
Noname manuscript No.
(will be inserted by the editor)

Parallel High-dimensional Multi-objective Feature Selection for EEG
Classification with Dynamic Workload Balancing on CPU-GPU
Architectures

Juan José Escobar · Julio Ortega · Jesús González · Miguel Damas · Antonio F. Díaz

the date of receipt and acceptance should be inserted later

Abstract Many bioinformatics applications that analyse
large volumes of high-dimensional data comprise complex
problems requiring metaheuristics approaches with different
types of implicit parallelism. For example, although func-
tional parallelism would be used to accelerate evolutionary al-
gorithms, the fitness evaluation of the population could imply
the computation of cost functions with data parallelism. This
way, heterogeneous parallel architectures, including Central
Processing Unit (CPU) microprocessors with multiple super-
scalar cores and accelerators such as Graphics Processing
Units (GPUs) could be very useful. This paper aims to take
advantage of such CPU-GPU heterogeneous architectures to
accelerate Electroencephalogram (EEG) classification and
feature selection problems by evolutionary multi-objective
optimization, in the context of Brain Computing Interface
(BCI) tasks. In this paper, we have used the OpenCL frame-
work to develop parallel master-worker codes implementing
an evolutionary multi-objective feature selection procedure
in which the individuals of the population are dynamically
distributed among the available CPU and GPU cores.

Keywords Dynamic Task Scheduling ·Multi-objective EEG
Classification · Feature Selection · GPU · Heterogeneous
Parallel Architectures ·Memory Access Optimization

Acknowledgements Work funded by project TIN2015-67020-P (Span-
ish “Ministerio de Economía y Competitividad” and ERDF funds). We
would like to thank the BCI laboratory of the University of Essex, espe-
cially prof. John Q. Gan, for allowing us to use their databases, and the
anonymous reviewers for their useful comments and suggestions.

J.J. Escobar · J. Ortega · J. González ·M. Damas · A.F. Díaz
Dept. of Computer Architecture and Technology, CITIC, University of
Granada (Spain)
Tel.: +34-958248994
Fax: +34-958248993
E-mail: jjescobar, jortega, jesusgonzalez, mdamas, afdiaz{@ugr.es}

1 Introduction

Many bioinformatics applications involve high dimensional
data mining problems that comprise tasks such as classifi-
cation, clustering, optimization, and feature selection. Elec-
troencephalogram (EEG) classification is a good example of
those applications that process high-dimensional patterns and
require feature selection techniques to remove noisy, irrele-
vant features or to improve the learning accuracy and result
comprehensibility, especially whenever the number of fea-
tures in the input patterns is higher than the number of avail-
able patterns. The proposed approach to EEG classification
for BCI tasks [1] includes an evolutionary multi-objective
optimization algorithm and a clustering algorithm applied to
a set of high-dimensional patterns that could require high-
volume storage. Thus, as many other bioinformatics appli-
cations, the one here considered poses problems that show
different types of inherent parallelism.

This paper aims to provide an insight into the design of
efficient parallel procedures for high-dimensional classifica-
tion and optimization tasks, to be executed in heterogeneous
parallel architectures involving multiple general-purpose su-
perscalar multicore CPUs and accelerators (mainly GPUs).
As they constitute the present mainstream approach to take
advantage of technology improvements [2], their use has
been proposed in many previous papers on parallel meta-
heuristics and evolutionary computation [3–5]. Nevertheless,
the parallelization on a heterogeneous platform of a whole
data mining application with the characteristics of our target
application is less frequent in the literature. In our previous
papers [6,7], we proposed a multi-objective feature selec-
tion that implements both functional and data parallelism
which can be executed either in a GPU or in CPU multiple
superscalar CPU cores. Moreover, in [7] the effect of mem-
ory access optimization on GPU implementations has been
demonstrated. In the present paper, a heterogeneous parallel

2 Juan José Escobar et al.

approach that dynamically distributes the evaluation of the
individuals among both the GPUs and the CPU cores is pro-
posed, which is also able to efficiently take advantage of the
data parallelism available in GPUs. In addition, we analyse
the effects on the performance of memory accesses.

After this introduction, Sect. 2 describes the evolutionary
multi-objective optimization approach to the feature selec-
tion procedure whose implementation has been parallelized.
That section also summarizes the characteristics of the main
approaches to parallelize an evolutionary algorithm. Section
3 analyses the main issues related with the development of
efficient parallel evolutionary algorithms in heterogeneous
platforms, and the details of our proposed OpenCL [6] codes.
Then, Sect. 4 describes the experimental results and com-
pares the behaviour of the considered alternatives, Sect. 5
analyses previous works in this area to give an insight into the
context of the paper, and Sect. 6 summarises the conclusions.

2 Multi-objective feature selection

This paper deals with parallel processing of feature selection
in unsupervised classification of patterns characterised by a
high number of features. As the number of patterns to be clas-
sified is usually lower than the number of features, we have
to cope with a curse of dimensionality [8] problem. Thus,
the most relevant features should be selected to achieve an
adequate performance of the classifier, decrease the computa-
tional complexity of the classification and remove irrelevant
or redundant features. Nevertheless, optimal feature selection
is an NP-hard problem [9] that requires efficient metaheuris-
tics in high-dimensional classification problems. Here, we
apply multi-objective optimization to feature selection in ap-
plications with a large number of features and propose the
use of heterogeneous parallel architectures to accelerate it.

The use of multi-objective optimization in data mining
applications is surveyed in [10,11], and the benefits from
a multi-objective approach to feature selection in both su-
pervised and unsupervised classification have been reported
elsewhere [12–14]. Indeed, [14] shows that feature selec-
tion in unsupervised learning problems is inherently a multi-
objective problem. Moreover, as the number of involved
features in the applications here considered is large, a multi-
objective optimization approach would imply high computa-
tional costs, which is an important issue to be considered.

Figure 1 describes our approach for feature selection
in unsupervised classification of EEG patterns. A multi-
objective evolutionary procedure evolves a population of
individuals that codify different feature selections. Given a
feature selection (an individual in the population of the evolu-
tionary algorithm), the NP patterns included in the database,
DS, will be used to define the set of training patterns by choos-
ing the components corresponding to the number of features,

Fig. 1 Wrapper procedure for unsupervised feature selection by means
of evolutionary multi-objective optimization (and K-means clustering)

NF , selected. This way, the K-means algorithm has been ap-
plied to the NP patterns Pi = (p1

i , ..., pNF
i)(i = 1, ...,NP) to

determine the centroids Kt(j)(j = 1, ..,W) of the W possible
clusters (W is known in our EEG classification problem, and
it is equal to the number of classes). K-means is a well-known
clustering algorithm. Its steps are described below:

1. Set t = 0 and generate W initial centroids Kt(j)(j =
1, ..,W) (as many centroids as clusters or classes).

2. Assign each pattern to the nearest cluster.

Parallel High-dimensional MOFS for EEG Classification with Dynamic Workload Balancing on CPU-GPU Architectures 3

3. Get the new cluster centroids, Kt+1(j)(j = 1, ..,W).
4. If the end condition is not met (either changes are ob-

served in the position of the centroids, or a given number
of iterations have not been completed yet), set t = t +1
and repeat steps 2 and 3. Otherwise, conclude.

Once the clusters are built by including each pattern in
the cluster of its nearest centroid, the fitness of each individ-
ual in the population is evaluated by using two Clustering
Validation Indices (CVIs) [15], defined as:

f1 =
W

∑
j=1

1
|Ct(j)|

(
∑

Pi∈Ct (j)
∥Pi−Kt(j)∥

)
(1)

f2 =−
W−1

∑
j=1

(
∑
i> j
∥Kt(i)−Kt(j)∥

)
(2)

where (1) and (2) correspond, respectively, to the intraclass
and minus the interclass distances. In these equations, |Ct(j)|
is the number of patterns in the cluster Ct(j)(j = 1, ..,W)
whose centroid is Kt(j), and ∥Pi−Kt(j)∥ is the Euclidean
distance between the pattern Pi and the centroid Kt(j).

2.1 Application complexity

Taking into account Fig. 1, the K-means algorithm previously
described and the evaluation of the clustering objectives, the
following equations provide a quantitative model to under-
stand the complexity of the application:

TKmeans = N
(
WTDistNP +TW +

(
NP +W 2)TDist

)
(3)

TSeq ≈ G
(
ωN2TNs +NTEv +NrTNi +TKmeans

)
(4)

In (4), TSeq gives an estimation of the time required by
a sequential implementation of the code, G is the number
of generations executed by the multi-objective evolutionary
algorithm, and ω is the number of objectives (in our case,
ω = 2). TNs, TEv and TNi respectively correspond to the de-
termination of the non-dominated individuals (it requires the
comparison of the individuals of the population by using their
ω objectives); the application of the evolutionary operators
(mutation, crossover, etc.) either to the N individuals of the
population or to a subset of individuals in the population;
and the application of a procedure to maintain a uniform
distribution of individuals along the present Pareto front (the
complexity of these operations in the considered procedure
is taken into account through the exponent r). The last term
in (4) correspond to the execution of the K-means algorithm
and whose execution time is estimated in (3). K-means im-
plements the evaluation of the two objectives for each of the
N individuals of the population. In (3), TDist corresponds to
the computation of the distance between a pattern and a cen-
troid and TW is the time required to obtain the new centroids,

which depends on the number of patterns, NP (distributed
among the W clusters), and the number of components, NF .

