
Lawrence Berkeley National Laboratory
LBL Publications

Title
Solving a trillion unknowns per second with HPGMG on Sunway TaihuLight

Permalink
https://escholarship.org/uc/item/6nx8d6wt

Journal
Cluster Computing, 23(2)

ISSN
1386-7857

Authors
Ma, Wenjing
Ao, Yulong
Yang, Chao
et al.

Publication Date
2020-06-01

DOI
10.1007/s10586-019-02938-w

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6nx8d6wt
https://escholarship.org/uc/item/6nx8d6wt#author
https://escholarship.org
http://www.cdlib.org/

Noname manuscript No.
(will be inserted by the editor)

Solving a Trillion Unknowns per Second with HPGMG on
Sunway TaihuLight

Wenjing Ma · Yulong Ao · Chao Yang · Samuel Williams

the date of receipt and acceptance should be inserted later

Abstract Benchmarks for supercomputers are impor-
tant tools, not only for evaluating and ranking modern
supercomputers, but also for providing hints for future

architecture design. As a new benchmark, HPGMG (High
Performance Geometric Multigrid) solves a linear equa-
tion set with a full geometric multi-grid algorithm. It in-
volves computation on different scales, data movement

with various volumes, global communication and neigh-
bor communication with both large and small messages,
etc., and is more correlated to real world applications

than traditional benchmarks such as LINPACK. There-
fore, it is desirable to examine how well HPGMG can
perform on leadership supercomputers such as Sunway

Taihulight. Sunway Taihulight, the No. 1 supercom-
puter in the Top 500 list from June 2016 to June 2018,
which uses a specially designed many-core architecture
SW26010, is of great interest to the community of high

performance computing. With careful analysis and code
design, we came up with an efficient implementation
of HPGMG on SW26010 processors. We not only em-
ployed traditional optimization techniques such as 2.5D

Wenjing Ma
Institute of Software & State Key Lab of Computer Science,
Chinese Academy of Sciences, Beijing 100190, China.

Yulong Ao
CAPT and CCSE, School of Mathematical Sciences, Peking
University, Beijing 100871, China; Peng Cheng Laboratory,
Shenzhen 518052, China.

Chao Yang
CAPT and CCSE, School of Mathematical Sciences & Center
for Data Science, Peking University, Beijing 100871, China;
Peng Cheng Laboratory, Shenzhen 518052, China. Tel.: +86-
10-62757018. E-mail: chao yang@pku.edu.cn (Corresponding
Author).

Samuel Williams
Computational Research Division, Lawrence Berkeley Na-
tional Laboratory, Berkeley, CA 94720, USA.

partitioning, double buffering, and collective data load,
but also introduced a micro-benchmark to help with the
choice of optimization direction and parameter tuning.

Another contribution is that we proposed a new pro-
cedure for the major operations, by granulating and
reordering the smooth function and the ghost exchange
operation, leading to reduced memory copy and accel-

erated communication process. Our optimized imple-
mentation of HPGMG on Sunway TaihuLight achieved
a ground-breaking performance of 1.036×1012 Degrees

of Freedom per second at the finest level, which is No.
1 on the HPGMG list of Nov 2017.

Keywords HPGMG · Sunway TaihuLight · per-

formance benchmark and optimization · many-core
computing

1 Introduction

With the Top500 list [28] being updated every year, new
supercomputers are emerging rapidly, armed with new

architectures and techniques, which keeps changing the
spectrum of compilation, imlementation, and optimiza-
tion of parallel applications and libraries. To evaluate
the performance of the supercomputers with various un-
derlying architectures, developing benchmarks for high
performance computing has always been an intensively
studied topic. Traditionally, the systems are evaluated
with the HPL (High Performance LINPACK) [16] bench-
mark. However, HPL has started to show the lack of
capability to map its measurement of a supercomputer
to performance of real world applications. For example,
applications using differential equations may use sparse
data structures which require indirect data access, and

are more demanding in memory access and communi-
cation [25,2,14], and a system optimized for HPL may

