

Abstract— Due to the recent wide use of computational

resources in cloud computing, new resource provisioning
challenges have been emerged. Resource provisioning
techniques must keep total costs to a minimum while meeting
the requirements of the requests. According to widely usage of
cloud services, it seems more challenging to develop effective
schemes for provisioning services cost-effectively; we have
proposed a novel learning based resource provisioning
approach that achieves cost-reduction guarantees of demands.
The contributions of our optimized resource provisioning
(ORP) approach are as follows. Firstly, it is designed to
provide a cost-effective method to efficiently handle the
provisioning of requested applications; while most of the
existing models allow only workflows in general which cares
about the dependencies of the tasks, ORP performs based on
services of which applications comprised and cares about their
efficient provisioning totally. Secondly, it is a learning
automata-based approach which selects the most proper
resources for hosting each service of the demanded
application; our approach considers both cost and service
requirements together for deploying applications. Thirdly, a
comprehensive evaluation is performed for three typical
workloads: data-intensive, process-intensive and normal
applications. The experimental results show that our method
adapts most of the requirements efficiently, and furthermore
the resulting performance meets our design goals.

Index Terms—Cloud computing, cost, learning automata,

resource provisioning, services, virtual machine.

1. Introduction
Cloud computing is a technology that provides various

services such as Infrastructure-as-a-Service (IaaS) and
Software-as-a- Service (SaaS) via related providers [1, 2];
these services are provided to cloud users as a pay-per-use
basis model. Nowadays, enterprises prefer to lease their
required services such as applications from related
providers as online services instead of buying them as on-
premise ones [3], especially in the cases that the services
are not needed for long use. Thus, a large number of
applications that were running on users' desktops are

transformed to SaaS services which run on the IaaS cloud
providers [4]. The automated provisioning of these
applications has many challenges [5, 6]; it is a significant
step to satisfy the quality of services (QoS) which can
increase the satisfaction of users as well. The cost of
provided services is a dominant part of the providers' and
users' satisfaction factor [7] which makes resource
provisioning strategies more critical. The server cost is the
most effective metric in the price of provided services [8];
as the hosting infrastructure costs are considered as the
largest share of provisioning cost [9], cloud systems put the
main burden on providers, and hence how to reduce the
costs is an urgent issue for providers while provisioning.
None of current cloud provisioning mechanisms provides
cost-effective pay-per-use model for SaaS applications [1].

IaaS is a computational service model that has extra
computing resources, such as processing power, storage,
and network bandwidth [10] to provide resources to SaaS
providers by the aim of virtualization technologies, which is
one of the core technologies of cloud computing. Virtual
machines (VMs), which are used to host the requested
applications, share the available physical resources
provided by IaaS providers [11]. The problem of VM
placement has introduced as a crucial problem [10, 2, 12].
Optimizing the process of resource management is an
effective way of decreasing service costs [8, 13, 14].
Resource management related problems include resource
allocation, resource adaptation, resource brokering,
resource discovery, resource mapping, resource modeling,
resource provisioning and resource scheduling; these are
discussed in [14]. Some of approaches that tackle this
crucial issue include following. Dynamic SLAs mapping
are considered to restrict the number of resource types [15]
in a way to optimize costs with respect to the public SLA
template. Resource provisioning approaches in cloud
systems are addressed in different researches. In [4],
provisioning of continuous write applications in cloud of
clouds is proposed. In [16], cost-aware solutions for dealing
with MapReduce workloads are discussed. To make an
optimal provisioning decision in [10], the price uncertainty
from cloud providers and demand uncertainty from users

A Cost-Aware Mechanism for Optimized
Resource Provisioning in Cloud Computing
Safiye Ghasemi1, Mohammad Reza Meybodi2, Mehdi Dehghan Takht Fooladi2, and Amir Masoud

Rahmani1,3

1Computer engineering department, Science and Research Branch, Islamic Azad University, Tehran,
Iran.
2Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran,
Iran.
3Computer Science, University of Human Development, Sulaimanyah, Iraq.

are taken into account to adjust the tradeoff between on-
demand and over-subscribed costs. Optimizing the resource
provisioning task by shortening the completion time for the
users' tasks while minimizing the associated cost is
performed by dynamic resources provisioning and
monitoring approach in [17]. Moreover, the approach
includes a new virtual machine selection algorithm called
the host fault detection algorithm. Finally, in [9] a
cooperative resource provisioning solution for four
heterogeneous workloads: parallel batch jobs, web servers,
search engines and MapReduce jobs are introduced. Live
migration [18] as an important component of cloud
computing paradigm provides extreme versatility of
management. It is applied to load balancing approaches
[19] to improve resilience and availability of services [20];
but it comes at a price of degraded service performance
during migration. Transferring the memory image of
service from the source host to the destination host is
considered as migration process. It could be evaluated by
computing the expected degradation in service level due to
the bandwidth limitations while migrating services between
VMs for load balancing. The cost of live migration process
consists of determining when to migrate, deciding what
services to migrate, determining where to migrate these
services, the pre-copy phase cost, the down time cost, and
cost of the amount of bandwidth to be used for the
migration in each step [19, 20]. We do not address this
issue as our main goal is to efficiently manage the cost of
provide the cost request.

It is to be noted that the existing optimization provisioni-
ng approaches for cloud solutions cannot deal with the
application demands; besides, they are cost-aware resource
provisioning approaches based on per-job optimization
without considering different attributes of individual
requirements for VMs placement. In this paper, we apply a
learning-based provisioning approach that can allocate
available VMs of SaaS providers of cloud to application
demands. The providers, which denote SaaS providers in
this article, deploy the applications on their particular
platforms for providing to demanding users [21]. As
providers are unaware of the conditions of requests,
learning automata (LAs) are used in the process of
provisioning to tackle the lack of information. We propose
variable structure LAs in provisioning process of each
provider to handle requests. According to the fact that
applications comprised of different services, like security
services, database services and etc, LAs find the optimal
combination of VMs for hosting each service of the
demanded application. All services of an application must
be deployed on proper VMs to enable execution of the
application. Thus, it is necessary to have the minimum
requirements of each service before an application
provisioned. In other words, if we have a request of n
applications Appi, i=1..n, each with si services then the
resource provisioning approach must consider the total
requirements of 𝑖=1𝑛𝑠� services. Considering such property
for applications makes us to care about this structure in
comparison with two-tier structure of workflows. A
resource provisioning approach for a workflow which

comprises of n processes and dependencies between them
produces the order of n processes based on their
dependencies [22]. The required resources of processes are
allocated based on the order determined by the scheduler; it
is not needed to consider the requirements of all processes
together [17], while in provisioning of an application there
is no order between its services and they must be deployed
based on their minimum requirements. Therefore, the
provisioning approach of an application searches among
available VMs and finds the most proper VM for each
service of the application, which is performed by LA.

