
Noname manuscript No.
(will be inserted by the editor)

A self-scalable distributed network simulation environment
based on cloud computing

Sergio Serrano-Iglesias · Eduardo Gómez-Sánchez · Miguel L.

Bote-Lorenzo · Juan I. Asensio-Pérez · Manuel Rodŕıguez-Cayetano

Received: date / Accepted: date

Abstract While parameter sweep simulations can help

undergraduate students and researchers to understand

computer networks, their usage in the academia is hin-

dered by the significant computational load they con-

vey. This paper proposes DNSE3, a service oriented

computer network simulator that, deployed in a cloud

computing infrastructure, leverages its elasticity and

pay-per-use features to compute parameter sweeps. The

performance and cost of using this application is eval-

uated in several experiments applying different scala-

bility policies, with results that meet the demands of

users in educational institutions. Additionally, the us-

ability of the application has been measured following

industry standards with real students, yielding a very

satisfactory user experience.

Keywords computer networks simulation · automatic

scalability · cloud computing applications

This work has been partially funded by the Spanish State
Research Agency and the European Regional Development
Fund (grants TIN2014-53199-C3-2-R and TIN2017-85179-
C3-2-R) and the Regional Government of Castilla y León
(grant VA082U16, co-financed by the European Regional De-
velopment Fund).

S. Serrano-Iglesias, E-mail: sergio@gsic.uva.es ·
E. Gómez-Sánchez, E-mail: edugom@tel.uva.es ·
M.L. Bote-Lorenzo, E-mail: migbot@tel.uva.es ·
J.I. Asensio-Pérez, E-mail: juaase@tel.uva.es ·
M. Rodŕıguez-Cayetano, E-mail: manrod@tel.uva.es

Department of Signal Theory, Communications and
Telematics Engineering
School of Telecommunications Engineering, Universidad de
Valladolid
Paseo de Belén 15, 47011 Valladolid, Spain

1 Introduction

Computer network simulation allows to evaluate proto-

cols or network configurations that cannot be deployed

in reality with ease or within a reasonable budget [29,

51], and to explore extreme traffic situations which are

rare but of critical impact [51]. Besides researchers or

standard proponents, simulation is often used in edu-

cation because it helps students easily understand the

behavior of a protocol under diverse network configura-

tions, without the cost of a real infrastructure and the

security concerns entailed by letting students manipu-

late them, often by proposing students to deal with one

or just a few given network configurations (see for exam-

ple the experiences reported in [38], [40] or [49]). Ped-

agogically, it would be more interesting to let students

freely explore the parameter space in order to search

for relevant phenomena and understand their causes.

For instance, [9] describes a learning scenario in which

learners must understand the relationship between one

output variable (TCP throughput) and some network

parameters (link delays and bit rates). Since the output

depends on both, this experiment demands a parameter

sweep simulation that can be explored as a 2kr factorial

design [28, chapter 18]. With typical desktop comput-

ers available in educational laboratories, the response

times would be very high, rendering the learning sce-

nario unfeasible in practice.

In spite of the high computational load of a parame-

ter sweep study, it can be decomposed into a (normally

quite large) number of independent simulations, each

of them evaluating the same model with a different set

of parameters. Hardware solutions that exploit thread

or process level parallelism can bring down simulation

times [50], though to achieve sensible reductions a sig-

nificant amount of hardware is needed, which normally

Manuscript main source file Click here to download Manuscript
dnse3_manuscript_reviewed.tex

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/clus/download.aspx?id=142543&guid=9a978317-8d5c-439e-bb8e-15226550b3b9&scheme=1
http://www.editorialmanager.com/clus/download.aspx?id=142543&guid=9a978317-8d5c-439e-bb8e-15226550b3b9&scheme=1
http://www.editorialmanager.com/clus/viewRCResults.aspx?pdf=1&docID=5871&rev=1&fileID=142543&msid={9275E89D-A6AE-43FE-9D24-02B2C0714D9F}

2 S. Serrano-Iglesias et al.

is beyond the budget of educational institutions, espe-

cially if this hardware only serves a few experiments in

very specific courses and will thus remain unused most

of the time. Instead, a shared infrastructure that may

scale up and down easily would fit much better to these

intermittent needs of computation. Indeed, DNSE [9]

exploits a computational grid infrastructure based on

Globus Toolkit 4 [18] to carry out parameter sweeps.

With a service oriented design, simulation services in

charge of running ns-2 [34] models can be replicated

as needed in existing resources in the virtual organi-

zation (a “federations of resources” spanning multiple

administrative domains). However, adding or removing

computation nodes to the virtual organization requires

manual intervention of the administrator. With a dy-

namic load, this implies either under or overprovision-

ing. Moreover, low adoption of service oriented grids

(in particular one based on the Web Services Resource

Framework, WSRF [36], with no updates or events since

the publication of the standard in 2006) and Globus

Toolkit (with support discontinued in January 2018)

hinder the utility of DNSE.

On the contrary, the cloud computing paradigm has

matured quickly with the consolidation of prominent

public cloud platforms, such as Google App Engine [23],

Microsoft Azurre [33] or Amazon Web Services (AWS)

[1], and also robust middleware to set up private clouds,

like OpenStack [37] or Cloudstack [3]. This paradigm al-

lows on demand virtualized resource provisioning under

a pay-per-use business model without upfront invest-

ment [47], where resources can be reserved and released

without human intervention through user defined scal-

ability rules [46], yielding virtually infinite scalability

of an application at reasonable costs [53]. Though this

fact makes cloud computing very appealing for scien-

tific, performance-demanding applications [41], such as

simulators, the usage of cloud computing in the educa-

tional realm is very much limited to ready Software-as-

a-Service applications [22,44].

This paper leverages the flexible scalability and cost

model of the cloud to propose DNSE3 (Distributed Net-

work Simulation Environment 3), an application con-

ceived for education that allows students to define, run

and analyze both single simulations and parameter sweeps.

This new system evolves DNSE [9], making use of ns-3

[35], which allows embedding real network stack code

in simulations [35] and brings much better performance

in the simulation of wireless networks [54]. Moreover,

a service oriented architecture is proposed for the ap-

plication aimed at exploiting cloud features to achieve

self-scalability for improved performance at reasonable

costs. In particular, it uses the cloud provisioning mech-

anisms to automatically increment or reduce the com-

putational resources used to run simulation services.

These services take simulation tasks from one single

pool using a work stealing approach, to avoid the need

to know the existing simulation services in such dy-

namic environment. To govern how aggressively DNSE3

recruits or frees resources in order to adapt to existing

workloads, a scalability policy must be defined con-

sisting on rules that evaluate application level met-

rics and determine when and how much to scale up or

down. This paper also evaluates several scalability poli-

cies that scale towards keeping the amount of pending

tasks per worker at a certain level, presenting DNSE3

results in performance and cost when using these poli-

cies, and reflecting on their adequacy to achieve a de-

sired response time. In addition, the usability of the

developed application is tested with users from the do-

main (students).

The rest of this paper is structured as follows. Sec-

tion 2 reviews other distributed simulators found in

the literature. Next, section 3 describes the main func-

tional and non functional requirements in the design of

DNSE3. Section 4 presents the service oriented archi-

tecture, with detailed discussion on the decisions that

drive automatic scalability, and describes how this ar-

chitecture is deployed in a private Openstack architec-

ture, discussing which services can be reused from the

infrastructure and which cannot. Section 5 evaluates

DNSE3 performance and cost, discussing the effect of

several scalability policies, while section 6 very briefly

reports the findings on application usability. Finally,

conclusions are drawn in the last section.

2 Related work

Parallel and distributed simulation has been a field of

research for quite some time [19]. In many cases, a sin-

gle simulation model is reprogrammed so that distinct

computational resources evaluate some of the simula-

tion events, being thus synchronization the most crit-

ical issue [19]. A somewhat different approach of par-

allelization delivers separate but dependent simulation

models to each of the computing elements (the logi-

cal processes, LP). For instance, [50] refactors ns-2 to

distribute a large network topology among several sim-

ulation threads, so that each one simulates completely

some routers and links. However, as these topology parts

exchange traffic between them, the LPs in charge of

them have to wait for events coming from other LPs.

Similarly, [10] proposes dSUMO, a decentralized soft-

ware architecture to simulate urban traffic in which

each LP is in charge of a partition of a city model (con-

sisting of interacting elements such as cars or pedestri-

ans). For evaluation, they deployed this architecture in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A self-scalable distributed network simulation environment based on cloud computing 3

a virtualized environment (virtual machines and net-

works) dimensioned beforehand, though their research

focused on the impact of different partitioning mecha-

nisms, not on scalability.