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/clus/download.aspx?id=173631&guid=4b0f8b18-4bc0-42bb-8ba9-ad17fd075151&scheme=1
https://www.editorialmanager.com/clus/download.aspx?id=173631&guid=4b0f8b18-4bc0-42bb-8ba9-ad17fd075151&scheme=1

2 Wenjing Ma et al.

not be a good fit for those applications. Therefore, other

benchmarks have been proposed for evaluating super-

computers, such as Graph500 [1], HPCG (High Perfor-

mance Conjugate Gradients) [15] and HPGMG (High

Performance Geometric Multigrid) [2,35]. HPGMG was

developed based on linear equation solvers in real world

applications, which works on a hierarchy of grids, with

the correction from solution on coarser levels helping

the finest level to converge faster [36]. The HPGMG

benchmark includes computationally intense operations

on different scales, data movement with various vol-

umes, global communication and neighbor communi-

cation with both large and small messages, etc. Such a

variety of operations raise challenges for obtaining good

performance and robustness on a supercomputer.

The TaihuLight supercomputer, which was No. 1 in

the Top500 list from June 2016 to June 2018, provides

a powerful computation platform for large scale appli-

cations, featuring its many-core SW26010 processors,

high speed on-chip networks, and hierarchical fat tree

network, etc. Therefore, optimizing HPGMG on Taihu-

Light is a task of significant value, which helps to pro-

vide optimization strategies for real world applications

based on similar computation patterns or data struc-

tures, and provides hints for future hardware design as

well.

Although there has been a good amount of study

on optimizing numerical computation on Sunway plat-

form [38,30,13,39,17,18], we are the first to actually in-

vestigate the optimzation and performance of HPGMG

on TaihuLight. The particular architecture of the Tai-

huLight platform imposes several challenges to the opti-

mization of HPGMG, including the partitioning of work

on the many-core processor, efficient utilization of DMA

operations, reducing the overhead of data movement in

main memory, etc. In this paper, we provide a thorough

solution to optimizing HPGMG on TaihuLight, lever-

aging the architectural features of the SW26010 proces-

sors. We carefully designed parallelization schemes for

the major functions, and optimized the data movement

with register communication. Furthermore, we proposed

a new procedure for the major function, smooth with

ghost exchange, by restructureing and fusing opera-

tions, which boosts performance significantly.

Our main contributions are as follow. First, we im-

plemented and optimized HPGMG on TaihuLight, and

achieved 1.036× 1012 DOF/s (Degrees Of Freedom per

second) on 131,072 processes (32,768 nodes), which is

the first time to reach the order of 1012 in the world.

Second, we provided analysis on the bandwidth with

different DMA access patterns. Based on that, we de-

signed optimized data access mechanism utilizing regis-

ter communication, which is a particular feature of the

SW26010 processor. Third, we granulated and restruc-

tured the operations in the major computation and

communication tasks, fusing ghost area processing into

the computation kernel on the CPEs, which improved

performance by reducing memory copy overhead.

The paper is organized as follows. We introduce the

architecture of SW26010 in Section 2 and the HPGMG

benchmark in Section 3. Then, we describe our paral-

lelization and optimization methods in Section 4. The

experiment results are shown in Section 5, and related

work is provided in Section 6. In Section 7, we discuss

about the impact of architecture on the performance

and optimization selection, as well as the comparison

between HPGMG and HPCG. Section 8 concludes the

paper.

2 Sunway 26010 Architecture

Host
Memory

Host
Memory

Host
Memory

Network on Chip

CPE
cluster

CPE
cluster

M
P

E

M
P

E

MC

Sy
st

e
m

in

te
rf

ac
e

PPU

Host
Memory

CPE
clusterM

P
E

MC

PPU

CPE
clusterM

P
E

MC

PPU

MC

PPU

……

……

……
…
…

…
…

…
…

R7, C0

R1, C0

R0, C0

R7, C1

R1, C1

R0, C1

R7, C7

R1, C7

R0, C7

Fig. 1 SW26010 architecture.

