
Noname manuscript No.
(will be inserted by the editor)

CECT: Computationally Efficient Congestion-avoidance
and Traffic Engineering in Software-defined Cloud Data
Centers

M.M. Tajiki, · B. Akbari, · M. Shojafar, · S.H. Ghasemi, ·
M.L. Barazandeh, · N. Mokari, · L. Chiaraviglio, · M. Zink

Received: 3 July 2017 / Revised: 13 November 2017/ Accepted: XX XX

Abstract The proliferation of cloud data center ap-

plications and network function virtualization (NFV)

boosts dynamic and QoS dependent traffic into the data

centers’ network. Currently, lots of network routing pro-

tocols are requirement agnostic, while other QoS-aware

protocols are computationally complex and inefficient

for small flows. In this paper, a computationally effi-

cient congestion avoidance scheme, called CECT, for

software-defined cloud data centers is proposed. The

proposed algorithm, CECT, not only minimizes net-

work congestion but also reallocates the resources based

on the flow requirements. To this end, we use a routing

architecture to reconfigure the network resources trig-

gered by two events: 1) the elapsing of a predefined time

interval, or, 2) the occurrence of congestion. Moreover,

a forwarding table entries compression technique is used

to reduce the computational complexity of CECT. In

this way, we mathematically formulate an optimization

problem and define a genetic algorithm to solve the pro-

posed optimization problem. We test the proposed al-

gorithm on real-world network traffic. Our results show

that CECT is computationally fast and the solution is

MM. Tajiki, S. Hesamoddin Ghasemi, M. Latifi Barazandeh,
N. Mokari, B. Akbari
lectrical and Computer Engineering,
Tarbiat Modares University, Tehran, Iran
E-mail: {mahdi.tajiki, h.qasemi, mahdi.barazandeh, b.akbari,
mokari}@modares.ac.ir

M. Shojafar, L. Chiaraviglio
CNIT, Department of Electronic Engineering,
Tor Vergata University of Rome, Rome, Italy.
E-mail: mohammad.shojafar@cnit.it,
luca.chiaraviglio@uniroma2.it

Michael Zink
Electrical and Computer Engineering,
University of Massachusetts Amherst, Amherst, USA
E-mail: mzink@cas.umass.edu

feasible in all cases. In order to evaluate our algorithm

in term of throughput, CECT is compared with ECMP

(where the shortest path algorithm is used as the cost

function). Simulation results confirm that the through-

put obtained by running CECT is improved up to 3x

compared to ECMP while packet loss is decreased up

to 2x.

Keywords QoS-aware Resource Reallocation, Traffic

Engineering, Software-defined Cloud Data Centers

(SCDC), Network Reprogramming Overhead.

1 Introduction

Network Function Virtualization (NFV) has drawn sig-

nificant attention from industry, government, and acad-

emia to improve flexibility and reduce the time to mar-

ket of new services. Some of these services have a chain

of functions (e.g., firewall and load balancer) which

need the network to guarantee the required Quality of

Service (QoS) constraints. On the other hand, the data

centers used to create cloud services represent a signif-

icant investment in capital outlay and ongoing costs.

Therefore, the cloud data center services are highly

adapted at the present time. The dynamic nature of

the cloud data center traffic (e.g., VM motion) necessi-

tate support for the diverse class of QoS requirements.

Not surprisingly, these QoS requirements have to be

guaranteed by the network routing protocol. Addition-

ally, the enormous and dynamic network traffic which is

communicating via the network infrastructure imposes

congestion in the network links. Clearly, this effect has

to be dynamically addressed by the routing protocols

in Software-defined Cloud Data Centers (SCDC). In a

sequel, the main aim of this paper is to dynamically and

ar
X

iv
:1

80
2.

07
84

0v
2

 [
cs

.N
I]

 3
0

D
ec

 2
02

0

2 M.M. Tajiki, et al.

efficiently reallocate resources in a way that i) guaran-

tees QoS requirements of different applications; and; ii)

protectively prevent congestion and resource waste.

In this context, several questions arise, like: Is it pos-

sible to propose an approach that considers the impact

of flows routing among each other? How to model an

SCDC and services to evaluate the flow requirements?

How to implement a real-time computationally efficient

method to preserve SCDC QoSs? The answer to these

questions is the goal of the paper.

More in detail, we introduce a dynamic and compu-

tationally efficient resource reallocation scheme called

Computationally Efficient Congestion avoidance and Tr-

affic Engineering (CECT) in which we guarantee the

minimum bandwidth for a specific flow. The main con-

tributions are as follows:

i) The proposed scheme not only maximizes the net-

work throughput but also guarantees the requested

QoS level. Since the traffic flow requirements change

over time, the mentioned scheme dynamically real-

locates the resources in a predefined time period.

In order to solve the corresponding optimization

problem, two schemes are proposed. The first one

maximizes the total network throughput, where its

computational complexity is high. The second one

is a low computational complexity meta-heuristic

method that finds a near-optimal solution.

ii) To overcome the resource fragmentation in networks

with big flows, we consider the impact of each flow

on other flows, i.e., in the corresponding optimiza-

tion problem the rerouting of all flows must be per-

formed simultaneously. Additionally, in order to im-

prove the congestion avoidance as well as increas-

ing the network throughput, multi-path routing is

supported in the proposed schemes. Hence, different

flows from a similar source to a similar destination

can be rerouted via various paths.

iii) To make a tradeoff between computational com-

plexity and performance, the granularity of network

rescheduling is adjustable. To this end, we introduce

a flow table entry compression technique that makes

a tradeoff between the optimality gap and the com-

putational complexity of the solution. In our design,

the granularity can be the exchanged information of

“a special application in a server with another appli-

cation on a different server” or “all communications

from one data center to another one”.

iv) We implement CECT in the MiniNet emulator [31],

by considering a realistic network traffic and a re-

alistic fat-tree network topology. Besides, in order

to evaluate the impact of flow size on the perfor-

mance of CECT, we implement a packet genera-

tor to generate traffic patterns with micro, small,

medium, and big flows.

The full evaluation of other QoSs features (such as

the queuing delay, delay variation (jitter), quality of

user experiments in SCDC, and the mapping of such pa-

rameters in other types of the networks such as WAN)

will be some interesting branches of future research.

The rest of the paper is organized as follows. Section

2 presents the most recent existing literature. In Section

3, we present the main functional blocks of the proposed

CECT architecture for SCDC. Afterward, in Section 4,

we detail the problem formulation, while Section 5 pro-

posed the bio-inspired scalable solution. After detailing

the tested application scenarios and performance met-

rics in Section 7, the performance of CECT algorithm

is presented and compared with the corresponding one

of the ECMP algorithm [22] in Section 8. Finally, in

Section 9, we summarize the main attained results and

give some hints for future research.

2 Related work

In the following, we will briefly discuss the main litera-

ture engaged in SCDC.

2.1 Congestion Avoidance/Control Methods

In the literature, different works on congestion avoid-

ance/control and traffic engineering have been presented

in the past. Authors in [22] presented a multi-path rout-

ing technique, ECMP, to perform static load splitting

among flows across 8 to 16 multi paths. It is required to

deliver high bisection bandwidth for larger data centers.

ECMP is applied in current switches in which that are

tuned and configured with several possible forwarding

paths for a given subnet. In other words, when a packet

with multiple candidate paths arrives, it is forwarded

on the one that corresponds to a set of selected fields of

that packet’s headers and modules the number of paths.

