
 
Abstract— Due to the recent wide use of computational 

resources in cloud computing, new resource provisioning 
challenges have been emerged. Resource provisioning 
techniques must keep total costs to a minimum while meeting 
the requirements of the requests. According to widely usage of 
cloud services, it seems more challenging to develop effective 
schemes for provisioning services cost-effectively; we have 
proposed a novel learning based resource provisioning 
approach that achieves cost-reduction guarantees of demands. 
The contributions of our optimized resource provisioning 
(ORP) approach are as follows. Firstly, it is designed to 
provide a cost-effective method to efficiently handle the 
provisioning of requested applications; while most of the 
existing models allow only workflows in general which cares 
about the dependencies of the tasks, ORP performs based on 
services of which applications comprised and cares about their 
efficient provisioning totally. Secondly, it is a learning 
automata-based approach which selects the most proper 
resources for hosting each service of the demanded 
application; our approach considers both cost and service 
requirements together for deploying applications. Thirdly, a 
comprehensive evaluation is performed for three typical 
workloads: data-intensive, process-intensive and normal 
applications. The experimental results show that our method 
adapts most of the requirements efficiently, and furthermore 
the resulting performance meets our design goals. 

 
Index Terms—Cloud computing, cost, learning automata, 

resource provisioning, services, virtual machine. 
 

1. Introduction 
Cloud computing is a technology that provides various 

services such as Infrastructure-as-a-Service (IaaS) and 
Software-as-a- Service (SaaS) via related providers [1, 2]; 
these services are provided to cloud users as a pay-per-use 
basis model. Nowadays, enterprises prefer to lease their 
required services such as applications from related 
providers as online services instead of buying them as on-
premise ones [3], especially in the cases that the services 
are not needed for long use. Thus, a large number of 
applications that were running on users' desktops are 

transformed to SaaS services which run on the IaaS cloud 
providers [4]. The automated provisioning of these 
applications has many challenges [5, 6]; it is a significant 
step to satisfy the quality of services (QoS) which can 
increase the satisfaction of users as well. The cost of 
provided services is a dominant part of the providers' and 
users' satisfaction factor [7] which makes resource 
provisioning strategies more critical. The server cost is the 
most effective metric in the price of provided services [8]; 
as the hosting infrastructure costs are considered as the 
largest share of provisioning cost [9], cloud systems put the 
main burden on providers, and hence how to reduce the 
costs is an urgent issue for providers while provisioning. 
None of current cloud provisioning mechanisms provides 
cost-effective pay-per-use model for SaaS applications [1]. 

IaaS is a computational service model that has extra 
computing resources, such as processing power, storage, 
and network bandwidth [10] to provide resources to SaaS 
providers by the aim of virtualization technologies, which is 
one of the core technologies of cloud computing. Virtual 
machines (VMs), which are used to host the requested 
applications, share the available physical resources 
provided by IaaS providers [11]. The problem of VM 
placement has introduced as a crucial problem [10, 2, 12]. 
Optimizing the process of resource management is an 
effective way of decreasing service costs [8, 13, 14]. 
Resource management related problems include resource 
allocation, resource adaptation, resource brokering, 
resource discovery, resource mapping, resource modeling, 
resource provisioning and resource scheduling; these are 
discussed in [14]. Some of approaches that tackle this 
crucial issue include following. Dynamic SLAs mapping 
are considered to restrict the number of resource types [15] 
in a way to optimize costs with respect to the public SLA 
template. Resource provisioning approaches in cloud 
systems are addressed in different researches. In [4], 
provisioning of continuous write applications in cloud of 
clouds is proposed. In [16], cost-aware solutions for dealing 
with MapReduce workloads are discussed. To make an 
optimal provisioning decision in [10], the price uncertainty 
from cloud providers and demand uncertainty from users 
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are taken into account to adjust the tradeoff between on-
demand and over-subscribed costs. Optimizing the resource 
provisioning task by shortening the completion time for the 
users' tasks while minimizing the associated cost is 
performed by dynamic resources provisioning and 
monitoring approach in [17]. Moreover, the approach 
includes a new virtual machine selection algorithm called 
the host fault detection algorithm. Finally, in [9] a 
cooperative resource provisioning solution for four 
heterogeneous workloads: parallel batch jobs, web servers, 
search engines and MapReduce jobs are introduced. Live 
migration [18] as an important component of cloud 
computing paradigm provides extreme versatility of 
management. It is applied to load balancing approaches 
[19] to improve resilience and availability of services [20]; 
but it comes at a price of degraded service performance 
during migration. Transferring the memory image of 
service from the source host to the destination host is 
considered as migration process. It could be evaluated by 
computing the expected degradation in service level due to 
the bandwidth limitations while migrating services between 
VMs for load balancing. The cost of live migration process 
consists of determining when to migrate, deciding what 
services to migrate, determining where to migrate these 
services, the pre-copy phase cost, the down time cost, and 
cost of the amount of bandwidth to be used for the 
migration in each step [19, 20]. We do not address this 
issue as our main goal is to efficiently manage the cost of 
provide the cost request.  

It is to be noted that the existing optimization provisioni-
ng approaches for cloud solutions cannot deal with the 
application demands; besides, they are cost-aware resource 
provisioning approaches based on per-job optimization 
without considering different attributes of individual 
requirements for VMs placement. In this paper, we apply a 
learning-based provisioning approach that can allocate 
available VMs of SaaS providers of cloud to application 
demands. The providers, which denote SaaS providers in 
this article, deploy the applications on their particular 
platforms for providing to demanding users [21]. As 
providers are unaware of the conditions of requests, 
learning automata (LAs) are used in the process of 
provisioning to tackle the lack of information. We propose 
variable structure LAs in provisioning process of each 
provider to handle requests. According to the fact that 
applications comprised of different services, like security 
services, database services and etc, LAs find the optimal 
combination of VMs for hosting each service of the 
demanded application. All services of an application must 
be deployed on proper VMs to enable execution of the 
application. Thus, it is necessary to have the minimum 
requirements of each service before an application 
provisioned. In other words, if we have a request of n 
applications Appi, i=1..n, each with si services then the 
resource provisioning approach must consider the total 
requirements of 𝑖=1𝑛𝑠� services. Considering such property 
for applications makes us to care about this structure in 
comparison with two-tier structure of workflows. A 
resource provisioning approach for a workflow which 

comprises of n processes and dependencies between them 
produces the order of n processes based on their 
dependencies [22]. The required resources of processes are 
allocated based on the order determined by the scheduler; it 
is not needed to consider the requirements of all processes 
together [17], while in provisioning of an application there 
is no order between its services and they must be deployed 
based on their minimum requirements. Therefore, the 
provisioning approach of an application searches among 
available VMs and finds the most proper VM for each 
service of the application, which is performed by LA. 

