short periods of time, in order to accomplish a significant number of computa-
tional tasks. On the other hand, it di�ers also from the high computing paradigm
by comprising multiple distinct and complex applications. MTC paradigm permits
multiple applications to collaborate for a common cause. In this context, the task
scheduling becomes a real challenge and it has been the source of inspiration of many
researchers along time.

In [6] a particle swarm optimization (PSO) algorithm which is based on small
position value rule is proposed, with the main target of decreasing the total processing
time. It is based on the idea of optimizing the transferring and processing time, as
being crucial for the total computational cost of an application.

Simon et al. propose in [13] a single queue algorithm based on greedy knapsack
with dynamic job priorities. This algorithm is destinated to the HPC systems and
it does not require user intervention in order to establish a certain job priority. The
system performs an exhaustive parameter search in order to calculate a job priority.
This approach fits best for applications that are based on multiple independent tasks.

In [9] a Hybrid Scheduler (HybS) algorithm based on dynamic priority is pro-
posed. The target is to reduce the latency for variable length concurrent jobs, while
maintaining data locality. The dynamic priorities are designed for di�erent job sizes,
task lengths or waiting times. It applies a fractional knapsack algorithm for the pro-
cessor assignment. The evaluation shows that HybS improves the average response
time for the workloads with an approximately 2.1 speed-up value.

Pandey et al. address in [10] the problem of single source data retrieval, which is
not optimal in cases like: tasks are interdependent on data, the average size of data
processed by most tasks is large and data transfer time exceeds task computation
time. For the above issues they proposed to leverage the presence of replicated data
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sources and retrieve data in parallel from various locations. The number of locations
used in the proposed model is two. The assignation of interdependent tasks is based
on metrics like data retrieval time and computation time. The experiments were
realized based on real applications in both real and emulated environment. The
results showed a decrease in the total computational time.

At the beginning Hadoop had only one scheduler, but in time it proved to be
inflexible to the business requirements. The solution found then was to implement
a pluggable scheduler system. The solution was a real success since it o�ers more
flexibility and it’s also easy to integrate with Hadoop [17].

FIFO scheduler is the first Hadoop scheduler and it respect the FIFO model: a
queue of tasks is implemented and the tasks are distributed to the masters by the
arrival order. It represents the basic scheduling algorithm and it does not respect any
constraints. Fair scheduler, developed by Facebook, gives each job equal resources,
by helping small tasks to run in parallel with other tasks that requires more CPU.
The main concern for this scheduler is resource congestion when dealing with a
bigger number of tasks. Capacity scheduler, developed by Yahoo, is similar to the
fair scheduler but with the major di�erence of using prioritized queue jobs. HOD
Scheduler was designed to easy provision and manage Hadoop MapReduce and HDFS
instances on a shared cluster of commodity hardware. To allocate a node, it uses
Torque resource manager [14], and on each node two daemons are started: Hadoop
MapReduce and HDFS.

YARN (Hadoop 2.0) splits in di�erent components the Hadoop job tracker, the
resource manager and the functionality used to schedule the jobs [15]. YARN comes
with a novel approach where applications developed to be executed in a Hadoop
environment contain the scheduling policy. Hadoop and YARN is used for various
purposes which need high performance processing of data: Facebook tasks execution
with Corona [3], human genome decoding, e-science simulations, etc.

Di�erent multi-optimization problems of task scheduling in a Hadoop environ-
ment consider extension of MapReduce scheduling mechanism with the following
aspects [5]: optimization of setup and cleanup tasks to reduce the time cost during
the initialization and termination stages of the job, and an instant messaging com-
munication mechanism for accelerating performance-sensitive task scheduling and
execution. The security aspects used in inter-cluster communication, which are not
considered in our approach, are presented in [20].