ECMP does not account for flow bandwidth in making

allocation decisions, which can lead to oversubscription

that CECT matters this issue.

In [8], a congestion control scheme classifies the net-

work traffic into two classes of ordinary and premium

flows. More in depth, authors consider a non-linear net-

work model based on the fluid flow theory that is able

to cope with both the physical network resource con-

straints and unknown time delays associated with net-

working systems. However, the proposed scheme does

not embed any traffic engineering scheme, therefore,

it does not specify routes for the network flows that

CECT: Computationally Efficient Congestion-avoidance and Traffic Engineering 3

the proposed CECT method does. The authors of [28]

proposed a traffic engineering approach for networks

in which the link capacity and class of service require-

ments may vary with time. Their scheme does not route

flows, however, it produces some control laws which can

be used for routing. In [25], a traffic prediction algo-

rithm is exploited to prevent network congestion be-

fore it happens. Still, the approach is not applicable

in networks with unpredictable traffic pattern. Instead,

CECT schedules the resources and flows according to

the complete view of the system state and is unbounded

to any traffic patterns.

The authors of [21] propose an SDN-based TCP con-

gestion control mechanism at the client side. They fo-

cus on long-lived flows and reduce the sending rate by

adjusting the TCP receive window of ACK packet af-

ter OpenFlow switch triggered a congestion message

to the controller. Similarly, authors in [14] proposed

a method to control the congestion in SCDCs based

on the OpenFlow protocol. Their method monitors the

port statistics of the OpenFlow-enabled switches and

reroutes some flows in the congested links. Both [21]

and [14] do not consider QoS requirements of different

flows. In other words, they assume that all flows have

similar requirements. Instead CECT considers the flows

features and SDN resources properties dynamically.

In [30], a QoS-aware resource allocation algorithm

which guarantees a minimum overhead on the network

during reprogramming phase. The authors mathemati-

cally formulate the optimization problem of flow rout-

ing in the data center networks and solve it using binary

linear programming. The most challenging part of their

method is the high computational complexity of solving

the mentioned problem which makes the proposed algo-

rithm versy inefficient in medium and large scale data

centers. Moreover, the authors of [29], propose a routing

algorithm for SCDCs based on traffic prediction. They

mathematically formulate the routing problem and pro-

pose two schemes to solve it (an exact solution which

has a high computational complexity and a subopti-

mal but fast one). This paper presents a flavor of the

significant results and ongoing work, but it is applica-

ble only in predictable networks whilst CECT is not

only applicable in the predicting network, but also it is

used in unpredicted and any shape of the networks (i.e.,

based on proof of concept presented in the simulation

results).

In addition, authors in [26] present a network-aware

resource reallocation technique, in which they use the

network topology characteristics of the data center to

minimize the maximum latency in communication be-

tween VMs. They incorporate the resource heterogene-

ity by including the computational and communication

requirements in the proposed technique. The main fo-

cus of the work is on heterogeneity of computational

requirements for VMs in CDC, and did not consider

heterogeneity of the network bandwidth and the other

computational requirements for VMs in CDC. Instead,

the proposed method, CECT, covers these limitations

and provides load balancing routing to the incoming

flows.

In addition, the authors of [34] adopt a two-phase

flow embedding approach with an iterative traffic engi-

neering algorithm to address the resource reallocation

problem lying in the multimedia communication sys-

tems. Some other works such as [23] focus on providing

QoS for voice over IP (VoIP) traffics and simultaneously

optimizing the power efficiency. In CECT, we not only

cover the VoIP traffic class but also consider several

types of traffic, e.g., FTP, high definition (HD) video

stream that can be applied in 5G network.

2.2 QoS-aware Routing Methods (Single Class of

Traffic)

Different works that focus on multimedia and use flow

rerouting to guarantee the QoS parameters have been

presented in [10, 11, 9] and [12]. In detail, the authors

of [10] formulate the dynamic QoS routing problem as a

Constrained Shortest path (CSP) problem. In this way,

they represent the entire network as a simple graph

and define a cost function based on the QoS parame-

ters. The proposed solution improves the QoS of video

streaming. However, it cannot support different classes

of QoS that is covered in CECT. In [11], the authors

form in a group the incoming flows as multimedia and

data flow, where the multimedia flows are routed via

QoS guaranteed paths. However, the data flow remains

on traditional shortest-paths. Instead in CECT, we cover

various types of incoming traffic. Besides, authors in

[27] address multimedia data processing with computa-

tionally intensive tasks and exchange of a big volume of

data flow via QoS guaranteed paths per time period and

introduce a general framework called MMGreen to en-

sures QoSs of the user flows and achieves maximum en-

ergy saving and attains green cloud computing goals in

a fully distributed fashion by utilizing the DVFS-based

CPU frequencies. Although MMGreen is novel and in-

teresting, but compared to CECT in routing scheme, it

does not cover some QoSs such as the utilization of the

links between the SDN switches.

Moreover, the authors of [9] propose a distributed

QoS routing architecture for video streaming. They use

the OpenFlow features to implement their scheme in a

multi-domain environment. Finally, [7] devises a simple

analytic framework and an experimental platform to

4 M.M. Tajiki, et al.

transfer the video streaming. In their framework the

video stream has a base layer, which is modeled as a

QoS flow, and multiple enhancement layers, which are

treated as best-effort flows.

2.3 QoS-aware Routing Methods (Multiple Class of

Traffic)

The main challenging deficiency of the mentioned schem-

es is not to support different classes of QoS, i.e., these

solutions only focus onmultimedia flows and ignore other

types of data flows. In contrast, there are many works

considering different types of data flows such as [17, 20,

18, 15, 33, 24] and [35]. Particularly, authors in [17] pro-

pose a new QoS routing algorithm for Multi-Protocol

Label Switching (MPLS) networks. The paths are se-

lected based on critical links so as to minimize inter-

ference with the future requests. However, the solution

[17] is designed for MPLS and it can not be used for

other types of network. In addition, the main focus of

[18] is to route the flows with the QoS constraint us-

ing genetic algorithms. In this way, authors propose a

heuristic for unicast routing to find feasible path sat-

isfying the flows requirements. In the same way, [20]

guarantees the QoS by defining a new measure called

path weight which is minimized by the aid of ant colony

system. Both [18] and [20] route each flows separately.

These methods have three set of limitations. First, they

do not guarantee the efficiency of the selected path

due to the minimum requirement constraint applied for

termination conditions. Second, they do not guarantee

the end-to-end performance. In other words, the pro-

posed routing algorithms do not exploit the capability

of routing all flows simultaneously, i.e., it is impossible

to reroute a flow considering the possible routes of other

flows. Third, they examined single flow performance,

and unable to handle multiple flows with different QoS

requirements. Consequently, these schemes are not ap-

plicable for a comprehensive network reconfiguration.