The Sunway TaihuLight supercomputer is built with

40,960 SW26010 processors, organized as a fat tree,

delivering 125 Pflops (double-precision) aggregate per-

formance [19]. Sunway26010 is a many-core processor

comprised of 4 CGs (Core Groups), as shown in Fig-

ure 1. Each CG (Core Group) has an MPE (Manage-

ment Processing Element), a core cluster with 64 CPEs

(Computing Processing Elements) connected by NoC

(Network on Chip), a PPU (Protocol Processing Unit)

and a DDR3 Memory Controller (MC). Inside a CG,

the MPE is a fully functional 64-bit core, with a 256-bit

vector unit. The 64 CPEs, organized in an 8*8 mesh, are

reduced cores which also support 256-bit vector opera-

tions. Each CPE is equipped with a 64KB scratchpad

memory, called LDM (Local Device Memory), which is

software controllable. The CPEs can either access data

in main memory directly, or load/store data to/from

LDM using DMA. The CPEs in the same row or the

same column of the mesh can exchange data in their

vector registers via register communication.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Solving a Trillion Unknowns per Second with HPGMG on Sunway TaihuLight 3

To execute a program on the CPE cluster, a conve-

nient approach is using OpenAcc, which provides basic

code parallelization. Another way is using the Athread

library designed specially for Sunway TaihuLight. With

Athread, a kernel function is launched by a spawn op-

eration on up to 64 threads on the CPE cluster. Then, a

join operation will wait for all the CPEs to finish their

work and then return. As spawn is an asynchronous

function, the MPE can still work while the kernel is run-

ning on the CPEs. Tests with small and empty kernels

show that the launch of an Athread kernel is only 5-

10 microseconds, which is comparable to that on GPUs

and with OpenMP on multi-core CPUs. The Athread

library provides a set of operations that can leverage

the architectural features of SW26010, such as regis-

ter communication and DMA between LDM and main

memory. In our work, we implemented HPGMG with

Athread, taking advantage of the architectural features

mentioned above.

3 HPGMG Benchmark

The HPGMG (Finite Volume) Benchmark solves a lin-

ear equation set with a full geometric multi-grid algo-

rithm, which operates on a cubical Cartesian domain.

The domain is organized as a hierarchy of grids, which

consists of several levels. The first (finest) level has the

whole domain of M3 elements, where M is the size

of each dimension at the finest resolution. Then, every

next level gets coarser, reducing the size in each dimen-

sion by half. For example, if the finest level has 20483

elements, then the second level is of size 10243, and the

next level has 5123 elements. The same trend goes on

until the coarsest level, which has a small number (cube

of 2 or a small odd number) of elements.

The elements in each level (grid) are organized as

boxes, each of which has k elements on every dimension.

Therefore, a level with grid dimension of m would have

(m/k)3 boxes. The boxes in each level are distributed

to the processes evenly before the computation starts.

In the first few levels which have large boxes, a coarser

level is constructed by reducing the size of each box in

the finer level. When the box size is small enough, the

coarsening of the grid is done by reducing the number

of boxes, instead of reducing the box size.

Based on the grid hierarchy, the computation is ac-

complished by an “f-cycle” multigrid (full geometric

multi-grid), which is demonstrated in Algorithm 1, where

u is the unknowns to resolve, f is the right hand side,

and h is the spacing between elements in each dimen-

sion of the grid. The f-cycle starts from the coarsest

level (Line 2 of Algorithm 1), and uh is the initial val-

ues of u at the coarest level. Then in the while loop, the

smooth

residual

restriction

restriction

restriction

Bottom solver

Interpolation_

vcycle

Interpolation_

vcycle

Interpolation_

vcycle
Interpolation_

fcycle

smooth

residual

smooth

residual

smooth

smooth

smooth

8
3

4
3

2
3

1
3

2
3

4
3

8
3

4
3

Fig. 2 v-cycle multigrid in the HPGMG computation pro-
cedure [35]. This procedure is executed with increasing top
level size, until reaching the finest grid. Smooth is applied
before every restriction and interpolation.