Finally, the expression
(
NP +W 2

)
TDist estimates the cost

to compute the two objective functions, f1 and f2, respec-
tively, to obtain the distances between each pattern and its
nearest centroid, and the distances between each pair of cen-
troids. Both functions are defined in (1) and (2).

2.2 Alternative parallel implementations of evolutionary
algorithms

This way, we have to implement a multi-objective evolution-
ary algorithm where the evaluation of the cost functions of
the individuals in the population requires the execution of a
K-means algorithm per individual and generation.

There are two main strategies to parallelize an evolution-
ary algorithm. The first one takes advantage of the parallel
evaluation of the individuals in the population, and the second
alternative implements concurrent executions of evolutionary
algorithms on subpopulations. While the first alternative has
the same semantics as the sequential algorithm and is imple-
mented through a master-worker approach, the second one
changes the semantics of the sequential algorithm and could
be implemented by an island approach [16]. In what follows,
we present some details about the implementation of these
parallel models in a CPU-GPU heterogeneous architecture.

The parallel evaluation of the individuals could be imple-
mented on a GPU while the CPU executes the different steps
of the evolutionary algorithm. Thus, the GPU is used as a
coprocessor in a synchronous way and the population and
fitness structures should be transferred between the GPU and
the CPU. A drawback of this scheme is the number of copies
(a copy in each direction per generation) through a bus, with
worse bandwidth and latency than those provided by the CPU
memory bus. Moreover, in the application here considered,
the size of the dataset to be processed is usually large. The
copy of the dataset from main memory to the GPU memory
could also require a significant amount of time, although this
transfer only has to be done once.

In our target application (Fig. 1), the evaluation of the
cost functions for a given individual of the population implies
the execution of a K-means algorithm, being also possible
to accelerate it on GPUs. Thus, two parallelism levels have
been implemented in a GPU: the parallel evaluation of the
individuals and the parallel execution of the K-means to
compute the cost functions for each individual. The other
evolutionary algorithm steps are implemented in a CPU core.

The second parallel approach has not been implemented
here. As it implies the execution of concurrent evolutionary
algorithms on subpopulations, the evolutionary algorithm ap-
plied to each of the subpopulations assigned to a given GPU
should be implemented in parallel. Each subpopulation could

4 Juan José Escobar et al.

be implemented as a thread block, and each individual in the
subpopulation, as a thread. This way, the application of se-
lection, mutation, and crossover operators to the individuals
requires the use of barriers to synchronize the threads (that
implement the individuals). Although this approach could
reduce the data transfers between the CPU and GPU, the
synchronization requirements have to be taken into account.
Moreover, these parallel evolutionary algorithms do not show
the same functionality and alternatives as their correspond-
ing sequential ones. Otherwise, the GPU memory hierarchy
should be carefully managed. The global memory of the
GPU is not cached and its accesses mean many additional
cycles. The shared memory available for the threads in a
thread block should be used to store the data structures corre-
sponding to the subpopulation assigned to the thread block
while the global memory allows the communication among
subpopulations according to the devised migration policy.
The implementation of these strategies in GPUs can be found
in [3], including many details regarding the implementation
of the topology to exchange individuals between islands, the
selection of these migrants, the replacement/integration topol-
ogy and the migration criterion, besides the burden of SIMD
procedures to find the minimum, and the synchronization
between threads required by a synchronous island model.

The parallel procedure proposed here takes advantage of
GPU and CPU superscalar cores to accelerate the procedure
of Fig. 1. The procedure uses one CPU core as a master that
dynamically distributes the individuals evaluation among
GPU cores or other CPU cores. Thus, several individuals
could be evaluated in parallel in a GPU but this procedure
can be also used to implement the computation of the cost
functions by taking advantage of its inherent data parallelism.
From (3) and (4), in our parallel implementation, a CPU core
will determine the time ωN2TNs +NTEv +NrTNi, while the
processing of the TKmeans will be distributed among the avail-
able CPU and GPU cores. Of course, the parameters TDist and
TW have different values depending on if there are assigned
to a GPU or to a CPU core. In case of using a GPU core, the
computation corresponding to the expression WTDistNP +TW
is also parallelized by taking advantage of the data parallel
resources in the GPU. As the number of individuals in the
population is usually larger than the number of available
cores, the individuals are dynamically allocated to the cores
that have finished the computation of their previously as-
signed individuals. It has to be taken into account that as the
number of selected features in a solution (an individual) may
change, the time required to evaluate the individuals cannot
be predicted before executing the algorithm and the dynamic
scheduling of individuals is required to reduce the idle time
of cores once they have finished their assigned work.

In the next section, a more detailed description of our
proposed procedure is given whilst in Sect. 4 its experimental
behaviour is analysed.

Fig. 2 Elements of the OpenCL device (left block) and schematic
diagram of a GPU architecture (right block)

3 A heterogeneous parallel procedure for multi-objective
feature selection

In this section, we describe the parallel implementations we
have considered to take advantage of heterogeneous CPU-
GPU architectures. Subsection 3.1 introduces the correspond-
ing OpenCL terms, their relationships with the devices used
and the abstract memory model of OpenCL. Subsection 3.2
provides a description of our dynamic parallel implementa-
tion and finally, Subsect. 3.3 shows different strategies of
optimization, especially at memory level with the objective
of reducing computation time and memory consumption.

3.1 Hardware coprocessors and OpenCL

The GPU plays the role of a coprocessor connected, through
a bus, to a host including multiple superscalar CPU cores
that share the main memory. The basic computing elements
or cores of the GPU are the so-called Stream Processors
(SPs). They do not contain instruction units and are only able
to execute scalar operations. Several SPs along with one or
more instruction units and a register file comprise a multipro-
cessor, also called Streaming Multiprocessor (SMX). A GPU
can include multiple SMXs, which allow the simultaneous
execution of the same program on different data, i.e. Single
Program Multiple Data (SPMD) model. The threads are or-
ganized within thread blocks in such a way that all threads in
a block are assigned to a single SMX. Moreover, the blocks
are also partitioned into warps containing threads with con-
secutive and increasing identity numbers that start together at
the same program address. While the threads in a block are
able to cooperate and share the instruction unit and the reg-
ister file, threads in different blocks can only communicate
through the off-chip memory.

We have developed our codes on OpenCL [17] which
allows platform-independent parallel programming through
programs executed in a host that launch functions, called
kernels, to other OpenCL devices, such as CPUs or GPUs.

Parallel High-dimensional MOFS for EEG Classification with Dynamic Workload Balancing on CPU-GPU Architectures 5

Figure 2 relates the main GPU and OpenCL framework terms
and elements. A device in OpenCL is an array of function-
ally independent Computing Units (CUs) divided into work-
items, which are the minimum units of concurrent execution.
Several work-items can execute the same instruction over
different data items according to a Single Instruction Mul-
tiple Data (SIMD) model, and they can be also organized
as a work-group, in such a way that several work-groups
can be distributed and executed through the available CUs.
The GPU scheme previously shown can be translated to the
OpenCL terms. This way, the SMXs are Computing Units,
the SP cores are work-items, and the thread blocks are work-
groups. The abstract memory model of OpenCL defines mem-
ory spaces that also resemble the usual memory hierarchies.
Thus, the global memory (off-chip memory) is visible to all
Computing Units in the device, as the constant memory, in-
cluded in the global memory to store variables whose values
do not change. All work-items in a given work-group share
the corresponding local memory, while the private memory
is only accessed by a work-item.

3.2 Scheduler and kernels description

From Fig. 1 and Sect. 2, it is clear that our application in-
volves both evolutionary multi-objective and clustering al-
gorithms. In [16], we have proposed several approaches to
parallelize the application through different parallel evolu-
tionary multi-optimization options but we did not parallelize
the fitness computation for the individuals in the population.
Here, we consider this issue by taking advantage of the GPU
resources to run data parallel codes. Thus, as it is illustrated
in Fig. 3, we have implemented a master-worker parallel evo-
lutionary algorithm, in which a CPU core in the host is the
master that implements the steps of the multi-objective evolu-
tionary algorithm on the population. It also launches kernels
to the GPU and CPU cores, to evaluate the cost functions
of the individuals in the population. The master core also
calls the scheduler procedure to distribute dynamically the
evaluations among the GPU and GPU cores, using OpenMP
[18] directives. As it has been said, the GPU kernel imple-
ments two levels of parallelism: the parallel evaluation of
individuals in the population and the data parallel evaluation
of the cost functions for each individual.