In addition, the scheme reported in [15] explores

scalable architectures that jointly optimize rate con-

trol and routing. Since the goal of this work is to per-

form rate control, the proposed approach distributes

information and computation across multiple tiers of

an optimization machinery. Similarly, in [33], the au-

thors present a resource allocation scheme for inter-data

center communication with multiple traffic classes. Al-

though [15] and [33] are practical for inter-data center

communications, they are impractical for intra-AS (i.e.,

inter-autonomous system) network resource allocation,

e.g., intra-cloud data centers. The paper [24] deploys

the SDN features to manage the differentiating network

services with QoS satisfaction. Their problem formula-

tion is in form of integer linear programming (ILP). The

weak point of this scheme is its computational complex-

ity which makes it impractical for medium and large

scale networks. In [35], a QoS-aware routing mechanism

is proposed to balance the network load of industrial

Ethernet. In particular, authors exploit the ant colony

method to obtain a path for data transmission with dif-

ferent QoS requirements. Since the meta-heuristic ap-

proaches may return unfeasible solutions, they need to

be discussed from the validity perspective of the solu-

tion. However, the time complexity and the validity of

their scheme are not discussed.

3 Reference Architecture

In Fig. 1, we describe the considered architecture. In

particular, we assume a software-defined cloud network

where a logically centralized controller coordinates the

network. The switches are all OpenFlow-enabled and

the protocol used for communication between the swit-

ches and the controller is OpenFlow. Therefore, the con-

troller may query the switches for network topology and

current traffic matrix. On the other hand, there are k

different classes of traffic flows with different QoS re-

quirement. In addition, the flows are highly dynamic

and there are some big flows in the network. In the case

of arrival of a new flow, a conventional routing scheme

like ECMP [22] is applied. In order to decrease network

congestion, the controller reconfigures the network, i.e.,

some flows are rerouted. To this end, the resources are

reallocated based on some predefined measures such as

time periods or the event of high packet loss in the net-

work. Table 1 reports the main notations of the paper.

In order to maximize the total network throughput

as well as guarantee the QoS requirement of flows, it is

necessary to dynamically reallocate the resources with

the dynamic pattern of network traffic. In this way, we

design a mathematical model that considers the net-

work topology, the flow requirement matrix, and the

flow specifications as input, and finds a routing matrix

satisfying the QoS constraint and minimizing network

congestion. The network topology is given by the ma-

trix BNL×NL
where B(i,j) determines the bandwidth of

the link from the switch i to the switch j. The number

of flows and OpenFlow-enabled switches is NF and NL,

respectively. The routing matrix ANL×NL×NF
specifies

the path selected for each flow, e.g., if Af
(i,j) ∈ {0, 1} is

equal to 1 then the flow f crosses the link or i→ j. The

flow requirement matrix C1×NF
specifies flows guar-

anteed requirements based on the corresponding class.

The i-th row of the flow requirement matrix defines the

guaranteed bandwidth for each flow.

CECT: Computationally Efficient Congestion-avoidance and Traffic Engineering 5

Southbound

Controller Layer

Application Layer

Physical Layer

Northbound

Reconfiguration Element

OpenFlow Protocol

Configuration Element

Network Monitor

Monitoring Component

Common Routing Algorithm, e.g., ECMP CECT (Re-routing Component)

Clients

SDN
Switch

SDN
Switch

SDN
Switch

SDN
Switch

SDN
Switch

Fig. 1: The proposed architecture.

Table 1: Main Notation.

Symbol Definition

Mathematical Parameters

NL Number of switches
NF Number of flows
B NL ×NL matrix denoting the links bandwidth
R 1×NF vector denoting flows requirement
s 1×NF vector denoting source switch of flows
d 1×NF vector of destination switch of flows

Metaheuristic Parameters

PO Population as set of solutions
CH Chromosome set of x-paths
XP A gene which is a x-path
V A set of switches (nodes)
E A set of edges (links)
R A set of all x-paths

Decision Variable

A NL × NL × NF routing matrix
µ Maximum link utilization

It should be mentioned that CECT is a secondary

routing algorithm, which means that there is a primary

routing algorithm along with it. In other words, in or-

der to minimize the routing delay of new arrival flows,

CECT uses a conventional routing algorithm (as an ex-

ample, ECMP) to route the flows separately. There-

after, if the link utilization of some parts of the net-

work exceeds a predefined threshold, CECT algorithm

is invoked and some flows are rerouted to prevent net-

work congestion. The average links utilization in differ-

ent types of networks are different, in [5], several data

center traffics are investigated and the flows charac-

teristics are well studied. Based on their study, links

with 70 percent and higher utilization are considered as

hot-spot links. We followed the same setting. It should

be mentioned that using high values as the threshold

makes the algorithm more quick while it increases the

probability of congestion for burst traffic. On the other

hand, considering a low value balances the load across

the network while it increases the execution time. As

it can be seen in Fig. 1, in our architecture the routing

of new arrival flows is done using existing routing algo-

rithms while CECT is used to reroute flows for traffic

engineering purposes and minimizing network conges-

tion.

4 Problem Formulation

The main objectives of this paper are to efficiently and

dynamically reallocate resources in a way that i) the

QoS requirements of different applications are guaran-

teed, ii) the resource waste and congestion are proac-

tively prevented, and, iii) the computational complex-

ity of rescheduling process is minimized. As a conse-

6 M.M. Tajiki, et al.

quence, the routing matrix should be calculated in a

way that the mentioned constraints are satisfied. To

this end, the routing matrix ANL×NL×NF
and µ can

be obtained such that the network rescheduling over-

head is minimized subject to the QoS constraints and

the flow conservation constraints. In the following, we

present the formulation of the considered problem.

4.1 Capacity Constraint

The link load is guaranteed to be smaller than the max-

imum target utilization µ by the following constraint:

NF∑
f=1

Af
(i,j)Rf ≤ µB(i,j), ∀i, j ∈ {1, . . . , NL}, (1)

Specifically, the l.h.s of (1) calculates the sum of

the guaranteed bandwidth of all flows crossing a spe-

cific link. The right-hand side specifies the maximum

predefined allowable link bandwidth.

4.2 Source and Destination Constraints

The flows are prevented from returning to the source

switches via Equation (2). As mentioned earlier, Af
(i,sf)

is one if and only if the flow f crosses the link that

connects switch i to the source switch of f called sf .

We then impose the following constraints:

NL∑
i=1

Af
(i,sf)

= 0, ∀f ∈ {1, . . . , NF }, (2)

NL∑
i=1

Af
(df ,i)

= 0, ∀f ∈ {1, . . . , NF }, (3)

For each flow, Equation (2) forces the summation of

Af
(i,sf)

(for all i) to be zero. In other words, none of the

flows can cross the link between any switch to the source

switch of that flow. On the other hand, (3) makes the

flows to stay on the destination switches. The aforemen-

tioned constraints prevent the flows from entering an

invalid switch. Moreover, equations (4) and (5) prevent

flows from staying in an invalid switch. These equations

force the flows to leave the origin switches and enter to

the destination switches, respectively.

NL∑
i=1

Af
(sf ,i)

= 1, ∀f ∈ {1, . . . , NF }, (4)

NL∑
i=1

Af
(i,df)

= 1, ∀f ∈ {1, . . . , NF }, (5)

Equation (4) guarantees the flows to cross from exactly

one of the source switch outgoing link. Similarly, equa-

tion (5) is considered for the incoming links of destina-

tion switch.

4.3 Flow Conservation and Loop Prevention

Constraints

If a switch is neither source nor destination of a flow,

the flow must leave that switch after it moves in. This

restriction is applied by Constraint (6) via balancing

the amount of traffic entered to the switch with the

amount of traffic left it.