 The main aim of this article is to represent a dynamic
mechanism that facilitates the optimized resource
provisioning process by the use of LAs. The unique benefits
of our optimized resource provisioning (ORP) approach are
as follows. First, unlike existing models that allow only
workflows in general form of jobs and their dependencies,
we provide a cost-effective resource provisioning solution
for applications by considering the fact that, each
application comprises of different services; the main
challenge is to provision totally required services of an
application. Secondly, ORP is a learning automata-based
approach, which selects the most proper computing
resources in form of VMs for hosting each service of the
demanded application. It considers both cost and computing
requirements, as the formalization of measures, for
deploying applications based on their attributes; these are
applied to LAs to assess the performance evaluation of the
approach. Finally, comprehensive evaluations are
performed for three typical application types: data-
intensive, process-intensive and normal applications. The
simulations of ORP present its adaption to most
requirements efficiently, while reducing the expected costs,
and furthermore the resulting performance meets our design
goals as well.

The rest of this paper is organized as follows. Section 2
presents the body of the article, i.e. the system model and
assumptions of cloud computing environment. Section 3
formalizes the resource allocation problem and introduces
the proposed algorithm. The experimental setup and
simulations for the performance evaluation of ORP are
described in Section 4. Finally, Section 5 summarizes and
concludes this article.

2. System model
The proposed optimized resource provisioning approach,

named ORP, significantly improves cost-effective issues of
providing the cloud services to users in form of
applications. Cloud providers deploy the demanded
applications of users on their particular infrastructures [21].
It is to be noted that a provider does not know the upcoming
requests in cloud environment. Therefore, it must make
decisions based on current situations without any accurate
long-term decisions. Thus, a decision maker is required to
overcome such limits of variable and unknown situations.
Our proposed approach makes optimal provisioning
decisions based on current conditions by the use of LAs. As
the process proceeds, the provider performs the optimal
provisioning decisions based on the requests. According to

current requests, the provider determines its way of
resource provisioning to maximize its profit while
satisfying users. In this section we firstly, describe
primitives of learning automaton in Section 2.1; then, in
Section 2.2, the proposed provisioning mechanism is
generally presented; finally, the details of the mechanism is
discussed, i.e. the performance factor of ORP while using
LAs is formulated in 2.3.

2.1 Learning Automata

Learning automaton [23] is an automatic learning model

which its learning relates to the way of collecting and using
knowledge during its decision making. The learning process
of each learning automaton has three main components: the
LA, the Environment and the Reward/Penalty structure.
They are briefly explained as follows.

1) LA: The LA can be modeled in form of a quintuple as

{Q, α, β, F(.,.), H(.,.)} [23], where:
− Q is a finite set of internal states of LA as {q1, q2, …,

qz}, where qt is the state of LA at instant t.
− α is a finite set of actions of LA as {α1, α2 ...αr}, where

αt is the action that the automaton has performed at
instant t; note that α is the output of LA.

− β is a finite set of replies of the environment after that
the LA applies the action; β = {β1, β2, …, βm} where βt
is the response of the environment at instant t; in other
words, it is the input of LA.

− F is a mapping function that maps the current state and
the input of LA to the next state, i.e. Q × β → Q.

− H is a mapping function that generates an action
according to the current state and the input of the LA,
i.e. Q × β → α.

2) Environment: An environment is the medium in which

the automaton functions. The environment can be
mathematically modeled in form of a triple as {α, β, C}
[23]; α and β are the set of inputs and outputs of the
environment, respectively; C is a set of penalty probabilities
that the environment considers for each of its inputs as {c1,
c2 ,..., cr}.

LA interacts with the environment in a feedback loop, as
depicted in Fig. 1; in this interaction, the input of LA is the
output of the environment and vise versa. The environment
replies to the LA based on the selected action. LA updates
the probabilities of its actions according to the environment
responses. Updating is performed with a particular
reinforcement scheme; the negative values of reinforcement
indicate punishment, and positive values express reward.

There are several models of LA defined based on the
response set of the environment. Models in which the
output of the environment can take only one of two values,
0 or 1, are referred to as P-models. In such case, the value
of 1 corresponds to an unfavorable response which means
failure or penalty, while output of 0 denotes the action of
LA is favorable. A further generalization of the
environment, called Q-models, allows finite response sets
that take finite number of values in an interval [a, b]. When
the output of the environment is a continuous random varia-

	
-ble with any possible values in an interval [a, b], is named
S-model.

Each LA uses the following equations to update the
probabilities of its action set after receiving replies of the
environment; for desired replies Eq. (1) is used and for
undesirable replies, Eq. (2).

, (1)

	

. (2)

Where, pi denotes the probability of selected action i; the

parameter a is associated with reward response, and the
parameter b is associated with penalty response; r is the
number of available actions of LA. The equations are
written in a way to let the probabilities in interval [0, 1] and
�=1𝑟𝑝�=1 is true.

LAs are used in problems faced by an agent that learns
behavior through trial-and-error interactions with a dynamic
environment [23]. It has proved effective behaviours in
situations which the state of the environment is unknown
and changes very quickly. In systems-science literature,
learning automata are among the models that are employed
successfully to tackle the problem of decision making under
uncertainty [24]. The probabilities of taking different
actions would be adjusted according to their previous
successes and failures [25].

2.2 Provisioning Mechanism

The model of our considered cloud is derived from [8].

In this model, cloud comprises of users who demands for
applications, SaaS providers who provide the demanded
application of the users on their leased VMs, and IaaS
providers who provide virtual resources in form of VMs to
SaaS providers. The operation of a cloud lies with the cloud
provider. The cloud model enables the users to have a
computing environment without investing a huge amount of
money to build computing infrastructures. According to the
considered cloud market model in [8, 15, 26], our proposed
resource provisioning scenario comprised of users, SaaS
providers (providers), and IaaS providers as well; the model

Fig. 1 Interaction of a Learning automaton with
an environment [23]

is depicted in Fig. 2. Users demand applications from a
provider. The provider hosts a set of applications on its
virtual infrastructures, named virtual machines (VMs).
Before the requests provided, computing resources have to
be provisioned from providers. IaaS providers package the
resource requirements of providers into VMs [10, 2, 3], and
then services can be deployed on VMs in the same way as
physical machines [3]. This way of provisioning enables
independent services [27]. In other words, IaaS providers
offer requested VMs to the SaaS providers. SaaS providers
can buy new VMs while resource provisioning. This
assumption causes some delays while provisioning; the
delay is because of the time that IaaS providers require for
preparing new VMs to SaaS providers, which is discussed
in [16], with details.