In all the above proposals, tasks split among LPs

are, at some point, dependent of each other. In con-

trast, the aforementioned DNSE [9] pursued perform-

ing parameter sweep simulations benefiting from the

fact that each of them is a completely independent pro-

cess. It was designed to distribute the workload in a

service oriented grid. A broker service found out from

a directory which simulation services are available and

split the parameter sweep between them, collecting the

results when simulations were finished. Noticeably, the

simulation services did not communicate among them.

[15] also uses the computational grid to support simula-

tion, by proposing a framework to develop simulations

that can be discovered, instantiated and used in the

grid, illustrated with the simulation of an aircraft en-

gine model. The simulation themselves do not benefit

from parallelization, though each different client may

ask a factory to create a dedicated instance of the sim-

ulation service.

The cloud computing paradigm has also been adopted

to conduct high performance simulation [20]. SEMSim

[52] uses it to run the back-end of an urban traffic sim-

ulator. With the front-end tools, the user designs an

experiment that submits as a “simulation bundle” to a

dispatch server in the back-end. This dispatcher is in

charge of provisioning a number of virtual machines to

run independent simulations in parallel. This number,

however, is determined beforehand. [26] claims to follow

a similar approach, though the models they simulate are

not restricted to a particular domain. A similar archi-

tecture is proposed by [25] for a different application:

searching for asteroids in chunks of astronomical data

processed in parallel by different virtual machines in

an Openstack private cloud. Though the performance

is evaluated for different scales, the number of virtual

machines is fixed before each of the experiments.

Finally, cloud computing has also been used to sup-

port education in many ways [22,44], among them sup-

porting simulation. The Cloud-based collaborative and

Scale-up Modelling and Simuation Framework for STEM

Education (C2SuMo) [13] has been designed with some

educational constrains in mind, like supporting collab-

oration and being very easy to learn, and is aimed at

letting students construct, refine and simulate urban

traffic models. A virtual machine running a SUMO sim-

ulator [6] is launched for each user, though the work

demanded by an individual user is not actually paral-

lelized.

3 Application requirements

The DNSE3 is an application originally aimed at car-

rying out simulations of computer networks for educa-

tional purposes, including parameter sweeps. For the

shake of usability, it should offer simple yet significant

functionalities to manage simulations and their results.

In addition, non functional requirements such as scala-

bility are key driving forces behind this proposal.

3.1 Functional requirements

The proposed application should allow users to upload,

view and remove simulation projects. A simula-

tion project includes a C++ simulation model suitable

for ns-3 (i.e. that can be compiled with the ns-3 li-

braries), consisting of a network topology and default

values for the parameters, indicating which of them can

be later modified by the student through the DNSE3

graphical interface. Note that, unlike in [38], where a

few sets of simulation problems are embedded in the

application, this decision allows to benefit from ns-3

flexibility to simulate arbitrary network topologies. In

particular, in the educational context the teacher may

distribute distinct simulation projects for each assign-

ment or different courses, without restriction. It should

be noted that when stating which parameters may be

editable, a simulation project may have none, thus be-

ing ready to be run after uploading it.

Once uploaded to the platform, the user should be

able to configure simulation projects. The span of

decisions may vary from setting a single value to a pa-

rameter different than the default, specifying a range

of values for it (hence requesting a parameter sweep),

requesting the repetition of the same simulation sev-

eral times (in order to study the effect of some random

variable) or providing details on how DNSE3 should

handle the output of the simulations (e.g. storing all

of them, including simulation traces, just some perfor-

mance metrics, computing some statistics. . .).

After projects are ready, users can run single sim-

ulations, parameter sweeps, or multiple repeti-

tions of either of them. While they are running, the

system should allow users to monitor the progress of

a simulation, pausing and resuming it as needed.

Also, the system should inform the user of problems

arising when running a simulation.

Finally, the system should store permanently the

results of the simulations carried out until the user re-

moves them. In the case of a parameter sweep, the sys-

tem will report the results of each possible combination

of parameters.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 S. Serrano-Iglesias et al.

3.2 Non functional requirements

The main motivation for the proposal of DNSE3 is to

achieve scalability in the computation of parameter

sweep simulations. Therefore, when one or several pa-

rameter sweeps are requested, the system should pro-

vision enough resources to compute simulations in par-

allel in order to complete them within a reasonable re-

sponse time. On the contrary, when just a few simula-

tions are demanded, idle resources should be released.

Therefore, the system should be able to automatically

provision and free computational resources as the work-

load varies.

Some additional issues should be considered in the

design. First, the system should make a fair allocation

of resources, so that no single user may fetch most of

them while the rest have to wait until the scalability

mechanisms provision some more. Moreover, as in any

distributed system, some parts may fail. The system

should have some degree of fault tolerance, hiding

these problems from the user, even if they eventually

cause some performance degradation. Finally, the sys-

tem architecture should decouple clearly business logic

from user interface, so that multiple interfaces can be

offered, some aimed at fast learnability and usability, es-

pecially in the educational domain, while others based

on calling an API or using a command line may yield

better productivity in research or industrial contexts.

4 Application architecture and deployment

Once the desired functional and non-functional require-
ments have been identified, this section first describes

a Service Oriented Architecture (SOA) [48] application

architecture that fulfills them. A particular emphasis is

given to the decisions on task scheduling that facilitate

scalability. While the architecture is devised first in-

dependently of the deployment technology, the section

discusses later which services of Openstack and AWS

could be reused to deploy DNSE3 in either a private or

a public cloud.

4.1 Architectural design

The DNSE3 architecture has been designed following

the principles of Service Oriented Architectures (SOA)

[48], separating the functionalities in several services

with clearly defined interfaces. This approach simplifies

maintenance and offers a way to scalability by repli-

cating the most demanded services and balancing the

computational load between them [27]. One simple way

to do this in a cloud computing platform that oper-

ates Infrastructure as a Service (IaaS) is to host each

of the services in a virtual machine. The application

thus scales up by launching or shutting down virtual

machines that run the required services as needed to

meet the existing load. Robustness can also be attained

by duplicating critical services in different virtual ma-

chines.

In addition, the design of each of the services com-

plies to the REpresentational State Transfer (REST)

architectural style [17], that advocates services should

offer an interface inspired by the Resource Oriented Ar-

chitecture (ROA), i.e. exposing a series of resources and

a very limited and standardized set of methods to ma-

nipulate them, instead of a wide range of full fledged

methods, as this strategy has allowed a plethora of third

party browsers and web servers interact successfully in

the World Wide Web [17]. REST also promotes that

services should be stateless, i.e. each request should in-

clude all necessary information to be processed on it-

self and should be treated independently of previous

requests. This particular feature is key to load balanc-

ing and thus fault tolerance and scalability [48].

Following these guidelines, the functionality of the

application has been decomposed in seven services, as

shown in Figure 1. The orchestration service receives

the requests from the user interface, and passes them

onto the appropriate service. When users upload simu-

lation projects, or ask to edit them, the orchestration

service just stores them in the storage service. However,

when users request to run them, the orchestration ser-

vice takes this job, which publishes each of the individ-

ual simulation tasks in the queue service. These tasks be

accomplished one by one by the simulation service, that

takes input files and writes results in the storage ser-

vice. In order to cope with the existing workload, there

may exist multiple running replicas of the simulation

service at a given time. The actual number of instances

is determined automatically by parametric rules eval-

uated by the scalability service using the metrics that

the queue service publishes in the monitoring service.

The scalability service is thus in charge of launching or

releasing virtual machines that run simulation services.

Finally, the report service takes simulation results from

the storage service and process them according to the

instructions specified in the simulation project, in order

to produce some reports for the user.

4.2 Task scheduling

Task scheduling is not simple in a distributed system

in which the number of workers (in this case, simula-

tion services) varies dynamically. A centralized sched-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A self-scalable distributed network simulation environment based on cloud computing 5

Fig. 1 DNSE3 service oriented architecture. Other clients may be developed to interact with DNSE3 though the orchestration
service. Dashed boxes represent services that, in our deployment, we decided to reuse from Openstack infrastructure. Solid
circles are services used by DNSE3 but likely to be reused in other applications, while solid boxes correspond to services boxes
are services very specific to DNSE3.

uler should be aware of all available workers and their

status. To do so, the workers should publish regular

updates to the scheduler, which increases its workload

and sets up a bottleneck on the communication chan-

nel [4], while the scheduler should be able to cope with

inconsistencies in the information. On the contrary, a

fully distributed work stealing approach (in which each

worker has its own task pool) can increase communica-

tion [7] and requires that workers advertise in a common

bus when they come up and down.