3 MOMTH Scheduling Algorithm

The MOMTH model is as follows. Each job J that will be executed in a Hadoop
cluster has a known number of map tasks and reduce tasks, Nmap, respectively
Nreduce. The total number of tasks N = Nmap + Nreduce is known:

J = {Ti|Ti œ Map ‚ Ti œ Reduce} , |J | = N. (1)

Each job has an arrival time, A, a deadline, D and an allocated budget, B.
For each job, we know from the beginning the exact amount of data that should be
processed, In. The data processed by reducers is not known, but we can approximate
it using the previous jobs. We call r the ratio that filter the amount of input data,
Out = r ú In. We consider that each job has an Owner, which handle the job and
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can give a rank,  , about the execution. The properties of a job J may be expressed
as:

Prop(J) = (A, D, B, In, r|Out = r ú In, Owner) . (2)
Each job J has a specific number of slots assigned, some of them for maps Slmap

and others for reducers Slreduce. We can use the same slot for a mapper and then
for a reducer. In this case, the total number of slots is Sl Æ Slmap + Slreduce.

Each task Ti can be associated with the following attributes:

– a processing time pi, apriori evaluated for a map tasks or a reduce task; it is used
to compute the total flow-time for a job:

Flowtime(J) =
ÿ

TiœJ

pi, (3)

– a budget bi, allocated by the owner for a job J . We define the task-specific budget
b, and the normalized task-specific budget as:

b = B

N
, b̃i = bi

b
, (4)

the performance of budget estimation being expressed as b̃i Æ 1, ’Ti œ J .
– a deadline di introduced for each task by the cluster resource manager to handle

the synchronization between task execution:

max
TiœJ

{di} Æ D. (5)

– a weight wi corresponding to the resources consumed that can be proportional
with the product between processing time and budget allocated of a task:

wi = –pibi = –pib̃i
B

N
, (6)

where – is a proportionality constant. If –leq1 then the task schedule and ex-
ecution will respect the total budget, otherwise the total cost may exceed the
allocated budget. Considering the performance of budget estimation we have:

wi Æ –pi
B

N
, (7)

W (J) =
ÿ

TiœJ

wi Æ –
B

N

ÿ

TiœJ

pi = –
B

N
Flowtime(J). (8)

– a value fii corresponding to the feedback of the owner. The owner can rank all
tasks with the same value fi. The global ranking vector is:

  = [fii]TiœJ . (9)

We can compute the value fi by measuring the performance of task execution.
For example, we can consider the real execution time coste(Ti) and the task
completion Ci to estimate the ranking value:

fii Ã pi

coste(Ti)
◊ Ci

di
. (10)
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These values and weights can be dynamically assigned after the task is generated
based on the task characteristics and owner context. The properties of a task Ti may
be expressed as:

Prop(Ti) = (pi, bi, di, wi, fii, type = map|reduce) . (11)

The multi-objective optimization problem addressed by MOMTH is to satisfy
multiple constraints and as much objectives as possible. The general problem is to
find a vector x of N decision variables (equal with number of tasks), with x(L)

i and
x(U)

i the lower and upper bound for each decision variable, that satisfies constraints
(Q inequalities and K equalities) and optimize a vector of O functions whose elements
represents the objective functions:

min | max : F (x) = [f1(x) f2(x) . . . fO(x)] ,
subject to : G(x) = [g1(x) g2(x) . . . gQ(x)] Ø 0,

H(x) = [h1(x) h2(x) . . . hK(x)] = 0,

x(L)
i Æ xi Æ x(U)

i , ’i = 1 . . . n.

(12)

MOMTH algorithm consider the following multi-optimization problem:

min :
ÿ

TiœJ

pixi,

max :
ÿ

TiœJ

fiixi,

subject to : B ≠
ÿ

TiœJ

bixi Ø 0 =∆ 1
N

ÿ

TiœJ

b̃ixi Æ 1,

D ≠ maxTiœJ{Ci} Ø 0,
0 Æ xi Æ x̃i, ’i = 1 . . . n.

(13)

We consider in the MOMTH model that the objectives are more related to what
the user wants to obtain. The max objective is related to user feedback. Moreover,
the user specifies the values for deadline and budget. To implement the constraints
mentioned above, the information about map and reduce tasks is needed, as well as
information about the processing nodes. We need to know CPU, memory and IO
transfer rate.