A user may demand different applications from a
provider; in fact, users simply submit their requests of
applications [10, 16]. Furthermore, they can specify some
quality concerns which is known as service level agreement
(SLA). There are a large number of commercial providers
which may enter cloud market and offer a number of
different types of applications [15]. It is clear that users
choose providers which provide the application with the
less price and acceptable performance. On the other hand,
as providers pursue the profit, they try to attract as more
users as possible, and thus, they must offer affordable
prices with satisfactory performance. The providers have
complete control on the attributes of virtual resources that
are devoted to the requests. In this paper we have focused
on resource provisioning process of providers to minimize
the infrastructure cost by minimizing the cost of VMs
which are required to handle the requests. Obviously, the
providers must decrease the costs to have acceptable prices
for services without losing the profits.

The proposed resource provisioning model, which is
applied to providers of the considered cloud market, is
presented in Fig. 3. The depicted model of Fig. 3 is a SaaS
provider, such as what presented in Fig. 2, by omitting
users and IaaS providers; instead of users and IaaS
providers of Fig. 2, a Request Pool and a Virtual Resources
frame is considered, respectively. The Request Pool gets the
requests from users; the Virtual Resources frame gets VMs
from IaaS provider and stores in the provider for hosting the
applications.

As mentioned before, the provider’s goal is to maximize
its profit while providing satisfactory services to the users
with affordable prices and acceptable performances. The
proposed approach of this research reaches the goal by

descending the infrastructural costs which is performed by
Provisioning System (Fig. 3). According to [8, 9], the
server cost contributes the largest proportion of the total
cost of provisioning services. Users determine their
demanded software requirements, e.g., operating systems
and applications [3]; they specify the performance of their
requests by some predefined parameters which are
determined by SLA. The provisioning system gets the
requests, which are stored in Requests Pool, by
communicating with Requests Interface. Request Interface
is placed under Requests Pool in the model depicted in Fig.
3. Previously mentioned, applications are hosted on VMs,
which are provided on a pay-per-use basis by IaaS
providers. Each application comprises of several services;
the application run by the aim of these services. As an
instance, a CRM application, which is provided by different
vendors such as Salesforce.com or Microsoft Dynamics,
may need some services such as database, security,
calculating and accounting to be able to run. Requests are
related to an application demands, and they are formalized
in form of applications as follows

𝑅𝑒𝑞=𝐴����,�,𝑆��,𝜏. (3)
	
Where, Req denotes a request stored in Request Pool;

AppID is the identification of the application which is
requested in Req; s is the number of services of which the
request comprised; the list of the services of the demanded
application of Req is stored in Srv, which is modeled as
Srv=[VMSrv1,VMSrv2,…,VMSrvs]; finally, τ denotes
deadline of the application which is determined by the user.
The services can be located on different VMs based on the
VMSrv determined by Srv. Each of these services is
supposed to be hosted on an individual VM. Since VMs
have different properties, cloud providers have a limited set
of available configurations [12]. A set of such
configuration, which is determined by VMSrv in Srv,
includes following properties as <VM type, Core, Memory,
Storage, Throughput, Hour cost>, e.g., a user may request a
VM as <'large', 3, 30 MB, 2048 MB, 100KB/s, 3.400$>.
We consider the following formulation for introducing a
VM, which is stored in Virtual Resources layer of
providers,

𝑉𝑀��=������,��������,𝐶�����,��������

�,		𝑇ℎ�������� ��,𝐻���	������. (4)

VMij presents the properties of VM i stored in Virtual

Resources of provider j. Sizeij depicts type of VMij, which
can be small, medium, large, …. Coreij, used to presents the
number of cores that VMij has; it is the computing power of
VMij. Memoryij and storageij are mostly in Giga Bytes (GB).
Throughputij denotes read/write network throughput of
VMij; The cost of VMij per hour is hourcostij. The presented
configuration of a VM introduced in Eq. (4) is based on
Amazon EC2. List of VMs stored in Virtual Resources
layer of provider i is called VMListi = {VMi1, VMi2, …,
VMir}; r is the number of VMs available in the Virtual
Resources of the provider.

Fig. 2 Cloud computing market model [4]

The requests, stored in Requests Pool, are forwarded to
Provisioning System via Request Interface; the Request
Interface is supposed as a gateway that handles the requests
and the replies. The provisioning system decides to accept a
request if there are sufficient resources available in Virtual
Resources of the provider based on the parameters of the
requests; if the provider accepts a request it must specify
the most appropriate VMs to deploy it.

2.3 Performance Factor
The proposed provisioning system depicted in Fig. 3 has

to specify the list of VMs that would better host the
application. The process operates by the means of a
learning scheme consisting of LAs. We used variable
structure learning automata (LA) in each SaaS provider to
find the best virtual machines (VMs) for deploying the
current request including its services. The LA updates the
probabilities of taking the actions via learning algorithms to
reach the best values of probabilities for current request. As
the requests and also the available VMs in the provider
change very quickly using LA to find the best VMs for each
request is a useful approach in this scenario that can lead
each automaton quickly converges to its optimal action. LA
explore between the limited numbers of states including
placement of services of the request on VMs of the
provider.

Analyzer plays the role of the environment described in
Section 2.1; Analyzer can communicate with Resource
Manager and Request Interface to get informed of the
available Virtual Resources of the provider and properties
of the current request. The actions of LAs, α, is the
available VM of Virtual Resources. LA comprises LAs
which select VMs according to the probabilities of the
action set for each of the services in the requested
application of the request. The selected VMs, αt, is passed
to Analyzer as the action of LA at instant t. Then, Analyzer
evaluates the action of LA to generate a reinforcement
signal as its output. This reinforcement is firstly computed
the performance factor named ρ. Then, it is evaluated by
comparing with a predefined threshold. Since the proposed
LAs are P-model one, thus, if ρ is less than the thresholds,
the selected VM is rejected by the learning system;
otherwise the learning system accepts the selected action.

Suppose that LAs in LA select VMs 1 to s for hosting
services 1 to s of the demanded application in the current
request. LA passes αt=VM1 ... VMs, at instant t, to Analyzer;
Analyzer evaluates the action by comparing the selected
VM, with the requirements of service j; the result of the
comparison is considered as the performance factor ρ,
depicted in Eq. (5).