Instead, work stealing with a single task pool can

be more suitable: the queue service maintains a list of

available tasks (simulations) to be taken; when a new

simulation service is launched, or when a running one

finishes its previous task, it requests one or several other

tasks from the queue service. Therefore, every simula-

tion service must know where to find the queue ser-

vice, but the latter is not aware of how many instances

of the former are running at a given time. In DNSE3,

when a worker takes a task it simply marks it as “in

progress” in the queue, downloads its description, goes

to the storage service to retrieve the input files, ad-

equately configures and runs ns-3, and then uploads

the outputs back to the storage service and reports the

queue service that the task is “finished” before asking

for a new one. To avoid that a crashed worker leaves a

task unfinished, each of them must periodically refresh

their status in the queue service. Simulation tasks that

have not been updated for a while are offered again to

the next requesting worker.

It is noteworthy that, since workers will only ask

for the next task, the queue service can implement or-

dering algorithms transparently to the workers. In our

design, to achieve a fair allocation of resources among

users, we have used a two-level round robin ordering

of tasks: first by users and then by publication date.

Every time a worker requests a simulation, the queue

moves to the next user and then to the next available

task. The benefits of this approach are twofold: no user

can leave others without computational resources (even

if the scalability service will recruit more after a while),

and race conditions are avoided since every request for

the next task will return a different one, even if the pre-

vious requester has not yet committed to take the task

(unless, of course, there is only one task in the queue).

Finally, it should be noted that this scheduling ap-

proach makes scalability much easier. When launching

a new simulation service, the only caution to be taken

is that it should know where to find the queue service

to ask for a simulation task. When shutting one down,

it would be wise to wait until it finishes its current task,

though if not the queue will eventually notice the task

is idle and will announce it to the next worker. Signif-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 S. Serrano-Iglesias et al.

icantly, the queue service is not at all affected by the

increase or decrease of simulation services.

4.3 Deployment

There are many popular public cloud providers, encom-

passing several levels of abstraction in what they virtu-

alize, either Infrastructure, Platform, Software or even

Container as a Service (IaaS, PaaS, SaaS and CaaS, re-

spectively). When deploying an application that wraps

desktop oriented third party software, such as ns-3, the

IaaS approach allows to control the low level details

of the execution environment. Besides, IaaS platforms

are capable of monitoring both infrastructure and ap-

plication level metrics to trigger scalability rules, and

provide clear interfaces to do so. Finally, mature mid-

dleware to set up private clouds offer IaaS, interestingly

with a tendency to comply with Amazon Web Services

(AWS), which makes it easier to deploy applications in

an hybrid cloud.

For these reasons, we have decided to deploy DNSE3

in an Openstack infrastructure. We discuss next how we

have decided to map DNSE3 services into Openstack

standard services and, for the shake of completeness,

we also comment what choices would be made if even-

tually deploying onto AWS public cloud. Interestingly,

Openstack’s REST API is designed to be compatible

with that of AWS, and therefore the calls that applica-

tion services make to the infrastructure should (ideally)

not be changed if migrating between the two.

Concerning DNSE3 storage service, it can be of-

fered by Swift or S3, the distributed object storage ser-

vices provided by Openstack and AWS, respectively.

Both allow to handle objects efficiently, and support a

naming system to structure them hierarchically. Simu-

lation projects, individual simulations, simulation mod-

els, output results and traces, and reports are all treated

as objects with the associated information.

The monitoring service requires that the queue ser-

vice is able to publish metrics, and that they reach the

scalability service. In Openstack, this is achieved by

Ceilometer (the telemetry data collection service, which

allows the publication of standard and user defined met-

rics) and Aodh (the telemetry alarming service, which

reads these metrics and triggers alarms). In AWS, the

CloudWatch service would satisfy both needs.

With regards to DNSE3 scalability service, its func-

tionality is offered in Openstack by Heat, which allows

the user to publish a stack, i.e. a file that describes the

infrastructure (machine sizes, images, etc) for an ap-

plication, with associated resources that include poten-

tial scaling groups. Therefore, though Heat has a much

broader scope, it can implement DNSE3 scalability ser-

vice. It should also be noted that the only benefit of the

self-scalability mechanism in being offered as a service

is that policies can be managed from any REST client,

but in DNSE3 architecture no application service will

call the scalability service API. As for AWS, similar ar-

guments would support the choice of the Auto Scaling

service to endow DNSE3 with self-scaling mechanisms.

Finally, we have considered Openstack’s Zaqar and

AWS Simple Queue Service (SQS) to implement DNSE3

task queue service, though we found more convenient to

develop it from scratch. Indeed, neither Zaqar nor SQS

guarantee an allocation of tasks to workers considering

a fair distribution among the users. SQS allows to dif-

ferentiate messages by group id in FIFO queues, but

while messages with the same group id are processed in

strict order, there is no control on how SQS dispatches

messages with different group id. Of course, it could be

argued that, with virtually infinite scalability, sharing

resources among users does not seem critical. Never-

theless, the actual extent of resources might be lim-

ited by hardware (in a private cloud) or budget (with

a public provider). But even if this is not the case, at

a point in time resources can be scarce for the exist-

ing workload until the self-scalability mechanism pro-

vision some more. Therefore, we have decided to keep

this requirement to avoid that one student launches a

large parameter sweep job and noticeably affect the per-

formance perceived by other students. Another reason

not to reuse Zaqar or SQS for DNSE3 queue service is

that the task (or message) lifecycle is understood differ-

ently. In the former two, the message should be deleted

from the queue by the worker that has processed it. In

DNSE3, we considered more convenient that the worker

marks the task as finished in the queue service, which

in turn notifies the orchestration service that can thus

monitor the progress of a job (and inform the end user).

The orchestration service will delete from the queue all

tasks of a given job when it is complete.

The rest of the services have been developed in Java,

making use of the Restlet framework [42] to expose and

invoke REST interfaces. The requests and responses

transport JavaScript Object Notation (JSON) docu-

ments, as it is a light yet powerful representation to

exchange information, followed both by Openstack and

AWS interface definitions.

5 Performance evaluation

DNSE3 is proposed to leverage the self-scalability and

pay-per-use features of the cloud in order to compute

parameter sweeps in reduced response times at reason-

able costs, that can meet the needs of an educational

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A self-scalable distributed network simulation environment based on cloud computing 7

use. With this aim, this section discusses the choice

of workload metrics and the design of scalability rules,

proposing several policies, and then evaluates DNSE3

performance and resource utilization when dealing with

parameter sweep simulations of different nature, reflect-

ing on the effect of the chosen scalability policy.

5.1 Scalability design

DNSE3 should be able to dynamically accommodate

the amount of computational resources to the existing

workload, so that response times are kept low while

making a sensible utilization of the resources. The pro-

posed task scheduling mechanism facilitates this, since

it suffices to start or stop simulation services follow-

ing scalability rules that evaluate metrics published by

the monitoring service. Concerning the latter, current

utilization of resources (e.g. CPU percentage) is often

used to auto-scale web applications with rather unpre-

dictable traffic patterns [45], while the amount of unas-

signed workload serves better for batch scientific com-

puting, as is this case. As the objective of scalability

should be to dimension the number of workers keep-

ing each of them with a reasonable occupation, while

achieving low aggregated response times, a good candi-

date metric is the number of pending tasks in the queue

relative to the amount of active workers [21,2]. Other,

more fine grained metrics, like the expected simulation

duration or the number of simulation steps could have

also be explored. Nevertheless, even if they relate more

easily to the response time, they are far more difficult

to estimate and are more specific to the underlying ns-

3 simulator and to the specific features of the model

being simulated.

Once an appropriate metric is chosen, scalability

rules must be defined. It should be noted that, at the

moment, Openstack supports only what AWS calls sim-

ple rules [2], i.e. rules that cannot be evaluated again

until the effect of the last evaluation (starting or stoping

new instances) is complete, while neither step nor track-

ing rules [2] are supported. Normally, rules evaluate

that the chosen metric is within a predefined range, and

change the amount of running instances by an absolute

or relative increment (or reduction) or by setting a given

number. Care should be taken in this process, consid-

ering that launching an instance (or shutting it down)

takes some time that cannot be neglected. A new sim-

ulation service should be started only if it is expected

that it will be useful for some time. Similarly, it should

be stopped only when the remaining services have still

a margin to accommodate moderate load increments.

It is therefore inadvisable to use the same threshold to

scale up and down, producing very sensitive rules that

lead to frequent fluctuations in the number of services,

yielding bad resource utilization, yet contributing lit-

tle to improve response times. Finally, it is also wise to

include a rule keeping a minimum number of instances

running continuously, so that the system also achieves

good response times for small workloads. Similarly, to

limit the bill charged for computational costs, an upper

limit can also be set.