 The main aim of this article is to represent a dynamic 
mechanism that facilitates the optimized resource 
provisioning process by the use of LAs. The unique benefits 
of our optimized resource provisioning (ORP) approach are 
as follows. First, unlike existing models that allow only 
workflows in general form of jobs and their dependencies, 
we provide a cost-effective resource provisioning solution 
for applications by considering the fact that, each 
application comprises of different services; the main 
challenge is to provision totally required services of an 
application. Secondly, ORP is a learning automata-based 
approach, which selects the most proper computing 
resources in form of VMs for hosting each service of the 
demanded application. It considers both cost and computing 
requirements, as the formalization of measures, for 
deploying applications based on their attributes; these are 
applied to LAs to assess the performance evaluation of the 
approach. Finally, comprehensive evaluations are 
performed for three typical application types: data-
intensive, process-intensive and normal applications. The 
simulations of ORP present its adaption to most 
requirements efficiently, while reducing the expected costs, 
and furthermore the resulting performance meets our design 
goals as well. 

The rest of this paper is organized as follows. Section 2 
presents the body of the article, i.e. the system model and 
assumptions of cloud computing environment. Section 3 
formalizes the resource allocation problem and introduces 
the proposed algorithm. The experimental setup and 
simulations for the performance evaluation of ORP are 
described in Section 4. Finally, Section 5 summarizes and 
concludes this article.  

2. System model 
The proposed optimized resource provisioning approach, 

named ORP, significantly improves cost-effective issues of 
providing the cloud services to users in form of 
applications. Cloud providers deploy the demanded 
applications of users on their particular infrastructures [21].  
It is to be noted that a provider does not know the upcoming 
requests in cloud environment. Therefore, it must make 
decisions based on current situations without any accurate 
long-term decisions. Thus, a decision maker is required to 
overcome such limits of variable and unknown situations. 
Our proposed approach makes optimal provisioning 
decisions based on current conditions by the use of LAs. As 
the process proceeds, the provider performs the optimal 
provisioning decisions based on the requests. According to 



current requests, the provider determines its way of 
resource provisioning to maximize its profit while 
satisfying users. In this section we firstly, describe 
primitives of learning automaton in Section 2.1; then, in 
Section 2.2, the proposed provisioning mechanism is 
generally presented; finally, the details of the mechanism is 
discussed, i.e. the performance factor of ORP while using 
LAs is formulated in 2.3. 

 
2.1 Learning Automata 

 
Learning automaton [23] is an automatic learning model 

which its learning relates to the way of collecting and using 
knowledge during its decision making. The learning process 
of each learning automaton has three main components: the 
LA, the Environment and the Reward/Penalty structure. 
They are briefly explained as follows. 

 
1) LA: The LA can be modeled in form of a quintuple as 

{Q, α, β, F(.,.), H(.,.)} [23], where: 
− Q is a finite set of internal states of LA as {q1, q2, …, 

qz}, where qt is the state of LA at instant t. 
− α is a finite set of actions of LA as {α1, α2 ...αr}, where 

αt is the action that the automaton has performed at 
instant t; note that α is the output of LA. 

− β is a finite set of replies of the environment after that 
the LA applies the action; β = {β1, β2, …, βm} where βt 
is the response of the environment at instant t; in other 
words, it is the input of LA. 

− F is a mapping function that maps the current state and 
the input of LA to the next state, i.e. Q × β → Q. 

− H is a mapping function that generates an action 
according to the current state and the input of the LA, 
i.e. Q × β → α.  

 
2) Environment: An environment is the medium in which 

the automaton functions. The environment can be 
mathematically modeled in form of a triple as {α, β, C} 
[23]; α and β are the set of inputs and outputs of the 
environment, respectively; C is a set of penalty probabilities 
that the environment considers for each of its inputs as {c1, 
c2 ,..., cr}. 

LA interacts with the environment in a feedback loop, as 
depicted in Fig. 1; in this interaction, the input of LA is the 
output of the environment and vise versa. The environment 
replies to the LA based on the selected action. LA updates 
the probabilities of its actions according to the environment 
responses. Updating is performed with a particular 
reinforcement scheme; the negative values of reinforcement 
indicate punishment, and positive values express reward. 

There are several models of LA defined based on the 
response set of the environment. Models in which the 
output of the environment can take only one of two values, 
0 or 1, are referred to as P-models. In such case, the value 
of 1 corresponds to an unfavorable response which means 
failure or penalty, while output of 0 denotes the action of 
LA is favorable. A further generalization of the 
environment, called Q-models, allows finite response sets 
that take finite number of values in an interval [a, b]. When 
the output of the environment is a continuous random varia- 

 

	
-ble with any possible values in an interval [a, b], is named 
S-model. 

Each LA uses the following equations to update the 
probabilities of its action set after receiving replies of the 
environment; for desired replies Eq. (1) is used and for 
undesirable replies, Eq. (2).  

 

, (1) 

	

. (2) 

 
Where, pi denotes the probability of selected action i; the 

parameter a is associated with reward response, and the 
parameter b is associated with penalty response; r is the 
number of available actions of LA. The equations are 
written in a way to let the probabilities in interval [0, 1] and 
�=1𝑟𝑝�=1 is true. 