𝜌=�,� �����

���=𝑘=15���−�������6,	 𝑓��	 ���	 &�	

∄���−�����<0	0																																				,		&���������
 (5)
	

ρi
j is computed by considering both the offered

computing resources of the allocated VM and the cost of
the selected VM. It divides the summation of adaption of
chosen VM with the related service by the cost of the
chosen VM. pik denotes property k of VM i with the related
property k of service j in the demanded application which is
named as Serjk in Eq. (5). The considered properties of VMs
and services are size, memory, storage, core, and
Throughput of VMs as k = 1 .. 5, respectively. pi6 denotes
per hour cost of VM i; in other words, pi6 introduces the 6th
property of VM i as depicted in Eq. (4).
ρi

j computes the performance factor for each service of
the demanded application separately, as each service may
be deployed on an individual VM. Analyzer which is aware
of both the state of request via Request Interface and the
available resources of the provider via Virtual Resources
plays the role of the environment of LA in Provisioning
System. LA updates the probabilities of its action set based
on reinforcement signals of Analyzer. The update is
computed based on the result of comparison of ρ of the
selected VM with the threshold. Then the environment
passes the rejection or acceptation of the particular VM to
LA. The interaction of LA and the environment continues
until the learning is converged (the probabilities of actions
remain unchanged for a while or reach to predefined
values), or the number of iterations reaches a maximum
limit. It is obvious that the selected VM is omitted from
action set after being chosen for the current service. Then,
the process is repeated for next service of the application by
reinitializing the values. Finally, a list of VMs is generated
which are chosen for deploying the services of the
requested application. The list is sent to Request Interface.

Based on Eq. (5), VMs which have more compatibility
with the requirements of the services and have less price
must have more chance to be chosen by LA in subsequent
runs of the provisioning system. The algorithm of resource
provisioning system depicted in Fig. 3 is studied in details
in following section.

	
Fig. 3 The model of resource provisioning optimization

considered in a SaaS provider

3. The Provisioning Mechanism Formulation
As previously mentioned, our proposed provisioning

system uses LAs to find the most proper VM for hosting
each service in the request. As mentioned before, after
receiving a request by Request Interface, it is forwarded to
Provisioning System; each request, Req, consists of s
services and Provisioning System must run LAs for the
services in Req. It is to be noted that LAs search in VMList
of the provider and find the best VM for each service. Thus,
the problem involves finding s VMs between r VMs of
different properties existed in Virtual Resources of the
provider, 1 ≤ i ≤ r, where each VM is available in a certain
size VMSrvi, as introduced in Eq. (4) . The problem is to fill
the requirements of Req, which consists of s fixed services,
with SelectedVMList = [VM1, …, VMs] to yield a minimal
value for the costs while mapping the requirements. Firstly,
Provisioning System must solve the problem by deciding on
which service would be better to host at first. Then, it must
find the best VM for hosting that service. Since the aim of
ORP is to optimize the performance and the cost of
provisioned resources in cloud market, performance and
cost compatibility model is defined in form of Eq. (5) to get
the goal. The equation takes the attributes of the selected
VM and the attributes of the request of the user as input
variables to help to quantify the performance and the cost.
The details of this process are presented in this section.

Previously mentioned, a provider must offer satisfactory
levels of performance guarantee for deploying demanded
applications. In addition to the performance concerns, profit
of the provider is a considerable factor in resource
provisioning and providing the requested applications as
well. Therefore, requests of users are the main revenue
source of providers. The mechanism of our proposed
provisioning system is applied in order to obtain the
optimal VMs selection to increase the providers' profits.
The reason is that, ORP finds the nearest VMs to the
requirements of services with the lowest prices, which
causes an optimal utilization of resources.

Initially, the probabilities of actions of LAs are the same,
signifying that any of the VMs is equally the same to be
selected by the provisioning system. Thus, VMs are
randomly selected; then, Analyzer calculates the
performance of the selected action and sends a
reinforcement signal to LA. The probability of the selected
VMs is increased when the environment sends a favorable
response to LA, i.e. if VM i of the provider is chosen for
service j, then ρj

i is better than the threshold value; the
probabilities of other VMs are decreased as well.
Otherwise, the probability of the selected VM is reduced,
while the probabilities of other VMs are increased; the
response of the environment is unfavorable. Eqs. (1) and (2)
are used for updating the probabilities of actions of LA.

The provisioning strategy is presented in Algorithm 1.
Table 1 summarizes key notations used in the algorithm.
The providers, which can deploy the requested application
on their VMs, run the algorithm. A provider can deploy the
request if it has sufficient virtual resources based on the
requirements of the demanded application; otherwise, the
provider can buy new VMs from IaaS providers to provide

the request. In this case, Virtual Resources of the provider
is changed; thus, α is changed as well. In other hand, the
user has to suffer a delay for virtual resources preparation
which might not be acceptable in comparison with the time
required for other providers to provide his/her request. As
mentioned before, a large number of commercial providers
currently exist in cloud market, offering a number of
different types of applications [15].
The algorithm of Provisioning System consists of the
process of interaction of LA and Analyzer (Figs. 1 and 3).
The provider runs Algorithm 1 after receiving a request. At
the end of Algorithm 1, a list of VMs, named
SelectedVMList, is sent to Request Interface (Fig. 3) as the
output of the algorithm. Firstly, the provider checks
whether its available virtual resources, called VMs, can
tackle the current request, Req, or not; in case that it cannot
tackle (i.e. ~Tacke(VMs , Req) in Line 5) which means that
the provider requires additional resources, negotiating with
IaaS providers via function Negotiation(IaaS) starts.
Finally, after provisioning new virtual resources, they are
added to the current VMs in Line 7, by function Renew().
Then the main part of provisioning of requests starts; the
algorithm runs for each service, named Srv, of the
demanded application in Req, from Line 10. Besides, the
process is executed in a loop which iterates until the model
is converged (Lines 9-29) for each service in Req. The
model is converged if the probability of a selected VM
exceeds 95%, or ρ remains unchanged for several iterations.
Otherwise, the process stops when it iterates for a
maximum limit. When the probability of a VM converges
to 1, then the selected action of LA is optimal and therefore
the selected VM is the one that must be a part of the output
of Provisioning System. In Line 12, function select(VMList)
randomly selects a VM from the list of virtual resources of
the provider named VMList based on the probability of
VMs; this selection is the action of LA. Then, in Lines 14-
19, the selected action is evaluated to help to generate a
reinforcement signal in Lines 24-27. Function Adapted(p,q)
compares the values of p and q, then, returns their
difference as the compatibility of p to q; p relates to the
attributes of the selected VM and q relates to the attributes
of the considered service. The considered compatibility
parameters size, core, mmry, strg, and trgp, which are size,
memory, core, storage, and throughput, respectively, denote
the compatibility of attributes of the allocated VM to the
attributes of the considered service of the request. Then, in
Line 19, a variable, named Total, is computed according to
the values of compatibility parameters. The coefficients v1,
v2, …, and v5 balance the compatibility parameters size,
core, mmry, strg, and trgp based on the type of the
requested application; e.g. in a data-intensive application
the storage, memory and throughput are more important
than the other factors. In other words, these coefficients
enable us to compute the summation of compatibility
parameters, which have different types. Total computes the
compatibility of the chosen VM to the considered service
based on all attributes of the requirements.