Algorithms 1, 2 and 3 provide the pseudocodes corre-
sponding, respectively, to the scheduler running in the master
core that dynamically distributes the evaluations of individu-
als among the OpenCL kernels (running on CPU and GPU
devices), and the CPU and GPU kernels. At the beginning
of the program, the master core transfers the patterns whose
features are to be selected from the host to the GPU memory.
Moreover, to start each generation, the master core has to
send the individuals of the population to all OpenCL devices.
Once the cost functions have been evaluated, their values

Fig. 3 Scheme of the master-worker OpenCL parallel implementation
of the evolutionary multi-objective procedure for feature selection

are sent back to the master core. This way, considering a
node where the CPU codes share the main memory, there is
only a transfer of the patterns from the master core to the
GPU devices. The master core has to send the population
to the GPU devices once per generation. In each generation,
the master also transfers the indices of the individuals to be
evaluated, and takes the values of the evaluated functions,
respectively, to and from the corresponding devices.

The pseudocode in Alg. 1 describes the main steps of the
dynamic scheduling procedure to distribute the individuals
among the OpenCL devices (GPU or CPU cores). It forks a
thread per device to select the NC individuals to be assigned
to this device. In line 3 of Alg. 1, each thread transfers the in-
dices of the individuals assigned to each device if the device
is a GPU. Line 13 corresponds to the transfer of the corre-
sponding cost functions once they have been evaluated. Lines
5 and 6 correspond to an atomic access to the indices of the
individuals, through a pointer that is incremented according
to the number of individuals assigned to the device by the
corresponding thread.

The pseudocode in Alg. 2 corresponds to the CPU kernel
that sequentially evaluates the NC individuals assigned to the
core by the master. In this case, a work-group is composed by
only one work-item as the CPU kernel does not implement
data parallel processing as GPU. In fact, it would be possible
to develop a CPU kernel version which implements the SIMD
model to take advantage of vectorization. In OpenCL, it could
be implemented using the predefined data types (i.e. f loat2,
f loat4, f loat8 or f loat16) to process simultaneously 2, 4, 8
or 16 elements respectively.

Algorithm 3 shows the GPU kernel pseudocode to eval-
uate the fitness of the individuals (the intraclass and inter-
class distances defining the two cost functions of the multi-
objective optimization procedure). As it has been said, both
the CPU and GPU kernels evaluate individuals in parallel

6 Juan José Escobar et al.

Algorithm 1: Scheduler pseudocode. The evalu-
ation of the individuals are distributed among all
OpenCL devices using OpenMP threads
1 Function scheduler(S,N,D,ND)

Input :A possible solution for the problem, S
Input :Number of individuals N to be evaluated
Input :Object D containing the OpenCL devices
Input :Number of available OpenCL devices, ND
Output :S, the new solution for the problem

// Shared pointer between all OpenMP
threads

2 Ptr← 0

// OpenMP parallel section with ND devices
3 D j ← Copy S stored in the host if D j is a GPU
4 repeat

/* Atomic section to update the private
pointer and the shared pointer */

5 Priv_Ptr← Ptr
6 Ptr← Update the shared pointer

// Kernel execution
7 Init the kernel arguments
8 NC ← The chunk of individuals to be evaluated
9 if D j is a CPU then

10 SPriv_Ptr ← evaluationsCPU(S,NC,DS,K)
11 else
12 SPriv_Ptr ←

evaluationsGPU(S,NC,DS,K,DSt)
13 S← Copy SPriv_Ptr from D j

14 end

15 until all N individuals are evaluated;

16 S← normalization(S)
17 return S
18 End

by different work-groups, thus implementing the first level
of parallelism of the algorithm (line 3 in both algorithms).
Moreover, the GPU kernel also implements a second level
of parallelism as each work-group is composed by warps
of 32 work-items each in the case of the GPUs used for
the experimental part of this work. This second level of par-
allelism corresponds to the parallel implementation of the
K-means algorithm (lines 5-15 in Alg. 3). The expression
<< work-groupID,work-itemID >> defines the distribu-
tion of work-items in each work-group through the different
steps of the K-means algorithm in the GPU.

3.3 Optimizations

In what follows, we describe the main details of the proposed
GPU kernel that make it possible to take advantage of the data
parallelism available in the evaluation of the individuals. As it
has been seen in our previous paper [7], careful optimizations
in the use of the GPU memory hierarchy by the different data
structures would improve the performance with respect to

Algorithm 2: Pseudocode for the OpenCL CPU
kernel that evaluates a chunk of individuals of the
population
1 Kernel function evaluationsCPU(S,NC,DS,K)

Input :A possible solution for the problem, S
Input :Chunk of individuals to be evaluated, NC
Input :Dataset DS: NP training patterns of NF features
Input :Set K of W centroids randomly chosen from DS
Output : f1(S): intraclass distances in S according to (1)
Output : f2(S): interclass distances in S according to (2)

2 <<All work-groups,work-item 0>>
3 for i← 1 to NC individuals do

4 KC ← Create a copy of the centroids
5 Initialization of the mapping table, MT ← 0
6 repeat

7 MT ← Patterns in DS are assigned to the cluster
8 D← Store nearest distance for each pattern
9 Check if any pattern has changed its assignment

10 KC ← Update the centroids using the dataset DS

11 until stop criterion is not reached;

12 f1(S)← intraclass(KC,DS,D)
13 f2(S)← interclass(KC,DS)
14 end
15 return (f1(S), f2(S))
16 End

a more simple and direct allocation of such structures as it
has been done in our first GPU approach to feature selection
shown in [6]. In this paper, we also give a more complete
analysis about the extent to which these optimizations have
allowed efficient data parallel performances.

1. The CPU-GPU kernels receive the input parameters pro-
vided by the host code: the individuals of the population,
the dataset and the initial centroids for the K-means al-
gorithm. An individual, Si, is a one-dimensional array of
contiguous 0’s and 1’s (according to the selection or not
of the corresponding feature) stored in global memory.
In addition, in the GPU kernel, Si will be copied into
local memory (line 6 in Alg. 3) as this on-chip memory is
faster. The global memory used is SPop = N×NF bytes,
where N is the number of individuals and NF is the whole
number of features (among which the selection is to be
done). The datasets DS and DSt include the NP training
patterns, each characterized by NF features. Both sets
are stored in global memory due to their large sizes, in a
one-dimensional array of NP×NF elements normalized
by the host program. In DS the patterns are organized
in row-major order while column-major order is used
in DSt (DSt is the transpose of DS). Each dataset needs
SDB = 4×NP×NF bytes of global memory. Instead of
the W centroids randomly selected from the dataset, the
indices of these centroids are copied from the host mem-
ory to the GPU constant memory: the amount of constant
memory used is SW = 4×W bytes.

Parallel High-dimensional MOFS for EEG Classification with Dynamic Workload Balancing on CPU-GPU Architectures 7

Algorithm 3: Pseudocode for the OpenCL GPU
kernel that evaluates a chunk of individuals of the
population
1 Kernel function evaluationsGPU(S,NC,DS,K,DSt)

Input :A possible solution for the problem, S
Input :Chunk of individuals to be evaluated, NC
Input :Dataset DS: NP training patterns of NF features
Input :Set K of W centroids randomly chosen from DS
Input :Dataset DSt is DS in column-major order
Output : f1(S): intraclass distances in S according to (1)
Output : f2(S): interclass distances in S according to (2)

2 <<All work-groups,All work-items>>
3 for i← 1 to NC individuals do

4 <<work-groupID,All work-items>>
5 KL←

Copy the centroids from global to local memory
6 I← Copy individual Si from global to local memory
7 Initialization of the mapping table, MT ← 0
8 repeat

9 <<work-groupID,work-itemID >>
10 MT ← Patterns in DSt are assigned to the cluster
11 D← Store nearest distance for each pattern
12 Check if any pattern has changed its assignment

13 <<
work-groupID,All work-items>>

14 KL← Update the centroids using the dataset DS

15 until stop criterion is not reached;

16 <<work-groupID,work-item 0>>
17 f1(S)← intraclass(KL,DS,D)
18 f2(S)← interclass(KL,DS)
19 end
20 return (f1(S), f2(S))
21 End

Fig. 4 32 work-items copy data from global memory to local memory
providing coalescent access to global memory and minimizing the
memory bank conflicts

2. As the positions of the centroids are modified along the
iterations of the K-means algorithm (otherwise the K-
means algorithm finishes), it is necessary to copy each
centroid from global memory to local memory whenever
a new individual is going to be evaluated (line 5 in Alg.
3). The operations of lines 5 and 6 are executed in paral-
lel by all work-items of the corresponding work-group.
Thus we can benefit from coalescence, a technique in
which consecutive threads of a warp request data stored
in global memory, in consecutive logical addresses. This
technique aims to minimize the number of transaction

Fig. 5 work-items accesses to DS and DSt in the different steps of the
GPU kernel

segments requested from global memory by taking ad-
vantage of the memory bus width to get multiple data
in a single transaction. We have been able to use coales-
cence as consecutive work-items in the same work-group
request data stored in consecutive logical addresses of
the global memory. As Fig. 4 shows, the memory bank
conflicts in local memory are minimized. When the WI
work-items in the work-group process the first WI data,
the next WI data are repeatedly requested and processed,
until the whole dataset has been processed. In the CPU
kernel, the only work-item in a work-group sequentially
performs the copy of the centroids and individuals. The
centroids need SKl = 4×W ×NF bytes of local mem-
ory and each individual Si = NF bytes (W centroids, NF
features and 4 bytes per floating-point data).