NL∑
i=1

Af
(i,j) =

NL∑
i=1

Af
(j,i), ∀f ∈ {1, . . . , NF },

∀i ∈ {1, . . . , NL} − {sf , df},

(6)

NL∑
i=1

Af
(i,j) ≤ 1, ∀f ∈ {1, . . . , NF }, ∀i ∈ {1, . . . , NL}, (7)

Af
(i,j) ∈ {0, 1}, ∀f ∈ {1, . . . , NF }, ∀i, j ∈ {1, . . . , NL},

(8)

Constraint (7) assures there is no loop in the new rout-

ing matrix. It prevents flows from returning to a switch

that is met in the past. Finally, we express Af
(i,j) as a

binary variable.

4.4 Objective Function

In order to minimize network congestion in case of the

existence of burst traffic, the objective function is min-

imizing the maximum link utilization µ. More formally,

we have:

min µ, (9)

Subject to:

Constraints (1)-(8). (10)

Indeed, we are interested to find the routing matrix A

while minimizing µ. The problem belongs to the class

of Mixed Integer Linear Programming (MILP) formu-

lations, and it is NP-Hard [16]. Therefore, we rely on a

heuristic approach which is detailed in the next section.

CECT: Computationally Efficient Congestion-avoidance and Traffic Engineering 7

3

1

2

(a) Sample topology with 3 nodes.

3

1

2 4

(b) Sample topology with 4 nodes.

Fig. 2: Topology samples.

5 CECT Algorithm

In this subsection, the meta-heuristic method called

CECT (based on the genetic algorithm [13]) is precisely

described and represented as an algorithm in Alg. 1. In

brief, CECT pre-computes some feasible paths for each

flow and assigns a random path to each flow. In this

way, a collection of different solutions are constructed

and each solution is ranked based on the constraints

mentioned in the previous section. Then, CECT uses

the roulette wheel algorithm to select some solutions

as the ancestors of the next generation. The new pop-

ulation is generated by applying uniform crossover and

multipoint mutation on these ancestors. This process

is applied to each generation till a solution violating

no constraint is found or a predefined threshold for the

number of iterations is met.

In Alg. 1, the first line computes all x-paths (all

paths with a length lower than x) in an offline manner

(more details will be provided in Alg. 2 and Section

5.1). The second line randomly assigns an x-path to

each flow based on the source and destination of flows

and x-paths. This means that an x-path which has (a, b)

as its (source, destination) cannot be assigned to a flow

where the (source, destination) is (c, d) if (c, d) 6= (a, b).

Line 4 makes a loop until finding a solution which satis-

fies all constraints. In other words, the algorithm seeks

for a solution with no congestion. It should be men-

tioned that in two cases the loop breaks after some pre-

defined iterations: i) when the requests are more than

the resources (i.e., there is no a solution ensuring all

constraints), and, ii) when the proposed algorithm can

not find the optimal solution (i.e., in order to prevent

an infinite loop). In the next step, we find the fitness

function (i.e., using function FF which is precisely de-

scribed in Section 5.3) for each solution (which is called

a chromosome, Section 5.2) for current generation (line

5 of the algorithm). Then, some chromosomes are se-

lected using the roulette wheel algorithm (Section 5.3

to produce the next generation (line 6). Note that, the

number of the selected chromosomes is equal to the

number of population. Line 8 protects the best chromo-

some (best fitness value) from further changes (which is

known as elitism in the context of genetic algorithms).

In line 9, the selected chromosomes are sent to the uni-

form crossover function (Section 5.4) to produce the

next generation. During this step, the parents are re-

placed with their children.

Algorithm 1 CECT Algorithm

INPUT: G =< V,E >, threshold
OUTPUT: Af

(i,j)
, ∀ i, j

1: Precompute all x-paths
2: Randomly select feasible path for each flow (paths with

similar source and destination with the flow)
3: itr = 0;
4: while not(Eqs. (1)-(7)) && (itr <= threshold) do

5: FF(CHi) for each CHi ∈ PO
6: S =Roulette wheel selection(PO);
7: for i = 1;i <= size(S); i+ = 2 do
8: if CHi 6= best(FF (S)) then

9: Uniform Crossover(CHi, CHi+1);
10: Multipoint mutation(CHi);
11: Multipoint mutation(CHi+1);
12: if no improvement in the solutions for k itera-

tions then
13: mut = mutmax;
14: else

15: mut = mutmin;
16: end if

17: end if
18: end for

19: end while

20: return Af
ij

Line 10 and 11 are supposed to mutate the newly

generated population (Section 5.5). It should be men-

tioned that two reasons may stop the enhancement of

the best chromosome: i) falling into a local optimum,

and ii) finding the optimal solution. Therefore, in line

13 of the algorithm the mutation rate is increased to

mutmax if no improvement is seen in the best chro-

mosome after k iterations. We do this because if the

population is in a local optimum then increasing the

mutation rate helps the algorithm to escape the local

optimum. If the the algorithm is not in a local opti-

mum, in line 15 of the algorithm, the mutation rate is

returned to mutmin to find an optimum. On the other

hand, finding the global optimal solution ends the al-

gorithm (line 20 of the algorithm).

8 M.M. Tajiki, et al.

Table 2: 3-paths for sample topology depicted in Fig.

2a.

Label Path

1 {1→ 2}
2 {2→ 1}
3 {3→ 1}
4 {3→ 2}
5 {3→ 2→ 1}
6 {3→ 1→ 2}

Table 3: 3-paths for sample topology depicted in Fig.

2b.

Label Path Label Path

1 {1→ 2} 7 {1→3→2}
2 {2→ 1} 8 {1→3→4}
3 {3→ 2} 9 {3→4→1}
4 {3→ 4} 10 {4→1→3}
5 {4→ 1} 11 {4→1→2}
6 {4→ 3} 12 {4→3→2}

In the following, we first detail a simple case study

for solving CECT problem. Then, we detail the different

features of CECT which are the structure of the chro-

mosomes and the subroutines of selection, crossover,

and mutation.

5.1 Preliminaries

Consider an x-path is a path with y hops y ≤ x, e.g.,

in Fig. 2 the set of 3-path is {{1→2}, {2→1}, {3→1},
{3→2}, {3→2→1}, {3→1→2}}. CECT pre-computes

all x-paths (for a predefined x) and marks each path

as an unique number starting from 1, e.g., {1→2} is

marked as 1, {2→1} as 2, and so on. Tables 2 and 3

contain all entries in the set of 3-path for the sample

topologies (i.e., see Fig. 2a for Table 2 and Fig. 2b for

Table 3, respectively) along with their labels.

Alg. 2 provides the process of pre-computing the x-

paths. Lines 2-7 of the algorithm find all x-paths with

length one. To this end, for each switch v links that that

directly connect a switch to v are added to the set of

results R. In the next step, all x-paths with the length

of two are added to the results set R (lines 8-12). To

this end, considering each path r in the results set R,

switches v that have a direct connection to one of the

switches in r are added to the set of results < r, v >.

Thereafter, all 3-paths are considered and so on. At the

end, all x-paths with the length of x will be produced.

Algorithm 2 Precompute x-paths

INPUT: G =< V,E >, x >= 1
OUTPUT: R =< r >, r is a set of paths
1: R = {};
2: for each vertex v in V do
3: for each vertex v′ in V do

4: if v′ is a neighbor of v then
5: R = R+ {< v, v′ >};
6: end if

7: end for
8: for each r in R do

9: if (r is a neighbor of v) & (Length(r, v) <= x) then

10: R = R+ {< r, v >};
11: end if

12: end for

13: V = V − {v};
14: end for

Fig. 3: A sample Chromosome for topology depicted in

Fig. 2a and 3-paths labeling of Table 2.