After assessing the chosen VM, in Line 20, the algorithm

computes the performance factor presented in Eq. (5). The
Normalize(p) function in Line 20, converts the performance
factor into the range of 0 and 1, as follows,

𝑁��������(�)=p−AB−A.

(6)

p is the main value of performance factor before being

normalized; A and B are the minimum and the maximum
values that p may take, respectively. The values of A and B

are calculated based on the minimum and the maximum
values of VMs in VMList of the provider, respectively.
After normalizing the performance factor of the selected
VM, updating the probabilities of the available actions is
performed in Line 25 and 27 for favorable selection and
unfavorable selection, respectively. As mentioned before,
favorable and unfavorable selections are determined by
comparing with some thresholds a>0 and b<1 which are
determined according to the model in the experiments.

4. Performance Evaluations
In this section ORP is evaluated in terms of its

economical resource provisioning decisions; the
performance is compared with variety of systems. Section
4.1 introduces the setting of simulated cloud market
environment in a quantitative manner with descriptions of
parameters setting. In Section 4.2, firstly, the efficiency of
learning system used by provisioning system is analyzed;
then, some comparisons with other approaches are
discussed.

4.1 Experimental Setup
In this section, firstly the local test bed of experiments

including the architecture of simulation model, the status of
the providers, VMs, IaaS providers, and requests are
introduced; then the parameters of LAs are discussed.

4.1.1 Local test bed environment
We have modeled providers of cloud computing in a

discrete event simulation, for evaluating performance of the
proposed approach. The simulation model is shown in Fig.
4; it consists of a unit for arrivals of requests which is
named Request Generator and forwards the requests to the
Request Pool of providers, IaaS provider which provides
infrastructural requirements of providers in form of VMs,
and several SaaS providers equipped with different resource
provisioning techniques which have two outputs, one for
evaluating the performance of LAs and one for Comparison

Table 1
Parameter definitions and their values

Variable Description

Req A request in Request Pool of the provider
Srvi Service i in the list Srv of Req
VMSrvi Infrastructural requirements of service i
s Number of services that Req comprises of
VMi VM i in Virtual Resources of the provider
VMi.Size Type of VMi
VMi.Memory Memory of VMi
VMi.Core Number of cores that VMi has
VMi.Storage Storage of VMi
VMi.Throughput read/write network throughput of VMi
VMi.HourCost Cost of VMi per hour
ρj

i Performance factor of selecting VMi for
deploying Srvj

b Parameter of penalty
a Parameter of reward

	

Algorithm 1 Algorithm of Resource Provisioning system

The algorithm run by the providers which can deploy the services of requested
application on their VMs.
1 Inputs:
2 Req
3 Output:
4 SelectedVMList
5 if ~Tackle(VMs , Req)
6 Negotiation(IaaS);
7 VMs = Renew();
8 end
9 repeat
10 foreach srv in Reqi.Srv do
11 repeat
12 SelectedVMList[srv] = Select(VMList);
13 // starts to evaluate the action of the chosenVM
14 size = Adapted(SelectedVMList[srv].Size , srv.Size);
15 mmry = Adapted(SelectedVMList[srv].Memory , srv.Memory);
16 core = Adapted(SelectedVMList[srv].Core , srv.Core);
17 strg = Adapted(SelectedVMList[srv].Storage , srv.Storage);
18 trgp = Adapted(SelectedVMList[srv].Throughput , srv.Throughput);
19 Total = v1×size + v2×mmry + v3×core + v4×strg + v5×trgp;
20 ρ[srv, SelectedVMList[srv]] = Normalize

(Total/SelectedVMList[srv].HourCost);
21 until convergence occurs
22 end foreach
23 ρ = Sum(ρ); // according to Eq. (5)
24 if ρ < b then
25 Update the probabilities according to Eq. (1)
26 if ρ > a then
27 Update the probabilities according to Eq. (2)
28 until convergence occurs
29 end 	

Fig. 4 Simulation model

Unit which compares ORP approach with other
provisioning techniques applied to other SaaS providers.
These techniques include GORPA [4], OCRP [10], and
ORP without LA which selects VMs randomly.

For the sake of simplicity, we have assumed that IaaS
providers offer the computing resources to the available
providers with configurations of instances of Amazon EC2
(Feb 2017) depicted in Table 2. There are a rapidly growing
number of SaaS providers which provide required
applications of users [11]. Users can easily find the latest
list of SaaS providers offering software solutions in their
interested area. For our experiments, 15 providers are
defined as the ones which use ORP approach for resource
provisioning. In particular, when the algorithm converges,
the required statistics are calculated to indicate the behavior
of ORP on average. These providers initially own
predefined number of VMs with configurations of VMs
depicted in Table 2; the number of VMs exist in each
provider is a random variable determined by uniform
distribution (20, 50). It is assumed that IaaS provider offers
unlimited amount of resources in terms of VMs, so the
simulations are not face with shortage of VMs. As
mentioned in Section 3, let VMList denotes the set of VMs
available in the provider. It is assumed that each VM hosts
a distinct service of the request of application (e.g., some
VMs for database services and another for an individual
web service); however, the solution can be also extended by
omitting this assumption. It is to be noted that certain
amount of physical resources is required for hosting
provided VMs of IaaS providers. The VM instance is
determined according to the required amount of resources
of a VM [10]; some instances are presented in Table 2. The
prices, in Table 2, are defined in dollars per resource unit
for an hour in Windows usage.

In our experiment, no probability distribution of arrival
of requests is considered since they are stored in Request
Pool and they are sent to providers per request. We use
Grid Workloads Archive (GWA), GWA-T-12 Bitbrains,
from Delf University (http://gwa.ewi.tudelft.nl) as our
workload traces [28]. It contains the performance metrics of
1,750 VMs from a distributed datacenter from Bitbrains.