3. The mapping table MT needs SMT = NP bytes of local
memory (NP is the number of patterns in the dataset
DS). This table contains the centroid assigned to each
pattern along the K-means iterations. The initialization
(line 7 in Alg. 3) is carried out by all work-items in
the same way as the previous initialization of centroids
and individuals. Each pattern only stores the index of
its corresponding centroid, K j. Moreover, through the
mapping table MT , it is easier to check the algorithm
convergence by taking into account whether a pattern
has been assigned to another centroid (line 12), instead
of doing that at the end of the iteration (if there are no
changes in the centroid assignments).

4. Each work-item has to find the nearest centroid for a spe-
cific pattern by using the Euclidean distances between
patterns and centroids. The dataset DSt is stored in the
GPU global memory to accelerate this task. The NP first
memory addresses of DSt store the values of the first fea-
ture for all patterns, the following NP memory addresses
store the values of the second feature, and so on. There-

8 Juan José Escobar et al.

fore, as each work-item handles a different pattern in a
given time, consecutive work-items will request consecu-
tive memory addresses, allowing fully coalesced access
to global memory. Moreover, when the nearest centroid
to a given pattern and the corresponding distance are ob-
tained, they can be written in, respectively, MT and D
with the minimum number of memory bank conflicts. Ar-
ray D is stored in local memory including the Euclidean
distances between each pattern and its closest centroid,
occupying a total of SD = 4×NP bytes.

5. The most complex step of K-means in terms of data
parallelization is the update of the centroids (line 14
in Alg. 3). Indeed, some approaches [19,20] directly
propose to perform this step sequentially in the host,
although the cost per iteration associated to transferring
the centroids to the host, processing them, and returning
them could be too high, specially in applications with
high-dimensional patterns. Thus, we use our GPU kernel
and assign each work-item to add the same feature of all
patterns belonging to the centroid in question. The dataset
DSt is not adequate as consecutive work-items compute
consecutive features. Now, DS is used because its first
NF memory addresses contain all the features of the first
pattern, the following NF addresses contain the features
of the second pattern, and so on. Thus, coalesced memory
access can be achieved and the memory bank conflicts are
minimized when a centroid is updated. Figure 5 shows the
relation between DS and DSt and the work-item accesses
to these structures according to the steps 2 and 3 of the
K-means algorithm.

6. The GPU and CPU kernels return the fitness values of
the individuals (lines 17 and 18 in Alg. 3), built from
two components, the intra-cluster and the inter-cluster
distances given in (1) and (2) of Sect. 2.

4 Experimental results

In this section, we analyse the performance of our OpenCL
(version 1.2) code, compiled with GCC 4.8.5 and running on
Linux CentOS 6.7, in a node with 32 GB of DDR3 memory
and two Intel Xeon E5-2620 HT processors at 2.1 GHz in-
cluding six cores per socket, thus comprising 24 threads. The
node also has a Quadro K200D with 2 GB of global memory,
64 GB/s as peak memory bandwidth and two SMXs, each
of them including 192 CUDA cores running at 954 MHz,
thus a total of 384 cores. Moreover, there is a Tesla K20c
with 5 GB of global memory, 208 GB/s as maximum memory
bandwidth, and 2,496 CUDA cores at 705.5 MHz, distributed
into 13 SMX, thus including 192 cores per SMX.

We have evaluated our proposed procedures on two
datasets, b3600a and b480a, containing 178 patterns ex-
tracted from the datasets recorded in the BCI Laboratory

Fig. 6 Mean hypervolumes for different numbers of maximum features
(10, 30, 60, 180, 360) initially set to 1. Population sizes of (120, 240,
480, 960) individuals, dataset b3600a and 50 generations

at the University of Essex [21], and corresponding to the sub-
ject coded as 110. Each pattern in the dataset corresponds to
an EEG trial. In the EEG signal obtained from each electrode,
several segments are defined, which are characterized by a
set of details and approximation coefficients belonging to
different levels of wavelets [22]. In our case, the databases
b3600a and b480a have 15 electrodes, 20 segments, and 6
levels, therefore there are 3,600 sets of coefficients, including
from 4 to 128 coefficients in each set. In addition, for each
set, as in [21], only one coefficient is built by computing the
second moment of the coefficient distribution (variance) in
each of the 3,600 sets, and normalizing the obtained value
between 0 and 1. This way, 2×15×20×6 = 3,600 features
constitute each pattern in the dataset b3600a, of which the
first 480 features define each pattern. We have repeated each
experiment 10 times, to apply Kolmogorov-Smirnov tests in
order to determine whether the data follow a standard normal
distribution or not. According to the result of this test, we
then apply either an ANOVA test if the data follow a normal
distribution or a Kruskal-Wallis test otherwise.

The implemented multi-objective optimization algorithm
NSGA-II [23] uses uniform crossover with a probability
of 0.75 and mutation by inversion of the selected bit with
a probability of 0.25, and selection by binary tournament.
In case of crossover, each bit of the parents’ chromosome
is exchanged with a probability equal to 0.5, and in case of
mutation, each bit is mutated with a probability equal to 0.099
if it is set to 0 or 0.001 if it is set to 1. The hypervolumes [24]
are obtained with (1,1) as reference point, and the minimum
values for the cost functions f1 and f2 are respectively 0 and
-1, i. e. (0,-1). Thus, the maximum hypervolume value is 2.

4.1 Comparison of kernels and hypervolumes

Figure 6 shows the mean hypervolumes obtained after 10 rep-
etitions per experiment for different codes and configurations.
After analysing the obtained hypervolume results, it has been
observed that there are no statistically significant differences
with respect to the results obtained by the sequential proce-

Parallel High-dimensional MOFS for EEG Classification with Dynamic Workload Balancing on CPU-GPU Architectures 9

Table 1 Memory (in bytes) used by (Ref) code [6] and our proposed code (Opt) in [7]. N, W , NF and NP are the number of individuals, centroids,
features and patterns respectively

Memory type Global Constant Local
Description Population Databases Centroids Individual Tables Distances

Array SPop SDB SW SKl Si SMT SD

Size Ref N×NF
4×NP×NF 4×W×NF 4×W×NF NF

3×W×NP 4×W×NP
Opt 8×NP×NF 4×W NP 4×NP

Total Ref N×NF +4×NP×NF 4×W×NF 4×W×NF +7×W×NP +NF
size Opt N×NF +8×NP×NF 4×W 4×W×NF +5×NP +NF

Fig. 7 Mean speedups achieved by the optimized GPU kernel with
respect to the GPU kernel in [6]. Population size of 960 individuals, 48
features initially set to 1, dataset b480a and (20, 50) generations

Fig. 8 Mean speedups with respect to only one work-item. Population
size of 240 individuals, 10 features initially set to 1, dataset b3600a and
50 generations

dures with the same number of individuals in the population
and generations. This is expected, as our OpenCL codes cor-
respond to alternative parallel implementations that keep the
behaviour of the base sequential algorithm. Moreover, com-
paring the different populations and number of generations,
there is not any statistical significance among the hypervol-
umes obtained by procedures with populations of more than
120 individuals and 50 generations. Thus, the differences of
mean hypervolumes in Fig. 6 are not statistically significant.

This way, we will analyse the experimental results ob-
tained with 50 generations and an initial population of indi-
viduals having 10 features set to 1 at most. As it has been said,
the parallel codes implement the optimizations described in
Sect. 3 with respect to a baseline parallel code evaluated in
[6]. Table 1 compares the memory requirements of both codes
and shows the relevant decrease in the memory requirements
achieved by the previously described optimizations.