spacing of grid elements h decreases in every iteration

(Line 5), until reaching the finest grid. Line 4 generates

the finer grid by high order interpolation on the coarser

grid. “v-cycle” multigrid in Line 6 is the major compu-

tation of this algorithm, as defined in Algorithm 2 in a

recursive way. It is illustrated by Figure 2 in a more de-

scriptive view, where the numbers denote the number

of elements in each level. In a v-cycle, smooth (the light

blue rectangles) calculates u with Gauss Seidel Red

Black (GSRB) (Line 5 of Algorithm 2). Then residual

(the dark blue rectangles) calculates the residual f−Au,

as Line 6 in Algorithm 2. After that, restrictions (the

yellow ovals on the left column) are applied for coarsen-

ing each level. The three procedures, smooth, residual,

and restriction are invoked repeated until the coars-

est level, where the bottom solver is applied (Line 3

in Algorithm 2). Starting from the bottom level, lower

order interpolation, interpolation vcycle (the red ovals

on the right column), is applied to each coarser level,

and followed by a smooth operation to generate u on

the finer level grid.

Among all the major operations, smooth is the most

time consuming one, followed by residual, which uses

the same stencil operation. Therefore, we focus on the

optimization of smooth in our work. smooth leverages

a GSRB (Gauss Seidel Red Black) method, which in-

volves several iterations of updating the correction value

of u, using a stencil computation. The out-of-place GSRB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Wenjing Ma et al.

Algorithm 1: f-cycle-multigrid

1 h← h0;

2 uh ← A−1
h fh /* coarsest solve */

3 while h>0 do

4 uh/2 ← I
h/2
h uh /* FMG interpolation */

5 h← h/2

6 uh ← V-cycle(Ah, uh, fh)

7 eh ← error(uh) /* error for convergance test */

8 end

Algorithm 2: v-cycle

1 Function v-cycle-multigrid(Ah, uh
0 , fh)

2 if h==h0 then

3 return uh ← A−1
h fh;

4 end

5 uh ← smooth(Ah, uh
0 , fh)

6 rh ← fh −Ahuh

7 r2h ← I2hh rh

8 u2h
0 ← 0

9 δ2h ← V-cycle(A2h, u2h
2 , r2h)

10 uh ← uh + Ih2hδ
2h

11 uh ← smooth(Ah, uh, fh)

12 return uh

(a) (b)
(c)

Fig. 3 smooth with stencil computation: (a) the red and
black cells. (b) elements of u used for one point. (c) elements
of beta i used for one point.

operation is done on different colors in each iteration as

Figure 3(a) shows. In the first iteration, the red cells in

Figure 3(a) are updated (each cell represents one ele-

ment in the domain), and the new values are put in

a temporary vector. Then, in the second iteration, the

black cells in Figure 3(a) are updated with the data

obtained from the first iteration, and the updated cells

are put back to the original vector. The whole proce-

dure of smooth requires a series of such iterations, in the

interleaved updating fashion mentioned above. The el-

ements in u required for computing one output element

is shown in Figure 3(b). From the figure, we can see

that one element requires two elements from its neigh-

bor in each dimension and each direction. It implies

that the computation of one box requires two layers of

data from other boxes on each face. So the overlapped

areas between two boxes, called “ghost areas”, have a

depth of 2 in this algorithm, and thus the boxes are “en-

larged” into size (k + 2 ∗ 2)3. The stencil computation

also requires the three β parameters, with the pattern

of βi shown in Figure 3(c). βj and βk have the same

shape, but in different dimensions. The right hand side

value and A−1 require no ghost areas. The updates are

applied on the whole domain, implying that the com-

putation of the boundary of each box would require

the latest value of u in neighboring boxes. Therefore, a

boundary exchange and building process is required to

update the data in the ghost area of each box before ev-

ery iteration. The official specification of the benchmark

requires 6 such iterations in one invocation of smooth,

which means it sweeps the entire domain and builds the

ghost areas of each box for 6 times, leading to the de-

mand for enormous computation resource and memory

bandwidth. In the following text, we are going to show

how we optimize smooth, which is essential for gaining

high performance on HPGMG.