Following these guidelines, we have decided to ex-

plore several scalability policies, in order to reflect on

their impact in performance and cost, as well as on

how to choose thresholds. The proposed policies are

described in detail in Table 1. The first two policies are

evaluated as a reference of limits in cost and perfor-

mance: Pnone keeps the number of running instances to

minVM , while Pall scales up to maxVM as soon as

there are pending tasks in the queue, and comes back

to minVM when the queue empties. We then propose

to evaluate a conservative stepped policy, Pcons, which

is often reported in the literature [45,43,14], in which

the number of instances is incremented at most by one

in each evaluation. Note that the thresholds to scale

up and down are different, in order to avoid continuous

fluctuations in the number of instances. Also observe

that this policy will converge to a stable deployment

when the ratio of tasks per instance is between T/2

and T , so in the end it will produce a result similar to

a tracking policy, though expectedly much more slowly.

We therefore propose to evaluate a more aggressive set

of rules, Paggr, in which the number of new resources

is in proportion both to already running instances and

distance to the target (some examples of this approach

can also be found in the literature [24,16]). Finally, it

should be noted that rules #11 and #12 are present in
all the policies to keep the number of instances bounded

(in general, lower bounds are chosen to satisfy a mini-

mum desired throughput, while upper bounds are given

by cost).

5.2 Experimental setup

As mentioned above, a fully functional prototype of

DNSE3 was developed and deployed in a private Open-

stack (Pike) cloud running 24 cores at 2.2 GHz and

256GB of RAM in compute nodes (note that the reused

infrastructure services, represented in dashed boxes in

Figure 1, run in the controller node). Small virtual ma-

chines are chosen to run the simulation service, with a

single virtual core and 2GB of RAM. It is interesting to

explore if there are benefits in running more than one

task at a time in each of them. Note that the eventual

gain will the opportunity to exploit context switches in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 S. Serrano-Iglesias et al.

Table 1 Different scalability polices evaluated to determine the number of simulation instances from the number of pending
tasks, parametrized by T (a desired objective in tasks per worker), minVM and maxVM (the minimum and maximum
numbers of running simulation instances).

Policiy name Rule number Rule type Condition Action

Pnone #1 Do not scale instances := minVM

Pfull #2 Scale up tasks
instances

> 0 instances := maxVM

#3 Scale down tasks
instances

= 0 instances := minVM

Pcons #4 Scale up tasks
instances

> T instances := instances + 1

#5 Scale down tasks
instances

< T
2

instances := instances/2

Paggr #6 Scale up T < tasks
instances

≤ 2T instances := instances + 1

#7 Scale up 2T < tasks
instances

≤ 4T instances := 2× instances

#8 Scale up 4T < tasks
instances

≤ 8T instances := 4× instances

#9 Scale up tasks
instances

> 8T instances := 8× instances

#10 Scale down tasks
instances

< T
2

instances := instances/2

Common rules #11 Upper bound instances > maxVM instances := maxVM

#12 Lower bound instances < minVM instances := minVM

the scheduler of the virtual machine, but also on the de-

cisions taken by the hypervisor of the host machine. To

evaluate this issue, experiments are proposed in which

each single-core worker can take only one (Ntasks = 1)

or or four (Ntasks = 4) tasks at at time.

In order to evaluate scalability, synthetic workloads

(in the sense that all requests are performed automati-

cally by a script, but running the same simulated mod-

els that students use in the course) are defined. To

evaluate the impact of increasing workload, the perfor-

mance is evaluated for parameter sweeps resulting in

50, 100, 500, 1,000, 5,000 and 10,000 individual simu-

lations. Each of this individual simulation has a similar

duration of about 4 seconds (in the virtual hardware of

our cloud, counting only ns-3 time). To study the effect

of the duration of individual simulation tasks, we have

also defined a new ns-3 model that takes, for each in-

dividual simulation, around 1 second to complete. We

will thus speak of long and short individual simulations

when reporting the results.

For the scalability policy parameters, we choose to

use minVM = 1 and maxVM = 30 to evaluate an in-

frastructure that would have a minimal cost when not

used while bounded when fully scaled. In our private

cloud deployment the upper bound is also motivated

by the available hardware, since running too close to

the processor overcommit ratio with computationally

intensive loads will make the hypervisor to incur in sig-

nificant performance losses. The scalability threshold

is set to T = 10 simulations per instance. If scalabil-

ity was achieved through tracking rules [2] this would

mean that each worker would have a pending work-

load accounting for about 40 seconds (plus distribution

overhead), which ideally would result into an excellent

response time, if scalability overheads were negligible.

In fact, in our educational context, completing the pa-

rameter sweeps in several minutes is indeed a fine result,

especially considering that they can take some hours in

the average computers available in educational labora-

tories, which precludes teachers to propose parameter

sweep studies to the students. The impact of thresh-
old T , however, should be discussed considering both

the fact that Openstack only supports simple rules and

there is an upper bound on the amount of simulation

instances.

For comparison, we also evaluated a typical desktop

computer available in our teaching laboratory, running

a quad-core Intel(R) Core (TM) i5-2400 at 3,10 GHz

with 4GB of RAM. The proposed baseline task con-

sists in the script used by the students in a real course,

that simply launches the simulations sequentially and

thus no overheads are involved. All the experiments

were carried with no other heavy processes running,

so competing workload can be neglected. Care should

be taken when contrasting the two systems since each

virtual core used by DNSE3 services is in fact running

(a fraction of time) on a physical core with lower clock

rate than the desktop used for comparison.

Following [28], experiments are repeated 3 times to

account for the fact that response times are not deter-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A self-scalable distributed network simulation environment based on cloud computing 9

ministic (some issues cannot be controlled by DNSE3,

like access to input/output devices or hypervisor schedul-

ing decisions, for example). Nevertheless, in all cases

variation in results was found to be very low.

5.3 Results

Before evaluating scalability, it is interesting to esti-

mate the overheads incurred by the DNSE3. There are

multiple operations beyond actually running the simu-

lations which add up time (i.e. the orchestration service

publishes one task in the queue service and uploads in-

put files into the storage service, then some simulation

service picks up the task, it downloads files from the

storage service, then calls ns-3, and finally uploads re-

sults to the storage service and notifies the queue ser-

vice of the completion of the task; when all individ-

ual simulations are complete the orchestration service

aggregates the results of the parameter sweep). There-

fore, we performed an experiment in which we did not

allow DNSE3 to scale (policy Pnone) running param-

eter sweeps of different size with long tasks (i.e. ns-3

computation-only time of each simulation is around 4

seconds, using the same simulation model tested by the

students). The results reported in Table 2 show that

DNSE3 in average completes one simulation task in 4.4

seconds (0.4 more than the time required by ns-3). It

can also be observed that this distribution overhead is

independent of the size of the parameter sweep, sug-

gesting the impact of the orchestration service can be

neglected.

Besides, it is worth considering the benefits in paral-
lelizing tasks within small virtual machines. In order to

evaluate the influence of Ntasks alone, we repeated the

experiment executing 4 tasks in parallel in each virtual

machine. Results are also shown in Table2, confirming

that running single simulations involve some stall time

that can be exploited by the scheduler of the virtual

machine, and that (in the evaluated conditions) this is

not affected by decisions in the host machine. More-

over, this performance gain comes at no cost, since the

committed resources are the same. Therefore, for the

rest of the experiments we will maintain Ntasks = 4.

With these parameters (minVM = 1, maxVM =

30, Ntasks = 4) several experiments were carried out

to evaluate the performance of DNSE3 using different

scalability policies to compute parameter sweep jobs

from 50 to 10,000 individual long simulation tasks. The

mean response times are shown in Table 3, along with

the time used in a typical laboratory computer (note

that the latter does not exploit high level parallelism

but has a faster CPU). To facilitate comparison, Figure

Table 2 Mean response times (in seconds) for DNSE3 with-
out scalability, when the simulation service takes Ntasks = 1
and Ntasks = 4 tasks at a time, in order to complete param-
eter sweeps of long individual simulations.

Number of simulations
Ntasks 50 100 500 1,000 5,000 10,000

1 222 457 2,261 4,611 22,079 44,055
4 92 179 822 1,577 7,750 14,386

Table 3 Mean response times (in seconds) for DNSE3 with
different scalability policies and the laboratory machine used
as baseline, in order to complete parameter sweeps of long
individual simulations.