5.2 Chromosomes structure

In the context of the genetic algorithm each solution is

called a chromosome. In the proposed algorithm each

chromosome (or simply each solution) is an array of p

labels (where p is the number of flows in the network),

e.g., if there are 10 flows in the topology illustrated in

Fig. 2a, then a sample chromosome for 3-path is de-

picted in Fig. 3. The first element of this chromosome

is 1 which means that the selected path for the first flow

is {1→2} (based on Table 2), therefore, the source of

the first flow is switch 1 and the destination is switch 2.

Similarly, the sixth element is 5 which means that the

selected path for the sixth flow is {3→2→1}. It should

be mentioned that all elements of Table 2 are calculated

based on the topology depicted in Fig. 2a.

5.3 Selection structure

After the initial population is created, each chromosome

is ranked based on the constraints violations (named as

the fitness function (FF)). In this way, the amount of

traffic that violates the QoS constraints is measured and

a proper penalty is assigned to each flow. Due to the

complex nature of resource reallocation problems, out-

standing individuals may introduce a bias in the early

stage of the algorithm. As a result, the algorithm may

get on a local optimum. To solve this issue, the parents

selection exploit a roulette wheel algorithm [3], which

is also known as fitness proportionate selection.

CECT: Computationally Efficient Congestion-avoidance and Traffic Engineering 9

In roulette wheel, let FFi be the fitness of individ-

ual i in the population. The selection probability of i-th

individual is pi = FFi∑NL
j=1 FFi

, where NL is the number of

individuals in the population. This selection algorithm

is chosen since it discards none of the individuals in

the population and gives a chance to all of them. As

an example, consider that there are 5 different chro-

mosomes (solutions) which have fitness values of {6.82,

1.11, 8.48, 2.57, 3.08}, respectively. Therefore, the pro-

portional probability of selecting each chromosome is

{31%, 5%, 38%, 12%, 14%}, respectively. In a nutshell,

the selection process consists of two elements: i) fitness

function (reported in Alg. 3); and, ii) roulette wheel

selection (detailed in Alg. 4).

In Alg. 3, lines 1-5 compute the imposed traffic to

the network by the flow. Line 6 considers the summa-

tion of the amount of congestion in all links as the fit-

ness function of the corresponding flow that is returned

by the Alg. 3. In Alg. 4, lines 3 and 4 calculate the

summation of all chromosome fitness values. The cu-

mulative probability of each chromosome is computed

in lines 7-10. The loop in line 11 repeats the follow-

ing instruction until the number of the selected chro-

mosome reaches a predefined population size. In lines

12-20, a random number between (0, 1] is generated.

In particular, a chromosome with the minimum cumu-

lative probability greater than this random number is

selected.

Algorithm 3 FF: Fitness Function

INPUT: CH =< XP >, d, B =< E, b >. CH is a set of
vertexes (a chromosome), XP is a x-path label, d is the
demand size, B is the graph of bandwidth, E is set of
edges, and b is the link’s capacity

OUTPUT: F . fitness associated with the input chromosome
1: for each path XP in CH do

2: for each edge e in XP do
3: reduce the bandwidth of edge e in B with d

4: end for

5: end for
6: F = sum(b);
7: return F

5.4 Crossover structure

In genetic algorithms, a crossover is a genetic operator

used to vary the features of chromosomes from one gen-

eration to the next. The uniform crossover uses a fixed

mixing ratio between two parents. Unlike one-point and

two-point crossover, the uniform crossover enables the

parent chromosomes to contribute the gene level rather

than the segment level. Therefore, since each chromo-

some contains several labels, a uniform crossover is ex-

ploited in this paper. The corresponding procedure is

detailed in Alg. 5. More in detail, a random number

Algorithm 4 Roulette Wheel Selection

INPUT: PO, which is population
OUTPUT: S, which is selected chromosomes
1: sum = 0;
2: S = {};
3: for each chromosome CH in PO do

4: sum+ = FF (CH);
5: end for
6: sum pr = 0;
7: for each chromosome CHi in PO do
8: pri = sum pr + (FF (CHi)/sum);
9: sum pr += pri;

10: end for
11: while Length(S) ≤ Length(PO) do

12: j = 1;
13: for j <= 2 do
14: rn = Random(0, 1);
15: for each chromosome CHi in PO do

16: if rn > pri && rn < pri+1 then
17: S = S + {CHi};
18: end if

19: end for
20: end for

21: end while
22: return S

between (0, 1] is generated for each gene. If the ran-

dom number is less than a threshold (i.e., 0.5 in [28]),

then the first child CH ′1 receives the corresponding gene

from the first parent CH1 and the second child CH ′2 re-

ceives the corresponding gene from the second parent

CH2. Otherwise, the first child receives the gene from

the second parent while the second child receives the

gene from the first parent.

Algorithm 5 Uniform Crossover

INPUT: CH1, CH2, which are parents (two chromosomes)
OUTPUT: CH′

1, CH′
2, which are children (two chromo-

somes)
1: for each path in CH′

1 and CH′
2 do

2: if Random(0, 1) < 0.5 then

3: CH′
1 take the path from CH1

4: CH′
2 take the path from CH2

5: else
6: CH′

1 take the path from CH2

7: CH′
2 take the path from CH1

8: end if
9: end for

10: return CH′
1, CH′

2

5.5 Mutation structure

Mutation is a genetic operator used to maintain genetic

diversity from one generation of a population to an-

10 M.M. Tajiki, et al.

other one. Due to the fact that the probability of falling

into a local optimum in resource reallocation problems

are high, CECT uses multipoint mutation operator in

which several labels of each chromosome are selected

and changed randomly as shown in Fig. 4 (i.e., three

labels are mutated).

Fig. 4: The multipoint mutation.

Alg. 6 gives an outline of the mutation process. For

each gene (which is an x-path label for the correspond-

ing flow), a random number between (0, 1] is generated.

If the random number is more than the mutation rate

MR (line 3), then the corresponding gene is replaced

by a feasible gene (line 6), otherwise it may remain un-

changed. Feasible genes are sets of x-paths that have

similar source and destination with that gene, e.g., if

the source and destination of the i-th gene that is go-

ing to be mutated is si and di, then set of x-paths that

have si and di as their sources and destinations are fea-

sible for this gene.

Algorithm 6 Multipoint Mutation

INPUT: CH, MR, where MR is mutation rate
OUTPUT: CH′, which is the mutated chromosome
1: H′ = {}
2: for each gene r in CH do
3: if Random(0, 1) >= MR then
4: CH′ = CH′ + {r}
5: else
6: CH′=CH′+Random{Feasible Path for this Flow}
7: end if

8: end for
9: return CH′

5.6 Flow table compression structure

In this subsection, in order to reduce the computational

complexity of CECT, a technique to reduce the size of

the flow table is proposed. For the sake of simplicity,

all flows belong to the same pair of source and destina-

tion called SF flows. There is a large number of small

flows (i.e., flows with a size less than 10 Kb/s) [6] in

data center networks which can be merged to reduce

the computational complexity of the solution. To this

end, all SF flows that are smaller than a predefined

lower bound are merged. Note that the outcome must

be smaller than an upper bound threshold, otherwise

it breaks into two or more flows. Interestingly, the in-

crease of the lower bound (fine-grained granularity) re-

duces the computational complexity while it increases

the optimality gap. However, as we will show in the per-

formance evaluation section, the proposed compression

method is able to dramatically reduce the number of

active flows.