LAs are used in problems faced by an agent that learns 
behavior through trial-and-error interactions with a dynamic 
environment [23]. It has proved effective behaviours in 
situations which the state of the environment is unknown 
and changes very quickly. In systems-science literature, 
learning automata are among the models that are employed 
successfully to tackle the problem of decision making under 
uncertainty [24]. The probabilities of taking different 
actions would be adjusted according to their previous 
successes and failures [25]. 

 
2.2 Provisioning Mechanism 
 
The model of our considered cloud is derived from [8]. 

In this model, cloud comprises of users who demands for 
applications, SaaS providers who provide the demanded 
application of the users on their leased VMs, and IaaS 
providers who provide virtual resources in form of VMs to 
SaaS providers. The operation of a cloud lies with the cloud 
provider. The cloud model enables the users to have a 
computing environment without investing a huge amount of 
money to build computing infrastructures. According to the 
considered cloud market model in [8, 15, 26], our proposed 
resource provisioning scenario comprised of users, SaaS 
providers (providers), and IaaS providers as well; the model  

 

Fig. 1 Interaction of a Learning automaton with 
an environment [23] 



 
is depicted in Fig. 2. Users demand applications from a 
provider. The provider hosts a set of applications on its 
virtual infrastructures, named virtual machines (VMs). 
Before the requests provided, computing resources have to 
be provisioned from providers. IaaS providers package the 
resource requirements of providers into VMs [10, 2, 3], and 
then services can be deployed on VMs in the same way as 
physical machines [3]. This way of provisioning enables 
independent services [27]. In other words, IaaS providers 
offer requested VMs to the SaaS providers. SaaS providers 
can buy new VMs while resource provisioning. This 
assumption causes some delays while provisioning; the 
delay is because of the time that IaaS providers require for 
preparing new VMs to SaaS providers, which is discussed 
in [16], with details. 

A user may demand different applications from a 
provider; in fact, users simply submit their requests of 
applications [10, 16]. Furthermore, they can specify some 
quality concerns which is known as service level agreement 
(SLA). There are a large number of commercial providers 
which may enter cloud market and offer a number of 
different types of applications [15]. It is clear that users 
choose providers which provide the application with the 
less price and acceptable performance. On the other hand, 
as providers pursue the profit, they try to attract as more 
users as possible, and thus, they must offer affordable 
prices with satisfactory performance. The providers have 
complete control on the attributes of virtual resources that 
are devoted to the requests. In this paper we have focused 
on resource provisioning process of providers to minimize 
the infrastructure cost by minimizing the cost of VMs 
which are required to handle the requests. Obviously, the 
providers must decrease the costs to have acceptable prices 
for services without losing the profits. 

The proposed resource provisioning model, which is 
applied to providers of the considered cloud market, is 
presented in Fig. 3. The depicted model of Fig. 3 is a SaaS 
provider, such as what presented in Fig. 2, by omitting 
users and IaaS providers; instead of users and IaaS 
providers of Fig. 2, a Request Pool and a Virtual Resources 
frame is considered, respectively. The Request Pool gets the 
requests from users; the Virtual Resources frame gets VMs 
from IaaS provider and stores in the provider for hosting the 
applications. 

As mentioned before, the provider’s goal is to maximize 
its profit while providing satisfactory services to the users 
with affordable prices and acceptable performances. The 
proposed approach of this research reaches the goal by 

descending the infrastructural costs which is performed by 
Provisioning System (Fig. 3). According to [8, 9], the 
server cost contributes the largest proportion of the total 
cost of provisioning services. Users determine their 
demanded software requirements, e.g., operating systems 
and applications [3]; they specify the performance of their 
requests by some predefined parameters which are 
determined by SLA. The provisioning system gets the 
requests, which are stored in Requests Pool, by 
communicating with Requests Interface.  Request Interface 
is placed under Requests Pool in the model depicted in Fig. 
3. Previously mentioned, applications are hosted on VMs, 
which are provided on a pay-per-use basis by IaaS 
providers. Each application comprises of several services; 
the application run by the aim of these services. As an 
instance, a CRM application, which is provided by different 
vendors such as Salesforce.com or Microsoft Dynamics, 
may need some services such as database, security, 
calculating and accounting to be able to run. Requests are 
related to an application demands, and they are formalized 
in form of applications as follows 

 
𝑅𝑒𝑞=𝐴����,�,𝑆��,𝜏. (3) 
	
Where, Req denotes a request stored in Request Pool; 

AppID is the identification of the application which is 
requested in Req; s is the number of services of which the 
request comprised; the list of the services of the demanded 
application of Req is stored in Srv, which is modeled as 
Srv=[VMSrv1,VMSrv2,…,VMSrvs]; finally, τ denotes 
deadline of the application which is determined by the user. 
The services can be located on different VMs based on the 
VMSrv determined by Srv. Each of these services is 
supposed to be hosted on an individual VM. Since VMs 
have different properties, cloud providers have a limited set 
of available configurations [12]. A set of such 
configuration, which is determined by VMSrv in Srv, 
includes following properties as <VM type, Core, Memory, 
Storage, Throughput, Hour cost>, e.g., a user may request a 
VM as <'large', 3, 30 MB, 2048 MB, 100KB/s, 3.400$>. 
We consider the following formulation for introducing a 
VM, which is stored in Virtual Resources layer of 
providers, 

 
𝑉𝑀��=������,��������,𝐶�����,��������

�,		𝑇ℎ�������� ��,𝐻���	������. (4) 
 
VMij presents the properties of VM i stored in Virtual 

Resources of provider j. Sizeij depicts type of VMij, which 
can be small, medium, large, …. Coreij, used to presents the 
number of cores that VMij has; it is the computing power of 
VMij. Memoryij and storageij are mostly in Giga Bytes (GB). 
Throughputij denotes read/write network throughput of 
VMij; The cost of VMij per hour is hourcostij. The presented 
configuration of a VM introduced in Eq. (4) is based on 
Amazon EC2. List of VMs stored in Virtual Resources 
layer of provider i is called VMListi = {VMi1, VMi2, …, 
VMir}; r is the number of VMs available in the Virtual 
Resources of the provider. 