Another 3 major functions, restriction, interpolation fcycle

and interpolation vcycle are also stencil-like operations,

with different patterns. interpolation fcycle uses a 125

point stencil to generate 8 points, and interpolation vcycle

uses 27 points to generate 8 points. restriction writes

the average of 8 neighboring elements into one output

point. Since those 3 functions occupy a very small por-

tion of the running time, and their optimization is sim-

ilar to that of smooth, we are not going to discuss them

in detail. The bottom solver, which works on the coars-

est level, only takes a negligible time, thus is not dis-

cussed either.

4 Implementation and Optimization of

HPGMG on Sunway TaihuLight

Based on the architectural features of Sunway Taihu-

Light, we carefully designed the parallelization scheme

and proposed several optimization methods. By apply-

ing them to the major functions in the HPGMG bench-

mark, we were able to harness a good amount of the

computing power of the SW26010 processors.

4.1 Parallelization of Stencil Operations

For the parallelization of the major functions, we adopt

the z-morton order data distribution scheme provided

by the benchmark, which distributes boxes evenly to

the processes. With each process mapped to one CG,

a box is processed by all the 64 CPEs in the CG 1.

For data partitioning on the CPE cluster, we adopt the

widely used 2.5D partition [5,40,26] for the box data

1 Since one thread runs on one CPE, we use CPE and
thread interchangeably in the following text.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Solving a Trillion Unknowns per Second with HPGMG on Sunway TaihuLight 5

and leveraged the double buffering mechanism [22,5,

34]. As shown in Figure 4, the data on an ij plane

are distributed onto the CPE cluster, with each CPE

processing one sub-block [5]. The entire k dimension

is processed in a loop by each CPE. The pseudo code

of the kernel function for smooth is shown in Algo-

rithm 3, which loads the required data of each sub-block

into LDM, then conducts the stencil computation, and

stores the result in LDM to main memory. Since the

stencil computation of smooth has ghost depth of 2 for

u, computing one plane requires 5 planes of u, which

are shown as the green planes in Figure 4. Among the

5 planes used for the current output plane, 4 of them

can be reused in the computation of the next plane. In

every iteration, as Line 6 and Line 10 of Algorithm 3

show, one more plane (Plane k + 3) is being loaded,

while the computation is done for the current plane

(Plane k), enabling overlapping of memory access and

computation, as indicated in the figure. Double buffer-

ing is facilitated by using two descriptors, d1 and d2 in

Algorithm 3.

i

k

Unused plane

Prefetched data

Currently computed

Required data

i

k

...

O
v
e
rla

p
p

in
g

Computation

Data transfer

Computation

Data transfer

Computation

Data transfer

Fig. 4 Data partitioning and double buffering for stencil
computation of ghost depth 2. The blue plane is being com-
puted in each step, using the green planes. The yellow plane
is the prefetched one, whose transfer is overlapped with the
computation.

We let each CPE deal with a 16×8 tile on the ij

plane for smooth and residual. With this tile size, we

are already using about 38KB LDM space, which is

nearly 60% of the total 64KB (though betai, betaj and

betak requires a ghost depth of 1, we allocate LDM

space for them with a ghost depth of 2 on i and j di-

mensions, for the requirement of collective data loading,

which will be explained in the next subsection). Adding

the other data and stack space in the LDM, about 65%

is used, and doubling the tile size on any dimension

will result in overflow of LDM. Therefore, 16×8 is the

largest tile size we use. Moreover, a “more square” tile

implies less redundant data, thus, we did not use a “less

square” tile, such as 32×4. For the other functions, the

tile sizes are also chosen in such a way that enables

Algorithm 3: smooth on a CPE

1 dma desc d1, d2;
2 for each sub block do
3 Prefetch the first 5 planes of x and other arrays

to LDM;
4 for k in 0 to box dim do
5 if k&1 == 0 then
6 load Plane k + 3 of x and other arrays to