Bitbrains is a service provider that specializes in managed
hosting and business computation for enterprises. Each file

of GWA-T-12 contains the performance metrics of a VM.
In our experiments fastStorage is applied.
The workload is entered to the model from Request
Generator. GWA consists of different VM requirements
of 1750 requests. Our evaluations use some of these
requests and they are stored in Request Generator; they are
sent to the providers in an offline manner one per request,
and they are stored in Request Pool of the provider. The
format of each request of application in GWA is compatible
with the introduced metrics in Eqs. (3) and (4).

As previously mentioned, the requests are in form of
application; applications are software packages which
consist of different services, e.g., operating system,
database, and any other utility service. For simplicity we
consider 20 types of applications, in GWA, that a user can
demand. The licenses of applications are assumed to be
purchased from software vendors by the providers; thus,
users, instead of buying licenses, desire lease an application
from the providers to save their budgets. The leased
applications are needed to be hosted on the proper virtual
resources of providers [10], named VMs. There is not large
number of different types of VMs offered by providers; for
instance, Amazon introduces only few derivations of their
basic resource type [15]; Table 2 depicts offered instances
of VMs in our experiments. The proper VMs are the ones
which are compatible with the requirements of the
demanded application. The user pays for the application
according to the license cost of the application per running
VMs [10]. The cost of a licensed application is determined
based on the selected VMs. The required VMs of each
service of the application are varied following GWA.

4.1.2 Sensitivity analysis

First, we start with a sensitivity analysis on the learning
parameters α and β, in order to study their effects on the
performance of the ORP and also to find the best value of
them. To reach this, an input set with 50 requests is
considered. Two main parameters of ORP algorithm are the
reward and the penalty parameters of LAs, α and β,
respectively. To achieve more certainty and to accelerate
the convergence of the algorithm, these parameters can be
varied from 0.7 to 0.9 and from 0 to 0.1, respectively in
different experiments and the reported values are depicted
in Fig. 5. The vectors of the chart in Fig. 5, which are
marked with α, β and Iteration labels, indicate the reward
and the penalty parameters of LAs and the average number
of iterations required for convergence of LAs in 10
different providers, respectively. Fig. 5 shows that the best
value for α and β, which has the least number of iterations,
is 0.8 and 0.05, respectively.

Furthermore, the number of steps of LAs must be
determined in order to stop the algorithm when the other
convergence conditions are not accessed. According to Fig.
5, it can be concluded that LAs find the solution and
converge after approximately 200 steps, in average.

Table 2
Properties of VMs with the prices

 Attr.
Size

VCPU Memory
(GB)

Storage
(GB)

Price per VM/$

t2.small 1 2 1×4 $0.026 /Hour
t2.medium 2 4 1×4 $0.052 /Hour
m3.medium 1 3.75 1×4 $0.070 /Hour
m4.large 2 8 1×32 $0.1041 /Hour
c3.large 2 3.75 2×16 $0.141 /Hour
c4.xlarge 4 7.5 2×40 $0.2067 /Hour
c4.2xlarge 8 15 2×80 $0.412 /Hour
r3.large 2 15 1×32 $0.175 /Hour
i3.large 2 15.25 1×32 $0.109 /Hour
i3.xlarge 4 30.5 1×80 $0.218 /Hour
i3.2xlarge 8 61 1×160 $0.436 /Hour

	

4.2 Experimental results and analysis

At the beginning of the simulation, the generated
requests are sent to Request Pool. Then the requests are
forwarded to Request Interface of the providers. Each
provider tries to find the best combination of VMs for
hosting the requests. At the end of the processing of all
requests, some statistical data such as average number of
rejected requests, utilization of VMs and cost of the
provisioned resources are generated. We compare the
performance of resource provisioning mechanisms depicted
in Fig. 4, including ORP, GORPA [4], OCRP [10], and
ORP without LA which selects VMs randomly. The results
of the experiments are included a baseline as well. The
input of baseline experiments is a set of predefined requests
which is sent to Request Pool. Our performance evaluation
is measured according to three performance metrics: the
number of requests that are denied to be processed by the
approaches as no VM is available; in this case the
algorithms run without adding new VMs. The second
evaluated metric is utilization of VMs, and the third one is
the total provisioning cost. The experiments are designed to
evaluate the values of these metrics in form of the outputs
of Comparison Unit, in Fig. 4; Section 4.2.1 discusses the
results of the evaluations of these metrics. In addition, a
comprehensive evaluation of ORP is performed for three
typical workloads: data-intensive, process-intensive and
normal applications; it is discussed in Section 4.2.2.

4.2.1 Comparison with other resource provisioning
mechanisms

The experiments use the values of parameters shown in
Tables 1 and 2, with the same workload traces from GWA,
for all provisioning approaches depicted in Fig. 4.

It is to be noted that for evaluating the throughput and the
QoS violation of our provisioning approach, a fix number
of VMs is supposed to enable the comparison of the
approaches more accurately [4]. However, in other
experiments that performed for validating the evaluations of
the proposed approach, such as costs and utilization, SaaS

providers can take advantage of using VMs in an elastic
fashion.

We firstly compare the throughput and the QoS violation
of ORP in comparison with GORPA introduced in [4],
OCRP in [10], and LA-omitted ORP approaches of
provisioning. In these two experiments, the same amount of
virtual infrastructures in form of VMs is assumed for
providers based on Table 2. Although the whole point of
using VMs is to virtualize the infrastructure, and to request
and release VMs on demand in an elastic fashion to adapt to
the workload but in these experiments, it is assumed that
the providers cannot take advantage of this in order to
verify the throughput of the approaches and the average
number of requests which cannot be processed by the
approaches. Requests are classified into three classes
depending on their resource requirements as in [4]: small,
medium and high demand classes; some of the requests
applied to the experiments are presented in Table 3, derived
from GWA-T-12 Bitbrains.

The results of this comparison are depicted on the bar
chart of Fig. 7. It is shown that the throughput of ORP is
more than other approaches. The reason is that in ORP, LAs
find the most proper VMs amongst Virtual Resources of the
provider; thus, the compatibility of the attributes of the
VMs and the requests are well considered and many of the
requests can be provisioned with a determined amount of
virtual resources. While LA is used for finding the most
proper VMs for a request there are little number of requests
which cannot be processed and are rejected. The
performance is better than both of GORPA and OCRP;
GORPA is designed for continuous write applications and
considers the shortest path in terms of data transmission
cost between VMs. OCRP provisions based on reservations
which does not performs well in these experiments in
comparison with ORP.