6 Complexity Analysis

In this section the computational and space complexity

of the proposed meta-heuristic algorithm is analyzed.

6.1 Computational Complexity

The algorithm is composed of an online part and an

offline part (pre-computation of the x-paths). Since the

offline part is related to the network topology and is

calculated when the network is configured one time for

ever, then we ignore this part of the algorithm in our

analyze. CECT is composed of four main subroutines:

ranking, selection, crossover, and mutation. Consider

NF as the number of flows, itr as the predefined max-

imum iteration, m as the maximum length of a path,

L as the number of links, Np as the number of chro-

mosomes, and c as the number of pre-computed paths.

The computational complexity of ranking and selection

parts are O(NF × (m2 × log c+ L)) and O(NF), re-

spectively [1]. Both the crossover and mutation steps

have a computational complexity of the order NF ×m.

These subroutines are invoked for each pair of chromo-

somes, consequently the complexity should multiply by

Np. Since these parts are executed until a valid solu-

tion is achieved or a predefined threshold itr is met, in

the worst case the computational complexity of CECT

is O(Np × NF × itr × (2m + L + m × L2 × log c)). In

our case, the value of m, c, and itr is selected as 10,

50, and 100, respectively. As a result, computational

complexity of CECT is:

O(Np ×NF × itr ×m× L2 × log c).

The authors of [2] investigate different approaches of

selecting the best population size (number of chromo-

somes) to be deployed in micro GA algorithms. They

propose that the best population size is the square root

of the chromosome length. Therefore, considering N as

the number of switches, where Np =
√
NF × log2N .

So, CECT computation complexity is:

O(
√

log2N ×NF
3/2 × itr ×m× L2 × log c).

CECT: Computationally Efficient Congestion-avoidance and Traffic Engineering 11

1 2 3 4

5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20

POD 1 POD 2 POD 3 POD 4

Controller

Top-of-Rack Switches

Layer 1

Layer 3

Layer 2

Fig. 5: The Fat-tree topology with k = 4.

The values of
√

log2N and log c are less than 10 even

for huge networks, therefore, the computational com-

plexity of CECT is as follows:

O(CECT) , O(NF
3/2 × itr × L2 ×m). (11)

It should be mentioned that m and itr are small values

(usually less than 10 and 100, respectively).

6.2 Space Complexity

Consider Np as the number of chromosomes, IL and

CL as the length of an integer variable and a char-

acter variable, NF as the number of flows, m as the

maximum length of a path, and c as the number of

pre-computed paths. We analyze the space complexity

of the offline and the online parts separately. In the

offline part, CECT should save the table of x-paths

and corresponding labels. Each x-path in the worst case

consists of m characters where each character contains

a switch name. On the other hand, for each x-path

there is a corresponding label which is an integer vari-

able. There are c x-paths in the network, therefore, the

space complexity of the offline part of the algorithm is

O(c× (IL+m× CL)).

On the other hand, in the online part of the al-

gorithm, there are Np chromosomes, each chromosome

consists of NF integer variables (labels). Therefore, the

space complexity of the online part of the algorithm is

O(NF ×Np × IL).

7 Simulated scenarios and considered

performance metrics

In this section, we describe the considered test scenarios

and the adopted performance metrics.

7.1 Setup Description

The proposed analytical model is evaluated on the net-

work topology shown in Fig. 5 in order to simulate the

SCDC. The illustrated topology called fat-tree topol-

ogy is a scalable data center network architecture that is

universally adopted [19]. All simulations are carried out

on a desktop equipped with Intel Core 2 dual 2.6 GHZ

CPU and 4.0 GB RAM. In our simulations, we consider

32 port switches (e.g., NEC PF5340-32QP) on the 3rd

layer of the topology (switches 13-20) and 48 port top-

of-rack switches (e.g., Cisco Catalyst 4948 Switch), this

topology can support up to 11.28 K servers. We exploit

a network traffic pattern which can be found in [4]. Due

to lack of information about the IP layout, we assign

hosts to the switches randomly. In addition, the access

12 M.M. Tajiki, et al.

and aggregation switches are classified as POD I. The

probability of leaving the originating POD for each flow

is considered as PLR parameter, e.g., PLR = 0 means

that all flows stay in their originating POD. We use

Mininet [31] along with POX controller [32] to emu-

late the network. In the sequel, network throughput

of ECMP [22] and CECT are discussed to show the

impact of the proposed scheme on the network perfor-

mance. ECMP is selected as a comparisons with our

solution (i.e., CECT) for two reasons: i) ECMP and

CECT as multi-path routing method distribute pack-

ets across multiple links in the network in such away to

preserve the load balancing, and, ii) ECMP is consid-

ered as an interesting and prevalent real method which

is applied in large data centers and it is implemented

as a common routing protocol in Mininet [31].

7.2 Performance Metrics

In the carried out simulations, the following three per-

formance metrics have been numerically evaluated:

(i) Throughput : it is the rate of successful message de-

livery over a communication channel in the SCDC;

(ii) Data Transfer : it is the average amount of the data

transferred through a link in the SCDC;

(iii) Packet Loss: it is the network congestion metric

that is the percentage of packets lost with respect

to packets sent in the SCDC.

It should be mentioned that Wireshark is used to

capture the traffic in all of the hosts and switches.

Thereafter, all captured traffics are merged to calculate

the mentioned parameters.

8 Performance Evaluation and Comparisons

In this section, we test and compare the performance of

the proposed CECT algorithm against the correspond-

ing one, namely, the ECMP [22] algorithm.

8.1 Throughput

The first group of carried out tests aims to evaluate and

compare the throughput of CECT and ECMP (Equal

Cost Multi-Path) [22] routing algorithms. Hence, in our

emulation, ECMP considers the path length as the cost

of that path which means that it uses the shortest-path

algorithm to find paths and distributes the traffic be-

tween these paths. The obtained numerical results for

the total number of flows are reported in Fig. 6.

In Fig. 6, we increase the total number of flows in the

network from 200 flows up to 2000 flows by adding 200

0

50

100

150

200

200 400 600 800 1000 1200 1400 1600 1800 2000

Th
ro

u
gh

p
u

t
(M

b
it

/s
ec

)

Number of Flows

PLR=0.50ECMP CECT

Fig. 6: Total network throughput.

new flows in each iteration and calculate the network

throughput. To this end, we run TCP dump on all of

the hosts in the network and merge these TCP-dumps

to calculate the total network throughput. As can be

seen, since growing the number of flows increases the

network traffic load, the probability of congestion in the

network is higher. Therefore, the superiority of CECT is

more evident in a large number of network flows. Based

on the emulation results, CECT improves the network

throughput up to 3x compared to the ECMP.

In the following, in order to investigate the impact

of the network size and traffic pattern over the proposed

scheme, we evaluate the network throughput over a net-

work topology with 45 switches (i.e., fat-tree k=6). Ad-

ditionally, we implement a network packet generator to

generate different traffic patterns. To this end, we use

MATLAB programming language to generate the traf-

fic pattern with different flow sizes and simulate the

network environment. Furthermore, we use a real net-

work traffic with 4 different traffic patterns where the

average rate of flows are micro (Fig. 7a), small (Fig. 7b),

medium (Fig. 7c), and big (Fig. 7d). Consider b as the

ratio of the flow rate to link bandwidth. We consider

flow f a micro flow, if bf = 0.005. Similarly, small,

medium, and big flows are flows with bf equal to 0.02,

0.2, and 0.5, respectively. As can be seen, the superior-

ity of CECT over ECMP increases whether the size or

the number of traffic flows increases.