Number of simulations
Policy 50 100 500 1,000 5,000 10,000

Baseline 88 177 889 1,809 9,188 17,443
Pnone 92 179 822 1,577 7,750 14,386
Pall 89 156 238 273 552 874
Pcons 83 157 364 505 1,060 1,522
Paggr 83 154 329 414 689 1,025

Table 4 Mean variable costs (in cents of USD) for DNSE3
with different scalability policies, when used to run parameter
sweeps of long individual simulations, calculated using AWS
billing scheme and prices.

Number of simulations
Policy 50 100 500 1,000 5,000 10,000

Pnone 0 0 0 0 0 0
Pall 3.66 3.63 4.84 6.06 11.29 18.13
Pcons 0.04 0.19 1.04 1.90 6.92 13.46
Paggr 0.04 0.57 5.84 7.05 13.10 20.34

2 depicts the speedup of DNSE3 with respect to the

laboratory computer in each of the experiments.

Besides performance results, cost must also be eval-

uated. Since our experiments where run in a private

cloud, we made an estimation of the cost in a public

cloud by measuring the total number of seconds virtual

machines where up in each of the experiments, and then

calculating its cost according to AWS billing scheme

and prices (EU availability zone served from Ireland,

April 2018). It must be taken into account that DNSE3

has a permanent infrastructure requiring 6 virtual cores

(the orchestration and queue services use 2 cores each,

while the report service uses 1; minVM = 1 core is also

needed for the always-running simulation service), that

account for $0.15/hour. Besides, virtual machines run-

ning simulation services can be launched and stopped

by the scalability service as needed, resulting into a vari-

able cost that differs for each experiment. These costs

are reported in Table 4.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 S. Serrano-Iglesias et al.

0

5

10

15

20

25

50 100 500 1000 5000 10000

S
p

e
e

d
u

p

Number of tasks

P_none

P_all

P_cons

P_aggr

Fig. 2 Speedup in performance (number of times faster)
achieved by DNSE3 with different scalability policies used
to run parameter sweeps of long individual simulations, when
compared to the baseline machine.

Results show in the first place that, expectedly, there

are not performance gains when scalability is not al-

lowed (policy Pnone). The fact that the only running

simulation service can take Ntasks = 4 parallel tasks

compensates roughly for the overhead of DNSE3 dis-

tributed architecture. On the other hand, deploying

maxVM = 30 simulation services as soon as one task is

published in the queue (policy Pall) allows completing

the longest parameter sweeps very quickly, reaching a

speedup of 20 times faster.

Figure 3a shows the evolution of the number of tasks

in the queue along with the number of workers known

by Openstack’s Heat (i.e. the number of instances run-

ning or requested and still warming up). The figure

shows the impact of the delays of the different steps

required to apply scalability. Note that DNSE3 con-

trols how often the queue service publishes new mea-

surements of the queue occupation (we set up to do

it every two seconds), but these measurements must

be published by the monitoring services (Openstack’s

Ceilometer), and this happens every minute, and then

Aodh, Openstack’s telemetry service, reads this met-

ric and triggers and alarm that reaches Heat, but this

again will happen only every minute. Therefore, Heat

will evaluate the scalability policy two minutes after

DNSE3 queue service published the occupation of the

queue. As a result, Heat will ask Nova (Openstack’s

compute service) to launch new instances, but this will

take some more time. In the Figure, the queue service

registers 10,000 tasks at t = 13 seconds, and 55 seconds

later (t = 68) Heat requests 29 new instances. Then

the new instances must warm up. It can be observed

how the termination of tasks accelerates until a point

in which it acquires a new slope, meaning all instances

are working at t = 220 seconds, 152 seconds after the

scalability policy was evaluated.

Despite the performance improvement achieved by

policy Pcons in large parameter sweeps, for smaller jobs

the newly launched simulation instances arrive too late

(as expected from the above discussion), and do not

help to reduce response times, while they will neverthe-

less have an impact in cost. Therefore, it seems advis-

able to explore policies that scale in proportion to the

amount of pending work. Policy Pcons is probably the

simplest, yet most used set of scalability rules expressed

in terms of tasks pending in a task pool. It recruits new

resources conservatively, achieving performance gains

for short parameter sweeps similar to Pall, but with-

out overcommitting resources. Nevertheless, for large

jobs of 1,000 or more tasks, its provisioning of new re-

sources is too slow. Figure 3b shows how the delay be-

tween the two consecutive evaluations of the scalabil-

ity rules (forced by the fact that previous actions must

have been completed) clearly worsens this effect. Al-

ternatively, policy Paggr is more proportional in the re-

quest for new resources, achieving similar performance

to Pall and Pcons for smaller parameter sweeps, with a

cost similar to the latter. For larger jobs, it improves

the performance of Pcons, but with a cost even higher

than Pall, mainly due to the fact that it scales down

less quickly. Figure 3c illustrates how new instances are

recruited at a faster pace when there are many tasks

left in the queue, but again the guard interval between

scalability actions penalize somehow the performance.

Interestingly, Figure 3b also shows how the delay be-

tween metric publication and scalability evaluation can

cause one last but unnecessary scalability step, that re-

cruits a new instance when it is no longer necessary.

Another relevant issue to take into account is the du-

ration of the individual task, which affects the “amount”

of work in the task pool (e.g. 5,000 short tasks may ac-

count for the same computation as 1,000 long tasks). To

explore the effect in DNSE3 performance, and its rela-

tionship to the scalability policies we repeated the ex-

periments with parameter sweeps consisting of individ-

ual simulations demanding approximating four times

less computation (i.e. ns-3 time only is around 1 sec-

ond). The results are shown in table 5 and Figure 4,

where it can be seen that the overhead of distribution

in DNSE3 is reducing the speedups achieved in previous

experiments (i.e. while for the regular laboratory ma-

chine response times are reducing roughly four times,

for DNSE3 they are at most halved). Besides, for small

parameter sweeps the chosen policy does not make a

great difference in performance (though it will in cost,

see Table 6), because when the first additional simula-

tion instances are ready, the task queue will have emp-

tied much more than in previous experiments, and thus

these instances will have hardly any work to do. Nev-

ertheless, DNSE3 still benefits from parallelization for

large parameter sweeps, with bigger speedups for more

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A self-scalable distributed network simulation environment based on cloud computing 11

time (s)

0 100 200 300 400 500 600 700 800 900

p
e
n

d
in

g
 t
a

s
k
s

0

5000

10000

a
c
ti
v
e
 i
n
s
ta

n
c
e
s

0

20

40

(a)

time (s)

0 200 400 600 800 1000 1200 1400 1600 1800

p
e
n

d
in

g
 t
a

s
k
s

0

5000

10000

a
c
ti
v
e

 i
n
s
ta

n
c
e

s

0

10

20

(b)

time (s)

0 200 400 600 800 1000 1200 1400

p
e
n
d
in

g
 t
a
s
k
s

0

5000

10000

a
c
ti
v
e
 i
n
s
ta

n
c
e
s

0

20

40

(c)

Fig. 3 Evolution of the number of simulation instances and
the number of pending tasks when a parameter sweep of
10,000 long tasks is requested, using policies (a) Pall, (a)
Pcons and (a) Paggr. Notice that the time axis is different for
each of the plots.

Table 5 Mean response times (in seconds) for DNSE3 with
different scalability policies and the laboratory machine used
as baseline, in order to complete parameter sweeps of short
individual simulations.

Number of simulations
Policy 50 100 500 1,000 5,000 10,000

Baseline 26 54 219 400 2,088 3,718
Pnone 47 91 434 850 4,203 8,392
Pall 50 90 216 245 417 596
Pcons 50 92 271 375 802 1,165
Paggr 52 93 240 291 532 765

aggressive policies, though at a significant increase in

cost in the case of Paggr.

5.4 Discussion

From the end user perspective, the results introduced

above show how to leverage the computational cloud

in the educational realm beyond a range of Software

Table 6 Mean variable costs (in cents of USD) for DNSE3
with different scalability policies, when used to run parameter
sweeps of short individual simulations, calculated using AWS
billing scheme and prices.

Number of simulations
Policy 50 100 500 1,000 5,000 10,000

Pnone 0 0 0 0 0 0
Pall 2.81 3.64 4.83 5.26 8.47 11.67
Pcons 0.04 0.04 0.54 1.05 4.29 7.61
Paggr 0.04 0.08 5.84 5.84 9.87 14.28

0

1

2

3

4

5

6

50 100 500 1000 5000 10000

S
p

e
e

d
u

p

Number of tasks

P_none

P_all

P_cons

P_aggr

Fig. 4 Speedup in performance (number of times faster)
achieved by DNSE3 with different scalability policies used to
run parameter sweeps of short individual simulations, when
compared to the baseline machine.

as a Service generic applications commonly used [22,

44]. Considering that a parameter sweep consisting of

10,000 long simulations can take up to five hours in

the reference laboratory machine, completing it in 15-

20 minutes means a significant advance, that renders

them feasible in laboratory classes, so that teachers can

exploit the pedagogical benefits of this kind of exper-

iments. Moreover, thanks to the pay per use model of

the cloud, it does so at a marginal cost, that can be

easily assumed by educational institutions. In addition,

the system is not tight to a specific simulation model,

and any ns-3 supported model can be run. The trade

off between performance and cost could be further ex-

plored, as for example done by [39], that combines on

demand and spot instances and introduce cost factors in

the scalability policies, though this research is beyond

the scope of this paper.