 

Fig. 2 Cloud computing market model [4] 
 



The requests, stored in Requests Pool, are forwarded to 
Provisioning System via Request Interface; the Request 
Interface is supposed as a gateway that handles the requests 
and the replies. The provisioning system decides to accept a 
request if there are sufficient resources available in Virtual 
Resources of the provider based on the parameters of the 
requests; if the provider accepts a request it must specify 
the most appropriate VMs to deploy it. 

 
2.3 Performance Factor 
The proposed provisioning system depicted in Fig. 3 has 

to specify the list of VMs that would better host the 
application. The process operates by the means of a 
learning scheme consisting of LAs. We used variable 
structure learning automata (LA) in each SaaS provider to 
find the best virtual machines (VMs) for deploying the 
current request including its services.  The LA updates the 
probabilities of taking the actions via learning algorithms to 
reach the best values of probabilities for current request. As 
the requests and also the available VMs in the provider 
change very quickly using LA to find the best VMs for each 
request is a useful approach in this scenario that can lead 
each automaton quickly converges to its optimal action. LA 
explore between the limited numbers of states including 
placement of services of the request on VMs of the 
provider. 

Analyzer plays the role of the environment described in 
Section 2.1; Analyzer can communicate with Resource 
Manager and Request Interface to get informed of the 
available Virtual Resources of the provider and properties 
of the current request. The actions of LAs, α, is the 
available VM of Virtual Resources. LA comprises LAs 
which select VMs according to the probabilities of the 
action set for each of the services in the requested 
application of the request. The selected VMs, αt, is passed 
to Analyzer as the action of LA at instant t. Then, Analyzer 
evaluates the action of LA to generate a reinforcement 
signal as its output. This reinforcement is firstly computed 
the performance factor named ρ. Then, it is evaluated by 
comparing with a predefined threshold. Since the proposed 
LAs are P-model one, thus, if ρ is less than the thresholds, 
the selected VM is rejected by the learning system; 
otherwise the learning system accepts the selected action. 

Suppose that LAs in LA select VMs 1 to s for hosting 
services 1 to s of the demanded application in the current 
request. LA passes αt=VM1 ... VMs, at instant t, to Analyzer; 
Analyzer evaluates the action by comparing the selected 
VM, with the requirements of service j; the result of the 
comparison is considered as the performance factor ρ, 
depicted in Eq. (5).  
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ρi
j is computed by considering both the offered 

computing resources of the allocated VM and the cost of 
the selected VM. It divides the summation of adaption of 
chosen VM with the related service by the cost of the 
chosen VM. pik denotes property k of VM i with the related 
property k of service j in the demanded application which is 
named as Serjk in Eq. (5). The considered properties of VMs 
and services are size, memory, storage, core, and 
Throughput of VMs as k = 1 .. 5, respectively. pi6 denotes 
per hour cost of VM i; in other words, pi6 introduces the 6th 
property of VM i as depicted in Eq. (4). 
ρi

j computes the performance factor for each service of 
the demanded application separately, as each service may 
be deployed on an individual VM. Analyzer which is aware 
of both the state of request via Request Interface and the 
available resources of the provider via Virtual Resources 
plays the role of the environment of LA in Provisioning 
System. LA updates the probabilities of its action set based 
on reinforcement signals of Analyzer. The update is 
computed based on the result of comparison of ρ of the 
selected VM with the threshold. Then the environment 
passes the rejection or acceptation of the particular VM to 
LA. The interaction of LA and the environment continues 
until the learning is converged (the probabilities of actions 
remain unchanged for a while or reach to predefined 
values), or the number of iterations reaches a maximum 
limit. It is obvious that the selected VM is omitted from 
action set after being chosen for the current service. Then, 
the process is repeated for next service of the application by 
reinitializing the values. Finally, a list of VMs is generated 
which are chosen for deploying the services of the 
requested application. The list is sent to Request Interface. 

Based on Eq. (5), VMs which have more compatibility 
with the requirements of the services and have less price 
must have more chance to be chosen by LA in subsequent 
runs of the provisioning system. The algorithm of resource 
provisioning system depicted in Fig. 3 is studied in details 
in following section. 

 

	
Fig. 3 The model of resource provisioning optimization 

considered in a SaaS provider 



3. The Provisioning Mechanism Formulation 
As previously mentioned, our proposed provisioning 

system uses LAs to find the most proper VM for hosting 
each service in the request. As mentioned before, after 
receiving a request by Request Interface, it is forwarded to 
Provisioning System; each request, Req, consists of s 
services and Provisioning System must run LAs for the 
services in Req. It is to be noted that LAs search in VMList 
of the provider and find the best VM for each service. Thus, 
the problem involves finding s VMs between r VMs of 
different properties existed in Virtual Resources of the 
provider, 1 ≤ i ≤ r, where each VM is available in a certain 
size VMSrvi, as introduced in Eq. (4) . The problem is to fill 
the requirements of Req, which consists of s fixed services, 
with SelectedVMList = [VM1, …, VMs] to yield a minimal 
value for the costs while mapping the requirements. Firstly, 
Provisioning System must solve the problem by deciding on 
which service would be better to host at first. Then, it must 
find the best VM for hosting that service. Since the aim of 
ORP is to optimize the performance and the cost of 
provisioned resources in cloud market, performance and 
cost compatibility model is defined in form of Eq. (5) to get 
the goal. The equation takes the attributes of the selected 
VM and the attributes of the request of the user as input 
variables to help to quantify the performance and the cost. 
The details of this process are presented in this section. 

Previously mentioned, a provider must offer satisfactory 
levels of performance guarantee for deploying demanded 
applications. In addition to the performance concerns, profit 
of the provider is a considerable factor in resource 
provisioning and providing the requested applications as 
well. Therefore, requests of users are the main revenue 
source of providers. The mechanism of our proposed 
provisioning system is applied in order to obtain the 
optimal VMs selection to increase the providers' profits. 
The reason is that, ORP finds the nearest VMs to the 
requirements of services with the lowest prices, which 
causes an optimal utilization of resources. 