Since MOMTH is designed for a Hadoop environment, we did not consider the
amount of data transferred from outside. We considered that the input is already
placed in HDFS and are available at run time for any job. Only the processing cost
and communication cost between mappers and reducers. We consider the most im-
portant objectives to satisfy: avoiding resource contention and having an optimal
workload of the cluster. Regarding the constraints, these can vary, but since process-
ing time and money are the most important factors, we finally considered deadline
and budget. The previous version of the proposed algorithm, MOMC [16], consid-
ered that the decision variable can take only 0 or 1 value (0 when the resource is
not selected for a task, 1 when we can decide the schedule). In the current form, the
optimization problem considers the amount of a resource to be used. The decision
variable has now a maximum value x̃, representing the weight of resource usage.

Regarding the heterogeneity, in our scheduling algorithm we have tried to satisfy
this, by finding to every step, the best match between the job and the resource. But
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the best advantage is that we wanted to have the big picture of the all cluster, finding
the best fit between all jobs that need to run at a certain moment and the available
resources.

Algorithm 1 MOMTH Scheduling Algorithm
Require: R - the set of working nodes; |R| Ø Sl

(min)
map + Sl

(min)
reduce.

Require: taskQueue - a queue where all tasks Ti belonging to a job J are inserted.
Require: assignedT asks - a queue with assigned tasks for each worker node.
1: for each workernode œ R do

2: maxService Ω service(workernode);
3: W Ω 0;
4: for each assignedT ask œ workernode.assignedT asks do

5: newAssignedT asks Ω workernode.assignedT asks ≠ assignedT ask;
6: while taskQueue is not empty do

7: task Ω taskQueue.deq();
8: wi Ω weight(task);
9: newAssignedT asks Ω newAssignedT asks

t
task;

10: if service(newAssignedT asks) > maxService then

11: maxService Ω service(newAssignedT asks);
12: W Ω W + wi;
13: end if

14: end while

15: end for

16: workernode.assignedT asks Ω newAssignedT asks;
17: end for

The proposed algorithm follows the best usage jobs-resources strategy (see Al-
gorithm 1) The service function should return a positive value if there are enough
mappers and enough reducers in order to finish the job in the specified budget and
until the deadline ends. The Algorithm 1 verifies each assignment between jobs and
resources, and then tell which assignment is better by the sum of each service result.

To compute the service, we need to find out if Slmap and Slreduce can be provided
by a specific cluster of resources. We define cost(map) and cost(reduce) as the time
cost to process the amount of data by mappers, respectively by reducers. Also, we
define budget(map) and budget(reduce), the budget cost to process the amount of
data by mappers, respectively by reducers. Besides those costs, we need to take into
account the cost paid when the data is not on the node where the reducers run
(only for data existing in the cluster). So, we should define the time cost for data,
cost(data), and budget cost for data transferring and processing, budget(data).

Let us consider start(map) and start(reduce), the start time for the mappers,
respectively for the reducers. We can consider that start(map) = A meaning that
all mappers start when a job arrive in the internal queue. To compute the number of
map slots needed by the job J , we need to know the maximum value of start(reduce),
start(max)(reduce):

Sl(min)
map = cost(map)

start(max)(reduce) ≠ start(map)
, (14)

Sl(min)
reduce = r ú cost(reduce)

A + D ≠ r ú cost(data) ≠ start(reduce) . (15)
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Based on the time processing cost, we can consider that the used budget is the
multiplication between time cost and number of resources:

Bused = cost(map) ú Sl(min)
map ú bmap + cost(reduce) ú Sl(min)

reduce ú breduce. (16)

The MOMTH algorithm can be integrated in Hadoop as follows. Since JobTracker
is an independent component, the new scheduler should extend TaskScheduler

class, along with the properties and the methods. When the implementation is done,
the new scheduler needs to be plug-in. In the configuration files of MapReduce there
is a variable that indicates the used algorithm. By default, it uses the Fair Sched-
uler, but when you want to use a new implementation, you just have to modify the
configuration and specify it.