Despite the benefits for the end user, some technical

issues can also be discussed. DNSE3 achieves perfor-

mance gains by parallelization but suffers from several

overheads and penalizations that should not be over-

looked. For example, the orchestration service publishes

in the queue service each of the tasks of a parameter

sweep by a POST call, instead of making a bulk publi-

cation, because the latter is not strictly RESTful. For

the same reason, the simulation service asks first for the

next job in the queue (GET) and then takes it (PATH).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 S. Serrano-Iglesias et al.

These decisions could be revised to favor performance

over design, by reducing distribution overheads. Other

technological choices to improve performance do not re-

quire to change DNSE3. For example, for short parame-

ter sweeps scaling up is typically useless, because of the

instance warm up time (note, however, that this may

depend on the particular cloud computing infrastruc-

ture employed). A potential approach to compensate

this fact would be to have more simulation instances

permanently running (i.e. to use a higher minVM in

scalability rule #12), though fixed costs will also be

higher. Nevertheless, if the usage by students can be

anticipated (e.g. because laboratory hours are known

beforehand) this approach can be followed with reason-

able costs.

In addition, though the objective of this paper is

not to propose the best possible scalability policy, some

findings can be useful to this aim. First, from the ob-

servation of Figure 3, it can be noticed that the met-

ric published by the queue service is evaluated by the

scalability service with considerable delay. A potential

improvement would be to evaluate the rules in Table

1 with the expected number of current tasks, i.e. to

subtract from the published value the amount of tasks

that are expected to have been completed since then.

This would imply, on the one hand, modeling the time

between metrics publication and scalability evaluation,

which can be done easily given the infrastructure config-

uration parameters. On the other, the average time de-

manded by each task should also be estimated, though

this is not always easy, since simulation models can be

eventually developed by students, and therefore the du-

ration of individual tasks cannot be anticipated for cer-

tain values of the parameters to sweep.

Figure 3 also shows that the warm up time of in-

stances is not negligible. Modifying the rules to account

for the tasks that can be completed by already run-

ning instances while additional ones are being launched

could also help avoiding provisioning unnecessary re-

sources. Interestingly, by observing that more aggres-

sive scalability policies (Pall or Paggr) do not perform

any better or can even be worse than more conservative

ones, we found out that, at least in our limited private

cloud infrastructure, average warm up times are higher

when the scalability policies launch more instances at a

time. To illustrate this, we varied maxVM in scalabil-

ity rule #2 and measured the time from the evaluation

of the rule by Openstack’s Heat to the point where the

new simulation services are running. The results are

shown in Figure 5, confirming this observation. There-

fore, determining the right amount of new instances to

start is not only a trade off between cost and perfor-

mance, as scaling too much can also have a performance

number of instances launched

0 5 10 15 20 25 30

w
a
rm

 u
p
 t

im
e
 (

s
)

0

50

100

150

200

250

Fig. 5 Warm up times for instances running the simulation
service in the experimental Openstack private infrastructure,
depending on the number of new instances requested at a
time. The dashed lines represent the times for the fastest and
slowest instance to warm up, while the solid like shows the
average.

penalization in the short term (nevertheless, in a public

cloud infrastructure this effect will likely be unperciev-

able).

Another relevant issue concerns the decisions on when

and how to scale down. Scaling down slowly can impose

additional costs, as seen in the results of policy Paggr

(as compared to Pall), though it could be beneficial if

more workload is expected in a short term (both to

improve performance and reduce the cost per parame-

ter sweep). A prediction model based on the activity of

the students and other contextual information could be

derived for this purpose.

A final issue to discuss is how to determine thresh-

old T in rules of Table 1. Ideally, it could be chosen

to bound the total response time (i.e. if for long tasks,

each task will take in average 1.4 seconds with only
one worker, and the number of workers is sized such

that the queue contains T = 10 tasks for each, then

response time would be around 14 seconds). This is

far from real, for several reasons: delays in evaluating

scalability; warm up times; the degree of aggressiveness

in which resources are provisioned (i.e. how the simple

rules are somehow achieving the effect of AWS track-

ing rules); the upper bound on the number of instances

forced by rule #11 in Table 1 (which is reasonable due

to either hardware or cost restrictions, but hinders ac-

tually achieving T pending tasks per worker in large

workloads); the fact that in-worker parallelization gains

depend on decisions taken by the hypervisor (and in a

private cloud with limited resources will likely decrease

near the overcommit ratio); and, once again, because

the duration of an individual task may be unknown.

In addition, if rules aim at achieving certain response

times for each parameter sweep requested, the aggre-

gation of workload should also be taken into account.

Deriving a model that estimates the impact of each of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A self-scalable distributed network simulation environment based on cloud computing 13

Fig. 6 Snapshot of the web client graphical interface, when
the user has demanded to run a parameter sweep and it has
finished.

these items, and proposing a scalability policy that at-

tempts to bound job response times is an interesting

research, but goes beyond the scope of this paper. Note,

additionally, that several of these issues would still need

research even if using AWS tracking rules (i.e. even if

the auto-scalability mechanism takes the best decisions

to guarantee T tasks per worker, it is not simple to se-

lect a value of T that serves to attain a certain response

time for each parameter sweep, even without guaran-

tees).

6 User interface and usability evaluation

In the proposed architecture (see Figure 1) the orches-

tration service exposes a single entry point to the DNSE3.

This service itself offers a REST API that can be called

using any HTTP client (as a web browser, for example).

Therefore, any third party can build a text or graphics

based client that suits their needs and, in fact, during

the development of the prototype, we have written our

own command line clients. However, for the educational

purposes that motivated the design of DNSE3, a visual

web interface has been designed and implemented, as

illustrated in Figure 6. After the user has logged in, he

or she can see all the simulation projects, select one to

see more details or edit it, start simulations, follow their

progress, pause and resume then, analyze simple results

or retrieve data files to be used with external visualiza-

tion tools, etc. This web application has been developed

with the Bootstrap framework [8], in the search of com-

patibility with different browsers and devices, particu-

larly smartphones and tables, which are popular among

students.

Though it is reasonable to expect that students will

prefer a GUI over using scripts, usability is never guar-

anteed and must be assessed to confirm this hypoth-

esis or detect potential defects in the interface design

that hinder DNSE3 user adoption. Therefore, we re-

quested students already enrolled in a Computer Net-

works course in which they used ns-3 to run parame-

ter sweeps (creating scripts to generate the individual

simulations, compile the model and call ns-3) to partic-

ipate in a experiment to evaluate DNSE3. Ten students

volunteered to join the study. The experiment was self-

guided with written instructions that introduced them

quickly to DNSE3 main concepts, and then asked them

to repeat two of the tasks they had already done during

the regular laboratory sessions, this time using the new

application. After that, their subjective perceptions of

the previous tooling used in the laboratory (scripts and

ns-3) and that of DNSE3 were surveyed.

Following industry standards, the System Usability

Scale (SUS) [11] was employed, in the version modified

by [5], and translated into Spanish (the mother tongue

of the students) by the researchers. This scale has been

widely regarded as providing a quick yet consistent es-

timation of the usability, and has been broadly used

to asses software in many domains including education

[31,32]. It consists of ten questions that yield an overall

score between 0 and 100. [5] suggests not to report an-

swers to each individual questions, since they are highly

correlated, and inform just the SUS instead, and pro-

poses a rule of thumb to translate this score into a lit-

eral adjective describing the usability of the system. In

addition, students were asked their Likelihood To Rec-

ommend (LTR) the system to a user with such a need

(i.e. another student taking the course), which can serve

as a means for validation, since it is strongly correlated

with SUS [30].

Overall, DNSE3 obtained a SUS score of 91.75 (“ex-

cellent” according to [5]) while the alternative software

obtained only 47.75 (“poor”). The sample size does not

allow to generalize these results (even if [12] reports

some studies finding consisting results between small

samples of 8-12 users and large samples). Nevertheless,

it is worth mentioning that every student gave a higher

score to DNSE3, and that scores to individual questions

are quite uniform in the case of DNSE3 while they ex-

hibit a higher variance when referring to the scripts

and ns-3 based solution. In addition, the LTR was 5

for the DNSE3 whilst 2.3 for the other tools, somehow

confirming this promising result.