Initially, the probabilities of actions of LAs are the same, 
signifying that any of the VMs is equally the same to be 
selected by the provisioning system. Thus, VMs are 
randomly selected; then, Analyzer calculates the 
performance of the selected action and sends a 
reinforcement signal to LA. The probability of the selected 
VMs is increased when the environment sends a favorable 
response to LA, i.e. if VM i of the provider is chosen for 
service j, then ρj

i is better than the threshold value; the 
probabilities of other VMs are decreased as well. 
Otherwise, the probability of the selected VM is reduced, 
while the probabilities of other VMs are increased; the 
response of the environment is unfavorable. Eqs. (1) and (2) 
are used for updating the probabilities of actions of LA.  

The provisioning strategy is presented in Algorithm 1. 
Table 1 summarizes key notations used in the algorithm. 
The providers, which can deploy the requested application 
on their VMs, run the algorithm. A provider can deploy the 
request if it has sufficient virtual resources based on the 
requirements of the demanded application; otherwise, the 
provider can buy new VMs from IaaS providers to provide 

the request. In this case, Virtual Resources of the provider 
is changed; thus, α is changed as well. In other hand, the 
user has to suffer a delay for virtual resources preparation 
which might not be acceptable in comparison with the time 
required for other providers to provide his/her request. As 
mentioned before, a large number of commercial providers 
currently exist in cloud market, offering a number of 
different types of applications [15]. 
The algorithm of Provisioning System consists of the 
process of interaction of LA and Analyzer (Figs. 1 and 3). 
The provider runs Algorithm 1 after receiving a request. At 
the end of Algorithm 1, a list of VMs, named 
SelectedVMList, is sent to Request Interface (Fig. 3) as the 
output of the algorithm. Firstly, the provider checks 
whether its available virtual resources, called VMs, can 
tackle the current request, Req, or not; in case that it cannot 
tackle (i.e. ~Tacke(VMs , Req) in Line 5) which means that 
the provider requires additional resources, negotiating with 
IaaS providers via function Negotiation(IaaS) starts. 
Finally, after provisioning new virtual resources, they are 
added to the current VMs in Line 7, by function Renew(). 
Then the main part of provisioning of requests starts; the 
algorithm runs for each service, named Srv, of the 
demanded application in Req, from Line 10. Besides, the 
process is executed in a loop which iterates until the model 
is converged (Lines 9-29) for each service in Req. The 
model is converged if the probability of a selected VM 
exceeds 95%, or ρ remains unchanged for several iterations. 
Otherwise, the process stops when it iterates for a 
maximum limit. When the probability of a VM converges 
to 1, then the selected action of LA is optimal and therefore 
the selected VM is the one that must be a part of the output 
of Provisioning System. In Line 12, function select(VMList) 
randomly selects a VM from the list of virtual resources of 
the provider named VMList based on the probability of 
VMs; this selection is the action of LA. Then, in Lines 14-
19, the selected action is evaluated to help to generate a 
reinforcement signal in Lines 24-27. Function Adapted(p,q) 
compares the values of  p and q, then, returns their 
difference as the compatibility of p to q; p relates to the 
attributes of the selected VM and q relates to the attributes 
of the considered service. The considered compatibility 
parameters size, core, mmry, strg, and trgp, which are size, 
memory, core, storage, and throughput, respectively, denote 
the compatibility of attributes of the allocated VM to the 
attributes of the considered service of the request. Then, in 
Line 19, a variable, named Total, is computed according to 
the values of compatibility parameters. The coefficients v1, 
v2, …, and v5 balance the compatibility parameters size, 
core, mmry, strg, and trgp based on the type of the 
requested application; e.g. in a data-intensive application 
the storage, memory and throughput are more important 
than the other factors. In other words, these coefficients 
enable us to compute the summation of compatibility 
parameters, which have different types. Total computes the 
compatibility of the chosen VM to the considered service 
based on all attributes of the requirements. 

 
 



 
After assessing the chosen VM, in Line 20, the algorithm 

computes the performance factor presented in Eq. (5). The 
Normalize(p) function in Line 20, converts the performance 
factor into the range of 0 and 1, as follows,  

 
𝑁��������(�)=p−AB−A.                       

(6) 
 
p is the main value of performance factor before being 

normalized; A and B are the minimum and the maximum 
values that p may take, respectively. The values of A and B 

 

are calculated based on the minimum and the maximum 
values of VMs in VMList of the provider, respectively. 
After normalizing the performance factor of the selected 
VM, updating the probabilities of the available actions is 
performed in Line 25 and 27 for favorable selection and 
unfavorable selection, respectively. As mentioned before, 
favorable and unfavorable selections are determined by 
comparing with some thresholds a>0 and b<1 which are 
determined according to the model in the experiments. 

4. Performance Evaluations 
In this section ORP is evaluated in terms of its 

economical resource provisioning decisions; the 
performance is compared with variety of systems. Section 
4.1 introduces the setting of simulated cloud market 
environment in a quantitative manner with descriptions of 
parameters setting. In Section 4.2, firstly, the efficiency of 
learning system used by provisioning system is analyzed; 
then, some comparisons with other approaches are 
discussed. 

4.1 Experimental Setup 
In this section, firstly the local test bed of experiments 

including the architecture of simulation model, the status of 
the providers, VMs, IaaS providers, and requests are 
introduced; then the parameters of LAs are discussed. 