4 MobiWay Application for Hadoop

Urban mobility is an attendant of modern city life and its sustainability heavily de-
pends on the consumption of di�erent resources, such as electricity and fuel; there-
fore, it manifests in carbon dioxide (CO2) and local pollutant emission and directly
influences the quality of life of the citizens [11]. Urban tra�c is responsible for 40%
of CO2 emissions and 70% of emissions of other pollutants arising from road trans-
port [1]. Road transport is responsible for over 70% of the GHG emissions from the
entire transport sector, and for 13% of total emissions of all sectors (transport sec-
tor represents almost 20% of total emissions) [1]. Intelligent Transportation Systems
(ITS) aim to overcome such problems, through solutions that combine specialized
infrastructure, communication technologies and innovative services, to enhance the
quality of tra�c and mobility management, multi-modal or road transport solutions.

However, in order to develop accurate tra�c model, to be able to understand
transportation phenomena and be able to make decisions from statistical models of
how tra�c flows tend to behave in real-world cities, you need a vast amount of data.
Unfortunately, this exact amount of data required to construct accurate tra�c mod-
els today acts as a barrier to prototype implementation for many ITS concepts, on
city-level scales. In MobiWay, national funded project PN-II-PT-PCCA-2013-4-0321
No. 16/2014, we target the development of a robust, open-service and standards-
based collaboration platform to expose interoperability between a large number of
sensing mobile devices and a wide-range of mobility applications. Its goal is to pro-
vide a framework of ecosystems, which will allow to engage urban communities in
exploiting the shared value of mobility that can be leveraged beyond the classical
views of social networks, respectively the current trends of service creation. To facil-
itate collaboration, the framework aims to distribute di�erent sources of information
(coming from end users or ITS services, such as taxi companies, delivery fleets, etc.)
within a service cloud composed from application providers. As various types of sen-
sor data will be provided by mobility users, intelligent data gathering, processing
and sharing have to be guaranteed between a mesh of hundreds of thousands of par-
ticipants and the co-existing services with diverse interests. The project builds an
ecosystem of integrated services and applications, flexible and reconfigurable, o�ered
under multiple packages o�ered to users. The MobiWay’s architecture is presented
in Figure 1.
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Fig. 1 MobiWay concept and architecture

An important component in this architecture is Data Aggregation, which aims to
process huge amounts of tra�c data such that to deliver accurate Tra�c data models
at city levels. This means data coming from millions of cars in the city is collected,
and persistently stored for longer time. This data is further, periodically, processed,
resulting in statistical and probabilistic models of how likely is the tra�c, depending
on parameters such as time-of-the-day, weather conditions, scheduled events, and so
on (simulated conditions in our case). Of course, such high-volume data processing
raises problems, and we develop currently the algorithms to deal pre-processes such as
data aggregation, cleansing, statistical analysis at di�erent granularity levels (analyse
the macro-level tra�c in di�erent areas of the city, which is next followed by micro-
level, fine-grained, evaluation of tra�c conditions – at street level).

The processing application uses the MapReduce paradigm, and Apache Hadoop
and Spark as supporting technologies. MapReduce, as the name says, has two im-
portant types of tasks: map and reduce. The data received from input is divided in
chunks, so a map task receives just one part of the entire data. Many map tasks run
in parallel. The output from all the map tasks is sorted and redirected to reducers.
The data is stored in a file system, so Hadoop uses HDFS (Hadoop Distributed File
System) for this part. The scheduler is in charged to plan how the jobs are assigned
to map or reducers. In practice, a node is in charged with computation and storage.
In this way, it is desired to schedule the task on the node with the date it needs,
in order to reduce the tra�c in the network. But for this to happen, the scheduler
needs an improved algorithm. For MobiWay, we thus needed to implement both map
and reduce functions using the appropriate interfaces that would deliver optimized
performance (we want to obtained a solution both cost and time optimum).
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5 Experimental Scenarios

This section presents comparative results of MOMTH algorithm and all the setup
steps needed to develop and then to test the new Hadoop scheduler. We start with
the configurations needed for Hadoop framework, followed by the scheduler load
simulator setup. The last section explain our first Hadoop application; its purpose
was to understand the paradigm behind the scene, the nature of the jobs and of the
tasks.