7 Conclusions and future work

Though parameter sweep simulations can significantly

aid to understand the behavior of protocols in a com-

puter network, their use in education is not extended

due to their significant computational load. Though

cloud computing usages in education have so far been

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 S. Serrano-Iglesias et al.

mostly limited to Software as a Service generic tools,

this particular problem features high level parallelism

that could be exploited, along with the automatic scal-

ability and pay-per-use features of cloud computing to

reduce response times while keeping costs low. In this

sense, this paper has proposed DNSE3, a service ori-

ented application to be deployed in an IaaS cloud com-

puting platform in order to perform parameter sweep

simulations using ns-3 as the underlying simulation en-

gine. It features a work stealing scheduling approach

with a single task queue exposing simulation tasks with

a two-level ordering, aimed at a fair share of resources

among users, and a number of independent simulation

workers taking tasks from that queue that is determined

dynamically after a given scalability policy.

The evaluation of DNSE3 has shown, on the one

hand, that it offers a feasible solution to reach reason-

able response times for academic assignments to be car-

ried out during laboratory hours, and it does so at very

small costs. The application can be used to sweep any

ns-3 compatible simulation model, and scalability poli-

cies can be chosen to trade off performance and cost.

Together with good acceptance of the user interface

by student, DNSE3 opens the way to using parameter

sweep simulation for educational purposes in Computer

Network courses. Future work along this line aims at

evaluating the application in several real courses and

model the distribution of parameter sweeps requested

by the students, in order to use this probabilistic model

to tune up the cost/performance ratio.

On the other hand, the paper has discussed some

issues in designing the policies that control the self-

scalability mechanisms. For applications in which the

the relevant performance metric is the response time

of a job (a parameter sweep) consisting of many tasks

(individual simulations), the number of tasks pending

per worker could be used as a scalability metric, and

hence dimension the number of workers towards this

goal. However, achieving the ideal response time is hin-

dered by several issues, like delays from metric publica-

tion to scalability decisions, the warm up times, the ag-

gressiveness of scalability policies, and whether the time

taken by individual tasks can be estimated beforehand

and considered in the definition of the desired tasks per

worker thresholds of scalability rules. Our future work

plans to explore all these issues by modeling the esti-

mated computation time by each individual simulation

and defining scalability accordingly.

References

1. Amazon Web Services, Inc.: Amazon Web Services. URL
https://aws.amazon.com/

2. Amazon Web Services, Inc.: What Is
Amazon EC2 Auto Scaling? URL
https://docs.aws.amazon.com/autoscaling/ec2/userguide/

3. The Apache Software Foundation: Apache Cloud-
Stack Open Source Cloud Computing. URL
https://cloudstack.apache.org/

4. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread
scheduling for multiprogrammed multiprocessors. In:
ACM Symposium on Parallel Algorithms and Architec-
tures, pp. 119–129 (1998). DOI 10.1145/277651.277678

5. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical
evaluation of the system usability scale. International
Journal of Human & Computer Interaction 24(6), 574–
594 (2008). DOI 10.1080/10447310802205776

6. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.:
SUMO – simulation of urban mobility. In: International
Conference on Advances in System Simulation, pp. 63–68
(2011)

7. Blumofe, R.D., Leiserson, C.E.: Scheduling multi-
threaded computations by work stealing. J. ACM 46(5),
720–748 (1999). DOI 10.1145/324133.324234

8. Bootstrap: an open source toolkit for developing with
HTML, CSS, and JS. URL http://getbootstrap.com/

9. Bote-Lorenzo, M.L., Asensio-Pérez, J.I., Gómez-Sánchez,
E., Vega-Gorgojo, G., Alario-Hoyos, C.: A grid service-
based distributed network simulation environment for
computer networks education. Computer Applications
in Engineering Education 20(4), 654–665 (2012). DOI
10.1002/cae.20435

10. Bragard, Q., Ventresque, A., Murphy, L.: Self-balancing
decentralized distributed platform for urban traffic sim-
ulation. IEEE Transactions on Intelligent Trans-
portation Systems 18(5), 1190–1197 (2017). DOI
10.1109/TITS.2016.2603171

11. Brooke, J.: SUS: A quick and dirty usability scale. In:
P.W. Jordan, B. Thomas, I.L. McClelland, B. Weerd-
meester (eds.) Usability evaluation in industry, pp. 189–
194. Taylor & Francis, London, UK (1996)

12. Brooke, J.: SUS: A retrospective. J. Usability Studies
8(2), 29–40 (2013)

13. Caglar, F., Shekhar, S., Gokhale, A., Basu, S., Rafi,
T., Kinnebrew, J., Biswas, G.: Cloud-hosted simulation-
as-a-service for high school {STEM} education. Sim-
ulation Modelling Practice and Theory (2015). DOI
10.1016/j.simpat.2015.06.006

14. Calcavecchia, N.M., Caprarescu, B.A., Di Nitto, E.,
Dubois, D.J., Petcu, D.: Depas: a decentralized prob-
abilistic algorithm for auto-scaling. Computing 94(8),
701–730 (2012). DOI 10.1007/s00607-012-0198-8. URL
https://doi.org/10.1007/s00607-012-0198-8

15. Cao, Y., Jin, X., Li, Z.: A distributed simulation sys-
tem and its application. Simulation Modelling Prac-
tice and Theory 15(1), 21 – 31 (2007). DOI
10.1016/j.simpat.2006.09.010

16. Evangelidis, A., Parker, D., Bahsoon, R.: Performance
modelling and verification of cloud-based auto-scaling
policies. In: 2017 17th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGRID),
pp. 355–364 (2017). DOI 10.1109/CCGRID.2017.39

17. Fielding, R.T.: Architectural syles and the design of
network-based software architectures. Ph.D. thesis, Uni-
versity of California, Irvine, USA (2000)

18. Foster, I.: Globus toolkit version 4: Software for service-
oriented systems. Journal of Computer Science and Tech-
nology 21(4), 513 (2006). DOI 10.1007/s11390-006-0513-
y. URL https://doi.org/10.1007/s11390-006-0513-y

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A self-scalable distributed network simulation environment based on cloud computing 15

19. Fujimoto, R.M.: Research challenges in parallel and dis-
tributed simulation. ACM Transactions on Modeling and
Computer Simulation (2016). DOI 10.1145/2866577

20. Fujimoto, R.M., Malik Fujimoto, R.M., Malik, A.W.:
Parallel and distributed simulation in the cloud. SCS
Modeling and Simulation Magazine 1(3) (2010)

21. Ghanbari, H., Simmons, B., Litoiu, M., Iszlai, G.: Ex-
ploring alternative approaches to implement an elastic-
ity policy. In: 2011 IEEE 4th International Confer-
ence on Cloud Computing, pp. 716–723 (2011). DOI
10.1109/CLOUD.2011.101

22. González-Mart́ınez, J.A., Bote-Lorenzo, M.L., Gómez-
Sánchez, E., Cano-Parra, R.: Cloud computing and
education: A state-of-the-art survey. Computers
& Education 80, 132 – 151 (2015). DOI
10.1016/j.compedu.2014.08.017

23. Google LLC: Google App Engine. URL
https://cloud.google.com/appengine

24. Hasan, M.Z., Magana, E., Clemm, A., Tucker, L., Gu-
dreddi, S.L.D.: Integrated and autonomic cloud resource
scaling. In: 2012 IEEE Network Operations and Man-
agement Symposium, pp. 1327–1334 (2012). DOI
10.1109/NOMS.2012.6212070

25. Huang, C.S., Tsai, M.F., Huang, P.H., Su, L.D., Lee,
K.S.: Distributed asteroid discovery system for large as-
tronomical data. Journal of Network and Computer
Applications 93(Supplement C), 27 – 37 (2017). DOI
10.1016/j.jnca.2017.03.013

26. Hüning, C., Adebahr, M., Thiel-Clemen, T., Dalski, J.,
Lenfers, U., Grundmann, L.: Modeling & simulation as a
service with the massive multi-agent system MARS. In:
Agent-Directed Simulation Symposium, pp. 1–8 (2016)

27. Indhumathi, V., Nasira, G.M.: Service oriented architec-
ture for load balancing with fault tolerant in grid com-
puting. In: IEEE International Conference on Advances
in Computer Applications (ICACA), pp. 313–317 (2016).
DOI 10.1109/ICACA.2016.7887972