4.1.1 Local test bed environment 
We have modeled providers of cloud computing in a 

discrete event simulation, for evaluating performance of the 
proposed approach. The simulation model is shown in Fig. 
4; it consists of a unit for arrivals of requests which is 
named Request Generator and forwards the requests to the 
Request Pool of providers, IaaS provider which provides 
infrastructural requirements of providers in form of VMs, 
and several SaaS providers equipped with different resource 
provisioning techniques which have two outputs, one for 
evaluating the performance of LAs and one for Comparison  

 

 

Table 1 
Parameter definitions and their values 

Variable Description 

Req A request in Request Pool of the provider 
Srvi Service i in the list Srv of Req 
VMSrvi Infrastructural requirements of service i 
s Number of services that Req comprises of 
VMi VM i in Virtual Resources of the provider 
VMi.Size Type of VMi 
VMi.Memory Memory of VMi 
VMi.Core Number of cores that VMi has 
VMi.Storage Storage of VMi 
VMi.Throughput read/write network throughput of VMi 
VMi.HourCost Cost of VMi per hour 
ρj

i Performance factor of selecting VMi for  
deploying Srvj 

b Parameter of penalty 
a Parameter of reward 
  
	

 
Algorithm 1 Algorithm of Resource Provisioning system 

The algorithm run by the providers which can deploy the services of requested 
application on their VMs. 
1     Inputs: 
2          Req  
3     Output: 
4          SelectedVMList 
5      if ~Tackle(VMs , Req) 
6          Negotiation(IaaS); 
7          VMs = Renew(); 
8     end 
9      repeat 
10    foreach srv in Reqi.Srv do 
11         repeat 
12             SelectedVMList[srv] = Select(VMList); 
13             // starts to evaluate the action of the chosenVM 
14            size = Adapted(SelectedVMList[srv].Size , srv.Size);      
15            mmry = Adapted(SelectedVMList[srv].Memory , srv.Memory); 
16            core = Adapted(SelectedVMList[srv].Core , srv.Core); 
17            strg = Adapted(SelectedVMList[srv].Storage , srv.Storage); 
18            trgp = Adapted(SelectedVMList[srv].Throughput , srv.Throughput); 
19            Total = v1×size + v2×mmry + v3×core + v4×strg + v5×trgp; 
20            ρ[srv, SelectedVMList[srv]] = Normalize  

(Total/SelectedVMList[srv].HourCost); 
21        until convergence occurs 
22    end foreach 
23    ρ = Sum(ρ); // according to Eq. (5) 
24    if ρ < b then 
25         Update the probabilities according to Eq. (1) 
26    if ρ > a then  
27         Update the probabilities according to Eq. (2) 
28    until convergence occurs               
29    end 	

Fig. 4 Simulation model 



Unit which compares ORP approach with other 
provisioning techniques applied to other SaaS providers. 
These techniques include GORPA [4], OCRP [10], and 
ORP without LA which selects VMs randomly.  

For the sake of simplicity, we have assumed that IaaS 
providers offer the computing resources to the available 
providers with configurations of instances of Amazon EC2 
(Feb 2017) depicted in Table 2. There are a rapidly growing 
number of SaaS providers which provide required 
applications of users [11]. Users can easily find the latest 
list of SaaS providers offering software solutions in their 
interested area. For our experiments, 15 providers are 
defined as the ones which use ORP approach for resource 
provisioning. In particular, when the algorithm converges, 
the required statistics are calculated to indicate the behavior 
of ORP on average. These providers initially own 
predefined number of VMs with configurations of VMs 
depicted in Table 2; the number of VMs exist in each 
provider is a random variable determined by uniform 
distribution (20, 50). It is assumed that IaaS provider offers 
unlimited amount of resources in terms of VMs, so the 
simulations are not face with shortage of VMs. As 
mentioned in Section 3, let VMList denotes the set of VMs 
available in the provider. It is assumed that each VM hosts 
a distinct service of the request of application (e.g., some 
VMs for database services and another for an individual 
web service); however, the solution can be also extended by 
omitting this assumption. It is to be noted that certain 
amount of physical resources is required for hosting 
provided VMs of IaaS providers. The VM instance is 
determined according to the required amount of resources 
of a VM [10]; some instances are presented in Table 2. The 
prices, in Table 2, are defined in dollars per resource unit 
for an hour in Windows usage.  

In our experiment, no probability distribution of arrival 
of requests is considered since they are stored in Request 
Pool and they are sent to providers per request.  We use 
Grid Workloads Archive (GWA), GWA-T-12 Bitbrains, 
from Delf University (http://gwa.ewi.tudelft.nl) as our 
workload traces [28]. It contains the performance metrics of 
1,750 VMs from a distributed datacenter from Bitbrains. 

 
Bitbrains is a service provider that specializes in managed 
hosting and business computation for enterprises. Each file 

of GWA-T-12 contains the performance metrics of a VM. 
In our experiments fastStorage is applied. 
The workload is entered to the model from Request 
Generator. GWA consists of different VM requirements 
of 1750 requests. Our evaluations use some of these 
requests and they are stored in Request Generator; they are 
sent to the providers in an offline manner one per request, 
and they are stored in Request Pool of the provider. The 
format of each request of application in GWA is compatible 
with the introduced metrics in Eqs. (3) and (4). 

As previously mentioned, the requests are in form of 
application; applications are software packages which 
consist of different services, e.g., operating system, 
database, and any other utility service. For simplicity we 
consider 20 types of applications, in GWA, that a user can 
demand. The licenses of applications are assumed to be 
purchased from software vendors by the providers; thus, 
users, instead of buying licenses, desire lease an application 
from the providers to save their budgets. The leased 
applications are needed to be hosted on the proper virtual 
resources of providers [10], named VMs. There is not large 
number of different types of VMs offered by providers; for 
instance, Amazon introduces only few derivations of their 
basic resource type [15]; Table 2 depicts offered instances 
of VMs in our experiments. The proper VMs are the ones 
which are compatible with the requirements of the 
demanded application. The user pays for the application 
according to the license cost of the application per running 
VMs [10]. The cost of a licensed application is determined 
based on the selected VMs. The required VMs of each 
service of the application are varied following GWA.  