Fig. 5 The probability distribution of VMs during iterations of LA

Table 3
Properties of requests used for experiments of Fig. 7

Request Services VCPU Memory
(GB)

Storage
(GB)

VMSrv1 1 1 1×4 Req Class1 VMSrv2 1 4 1×4
VMSrv1 2 4 1×4
VMSrv2 2 8 1×32 Req Class2
VMSrv3 4 8 2×40
VMSrv1 2 15 2×32
VMSrv2 4 15 2×80
VMSrv3 4 30 1×32
VMSrv4 8 15 1×32

Req Class3

VMSrv5 8 30 1×80

	

	
Utilization is another parameter which is used to evaluate

the performance of the proposed approach. To compute the
utilization of VMs of a provider the average CPU, memory,
and disk for the set of VMs for each request is used.

It is to be noted that if a provider allocates VMs to
requests without considering the requirements then the
utilization of the provider will be a low value; on the other
hand if the compatibility of the requirements of the requests
and the selected VMs is high then the provisioning
approach will have a great utilization of its virtual resources
as well.

In this section we compare the utilization of virtual
resources of providers while using ORP approach and
OCRP [10], GORPA [4], and ORP without LA.	The results
of this comparison, which are generated by Comparison
Unit of simulation model depicted in Fig. 4, are represented
in Fig. 8.

Fig. 8 demonstrates that the utilization of ORP approach

is more efficient than the utilization of others; the reason is
that ORP is effective in all properties of a VM such as CPU
cycle and memory allocation with high resource utilization;
Provisioning System in ORP chooses a VM with the most
adaption with the service requirements, in each iteration as
introduced in Eq. (5). None of other approaches take care of
attributes of VMs in addition to the hour costs of VMs
while allocation a VM to a service in the request.

The last metric considered in our experiments is the total
cost of the selected VMs for deploying the requests. The
comparisons of costs of provisioned VMs are performed
between ORP, and OCRP [10] and GORPA [4]. Although
we used the attributes of VMs presented in Table 2 for the
previous experiments, for cost comparison in this
experiment, the prices introduced in [10], are applied to
compare the techniques in same conditions. The
comparison of the cost is generated by Comparison Unit of
simulation model depicted in Fig. 4; the results are
represented in Fig. 9. It is obvious from the figure that our
proposed resource provisioning approach, ORP, obtains
better costs comparing with both OCRP and GORPA. The
increase of costs with the growth of the requests is
expected, which can be seen in Fig. 9. While the requests
increase the differences of the total costs of ORP with the
others are decreased; the reason is that ORP chooses VMs
without considering any future model of requests, and the
provisioning is performed in a way that the most proper
VMs would be chosen based on the current requests.
Therefore the provider must buy new resources and for this
the provider may incur additional costs such as costs of new
virtual resources offered by IaaS providers and costs of
time waiting for the preparation of new VMs [4]. Thus,
total costs might have higher prices for new requests as
depicted in Fig. 9.

(a)

(b)

Fig. 7 QoS evaluation (a) Throughput (b) number of rejected
requests

Fig. 8 Comparison between utilization of VMs

	
4.2.2 Impact of ORP on typical application types: data-
intensive, process-intensive and normal applications

In this section, the resource provisioning method has
been evaluated for typical application types. We consider
three general types of requests, i.e. the requests of data-
intensive applications, the requests of process-intensive
applications and requests of normal applications.
Specifically, we want to show that our model can
effectively assign proper VMs to each type of requests
privately, with respect to the application requirements,
while keeping the costs low. Firstly, the requirements of
each application type are discussed; then, a simple scenario
to evaluate the performance of ORP based on the type of
the requests is presented.

For each type of application, a set of services with
different requirements is needed. The applications which
devote most of their execution time to computational
requirements are deemed process-intensive, whereas
applications which require large volumes of data and devote
most of their processing time to I/O and manipulation of
data are deemed data-intensive. Normal applications have
both requirements of data processing and computational
processes. Our traced workloads of these types are
presented in Table 4.

	
In Fig. 10, the evolutions of total number of requests that
are processed by ORP are presented. As expected, in
demands of normal applications the growth of costs is
smoother while in data-intensive and process-intensive
demands, the costs increase faster. Furthermore, since we
consider that the virtual resources capacity of each provider
is limited, the amount of VMs that each provider dedicates
to the requests is bounded; this makes the total cost stop
increasing after processing a number of requests. In Fig.10,
more requests can be processed while requests are normal
application types in comparison with two other types. The
reason is that in two later cases, the proper VMs for data-
intensive and process-intensive applications finish before in
normal application types demands, since special VMs are
required in these two types. Therefore, also more increase
of costs is seen in data-intensive and process-intensive
demands in comparison with normal demands, the number
of processed requests decrease as well.	

5. Conclusion
Cloud computing has enabled new technologies to

Software-as-a-Service (SaaS) providers and Infrastructure-
as-a-Service (IaaS) providers to offer applications online
with pay per use model. These technologies make
computing resources more powerful, and thus more
efficient resource provisioning techniques must be
involved. Current researches of resource provisioning
approaches lacks of applications granularity; in this paper,
we have proposed an optimized resource provisioning
(ORP) approach in order to provide applications, which
consist of different services, to users via virtual resources.
Providers try to provide the application with an affordable
cost while the performance is satisfying. ORP uses LAs on
each provider to deploy each request on the best
combination of VMs while saving the infrastructural cost.
In this article, our proposed approach focuses on how to
lower the resource provisioning cost while not severely
degrading the performance metrics of services. A
comprehensive evaluation is performed for three typical
workloads: data-intensive, process-intensive and normal
applications. The experimental results show that ORP

Fig. 9 Cost comparison

Table 4
Properties of requests used for experiments of Fig. 7

Request Services VCPU Memory
(GB)

Storage
(GB)

VMSrv1 1 15 2×40
VMSrv2 1 30 1×32 Data-

intensive
VMSrv3 2 60 1×80
VMSrv1 4 2 1×4
VMSrv2 8 4 1×4 Process-

intensive
VMSrv3 8 8 2×16
VMSrv1 1 4 1×4
VMSrv2 2 8 1×32 Normal
VMSrv3 4 15 2×80

	

Fig. 10 Evolution of total costs in different types of demands

with constant number of VMs

efficiently adapts the infrastructural requirements, and the
resulting performance meets our design goals as well. In
general, averages of utilization and cost were improved; in
addition the number of requests which can be processed by
ORP are optimized.

References
[1] Espadas, Javier, Arturo Molina, Guillermo Jiménez, Martín Molina,

Raúl Ramírez, and David Concha. "A tenant-based resource
allocation model for scaling Software-as-a-Service applications over
cloud computing infrastructures." Future Generation Computer
Systems 29, no. 1 (2013): 273-286.