28. Jain, R.: The art of computer systems performance anal-
ysis: Techniques for experimental design, measurement,
simulations and modelling. John Wiley & Sons, New
York, NY, USA (1991)

29. Law, A.M., Kelton, W.D.: Simulation modeling and anal-
ysis. McGraw-Hill, New York, NY, USA (1991)

30. Lewis, J.R.: Usability: Lessons learned. . . and yet to
be learned. International Journal of Human & Com-
puter Interaction 30(9), 663–684 (2014). DOI
10.1080/10447318.2014.930311

31. Lin, H.C.K., Chen, M.C., Chang, C.K.: Assessing the
effectiveness of learning solid geometry by using an
augmented reality-assisted learning system. Interactive
Learning Environments 23(6), 799–810 (2015). DOI
10.1080/10494820.2013.817435

32. Martin-Gonzalez, A., Chi-Poot, A., Uc-Cetina, V.: Us-
ability evaluation of an augmented reality system for
teaching euclidean vectors. Innovations in Education
and Teaching International 53(6), 627–636 (2016). DOI
10.1080/14703297.2015.1108856

33. Microsoft: Microsoft Azure. URL
https://azure.microsoft.com/

34. The Network Simulator - ns-2. URL
http://www.isi.edu/nsnam/ns/

35. The Network Simulator - ns-3. URL
https://www.nsnam.org/

36. OASIS: OASIS Web Services Resource Frame-
work (WSRF). URL https://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsrf

37. OpenStack: OpenStack Open Source Cloud Computing
Software. URL https://www.openstack.org/

38. Papadopoulos, C., Heidemann, J.: Using ns in the class-
room and lab. In: ACM SIGCOMM Workshop on
Computer Networking, pp. 45–46. Pittsburgh, PA, USA
(2002)

39. Qu, C., Calheiros, R.N., Buyya, R.: A reliable and cost-
efficient auto-scaling system for web applications using
heterogeneous spot instances. Journal of Network and
Computer Applications 65(Supplement C), 167 – 180
(2016). DOI 10.1016/j.jnca.2016.03.001

40. Qun, Z.A., Jun, W.: Application of ns2 in education
of computer networks. In: IEEE International Confer-
ence on Advanced Computer Theory and Engineering,
pp. 368–372 (2008). DOI 10.1109/ICACTE.2008.89

41. Ravindhren, V.G., Ravimaran, S.: Ccma—cloud critical
metric assessment framework for scientific computing.
Cluster Computing (2017). DOI 10.1007/s10586-017-
1384-4. URL https://doi.org/10.1007/s10586-017-1384-4

42. Restlet, Inc.: Restlet Framework. URL
https://restlet.com/open-source/

43. Roy, N., Dubey, A., Gokhale, A.: Efficient autoscal-
ing in the cloud using predictive models for workload
forecasting. In: 2011 IEEE 4th International Confer-
ence on Cloud Computing, pp. 500–507 (2011). DOI
10.1109/CLOUD.2011.42

44. Tashkandi, A.N., Al-Jabri, I.M.: Cloud computing adop-
tion by higher education institutions in saudi arabia:
an exploratory study. Cluster Computing 18(4), 1527–
1537 (2015). DOI 10.1007/s10586-015-0490-4. URL
https://doi.org/10.1007/s10586-015-0490-4

45. Vaquero, L.M., Rodero-Merino, L., Buyya, R.:
Dynamically scaling applications in the cloud.
SIGCOMM Comput. Commun. Rev. 41(1), 45–
52 (2011). DOI 10.1145/1925861.1925869. URL
http://doi.acm.org/10.1145/1925861.1925869

46. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Cloud
scalability: building the millennium falcon. Concur-
rency and Computation: Practice and Experience 25(12),
1623–1627 (2013). DOI 10.1002/cpe.3008

47. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lind-
ner, M.: A break in the clouds: Towards a cloud defini-
tion. SIGCOMM Comput. Commun. Rev. 39(1), 50–55
(2008). DOI 10.1145/1496091.1496100

48. Vinoski, S.: REST eye for the SOA guy. IEEE
Internet Computing 11(1), 82–84 (2007). DOI
10.1109/MIC.2007.22

49. Wang, A., Jiang, W.: Teaching wireless local area net-
work course based on ns-3. In: International Symposium
on Computer Network and Multimedia Technology, pp.
1–4 (2009). DOI 10.1109/CNMT.2009.5374600

50. Wang, S.Y., Lin, C.C., Tzeng, Y.S., Huang, W.G., Ho,
T.W.: Exploiting event-level parallelism for parallel net-
work simulation on multicore systems. IEEE Transac-
tions on Parallel and Distributed Systems 23(4), 659–667
(2012). DOI 10.1109/TPDS.2011.215

51. Weingartner, E., vom Lehn, H., Wehrle, K.: A perfor-
mance comparison of recent network simulators. In: IEEE
International Conference on Communications, pp. 1–5
(2009). DOI 10.1109/ICC.2009.5198657

52. Zehe, D., Knoll, A., Cai, W., Aydt, H.: Semsim cloud ser-
vice: Large-scale urban systems simulation in the cloud.
Simulation Modelling Practice and Theory 58, 157 – 171
(2015). DOI 10.1016/j.simpat.2015.05.005

53. Zhang, Q., Cheng, L., Boutaba, R.: Cloud comput-
ing: state-of-the-art and research challenges. Jour-
nal of Internet Services and Applications 1(1), 7–

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 S. Serrano-Iglesias et al.

18 (2010). DOI 10.1007/s13174-010-0007-6. URL
http://dx.doi.org/10.1007/s13174-010-0007-6

54. Zhou, X., Tian, H.: Comparison on network simu-
lation techniques. In: International Conference on
Parallel and Distributed Computing, Applications and
Technologies (PDCAT), pp. 313–316 (2016). DOI
10.1109/PDCAT.2016.073

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Photograph of Sergio Serrano-Iglesias

Phtograph of Eduardo Gómez-Sánchez

Phtograph of Miguel L. Bote Lorenzo

Phtograph of Juan I. Asensio-Pérez

Phtograph of Manuel Rodríguez-Cayetano

Short	 bios	 of	 the	 authors	 of	 the	 manuscript	 entitled	 “A	 self-scalable	
distributed	 network	 simulation	 environment	 based	 on	 cloud	 computing”	
submitted	to	Cluster	Computing:	The	Journal	of	Networks,	Software	Tools	and	
Applications.		
	
Sergio	 Serrano-Iglesias	 received	 his	 BSc	 and	 MSc	 in	 Telecommunications	
Engineering	from	the	University	of	Valladolid,	Spain,	in	2016	and	2017	respectively.	
He	is	currently	a	PhD	candidate	in	the	GSIC-EMIC	Research	Group	at	the	University	
of	 Valladolid.	 His	 main	 research	 interests	 include	 cloud	 computing	 and	 its	
application	for	the	support	of	learning.	
	
Eduardo	 Gómez-Sánchez	 received	 his	 PhD	 degree	 in	 Telecommunications	
Engineering	 in	 2001.	 He	 is	 currently	 an	 associate	 professor	 at	 the	 University	 of	
Valladolid.	 His	 main	 research	 interest	 is	 the	 design	 and	 evaluation	 of	 software	
distributed	systems	and	their	application	to	enhance	collaborative	learning.	
	
Miguel	L.	Bote-Lorenzo	received	his	MSc	and	PhD	degrees	in	Telecommunications	
Engineering	in	2001	and	2005	respectively.	He	is	currently	an	associate	professor	
at	the	Department	of	Signal	Theory,	Communications	and	Telematics	Engineering,	
University	of	Valladolid.	His	main	 research	 interests	 include	distributed	systems,	
machine	 learning	and	 their	 application	 in	 the	 context	of	 computer	networks	and	
technology	enhanced	learning.	
	
Juan	 I.	 Asensio-Pérez	 received	 the	 Ph.D.	 degree	 in	 Telecommunications	
Engineering	from	the	University	of	Valladolid,	Spain,	in	2000	where	he	is	currently	
associate	 professor.	 His	 research	 expertise	 include	 the	 development	 and	
management	of	distributed	systems	for	supporting	physical	and	virtual	educational	
contexts.	
	
Manuel	 Rodríguez-Cayetano	 received	 his	 MSc	 and	 PhD	 degrees	 in	
Telecommunications	Engineering	in	1993	and	1999	respectively.	He	is	currently	an	
associate	 professor	 at	 the	 Department	 of	 Signal	 Theory,	 Communications	 and	
Telematics	 Engineering,	 University	 of	 Valladolid.	 His	 main	 research	 interests	
include	software	development	for	parallel	and	distributed	systems.	

Author Biography (all authors)