Fig. 9 Speedups per number of SMXs. Population size of 240 individu-
als, 10 features initially set to 1, dataset b3600a and 50 generations

The GPU kernels which we have implemented here take
advantage of the coalescence technique and show better dis-
tributed memory access patterns. This way, the running times
measured for the GPU kernels are lower than the ones ob-
tained for the codes of [6] in all experiments accomplished
under the same conditions of SMXs and work-items. As an
example of the obtained results, Fig. 7 shows the speedups ob-
tained by the GPU kernels here considered (called optimized
kernels) with respect to the GPU kernels in [6] (known as
reference kernels) for different numbers of SMX multiproces-
sors and work-items, populations of 960 individuals, and the
dataset b480a (it has not been possible to run the reference
kernels with the size of the b3600a dataset due to its memory
requirements as the local memory consumption is very high).
As can be seen, in all cases, speedups higher than one are
obtained. Moreover, from 256 work-items, the amount of
time-cutting provided by the optimized GPU kernel grows as
more work-items are used, due to the effect of the applied coa-
lescence technique. The differences in the speedups obtained
for 512 and 1,024 work-items are statistically significant after
applying the Kolmogorov-Smirnov and the Kruskal-Wallis
tests. We have also applied the Kolmogorov-Smirnov and the
Kruskal-Wallis tests to analyse the statistical significance of
the differences in the running times of reference [6] and the
optimized ones. In all cases, the differences are statistically
significant, with p-values lower than 0.009.

On the other hand, Fig. 8 provides the speedups obtained
by the GPU kernels for different SMX multiprocessors and
work-items with respect to the running time of a work-item
in only one SMX multiprocessor. It can be seen that the

10 Juan José Escobar et al.

Table 2 Time values from execution traces in different platform configurations and 120 individuals in the population with database b3600a. The
Size column shows the number of individuals assigned each time by the master core

Device Size K-means Time (ms) Copy Time (TC) (ms) Bandwidth (GB/s) OpenCL Time (TCL) (ms) T. Time (TT) (ms) Ov(%)

Quadro 2 587.09 0.33 2.44 47.91 635.33 7.6
120 575.89 0.21 6.24 3.05 579.15 0.56

Tesla 13 263.7 0.23 4.85 11.29 275.22 4.18
120 257.37 0.21 6.26 3.07 260.65 1.26

Xeon 24 230.75 - - 7.95 238.7 3.33
120 229.05 1.64 230.68 0.71

Seq. 120 2,546.6 - - - 2,546.6 0

speedups grow with the number of SMXs and work-items.
To get some insight on the effect of the number of these
SMXs and work-items, Fig. 9 provides the speedups of Fig.
8 divided by the number of SMXs. As can be seen, these
speedups are quite similar for a given number of work-items
(there is only a slight decrease as the number of SMXs grows).
As the best speedup values for a given number of SMXs are
obtained for the maximum number of work-items, in the
following experiments we will use this number (1,024 work-
items) in the evaluations of the individuals done by the GPU
kernels.

4.2 Dynamic scheduler evaluation

4.2.1 Overhead analysis

Table 2 shows the time values obtained from traces of execu-
tion of the parallel procedure in the different devices, while
using their maximum number of available CPU cores, or
SMX processors in the Quadro and Tesla GPUs. For each
device, we have considered two different sizes of individu-
als assigned each time by the implemented scheduler (Alg.
1): the whole population and the maximum number of CPU
cores or SMX processors in the GPU. The column Ov(%)

gives the percentage of overhead time measured in each trace
evaluated as:

Ov(%) =
TC +TCL

TT
×100 (5)

where TC is the time to transfer the individuals to be eval-
uated between the master CPU core and the corresponding
device, TCL is the time required to setup and kill the corre-
sponding OpenCL kernel and TT is the execution time of the
parallel procedure. Table. 2 demonstrates that the percentage
of overhead is higher whenever the individuals are evaluated
after several assignations of individuals instead of sending
all the population once. Moreover, despite the lower percent-
age overhead per assignment of individuals in the Quadro
GPU with respect to the Tesla GPU (0.56% with respect to
1.26%), the percentage of overhead is higher in the Quadro
GPU when the master assigns as many individuals as SMXs
in the GPU, because the K-means time is much higher in

Quadro than in Tesla (the Quadro GPU only has 2 SMXs in
comparison to the Tesla one, which has 13 SMXs). However,
to compute the 120 individuals, the Quadro GPU consumes
7.6% of overhead in comparison to 4.18% of the Tesla. The
reason is that the Quadro GPU needs 60 kernel executions to
process the 120 individuals, and Tesla only 5.

Indeed, the overhead generated by the multiple calls to
the CPU and GPU kernels is quite high. It would be inter-
esting to explore other implementations that reduce such
overhead. A benchmark could be run at the beginning of
the program to study the relative performance between the
multiple devices running the program and apply that propor-
tion to the distribution of individuals. Despite being a good
optimization approach, the individuals distribution by using
this strategy is static. Our present approach provides a dy-
namic workload distribution. Although in our applications,
all parameters could be known a priori and we are using
heterogeneous platform with only two different processors
(CPU and GPU), a static strategy based on a cost analysis
of tasks in different CPU-GPU cores could be difficult to
apply to more heterogeneous platforms with several types
of cores. Moreover, other multi-objective feature selection
applications may have dynamic parameters at runtime where
static partitioning is not adequate or cannot be performed.
Indeed, we could change the stop criterion of our K-means
algorithm and to use the achievement of an error level. Our
intention is to give readers a general idea of how to perform
a dynamic distribution of “general data” using OpenMP to
be processed by heterogeneous devices such as CPUs and
GPUs. In problems with more irregular sizes of tasks, our
parallel procedure would be even better.

4.2.2 Performance and scalability

Figures 10, 11 and 12 provide results about the speedups
obtained by different platform configurations. We have de-
fined seven configurations according to the devices that can
be chosen by the master to assign evaluations of individuals
in the population. This way, we have configurations that in-
clude only CPU cores (“CPU cores”), SMXs in a GPU or
both GPUs (“Tesla”, “Quadro”, and “Tesla + Quadro”), het-
erogeneous configurations including CPU cores and SMXs

Parallel High-dimensional MOFS for EEG Classification with Dynamic Workload Balancing on CPU-GPU Architectures 11

(a) (b)

(c) (d)

Fig. 10 Mean speedups for different number of CPU threads, population sizes, and platform configurations: (a) CPU cores; (b) CPU cores + Quadro
GPU; (c) CPU cores + Tesla GPU; (d) CPU cores + Quadro + Tesla GPUs. 10 features initially set to 1, dataset b3600a and 50 generations

Fig. 11 Mean speedups for different number of CPU threads and plat-
form configurations. Population size of 960 individuals, 10 features
initially set to 1, dataset b3600a and 50 generations

of a given GPU (“CPU + Tesla”, “CPU + Quadro”), and
CPU cores and SMXs from Tesla GPU and Quadro GPU
(“All Devices”). In Figs. 10, 11 and 12, the evolutionary
multi-objective algorithm runs 50 generations and the indi-
viduals in the initial population are feature selections with
10 features at most. Populations of 120, 240, 480, and 960
individuals have been used in the experiments. Although in
the benchmarks used in this paper a population of 120 in-
dividuals provides hypervolumes results without significant
differences with respect to those provided by bigger popula-
tions, it is useful to consider them to analyse the scalability
of our proposal for other datasets that could require these
larger populations. In any case, a population including 120
individuals shows a similar behaviour to bigger populations
with respect to changes in the CPU-GPU configurations and

Fig. 12 Mean speedups for different configurations and population
sizes. 10 features initially set to 1, dataset b3600a and 50 generations

changes in the number of cores. As it has been said, each
time the master assigns individuals to be evaluated in the
GPUs, and the number of individuals assigned is equal to the
number of SMXs in the corresponding GPU: 2 for Quadro
and 13 for Tesla.

Figure 10 shows the speedup changes when increasing
the number of CPU threads in four configurations that use the
CPU to evaluate individuals. As can be seen, the speedups
grow as more threads are used except in the case of 13 threads,
because there are 12 CPU cores in the node and it has to be
taken into account that the scheduler also uses at least one
thread to assign individuals. The same effect can be seen as
we approach to 24 threads, which is the number of possible
CPU threads in the node.

The improvement in the speedups when the GPUs are
involved in the evaluation of individuals is shown in Fig. 11

12 Juan José Escobar et al.

considering a population of 960 individuals to illustrate the
behaviour. It clearly shows that the “All Devices” configu-
ration including CPU cores and SMXs from both Tesla and
Quadro GPUs (“CPU cores + Quadro + Tesla”), provides the
best speedups independently of the number of CPU threads
involved. The Quadro GPU only provides a small improve-
ment in the speedups with respect to the use of CPU cores
alone. It can be explained from the results in Tab. 2, that
show higher percentages of overhead time for this GPU. This
way, when 24 CPU threads are used to evaluate individuals,
it has to be taken into account that, along the higher overhead
involved in the use of the Quadro GPU, one CPU thread
is required to assign individuals to the GPU kernels. These
circumstances counter the effect of using the SMXs to accel-
erate the individuals evaluation. The speedup reduction as
we approach to 24 CPU threads is also apparent in the other
configurations involving the Tesla GPU, but this reduction is
not so high, and the speedup improvement still remains.