[2] Ferrer, Ana Juan, Francisco HernáNdez, Johan Tordsson, Erik
Elmroth, Ahmed Ali-Eldin, Csilla Zsigri, RaüL Sirvent et al.
"OPTIMIS: A holistic approach to cloud service provisioning."
Future Generation Computer Systems 28, no. 1 (2012): 66-77.

[3] Mietzner, Ralph. "A method and implementation to define and
provision variable composite applications, and its usage in cloud
computing." (2010).

[4] Zeng, Zeng, Tram Truong-Huu, Bharadwaj Veeravalli, and Chen-
Khong Tham. "Operational cost-aware resource provisioning for
continuous write applications in cloud-of-clouds." Cluster
Computing 19, no. 2 (2016): 601-614.

[5] Dashti, Seyed Ebrahim, and Amir Masoud Rahmani. "Dynamic VMs
placement for energy efficiency by PSO in cloud computing."
Journal of Experimental & Theoretical Artificial Intelligence 28, no.
1-2 (2016): 97-112.

[6] Kirschnick, Johannes, Jose M. Alcaraz Calero, Lawrence Wilcock,
and Nigel Edwards. "Toward an architecture for the automated
provisioning of cloud services." IEEE Communications Magazine 48,
no. 12 (2010): 124-131.

[7] Chandio, Aftab Ahmed, Kashif Bilal, Nikos Tziritas, Zhibin Yu,
Qingshan Jiang, Samee U. Khan, and Cheng-Zhong Xu. "A
comparative study on resource allocation and energy efficient job
scheduling strategies in large-scale parallel computing systems."
Cluster computing 17, no. 4 (2014): 1349-1367.

[8] Hurwitz, Judith, Robin Bloor, Marcia Kaufman, and Fern Halper.
Cloud computing for dummies. John Wiley & Sons, 2010.

[9] Zhan, Jianfeng, Lei Wang, Xiaona Li, Weisong Shi, Chuliang Weng,
Wenyao Zhang, and Xiutao Zang. "Cost-aware cooperative resource
provisioning for heterogeneous workloads in data centers." IEEE
Transactions on Computers 62, no. 11 (2013): 2155-2168.

[10] Chaisiri, Sivadon, Bu-Sung Lee, and Dusit Niyato. "Optimization of
resource provisioning cost in cloud computing." IEEE Transactions
on Services Computing 5, no. 2 (2012): 164-177.

[11] Mietzner, Ralph. "A method and implementation to define and
provision variable composite applications, and its usage in cloud
computing." (2010).

[12] Sotomayor, Borja. "Provisioning computational resources using
virtual machines and leases." University of Chicago, Dept. of
Computer Science. Defended July 7 (2010).

[13] Daniel, D., and P. Raviraj. "Distributed hybrid cloud for profit driven
content provisioning using user requirements and content
popularity." Cluster Computing 20, no. 1 (2017): 525-538.

[14] Madni, Syed Hamid Hussain, Muhammad Shafie Abd Latiff, and
Yahaya Coulibaly. "Recent advancements in resource allocation
techniques for cloud computing environment: a systematic
review." Cluster Computing (2016): 1-45.

[15] Maurer, Michael, Vincent C. Emeakaroha, Ivona Brandic, and Jörn
Altmann. "Cost–benefit analysis of an SLA mapping approach for
defining standardized Cloud computing goods." Future Generation
Computer Systems 28, no. 1 (2012): 39-47.

[16] Palanisamy, Balaji, Aameek Singh, and Ling Liu. "Cost-effective
resource provisioning for mapreduce in a cloud." IEEE Transactions
on Parallel and Distributed Systems 26, no. 5 (2015): 1265-1279.

[17] Al-Ayyoub, Mahmoud, Yaser Jararweh, Mustafa Daraghmeh, and
Qutaibah Althebyan. "Multi-agent based dynamic resource
provisioning and monitoring for cloud computing systems
infrastructure." Cluster Computing 18, no. 2 (2015): 919-932.

[18] Duggan, Martin, Jim Duggan, Enda Howley, and Enda Barrett. "A
network aware approach for the scheduling of virtual machine
migration during peak loads." Cluster Computing (2017): 1-12.

[19] Breitgand, David, Gilad Kutiel, and Danny Raz. "Cost-Aware Live
Migration of Services in the Cloud." In SYSTOR. 2010.

[20] Diallo, Mamadou H., Michael August, Roger Hallman, Megan Kline,
and Scott M. Slayback. "AutoMigrate: a framework for developing
intelligent, self-managing cloud services with maximum
availability." In Cloud and Autonomic Computing (ICCAC), 2016
International Conference on, pp. 95-106. IEEE, 2016.

[21] Vecchiola, Christian, Rodrigo N. Calheiros, Dileban Karunamoorthy,
and Rajkumar Buyya. "Deadline-driven provisioning of resources for
scientific applications in hybrid clouds with Aneka." Future
Generation Computer Systems 28, no. 1 (2012): 58-65.

[22] Shi, Jiyuan, Junzhou Luo, Fang Dong, Jinghui Zhang, and Junxue
Zhang. "Elastic resource provisioning for scientific workflow
scheduling in cloud under budget and deadline constraints." Cluster
Computing 19, no. 1 (2016): 167-182.

[23] Narendra, Kumpati S., and Mandayam AL Thathachar. Learning
automata: an introduction. Courier Corporation, 2012.

[24] Poznyak, Alexander S., and Kaddour Najim. Learning automata and
stochastic optimization. 1997.

[25] Narendra, Kumpati S., and Kannan Parthasarathy. "Learning
automata approach to hierarchical multi-objective analysis." IEEE
Transactions on systems, man, and cybernetics 21, no. 1 (1991): 263-
272.

[26] Zhang, Qi, Lu Cheng, and Raouf Boutaba. "Cloud computing: state-
of-the-art and research challenges." Journal of internet services and
applications 1, no. 1 (2010): 7-18.

[27] Zhang, Tianle, Zhihui Du, Yinong Chen, Xiang Ji, and Xiaoying
Wang. "Typical virtual appliances: An optimized mechanism for
virtual appliances provisioning and management." Journal of
Systems and Software 84, no. 3 (2011): 377-387.

[28] Shen, Siqi, Vincent van Beek, and Alexandru Iosup. "Statistical
characterization of business-critical workloads hosted in cloud
datacenters." In Cluster, Cloud and Grid Computing (CCGrid), 2015
15th IEEE/ACM International Symposium on, pp. 465-474. IEEE,
2015.