LDM with d1;
7 dma wait(d2);

8 end
9 else

10 load Plane k + 3 of x and other arrays to
LDM with d2;

11 dma wait(d1);

12 end
13 for j in j low to j high do
14 for i in i low to i high do
15 x np = stencil(x, beta i,

beta j,beta k, rhs, Dinv, b, h2inv);
16 end

17 end
18 Write x np of Plane k to main memory.

19 end

20 end

more contiguous data access and less redundant data

access.

The above tile size is used on levels with box size

larger than 643. For boxes of size 643 and 323, we use

a tile size of 8×8 (instead of 16×8) to make full use of

the cores in the mesh. Levels with box size smaller than

323 are processed by the MPE.

4.2 Bandwidth Oriented Optimization

As a stencil operation with 6 input arrays, smooth is

a typical memory bound computation. With the naive

data access approach, each CPE loads data required by

the sub-block it processes. This approach suffers from

two deficiencies. First, each CPE has to load a relatively

large ghost area. Second, as a 16×8 sub-block spreads

on 8 rows, the data are loaded in short stanza. An im-

portant approach to alleviate the memory access over-

head is using collective data loading [5]. To facilitate

collective data access, several threads form a “thread

group”. Every CPE loads a few sections in one row,

and exchange the data they load with other CPEs in

the group, to ensure the same final status as with the

naive method. Figure 6 shows this mechanism with a

thread group of 4 threads. Each thread loads consecu-

tive sections in the main memory, and then, after repli-

cating boundaries and exchanging among threads, ev-

ery thread gets their required data. This method helps

to reduce the redundant data loaded by the CPEs in a

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Wenjing Ma et al.

 0

 10

 20

 30

4 8 16 32 64 128

Ba
nd

w
id

th
(G

B/
s)

Alignment (number of doubles)

16 doubles
32 doubles
64 doubles

128 doubles

(a) read

 0

 10

 20

 30

4 8 16 32 64 128

Ba
nd

w
id

th
(G

B/
s)

Alignment (number of doubles)

16 doubles
32 doubles
64 doubles

128 doubles

(b) write

 0

 10

 20

 30

4 8 16 32 64 128

Ba
nd

w
id

th
(G

B/
s)

Alignment (number of doubles)

16 doubles
32 doubles
64 doubles

128 doubles

(c) read+write

Fig. 5 Bandwidth of DMA transfer between main memory and LDM of a single CG on a 2563 box. Each line denotes a
different access length. The performance with read+write is below read, and the lines flatten with large enough access length
and alignment.

group, and data are loaded in a more contiguous pat-

tern by each CPE.

To determine the size of the thread group, and con-

duct a systematic analysis on the memory accessing

behavior, we designed a micro-benchmark for testing

bandwidth, which reads or writes a box of 2563 double-

precision floating-point numbers (without ghost areas)

in the main memory through DMA operations. We use

3 parameters to control the DMA operations between

LDM and the main memory, namely access length, alignment,

and access pattern. access length is the number of con-

secutive double-precision numbers to be loaded or stored

in each DMA operation. alignment refers to the num-

ber of double-precision numbers each DMA operation is

aligned to, which can be adjusted by setting the length

of j dimension in the box. The starting position of the

box is aligned to 1KBs, to ensure that the alignment

of data access is determined by the length of j dimen-

sion. access pattern is set as one of 3 patterns, namely

read, write, and read + write. read and write sweeps
the whole box once, leading to memory access of 2563

double-precision numbers. read + write is done by is-

suing one DMA write after one DMA read operation,

implying that 2563 × 2 double-precision numbers are

accessed in total. Figure 5 shows the bandwidth ob-

tained with various DMA configurations. It is observed

that the performance of write is a little worse than

read, and read + write is even worse than write. As

the read + write pattern is unavoidable in the imple-

mentation of stencil computation, we look into other as-

pects for optimization of memory access. Then, we have

another important observation, that the bandwidth is

better with larger alignment and larger access length

until reaching a certain threshold. Therefore, we opti-

mize the DMA operations in two directions, based on

the performance trend under the influence of those two

parameters.