 
4.1.2 Sensitivity analysis 
 

First, we start with a sensitivity analysis on the learning 
parameters α and β, in order to study their effects on the 
performance of the ORP and also to find the best value of 
them. To reach this, an input set with 50 requests is 
considered. Two main parameters of ORP algorithm are the 
reward and the penalty parameters of LAs, α and β, 
respectively. To achieve more certainty and to accelerate 
the convergence of the algorithm, these parameters can be 
varied from 0.7 to 0.9 and from 0 to 0.1, respectively in 
different experiments and the reported values are depicted 
in Fig. 5. The vectors of the chart in Fig. 5, which are 
marked with α, β and Iteration labels, indicate the reward 
and the penalty parameters of LAs and the average number 
of iterations required for convergence of LAs in 10 
different providers, respectively. Fig. 5 shows that the best 
value for α and β, which has the least number of iterations, 
is 0.8 and 0.05, respectively. 

Furthermore, the number of steps of LAs must be 
determined in order to stop the algorithm when the other 
convergence conditions are not accessed. According to Fig. 
5, it can be concluded that LAs find the solution and 
converge after approximately 200 steps, in average. 

 

Table 2 
Properties of VMs with the prices 

       Attr. 
Size  

VCPU Memory 
(GB) 

Storage 
(GB) 

Price per VM/$ 

t2.small 1 2 1×4 $0.026 /Hour 
t2.medium 2 4 1×4 $0.052 /Hour 
m3.medium 1 3.75 1×4 $0.070 /Hour 
m4.large 2 8 1×32 $0.1041 /Hour 
c3.large 2 3.75 2×16 $0.141 /Hour 
c4.xlarge 4 7.5 2×40 $0.2067 /Hour 
c4.2xlarge 8 15 2×80 $0.412 /Hour 
r3.large 2 15 1×32 $0.175 /Hour 
i3.large 2 15.25 1×32 $0.109 /Hour 
i3.xlarge 4 30.5 1×80 $0.218 /Hour 
i3.2xlarge 8 61 1×160 $0.436 /Hour 

 
	



 
 

4.2 Experimental results and analysis 

At the beginning of the simulation, the generated 
requests are sent to Request Pool. Then the requests are 
forwarded to Request Interface of the providers. Each 
provider tries to find the best combination of VMs for 
hosting the requests. At the end of the processing of all 
requests, some statistical data such as average number of 
rejected requests, utilization of VMs and cost of the 
provisioned resources are generated. We compare the 
performance of resource provisioning mechanisms depicted 
in Fig. 4, including ORP, GORPA [4], OCRP [10], and 
ORP without LA which selects VMs randomly. The results 
of the experiments are included a baseline as well. The 
input of baseline experiments is a set of predefined requests 
which is sent to Request Pool. Our performance evaluation 
is measured according to three performance metrics: the 
number of requests that are denied to be processed by the 
approaches as no VM is available; in this case the 
algorithms run without adding new VMs. The second 
evaluated metric is utilization of VMs, and the third one is 
the total provisioning cost. The experiments are designed to 
evaluate the values of these metrics in form of the outputs 
of Comparison Unit, in Fig. 4; Section 4.2.1 discusses the 
results of the evaluations of these metrics. In addition, a 
comprehensive evaluation of ORP is performed for three 
typical workloads: data-intensive, process-intensive and 
normal applications; it is discussed in Section 4.2.2. 

 
4.2.1 Comparison with other resource provisioning 
mechanisms 

The experiments use the values of parameters shown in 
Tables 1 and 2, with the same workload traces from GWA, 
for all provisioning approaches depicted in Fig. 4. 

It is to be noted that for evaluating the throughput and the 
QoS violation of our provisioning approach, a fix number 
of VMs is supposed to enable the comparison of the 
approaches more accurately [4]. However, in other 
experiments that performed for validating the evaluations of 
the proposed approach, such as costs and utilization, SaaS 

providers can take advantage of using VMs in an elastic 
fashion. 

We firstly compare the throughput and the QoS violation 
of ORP in comparison with GORPA introduced in [4], 
OCRP in [10], and LA-omitted ORP approaches of 
provisioning. In these two experiments, the same amount of 
virtual infrastructures in form of VMs is assumed for 
providers based on Table 2. Although the whole point of 
using VMs is to virtualize the infrastructure, and to request 
and release VMs on demand in an elastic fashion to adapt to 
the workload but in these experiments, it is assumed that 
the providers cannot take advantage of this in order to 
verify the throughput of the approaches and the average 
number of requests which cannot be processed by the 
approaches. Requests are classified into three classes 
depending on their resource requirements as in [4]: small, 
medium and high demand classes; some of the requests 
applied to the experiments are presented in Table 3, derived 
from GWA-T-12 Bitbrains. 

The results of this comparison are depicted on the bar 
chart of Fig. 7. It is shown that the throughput of ORP is 
more than other approaches. The reason is that in ORP, LAs 
find the most proper VMs amongst Virtual Resources of the 
provider; thus, the compatibility of the attributes of the 
VMs and the requests are well considered and many of the 
requests can be provisioned with a determined amount of 
virtual resources. While LA is used for finding the most 
proper VMs for a request there are little number of requests 
which cannot be processed and are rejected. The 
performance is better than both of GORPA and OCRP; 
GORPA is designed for continuous write applications and 
considers the shortest path in terms of data transmission 
cost between VMs. OCRP provisions based on reservations 
which does not performs well in these experiments in 
comparison with ORP. 

 

 
Fig. 5 The probability distribution of VMs during iterations of LA 

Table 3 
Properties of requests used for experiments of Fig. 7 

Request Services VCPU Memory 
(GB) 

Storage 
(GB) 

VMSrv1 1 1 1×4 Req Class1 VMSrv2 1 4 1×4 
VMSrv1 2 4 1×4 
VMSrv2 2 8 1×32 Req Class2 
VMSrv3 4 8 2×40 
VMSrv1 2 15 2×32 
VMSrv2 4 15 2×80 
VMSrv3 4 30 1×32 
VMSrv4 8 15 1×32 

Req Class3 

VMSrv5 8 30 1×80 
 
	



	
Utilization is another parameter which is used to evaluate 

the performance of the proposed approach. To compute the 
utilization of VMs of a provider the average CPU, memory, 
and disk for the set of VMs for each request is used.  