Following with the speedup curves shown in Fig 11, as it
has been previously said, in the “CPU cores” configuration
the speedup shows a reduction for 13 CPU threads because,
although there are only 12 cores in the node, the overhead
associated to the master thread only has a relatively low ef-
fect. Thus, the fact of having threads that share cores is not
apparent for 12 threads (12 threads used as workers and one
more as master thread) but for 13 (13 threads used as workers
and one more as master thread). This can be demonstrated
by taking into account that there is no speedup in case of 24
CPU threads (the maximum number of simultaneous threads
in the node is 24). In the configurations including GPUs,
there are also slight reductions in the speedups for numbers
of CPU threads near to 13 threads. In these curves (“CPU +
Tesla”, “CPU + Quadro” and “CPU cores + Quadro + Tesla”)
the reduction in the speedups is smaller and, in general, the
speedup curves are smoother due to the speedups provided
by the GPUs, that also take advantage of the data parallelism.
Moreover, although there are only 12 cores, there are two
simultaneous threads per core and there are still threads avail-
able to execute the master. The effect of higher overheads in
the configurations including GPUs is apparent if it is taken
into account that the highest speedups is shown for 23 CPU
threads in the “CPU + Tesla” and “CPU + Quadro” config-
urations, and for 22 threads in the “CPU cores + Quadro +
Tesla” configuration. As the overheads to assign workloads
and to communicate with the GPUs is higher, the cost of
the master thread is more important and the reduction in the
speedups is clear. In the case of the “CPU cores + Quadro +
Tesla” configuration, the master has to assign workload and
communicate with two GPUs, and the maximum speedup is
shown for 22 threads, i.e. two threads less than the maximum
number of parallel CPU threads in the node.

Figure 12 summarizes the highest speedups attained by
each platform configuration for different population sizes. It

Fig. 13 Mean speedups of platform configurations including GPUs
with respect to the use of CPU. Population size of 960 individuals, 10
features initially set to 1, dataset b3600a and 50 generations

clearly shows the improvement achieved as more OpenCL
devices can be used by the master to distribute the evaluation
of the individuals in the population. In addition, it has been
checked that the differences in the highest speedups attained
for a given population size are statistically significant among
all configurations (i.e. “All Devices”, “CPU + Tesla”, “CPU
+ Quadro”, “CPU cores”, “Tesla + Quadro”, “Tesla” and
“Quadro”). With respect to changes in the speedups as the
size of the population is increased, statistically significant
differences for populations with 480 and 960 individuals in
the “CPU + Tesla” configuration, and with 240, 480, and 960
individuals in the “All Devices” one have been observed.

Figure 13 shows, for a population of 960 individuals,
the mean speedups obtained by the platform configurations
including GPUs (“All Devices”, “CPU + Tesla”, and “CPU
+ Quadro”) with respect to the use of CPU cores alone. The
behaviours shown in Fig. 13 are similar for all the population
sets considered and correspond to improvements of at least
about 50% for the configuration including Tesla and Quadro
GPUs and about 35% for the platform including the Tesla
GPU. In the case of the platform including only the Quadro
GPU, as it has been indicated before, the speedups could be
less than one in the case of using 24 CPU threads, although
the values obtained are larger than 0.9.

Nevertheless, with all considered populations, to get the
speedups attained by the 2 SMX processors of the Quadro
GPU, the 13 SMX processors of the Tesla GPU and the 15
SMX processors of the Tesla + Quadro GPUs, respectively
5, 19, and 23 CPU threads are required in the configuration
using only CPU cores. This does not mean that CPU cores
are worse but the usefulness of data parallelism implemented
in our GPU kernel. It has to be taken into account that vec-
torization could be also implemented in the CPU kernel to
take advantage of the SIMD available in the CPU cores. In
this case, even better speedups may be obtained, as we will
check in future versions of our procedure.

Despite the high floating-point peak performance of the
GPU, about 3,524 GFLOPS [25], which is also much higher
than the 120 GFLOPS of the E5-2620 processor [26], it is

Parallel High-dimensional MOFS for EEG Classification with Dynamic Workload Balancing on CPU-GPU Architectures 13

quite difficult to reach speeds near the GPU peak perfor-
mance. On the one side, the GPU performance is greatly im-
paired by the conditional branches (if-then-else statements)
of the code, causing the work-items of the same warp in
the if branch and the work-items in the else branch to wait
for each other. Moreover, synchronizations between work-
items and the copy of the individual to be evaluated also
decreases performance. These drawbacks are not present in
CPU as there is only one work-item per individual and no
extra copy of the individual is needed because RAM memory
is accessed directly. Moreover, the problem with synchro-
nization of work-items in conditional instructions does not
appear either in the CPU cores. Nevertheless, it has to be
taken into account that, as it has been said, we have not used
vectorization in the CPU cores, and our GPU kernel allows
us to take advantage of the data parallelism available in the
GPU. Despite less individuals can be processed in parallel
in the GPU than in the available CPU cores, the achieved
speedups are similar in both configurations (only CPU cores
and only the GPU).

5 Previous related works

The procedure here considered includes an evolutionary
multi-objective optimization and a clustering algorithm ap-
plied to a set of high-dimensional patterns usually requiring
high-volume storage. The use of heterogeneous architectures
including data parallel architectures such as GPUs has been
proposed in previous papers. In [27,28] some approaches
are proposed to cope with some difficulties appearing in the
parallelization of algorithms frequent in data mining applica-
tions. Paper [27] proposes parallel approaches to problems
such as the presence of irregular patterns, the selection of the
K minimum or maximum elements in a given set or the high
dimension reduction problem, illustrating the effect of the
proposed approaches in widely used data mining algorithms
such as Apriori, K-Nearest Neighbor and K-means. Never-
theless, the parallelization on a heterogeneous platform of
a whole data mining application with the characteristics of
our target application is less frequent in the literature. Paper
[28] analyses the effect of factors such as the communication
patterns and the data partition on the performance of data
mining applications. Our approach takes advantage of hetero-
geneous platforms and uses both CPU cores and GPUs at a
given moment to speed up the application.

In paper [29], some strategies fuelling the trend towards
heterogeneous processors have been considered. That paper
also analyses the benefits of mechanisms to migrate tasks to
available cores, memory optimizations, and some optimiza-
tions to reduce the distance between producer and consumer
tasks through fine-grained communication. Precisely we have
shown, for example through the analysis of Fig. 11, the ef-
fects of overheads in platform configurations that need to

communicate with a GPU through a PCIe bus. Moreover, Fig.
7 clearly shows the effect of memory optimizations, and our
parallel codes also allow speedup improvements by dynam-
ically distributing the workload among the available CPU
cores and GPUs (e.g. Fig. 10).

Different approaches for GPU-based implementations of
evolutionary algorithms are analysed in [3], and the issue of
implementations of parallel metaheuristics on multicore plat-
forms has been surveyed in [4]. However, works analysing
the effect in the parallel performances of heavy fitness func-
tions requiring high-volume datasets are less frequent.

In general, for an evolutionary algorithm, as the evalua-
tion of the fitness can be independently done for each individ-
ual in the population, this step is usually implemented in par-
allel. Nevertheless, other steps in the evolutionary algorithms,
such as the individuals selection or the evolutionary operators
require interaction among individuals, thus involving some
kind of synchronization among the computing elements. This
way, two main researching lines can be distinguished among
the proposals on a GPU implementation of evolutionary al-
gorithms, i.e. a parallel implementation that shows the same
behaviour than the sequential one, and the implementation of
an evolutionary parallel algorithm tuned to the characteristics
of the GPU architecture. However, its characteristics could
be different from those of the corresponding sequential algo-
rithm. In this last alternative, an analysis of the suitability of
the attained solutions should be done.

Pospichal et al. [5] describes a CUDA implementation of
a parallel genetic algorithm based on an island model. The
paper provides new implementations of genetic operators
especially devised to be efficiently executed in the CUDA
architecture, and uses the main memory of the GPU to allow
asynchronous exchanges of individuals between subpopula-
tions interconnected according to a unidirectional ring topol-
ogy. This paper is an example of the approaches that modify
the evolutionary algorithm to reach a more suitable version
for the available GPU architecture and resources.

An alternative GPU implementation of the non-
dominance rank used in NSGA-II, the Archived-based
Stochastic Ranking Evolutionary Algorithm (ASREA), is
provided in [30]. It is based on an archive of distinct non-
dominated solutions that allow the evaluation of the rank of
a given solution as one plus the number of solutions in the
archive that dominate this solution. Using the ZDT3, ZDT4
and ZDT5 benchmarks with two objectives and a population
of 10,000 individuals, the results show speedups of about
5,000 for GPU implementations, with respect to a CPU im-
plementation of NSGA-II, although these speedups are low
with respect to the sequential implementation of ASREA.