8.2 Data transfer

The second group of numerical tests focuses on the

communicated traffic in the network in each time in-

terval and the transferred data versus the number of

flows between CECT, ECMP routing strategies that

are presented in Fig. 8. Hence, Fig. 8a shows the num-

ber of bytes that are communicating in each time in-

terval. Based on this figure, the superiority of CECT

CECT: Computationally Efficient Congestion-avoidance and Traffic Engineering 13

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Flows

0

20

40

60

80

100

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

CECT ECMP

(a) Micro Flows.

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Flows

0

100

200

300

400

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

CECT ECMP

(b) Small Flows.

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Flows

100

200

300

400

500

600

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

CECT ECMP

(c) Medium Flows.

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Flows

200

300

400

500

600

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

CECT ECMP

(d) Big Flows.

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Flows

50

100

150

200

250

300

350

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

CECT ECMP

(e) Real Network Traffic.

Fig. 7: Network Throughput, fat-tree k=6, 45 switches.

over ECMP (the shortest path algorithm is used as the

cost function) is clear. Due to greedy nature of TCP

connections, each flow tries to obtain as much band-

width as possible, therefore, the TCP connections try

to reach the maximum speed of data transfer. However,

since increasing the traffic rate increases the probabil-

ity of congestion, the traffic rate rises and then drops

periodically. On the other hand, Fig. 8a presents the

transferred data versus the number of flows in the net-

work. As can be seen, increasing the number of flows

increases the gap between the results of ECMP and

CECT. This happens because increasing the number of

flows, increases the probability of congestion in the net-

work and makes the impact of the rerouting algorithm

clearer.

It should be mentioned that in our emulation, each

flow tries to communicate a special amount of traffic

(e.g., flow 1: 10 Mb, flow 2: 400 Kb, flow 3: 100 Mb,

etc.).

8.3 Packet Loss

The third group of simulations aims at evaluating the

packet loss of the network. The obtained numerical re-

sults (expressed in terms of the multiple number of

flows) are reported in Fig. 9. The percentage of packet

loss versus the number of flows in presented in the men-

tioned figure. It is clear from the figure that increasing

0

20

40

60

80

100

0

0
.7

1
.4

2
.1

2
.8

3
.5

4
.2

4
.9

5
.6

6
.3 7

7
.7

8
.4

9
.1

9
.8

1
0

.5

1
1

.2

1
1

.9

Sp
ee

d
 o

f
D

at
a

Tr
an

sf
er

(M

b
/T

ic
k)

Time (s)

PLR=0.50ECMP CECT

(a) Traffic transferred.vs. time interval.

0

1

2

3

200 300 400 500 600 700 800 900 1000

Tr
an

sf
er

re
d

 D
at

a
(G

b
)

Number of Flows

PLR=0.50ECMP CECT

(b) Traffic transferred.vs. Number of flows.

Fig. 8: Network Traffic.

14 M.M. Tajiki, et al.

0

0.02

0.04

0.06

0.08

0.1

0.12

800 1000 1200 1400 1600 1800 2000

Pa
ck

et
 L

o
ss

 (
%

)

Number of Flows

PLR=0.25ECMP CECT

Fig. 9: Packet loss.

the number of flows increases the packet loss in both

approaches, however, the percentage of packet loss in

the proposed algorithm is sufficiently lower in compared

with the packet loss of ECMP. As a result, CECT de-

creases the packet loss up to 2x compared to traditional

approach (i.e., ECMP).

8.4 Execution Time

In order to investigate the impact of network size and

flows number on the execution time of CECT, we ex-

ploit a network topology with 45 switches and 2000

flows to test CECT and the results are depicted in

Fig. 10. In the right side of the figure, total execution

time of CECT versus the number of flows is presented.

Correspondingly, on the left side, per flow execution

time versus the number of flows is illustrated. As can

be seen, the total execution time for 20 and 45 switches

are less than 0.42 and 2 second and the execution time

per each flow is less than 1.8 and 4.5 milli-second.

Since the execution times is completely dependant

on the programming language, the configuration of the

PC which hosts the network controller, and the opti-

mality of the implementation, therefore, we mathemat-

ically analyzed the computation and space complexity

of CECT in Section 6.

9 Conclusions and Future Work

In this work, an efficient resource reallocating algorithm

for software-defined data centers was introduced. In

this way, the problem was mathematically formulated

and an optimal scheme was proposed to solve the cor-

responding optimization problem. Since the computa-

tional complexity of the proposed solution is high, we

proposed a meta-heuristic approach based on genetic

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Flows

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

pe
r

F
lo

w
 E

xe
cu

tio
n

T
im

e
(m

 s
ec

)

0.34

0.36

0.38

0.4

0.42

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

(a) Fat-tree K=4, 20 switches.

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Flows

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

pe
r

F
lo

w
 E

xe
cu

tio
n

T
im

e
(m

 s
ec

)

0.8

1

1.2

1.4

1.6

1.8

2

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

(b) Fat-tree K=6, 45 switches.

Fig. 10: Execution time of CECT.

algorithm, called CECT, to propose a sub-optimal so-

lution which has a low computational complexity. The

computational complexity of CECT was discussed and

showed that it is applicable for real-world networks.

Additionally, CECT was compared with ECMP from

throughput, data transfer, and packet loss perspective.

Emulation results show that CECT improves the total

network throughput up to 3x while the packet loss is

decreased up to 2x. Future work would be dedicated

to minimizing the side effect of network reconfigura-

tion. Additionally, one can minimize the network en-

ergy consumption by chaining the objective function.

In this way, the mathematical formulation should be

extended in a way that some new constraint implement

the network energy consumption model.

References

1. Fast proportional selection. URL http://jbn.

github.io/fast_proportional_selection/.

(Date last accessed Jun. 2017)

http://jbn.github.io/fast_proportional_selection/
http://jbn.github.io/fast_proportional_selection/

CECT: Computationally Efficient Congestion-avoidance and Traffic Engineering 15

2. Abu-Lebdeh, G., Benekohal, R.F.: Convergence

variability and population sizing in micro-genetic

algorithms. Computer-Aided Civil and Infrastruc-

ture Engineering 14(5), 321–334 (1999)

3. Back, T.: Evolutionary algorithms in theory and

practice: evolution strategies, evolutionary pro-

gramming, genetic algorithms. Oxford university

press (1996)

4. Benson, T., Akella, A., Maltz, D.A.: Network traffic

characteristics of data centers in the wild. In: 10th

ACM SIGCOMM conference on Internet measure-

ment, Melbourne, Australia, pp. 267–280 (2010)

5. Benson, T.A.: New paradigms for managing the

complexity and improving the performance of en-

terprise networks. Ph.D. thesis, The University of

Wisconsin-Madison (2012)

6. Benson, T.A.: New paradigms for managing the

complexity and improving the performance of en-

terprise networks. Ph.D. thesis, University of

Wisconsin-Madison (2012)

7. Civanlar, S., Parlakisik, M., Tekalp, A.M.,

Gorkemli, B., Kaytaz, B., Onem, E.: A qos-enabled

openflow environment for scalable video streaming.