It is to be noted that if a provider allocates VMs to 
requests without considering the requirements then the 
utilization of the provider will be a low value; on the other 
hand if the compatibility of the requirements of the requests 
and the selected VMs is high then the provisioning 
approach will have a great utilization of its virtual resources 
as well. 

In this section we compare the utilization of virtual 
resources of providers while using ORP approach and 
OCRP [10], GORPA [4], and ORP without LA.	The results 
of this comparison, which are generated by Comparison 
Unit of simulation model depicted in Fig. 4, are represented 
in Fig. 8. 

 
Fig. 8 demonstrates that the utilization of ORP approach 

is more efficient than the utilization of others; the reason is 
that ORP is effective in all properties of a VM such as CPU 
cycle and memory allocation with high resource utilization; 
Provisioning System in ORP chooses a VM with the most 
adaption with the service requirements, in each iteration as 
introduced in Eq. (5). None of other approaches take care of 
attributes of VMs in addition to the hour costs of VMs 
while allocation a VM to a service in the request. 

The last metric considered in our experiments is the total 
cost of the selected VMs for deploying the requests. The 
comparisons of costs of provisioned VMs are performed 
between ORP, and OCRP [10] and GORPA [4]. Although 
we used the attributes of VMs presented in Table 2 for the 
previous experiments, for cost comparison in this 
experiment, the prices introduced in [10], are applied to 
compare the techniques in same conditions. The 
comparison of the cost is generated by Comparison Unit of 
simulation model depicted in Fig. 4; the results are 
represented in Fig. 9. It is obvious from the figure that our 
proposed resource provisioning approach, ORP, obtains 
better costs comparing with both OCRP and GORPA. The 
increase of costs with the growth of the requests is 
expected, which can be seen in Fig. 9. While the requests 
increase the differences of the total costs of ORP with the 
others are decreased; the reason is that ORP chooses VMs 
without considering any future model of requests, and the 
provisioning is performed in a way that the most proper 
VMs would be chosen based on the current requests. 
Therefore the provider must buy new resources and for this 
the provider may incur additional costs such as costs of new 
virtual resources offered by IaaS providers and costs of 
time waiting for the preparation of new VMs [4]. Thus, 
total costs might have higher prices for new requests as 
depicted in Fig. 9. 

 
(a) 

 
(b) 

Fig. 7 QoS evaluation (a) Throughput (b) number of rejected 
requests 

 
Fig. 8 Comparison between utilization of VMs  



	
4.2.2  Impact of ORP on typical application types: data-
intensive, process-intensive and normal applications 

In this section, the resource provisioning method has 
been evaluated for typical application types. We consider 
three general types of requests, i.e. the requests of data-
intensive applications, the requests of process-intensive 
applications and requests of normal applications. 
Specifically, we want to show that our model can 
effectively assign proper VMs to each type of requests 
privately, with respect to the application requirements, 
while keeping the costs low. Firstly, the requirements of 
each application type are discussed; then, a simple scenario 
to evaluate the performance of ORP based on the type of 
the requests is presented. 

For each type of application, a set of services with 
different requirements is needed. The applications which 
devote most of their execution time to computational 
requirements are deemed process-intensive, whereas 
applications which require large volumes of data and devote 
most of their processing time to I/O and manipulation of 
data are deemed data-intensive. Normal applications have 
both requirements of data processing and computational 
processes. Our traced workloads of these types are 
presented in Table 4.  

 
 

	
In Fig. 10, the evolutions of total number of requests that 
are processed by ORP are presented. As expected, in 
demands of normal applications the growth of costs is 
smoother while in data-intensive and process-intensive 
demands, the costs increase faster. Furthermore, since we 
consider that the virtual resources capacity of each provider 
is limited, the amount of VMs that each provider dedicates 
to the requests is bounded; this makes the total cost stop 
increasing after processing a number of requests. In Fig.10, 
more requests can be processed while requests are normal 
application types in comparison with two other types. The 
reason is that in two later cases, the proper VMs for data-
intensive and process-intensive applications finish before in 
normal application types demands, since special VMs are 
required in these two types. Therefore, also more increase 
of costs is seen in data-intensive and process-intensive 
demands in comparison with normal demands, the number 
of processed requests decrease as well.	

5. Conclusion 
Cloud computing has enabled new technologies to 

Software-as-a-Service (SaaS) providers and Infrastructure-
as-a-Service (IaaS) providers to offer applications online 
with pay per use model. These technologies make 
computing resources more powerful, and thus more 
efficient resource provisioning techniques must be 
involved. Current researches of resource provisioning 
approaches lacks of applications granularity; in this paper, 
we have proposed an optimized resource provisioning 
(ORP) approach in order to provide applications, which 
consist of different services, to users via virtual resources. 
Providers try to provide the application with an affordable 
cost while the performance is satisfying. ORP uses LAs on 
each provider to deploy each request on the best 
combination of VMs while saving the infrastructural cost. 
In this article, our proposed approach focuses on how to 
lower the resource provisioning cost while not severely 
degrading the performance metrics of services. A 
comprehensive evaluation is performed for three typical 
workloads: data-intensive, process-intensive and normal 
applications. The experimental results show that ORP 

 
Fig. 9 Cost comparison  

Table 4 
Properties of requests used for experiments of Fig. 7 

Request Services VCPU Memory 
(GB) 

Storage 
(GB) 

VMSrv1 1 15 2×40 
VMSrv2 1 30 1×32 Data-

intensive 
VMSrv3 2 60 1×80 
VMSrv1 4 2 1×4 
VMSrv2 8 4 1×4 Process-

intensive 
VMSrv3 8 8 2×16 
VMSrv1 1 4 1×4 
VMSrv2 2 8 1×32 Normal 
VMSrv3 4 15 2×80 

 
	

 
Fig. 10 Evolution of total costs in different types of demands 

with constant number of VMs 



efficiently adapts the infrastructural requirements, and the 
resulting performance meets our design goals as well. In 
general, averages of utilization and cost were improved; in 
addition the number of requests which can be processed by 
ORP are optimized. 
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