Paper [31] provides a parallel GPU implementation of
a multi-objective evolutionary algorithm for a data mining
application on marketing that predicts potential prospects
from records of customers. This approach executes all the

14 Juan José Escobar et al.

steps of an NSGA-II algorithm in the GPU except for the non-
dominated selection, as it requires to sort the non-dominated
individuals according to their objectives, the number of el-
ements to be sorted varies, the efficiency of sorting a small
number of values in a GPU could be low, and there should be
many synchronizations and accesses to variables by different
threads. This way, besides the parallel implementation of the
independent fitness evaluation for the individuals in the popu-
lation, a fast procedure is proposed for the non-dominated se-
lection. With respect to the non-dominated sort, a procedure
is implemented to determine the number of individuals that
dominate a given one and the set of individuals dominated
by each individual, in parallel, without interaction among
kernels. The results provided by [31], from a dataset with
records of 361 components (only 17 selected variables are
finally used) corresponding to more than 100,000 customers,
show an overall GPU speedup of about 23 with respect to the
CPU implementation. In this application, the fitness evalua-
tion times are higher than the rest of steps of the application
(representing more than 98% of the execution time).

The parallelization of the K-means algorithm on a GPU
has been considered in many papers [32,33]. In [34], a
speedup factor of up to 68 is reported for a GeForce GTX
8800 Ultra, with respect to a base implementation (CPU at 3
GHz), and a dataset consisting of one million unsigned long
integers (4 bytes per element) defining 4,000 clusters. The
use of large datasets for K-means clustering is considered in
[35], where clustering is applied to datasets including one
billion patterns and 1,000 centroids, although they are only
bi-dimensional, and achieves a speedup factor of more than
11 with respect to an optimized CPU version executed on
8 cores. K-means for clustering higher dimensional data on
GPUs is considered in [36]. This paper provides experimen-
tal results by using datasets of up to 500,000 instances with
2, 20, and 200 dimensions and shows speedups of 1.5 to 14
with respect to a fully optimized C++ version that makes use
of the SIMD instruction set of the CPU (speedups of 4 to 43
with respect to a not fully optimized sequential version). It
also points out that performances are better as higher dimen-
sions and clusters are considered, and that many real-data
applications (such as the one here considered) process sparse
patterns that imply difficulties to apply memory coalescing
transformations, thus requiring specific procedures to be op-
timally implemented in GPUs. Paper [27] proposes a parallel
high dimension reduction scheme which is used to get an
efficient parallel GPU implementation for K-means.

With respect to other OpenCL implementations, the paper
[37] shows a genetic algorithm for feature selection in a bio-
metric recognition application. Although this paper does not
implement a multi-objective evolutionary algorithm, its ap-
proach follows a quite similar strategy to the one considered
in the present paper. Thus, the evaluation of the individuals
is implemented in parallel besides a new level of parallelism

related to the characteristics of the application. While paper
[37] takes advantage of the parallelism related to the pro-
cessing of the different classes involved in the application,
our procedure parallelizes the clustering algorithm and the
computation of the cost functions involved in the evaluation
of the individuals. Moreover, it can also benefit from both
GPU and CPU cores available in the platform.

6 Conclusions

Although many works in the literature have shown important
speedups achieved by different parallel evolutionary algo-
rithms implemented on GPUs, fewer details have been re-
ported about the benefits of such architectures in data mining
applications with irregularities in the data accesses, along
with high dimensional patterns and/or high volume data. This
paper proposed and evaluated a master-worker parallel multi-
objective procedure to a high-dimensional feature selection
problem related with EEG classification on BCI tasks. The
OpenCL parallel procedure here proposed allows a dynamic
workload distribution among the cores of heterogeneous plat-
forms including multicore CPU and GPU architectures.

The procedure includes a multi-objective optimization
evolutionary algorithm where the fitness evaluation for
a given individual implies the computation of two CVIs
through a K-means algorithm applied to the patterns of the
dataset. This way, we have implemented a master-worker
parallel algorithm in which a master CPU core distributes the
individuals evaluation among the available CPU cores and
GPU SMXs. The master core launches two different OpenCL
kernels. While the CPU kernel implements the individuals
evaluation through K-means, the GPU kernel allows not only
the parallel evaluation of individuals but also taking advan-
tage of the data parallelism available in K-means. This way,
the individuals are distributed among the SMXs of the GPU
and the K-means algorithm is parallelized among the work-
items in the SMXs. The use of the GPU memory hierarchy
has been optimized through some techniques among which
the coalescing of memory accesses and the minimization of
memory bank conflicts have been the most efficient ones.

From the accomplished experiments, we have demon-
strated the relevance of GPU memory optimizations to take
advantage of coalescing and decreasing memory contention,
which has allowed us to increase the achieved GPU speedups
from 20% up to 80% when 1024 work-items are used, with
respect to a first GPU kernel previously provided in [6]. It is
clear that platform configurations comprising both GPUs and
CPU cores improve the speedups provided by the parallel
codes executed either on CPU cores or GPU only. More-
over, in all platform configurations, the results show good
behaviour for scalability as the CPU threads increase up to
the maximum number of threads in the CPU.

Parallel High-dimensional MOFS for EEG Classification with Dynamic Workload Balancing on CPU-GPU Architectures 15

Despite the relatively good results shown in this paper,
we are exploring other strategies to increase the efficiency of
heterogeneous parallel architecture, which are related to the
improvement of core, cache efficiencies and the power-aware
scheduling. Indeed, energy consumption offers a good ap-
proach to evaluate efficiencies in heterogeneous architectures.
Moreover, the implementation of evolutionary subpopula-
tions through island approaches could offer new insights into
the possibilities of heterogeneous parallel architectures.

References

1. Rupp, R., Kleih, S., Leeb, R., Millan, J., Kübler, A., Müller-Putz,
G.: Brain-computer interfaces and assistive technology. In: Grübler,
G., Hildt, E. (eds.) Brain-Computer-Interfaces in their Ethical, So-
cial and Cultural Contexts, pp. 7–38. The International Library of
Ethics, Law and Technology, Springer (2014)

2. Collet, P.: Why gpgpus for evolutionary computation? In: Tsutsui,
S., Collet, P. (eds.) Massively Parallel Evolutionary Computation
on GPGPUs, pp. 3–14. Natural Computing Series, Springer (2013)

3. Luong, T., Melab, N., Talbi, E.G.: Gpu-based island model for
evolutionary algorithms. In: Proceedings of the 12th Annual Con-
ference on Genetic and Evolutionary Computation. pp. 1089–1096.
GECCO’2010, ACM, Portland, OR, USA (July 2010)

4. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: Re-
cent advances and new trends. International Transactions in Opera-
tional Research 20(1), 1–48 (2013)

5. Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on
the cuda architecture. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner,
M., Ekárt, A., Esparcia-Alcazar, A., Goh, C.K., Merelo, J., Neri,
F., Preuß, M., Togelius, J., Yannakakis, G. (eds.) Proceedings of
the 13th European Conference on the Applications of Evolution-
ary Computation. pp. 442–451. EvoApplications’2010, Springer,
Istambul, Turkey (April 2010)

6. Escobar, J., Ortega, J., González, J., Damas, M.: Assessing parallel
heterogeneous computer architectures for multiobjective feature
selection on eeg classification. In: Ortuño, F., Rojas, I. (eds.) Pro-
ceedings of the 4th International Conference on Bioinformatics and
Biomedical Engineering. pp. 277–289. IWBBIO’2016, Springer,
Granada, Spain (April 2016)

7. Escobar, J., Ortega, J., González, J., Damas, M.: Improving memory
accesses for heterogeneous parallel multi-objective feature selec-
tion on eeg classification. In: Proceedings of the 4th International
Workshop on Parallelism in Bioinformatics. PBIO’2016, Springer,
Grenoble, France (August 2016)

8. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton
University Press (1961)

9. Guyon, I., Elisseeff, A.: An introduction to variable and feature
selection. The Journal of Machine Learning Research 3, 1157–1182
(March 2003)

10. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello,
C.: A survey of multiobjective evolutionary algorithms for data
mining: Part i. IEEE Transactions on Evolutionary Computation
18(1), 4–19 (2014)

11. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello,
C.: A survey of multiobjective evolutionary algorithms for data
mining: Part ii. IEEE Transactions on Evolutionary Computation
18(1), 20–35 (2014)

12. Emmanouilidis, C., Hunter, A., MacIntyre, J.: A multiobjective
evolutionary setting for feature selection and a commonality-based
crossover operator. In: Proceedings of the 2000 Congress on Evo-
lutionary Computation. CEC’2000, vol. 1, pp. 309–316. IEEE, La
Jolla, CA, USA (July 2000)

13. Handl, J., Knowles, J.: Feature subset selection in unsupervised
learning via multiobjective optimization. International Journal of
Computational Intelligence Research 2(3), 217–238 (2006)

14. Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.: Unsupervised
feature selection using multi-objective genetic algorithms for hand-
written word recognition. In: Proceedings of the Seventh Inter-
national Conference on Document Analysis and Recognition. pp.
666–670. ICDAR’2013, IEEE (August 2003)

15. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J., Perona, I.:
An extensive comparative study of cluster validity indices. Pattern
Recognition 46(1), 243–256 (2013)

16. Kimovski, D., Ortega, J., Ortiz, A., Baños, R.: Leveraging co-
operation for parallel multi-objective feature selection in high-
dimensional eeg data. Concurrency and Computation: Practice and
Experience 27(18), 5476–5499 (2015)

17. Khronos Group: Khronos opencl registry. https://www.
khronos.org/registry/cl/ (Accessed: 2015-11-30)

18. OpenMP Community: Openmp specifications. http://www.
openmp.org/specifications/ (Accessed: 2016-11-21)

19. Gunarathne, T., Salpitikorala, B., Chauhan, A., Fox, G.: Optimiz-
ing opencl kernels for iterative statistical algorithms on gpus. In:
Proceedings of the Second International Workshop on GPUs and
Scientific Applications. pp. 33–44. GPUScA’2011, Galveston Is-
land, Texas, USA (October 2011)

20. Dhanasekaran, B., Rubin, N.: A new method for gpu based ir-
regular reductions and its application to k-means clustering. In:
Proceedings of the Fourth Workshop on General Purpose Process-
ing on Graphics Processing Units. pp. 729–737. GPGPU-4, ACM,
Newport Beach, California, USA (March 2011)

21. Asensio-Cubero, J., Gan, J., Palaniappan, R.: Multiresolution anal-
ysis over simple graphs for brain computer interfaces. Journal of
Neural Engineering 10(4) (2013)

22. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA (1992)

23. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimiza-
tion: Nsga-ii. In: Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature. pp. 849–858. PPSN VI,
Springer, Paris, France (September 2000)

24. Fonseca, C., López-Ibáñez, M., Paquete, L., Guerreiro, A.: Com-
putation of the hypervolume indicator. http://lopez-ibanez.
eu/hypervolume (Accessed: 2015-11-30)

25. Nvidia Corporation: Nvidia tesla k20c datasheet.
http://www.nvidia.com/content/tesla/pdf/
nvidia-tesla-kepler-family-datasheet.pdf (Accessed:
2017-05-17)

26. Intel Corporation: Intel xeon processor e5-2600 series specifica-
tions. http://download.intel.com/support/processors/
xeon/sb/xeon_E5-2600.pdf (Accessed: 2017-05-17)

27. Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., Shi, Y.: Parallel
data mining techniques on graphics processing unit with compute
unified device architecture (cuda). The Journal of Supercomputing
64(3), 942–967 (June 2013)

28. Gainaru, A., Slusanschi, E., Trausan-Matu, S.: Mapping data min-
ing algorithms on a gpu architecture: A study. In: Kryszkiewicz,
M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) Proceedings of the
19th International Symposium. Foundations of Intelligent Systems.
pp. 102–112. ISMIS’2011, Springer Berlin Heidelberg, Warsaw,
Poland (June 2011)

29. Hestness, J., Keckler, S., Wood, D.: Gpu computing pipeline ineffi-
ciencies and optimization opportunities in heterogeneous cpu-gpu
processors. In: Proceedings of the 2015 IEEE International Sympo-
sium on Workload Characterization. pp. 87–97. IISWC’15, IEEE
Computer Society, Atlanta, GA, USA (October 2015)

30. Sharma, D., Collet, P.: Implementation techniques for massively
parallel multi-objective optimization. In: Tsutsui, S., Collet, P.

16 Juan José Escobar et al.

(eds.) Massively Parallel Evolutionary Computation on GPGPUs,
pp. 267–286. Natural Computing Series, Springer (2013)

31. Wong, M., Cui, G.: Data mining using parallel multi-objective
evolutionary algorithms on graphics processing units. In: Tsutsui,
S., Collet, P. (eds.) Massively Parallel Evolutionary Computation
on GPGPUs, pp. 287–307. Natural Computing Series, Springer
(2013)

32. Baramkar, P., Kulkarni, D.: Review for k-means on graphics pro-
cessing units (gpu). International Journal of Engineering Research
& Technology 3(6), 1911–1914 (2014)

33. Kijsipongse, E., U-ruekolan, S.: Dynamic load balancing on gpu
clusters for large-scale k-means clustering. In: Proceedings of the
9th International Joint Conference on Computer Science and Soft-
ware Engineering. pp. 346–350. JCSSE’2012, Bangkok, Thailand
(May 2012)

34. Farivar, F., Rebolledo, D., Chan, E., Campbell, R.: A parallel im-
plementation of k-means clustering on gpus. In: Proceedings of the
International Conference on Parallel and Distributed Processing
Techniques and Applications. pp. 340–345. PDPTA’08, Las Vegas,
Nevada, USA (July 2008)

35. Wu, R., Zhang, B., Hsu, M.: Clustering billions of data points
using gpus. In: Hast, A., Buchty, R., Tao, J., Weidendorfer, J. (eds.)
Proceedings of the Combined Workshops on UnConventional High
Performance Computing workshop plus Memory Access Workshop.
pp. 1–6. UCHPC-MAW’09, ACM, Ischia, Italy (May 2009)

36. Zechner, M., Granitzer, M.: Accelerating k-means on the graph-
ics processor via cuda. In: Proceedings of the First International
Conference on Intensive Applications and Services. pp. 7–15. IN-
TENSIVE’09, IEEE, Valencia, Spain (April 2009)

37. Fazendeiro, P., Padole, C., Sequeira, P., Prata, P.: Opencl imple-
mentations of a genetic algorithm for feature selection in periocular
biometric recognition. In: Panigrahi, B., Das, S., Suganthan, P.,
Nanda, P. (eds.) Third International Conference on Swarm, Evolu-
tionary and Memetic Computing. pp. 729–737. SEMCCO’2012,
Springer, Bhubaneswar, India (December 2012)

Juan José Escobar received the
M.Sc. degree in computer science
from the University of Granada,
Spain, in 2014. Currently he is a
Ph.D. student at the Department of
Computer Architecture and Tech-
nology of the University of Granada.
His main research interests include
energy-efficient parallel and dis-
tributed computing, specially in is-
sues related with the development
of heterogeneous parallel codes for
evolutionary multi-objective feature
selection problems.

Julio Ortega received his B.Sc. de-
gree in Electronic Physics in1985,
M.Sc. degree in Electronics in 1986,
and Ph.D. degree in 1990, all from
the University of Granada, Spain.
His Ph.D. dissertation has received
the Award of Ph.D. dissertations of
the University of Granada. He was
at the Open University, U.K., De-
partment of Electronics (University
of Dortmund, Germany), and De-
partment of Computer Science and
Electrical Engineering (University
of Essex, UK), as invited researcher.
Currently he is a Full Professor at

the Department of Computer Tech-
nology and Architecture of the Uni-

versity of Granada. He has published more than 200 technical papers and
contributions to international conferences. His research interests include
parallel processing and parallel computer architectures, multi-objective
optimization, artificial neural networks, and evolutionary computation.
He is Senior Member of the IEEE Computer Society.

Jesús González received the
M.A.Sc. degree in Computer
Engineering in 1997 and the Ph.D.
degree in 2001, both with honors,
from the University of Granada,
Spain. He is currently an Associate
Professor within the Department
of Computer Architecture and
Computer Technology in the
University of Granada. His current
areas of interest are related to
the fields of embedded systems,
neural networks, and evolutionary
computation.

Miguel Damas received the M.Sc.
degree (1991) and Ph.D. degree
(2000) in computer engineering,
both with honours from the Uni-
versity of Granada (Spain). Asso-
ciate professor in the Department
of Computer Architecture and Com-
puter Technology of the University
of Granada from 2001. He currently
teaches in the electrical engineer-
ing degree, in the computer engi-
neering degree, and in the Master
of Data Science and Computer En-
gineering. From 1990, he belongs to
the research group CASIP (Circuits

and Systems for Information Pro-
cessing) and has collaborated with

several companies in research and consultory activities. He has authored
more than 80 technical papers in areas of interest related to industrial
control and communications, human activity recognition systems, ma-
chine learning, and parallel programming for optimization problems.

Parallel High-dimensional MOFS for EEG Classification with Dynamic Workload Balancing on CPU-GPU Architectures 17

Antonio F. Díaz received the M.S.
degree in electronic physics in 1992
and the Ph.D. degree in 2001, both
from the University of Granada,
Spain. In 1993, he was at the
Institute National Polythechnique
of Grenoble, France as visitor re-
searcher. Currently, he is an Asso-
ciate Professor in the Department
of Computer Architecture and Tech-
nology, the University of Granada.
His research interests are in the
fields of: cluster computing, GPUs,
high performance mass storage and
parallel I/O.