In: IEEE GLOBECOM Workshops (GC Wkshps),

Miami, FL, USA, pp. 351–356 (2010)

8. Do, M.T., Jin, J., Wang, H., Man, Z.: Sliding mode

learning based congestion control for diffserv net-

works. IET Control Theory & Applications 10(11),

1281–1287 (2016)

9. Egilmez, H.E., Civanlar, S., Tekalp, A.M.: A dis-

tributed qos routing architecture for scalable video

streaming over multi-domain openflow networks.

In: 19th IEEE International Conference on Image

Processing (ICIP), Orlando, FL, USA, pp. 2237–

2240 (2012)

10. Egilmez, H.E., Civanlar, S., Tekalp, A.M.: An opti-

mization framework for qos-enabled adaptive video

streaming over openflow networks. IEEE Transac-

tions on Multimedia 15(3), 710–715 (2013)

11. Egilmez, H.E., Dane, S.T., Bagci, K.T., Tekalp,

A.M.: Openqos: An openflow controller design for

multimedia delivery with end-to-end quality of ser-

vice over software-defined networks. In: Asia-

Pacific, Signal & Information Processing Associ-

ation Annual Summit and Conference (APSIPA

ASC), Hollywood, CA, USA, pp. 1–8 (2012)

12. Egilmez, H.E., Gorkemli, B., Tekalp, A.M., Civan-

lar, S.: Scalable video streaming over openflow net-

works: An optimization framework for qos routing.

In: 18th IEEE International Conference on Image

Processing (ICIP), Brussels, Belgium, pp. 2241–

2244 (2011)

13. Eiben, A.E., Raue, P.E., Ruttkay, Z.: Genetic al-

gorithms with multi-parent recombination. In: In-

ternational Conference on Parallel Problem Solving

from Nature, pp. 78–87. Springer (1994)

14. Gholami, M., Akbari, B.: Congestion control in

software defined data center networks through flow

rerouting. In: 23rd Iranian Conference on Electri-

cal Engineering (ICEE), Tehran, Iran, pp. 654–657

(2015)

15. Ghosh, A., Ha, S., Crabbe, E., Rexford, J.: Scalable

multi-class traffic management in data center back-

bone networks. IEEE Journal on Selected Areas in

Communications 31(12), 2673–2684 (2013)

16. Guck, J.W., Reisslein, M., Kellerer, W.: Function

split between delay-constrained routing and re-

source allocation for centrally managed qos in in-

dustrial networks. IEEE Transactions on Industrial

Informatics 12(6), 2050–2061 (2016)

17. Kulkarni, S., Sharma, R., Mishra, I.: New qos rout-

ing algorithm for mpls networks using delay and

bandwidth constraints. International Journal of In-

formation 2(3) (2012)

18. Leela, R., Thanulekshmi, N., Selvakumar, S.:

Multi-constraint qos unicast routing using genetic

algorithm (muruga). Applied Soft Computing

11(2), 1753–1761 (2011)

19. Leiserson, C.E.: Fat-trees: universal networks for

hardware-efficient supercomputing. IEEE transac-

tions on Computers 100(10), 892–901 (1985)

20. Liang, B., Yu, J.: One multi-constraint qos rout-

ing algorithm cgea based on ant colony system. In:

2nd International Conference on Information Sci-

ence and Control Engineering (ICISCE), Shanghai,

China, pp. 848–851 (2015)

21. Lu, Y., Zhu, S.: Sdn-based tcp congestion control

in data center networks. In: IEEE 34th Interna-

tional Performance, Computing and Communica-

tions Conference (IPCCC), Nanjing, China, pp. 1–7

(2015)

22. Martini, L., Rosen, E., El-Aawar, N., Heron, G.:

Ieee standard for local and metropolitan area

networks– virtual bridged local area networks

amendment 13: Congestion notification. IEEE Std

802.1Qau-2010 (Amendment to IEEE Std 802.1Q-

2005) pp. c1–119 (2010)

23. Mushtaq, M.S., Fowler, S., Mellouk, A., Augustin,

B.: Qoe/qos-aware lte downlink scheduler for voip

with power saving. Journal of Network and Com-

puter Applications 51, 29–46 (2015)

24. Ongaro, F.: Enhancing quality of service in

software-defined networks. Ph.D. thesis, Univer-

sity of Bologna (2014). URL http://amslaurea.

unibo.it/id/eprint/7356

http://amslaurea.unibo.it/id/eprint/7356
http://amslaurea.unibo.it/id/eprint/7356

16 M.M. Tajiki, et al.

25. Otoshi, T., Ohsita, Y., Murata, M., Takahashi, Y.,

Ishibashi, K., Shiomoto, K., Hashimoto, T.: Traf-

fic engineering based on stochastic model predictive

control for uncertain traffic change. In: IFIP/IEEE

International Symposium on Integrated Network

Management (IM), Ottawa, Canada, pp. 1165–1170

(2015)

26. Shetty, S., Yuchi, X., Song, M.: Optimizing

network-aware resource allocation in cloud data

centers. In: Moving Target Defense for Distributed

Systems, pp. 43–55. Springer (2016)

27. Shojafar, M., Canali, C., Lancellotti, R., Abawajy,

J.: Adaptive computing-plus-communication opti-

mization framework for multimedia processing in

cloud systems. IEEE Transactions on Cloud Com-

puting (2016)

28. Su, W., Lagoa, C.M., Che, H.: Optimization-based,

qos-aware distributed traffic control laws for net-

works with time-varying link capacities. Automat-

ica 72, 158–165 (2016)

29. Tajiki, M.M., Akbari, B., Mokari, N.: Qrtp: Qos-

aware resource reallocation based on traffic predic-

tion in software defined cloud networks. In: 8th

IEEE International Symposium on Telecommuni-

cations (IST), Tehran, Iran, pp. 527–532 (2016)

30. Tajiki, M.M., Akbari, B., Mokari, N.: Optimal qos-

aware network reconfiguration in software defined

cloud data centers. Computer Networks 120, 71–86

(2017)

31. Mininet. https://github.com/mininet/mininet.

[Online; accessed 30-June-2017]

32. PoX. https://github.com/noxrepo/pox. [On-

line; accessed 30-June-2017]

33. Wang, J.M., Wang, Y., Dai, X., Bensaou, B.: Sdn-

based multi-class qos-guaranteed inter-data center

traffic management. In: IEEE 3rd International

Conference on Cloud Networking (CloudNet), Lux-

embourg, Luxembourg, pp. 401–406 (2014)

34. Zhang, L., Tizghadam, A., Bannazadeh, H., Leon-

Garcia, A.: Iterative traffic engineering in the data

plane of multimedia ip communications. In: 2nd

IEEE NetSoft Conference and Workshops (Net-

Soft), Seoul, South Korea, pp. 107–111 (2016)

35. Zhao, J., Ge, X.: Qos multi-path routing scheme

based on acr algorithm in industrial ethernet. In:

Third International Conference on Communica-

tions, Signal Processing, and Systems, pp. 593–601

(2015)

https://github.com/mininet/mininet
https://github.com/noxrepo/pox

	1 Introduction
	2 Related work
	3 Reference Architecture
	4 Problem Formulation
	5 CECT Algorithm
	6 Complexity Analysis
	7 Simulated scenarios and considered performance metrics
	8 Performance Evaluation and Comparisons
	9 Conclusions and Future Work