The Hadoop cluster setup considers the following configuration aspects:

– Hadoop cluster, developed on a machines with Ubuntu, a 64 bits architecture
with maven, libssl-dev, cmake and protobuf libraries;

– HDFS configuration, with dfs.replication set to support fault tolerance;
– Scheduling Load Simulator (SLS) setup (the entire simulator memory or the one

for each container, the number of virtual cores, etc.);
– Rumen tool is used to transform and to append information to jobs history and

the output of it will be a json file. This json file will be further used as input for
SLS.

When a new scheduling algorithm is implemented, it is very hard to deploy it
in real clusters. What if the developers will have a way to just gather the output
data of the cluster jobs and then analyze them in a simulator? This is way SLS was
designed and implemented. Using it is easier to deploy various and di�erent features
for a scheduler, because you can use only one machine to deploy it. In this way,
the SLS saves a lot of time and, of course money, because the deployment of a new
scheduler is cost and time consuming.

Fig. 2 Scheduling Load Simulator Architecture

Figure 2 shows the architecture of SLS. As we previously mentioned, everything
runs on a single machine. This means that all Hadoop components should run on the
same machine, in the same JVM, without network component. Since one of the main
component of the Resource Manager is the Scheduler, the major changes needed for
SLS are in there. Basically, SLS acts like a wrapper for the principal scheduler. As
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you can see in the figure, the orange parts are those implmented for SLS. In the
Simulator part, SLS simulates each node manager and each application manager. In
this section, the focus was more on the SLS architecture, but in the next section we
describe more the input data for it.

When jobs are running to perform map or reduce tasks, the all history is kept
by the JobHistory daemon. But this history is not entire in order to be shown based
on the SLS metrics, so the simulator use a di�erent input.

There are two steps in the transformation process: TraceBuilder and Folder.
The first one is meant to process the data in order to have a better format. The second
one is used to add additional information based on some statistical calculations.
These two steps are performed using two command that can be found in Rumen
tools directory in Hadoop framework. To find any other information about how
these commands should be used, the parameters and the options, please visit [4].

5.1 Performance Metrics

The scheduling load simulator use Metrics library [2] to evaluate the results of a
scheduling algorithm. We present the metrics used by SLS to show the results of
MOMTH algorithm compared to most used algorithms, Fair and FIFO. The main
focus of these metrics is on time cost and how the resources are used.

The metrics are the following:

– Applications and containers: how many applications and containers are running
during the time;

– Resources: how many resources are used and how many resources are left;
– Resources per queue: the used and left resources per each queue;
– Time: there are multiple operations done by each scheduler, like adding, remov-

ing, and updating a node, adding and removing and application, so the time for
each operation means a lot;

– Memory: useful to know memory the simulator used.

This section shows the tests done on the new scheduling algorithm. We compare
it with other two basic algorithms: FIFO Scheduler and Fair Scheduler. We chose
to compare with these two schedulers because they are already implemented in the
Hadoop framework, therefore it did not require additional work. In order to use SLS,
we need two input files: the json file with the workload and the json file with the
topology. The first section will explain step by step how we get the workload of
5000 tasks (MobiWay), which describe the usage of proposed applications on many
devices (generating many tasks) during a specific period of time (2 hours).

5.2 Experimental Results

We run 5000 tasks on Hadoop and then we used Rumen to obtain the workload in
the format needed by the simulator. For this, we used the following command, which
calls the TraceBuilde, takes as input the history and generates the jobs traces and
the topology used. The last one is not needed because we create our own topology
with 12 nodes (quad core, dual processor).
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We used MobiWay applications with di�erent input data. We have four types of
input, classified by its size: small, medium, big and extra big.

Figure 3 presents the number of allocated cores for a node in the cluster. The
core usage is very similar for Fair and MOMTH schedulers. The results correlated
with job execution time (Figure 11) show that Fair and MOMTH has the best cores
allocation scheme.

Fig. 3 Number of allocated cores for a node in Hadoop Cluster

Fig. 4 Allocated memory for a node in Hadoop Cluster

When a job uses more memory for map or reduce task, the simulator memory
will increase. We can clearly see (Figure 4) that FIFO and FAIR used more memory
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because they run the job with extra big input. This is another aspect which shows
that MOMTH do not run the tasks which exceeds the deadline, the budget or both
of them.

Fig. 5 Performance of resource provisioning in Hadoop Cluster

Fig. 6 Performance of resource reconfigure/update in Hadoop Cluster

Figures 5 and 6 presents the performance of resource provisioning and resource re-
configure/update in Hadoop Cluster. We can observe that the cost time for MOMTH
approach is similar with Fair and FIFO, but it is normal to be higher than the oth-
ers two because MOMTH compute dynamically the number of mapper and reducer
slots.
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Fig. 7 Tasks allocation scheme

Fig. 8 Cost for application setup in Hadoop Cluster

The jobs are submitted for all of them in the same order: job with the small
input first, then medium input, big and extra big. In case of, the jobs are executed
in the same ordered as they are submitted. In case of, the scheduler rearranges the
jobs because all of them should have access to the resource, even if one has more
input. Regarding MOMTH algorithm, the most important conclusion is that the
biggest job do not have permission to run. This is because the input is too big, so
the deadline and the budget will exceed the expected ones.

Figure 7 shows that all tested scheduling algorithms allocate in the same meaner
the tasks in the cluster, so there are no waiting tasks staying in a queue for a long
period of time.

These metrics present the time cost for each operation: allocate, node added, node
removed, node update, application added, application removed, container expired.
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Fig. 9 Cost for application finish in Hadoop Cluster

As you can see in figures, during the tests only three operations were done: node
added and node updates, application added and application removed. During the
entire execution time, the cost for these operations is lower in MOMTH case.

Figures 8 and 9 presents the performance of task setup in the Hadoop Cluster.
It is clear that MOMTH obtained the highest time but this is explained by the
complexity of the algorithm in steps 6-12 in Algorithm 1.

Fig. 10 Time cost for Scheduling Phase

The scheduler time cost is presented in Figure 10. The MOMTH obtained the
better performance due to the optimization criteria considered. The results are simi-
lar for FIFO and Fair schedulers because the approach of tasks scheduling is similar.
Correlated with results for application added, Figure 11 presents the start time,
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Fig. 11 Runtime for all scheduled tasks: start time, completion time and duration

completion time and duration for all scheduled tasks. The relative times are simi-
lar which means that we can obtain the same performance with multi-optimization
algorithm like a classical one.

6 Conclusions

This paper proposed a new algorithm named MOMTH, which focused on two objec-
tives: one is to find a multi-constrained and multi-objective algorithm and another
one is Hadoop framework. MOMC covers the most relevant constraints for Hadoop
(avoiding resource contention and having an optimal workload of the cluster) and
relevant objectives (deadline and budget). Based on the configuration, our new sched-
uler proved to execute only the correct jobs. This kind of scheduler is useful when you
have cost and time limitations. The killer application chosen to evaluate MOMTH
algorithm parses the million song Dataset and obtains various results and statistics.
It follows the mentioned limitations.

We considered the following model: all MapReduce jobs are independent (Iterated
MapReduce used for workflows will be considered as future work), there are no failure
of nodes before/during scheduling computation, the scheduling decision is taken only
based on current knowledge (learning from past iterations to swiftly compute the
scheduling in next generations will be considered as future work), the optimization
objectives are not considered to be “contradicting” (we will consider also this aspect
as future work). Another important aspect are the metrics used to evaluate MOMTH
algorithm. We used the existing ones implemented for the other basics algorithms,
which help us to compare between them. In the future, we are planning to research
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on this, to find relevant metrics for our own algorithm. In this way, we can better
show the importance of having a multi-objective and multi-constraint scheduling
algorithm. Other objective for MOMTH extension will be the support of di�erent
workflow models for enterprise information systems in the Cloud.
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