One direction is increasing access length, which can

be accomplished by collective memory access, as de-

scribed above. For smooth, 4 arrays are read with ghost

M
e
m

o
ry

Thread 0

L
D

M

Row 4
Row 0

Thread 1
Row 5
Row 1

Row 2

Row 3

Row 6

Row 7

Thread 2

Thread 3

Row 1
Row 0

Row 2
Row 3
Row 4
Row 5
Row 6
Row 7

Row 3

Thread 3Thread 2

Thread 0 Thread 1

(a) (b)

(d)

L
D

M

Thread 3Thread 2

Thread 0 Thread 1

(d)

L
D

M

(c)

Fig. 6 Exchanging data within a group of 4 threads. The red
areas are ghost areas. The left part shows the naive approach,
in which each thread loads their own sub-block independently.
The right part shows the collective method in three steps.
First, from (a) to (b), each thread loads one long stanza.
Second, from (b) to (c), Row 3 is used as an example to show
how the loaded data in LDM are augmented to add ghost
areas. Third, from (c) to (d), we demonstrate the distribution
of data in Row 3 within the 4 threads.

areas, and 2 arrays are read without ghost areas. The

outputs are written without ghost areas. We adopt the

collective access pattern for all the 7 arrays. The col-

lective reading for data without ghost area is similar to

Figure 6, while the augmentation is eliminated. Since

we use a tile(sub-block) size of 16×8, with 4 CPEs form-

ing one group, to load the entire sub-block, each CPE

needs to read and exchange twice. With a different con-

figuration of grouping, the performance would vary. For

example, when exchanging data among 8 threads, each

thread would load one row with 8 segments. Therefore

every CPE reads only one long section for loading a sub-

block. However, this configuration for collective load-

ing requires more register communication operations.

In the experiments, we test different schemes and se-

lect the best one.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Solving a Trillion Unknowns per Second with HPGMG on Sunway TaihuLight 7

Another direction is using large alignment by set-

ting a large enough j dimension. For the data that do

not require ghost area, the boxes are aligned for the

first byte of the inner area. For the three beta arrays,

the alignment is done for the first byte of the enlarged

box, since the computation requires ghost areas in those

arrays. As for the correction u itself, we align it for the

first element of the inner area. This is because it is both

read and written, and from Figure 5, we can see that

writing is more sensitive to the alignment. Therefore,

we align u according to the requirement of its writing

operation, which does not involve ghost areas.

4.3 Fusion of Boundary Processing

Before every sweep of the whole domain in smooth, the

ghost areas of each box need to be built, either filled

with data from neighboring boxes or calculated with

data inside the domain. As an invocation of smooth

includes 6 iterations, the ghost area processing turns

out to be a big overhead. We analyzed the performance

bottleneck of the boundary exchange procedure, and

redesigned smooth in a transformed sequence, utilizing

a fused procedure on CPEs.

Before going to the optimization method, we ex-

plain what happens in the ghost area processing of

smooth, including two functions, exchange boundary

and boundary calculation. For every box, the ghost ar-

eas include 6 faces and 12 edges, with corners not re-

quired, and we call each ghost area a “ghost block”.

exchange boundary fills in the ghost blocks with data

from other boxes, either local boxes that is owned by the

same process, or remote boxes that require inter-process

communication. And boundary calculation calculates

the ghost blocks with data inside the box. Figure 7(a)

illustrates the operations in two iterations of smooth.

exchange boundary accomplishes the exchange of ghost

blocks in 3 steps. In the first step, the ghost blocks to

be sent to other processes are copied to “send buffer”s,

corresponding to the “pack” operation in Figure 7(a),

and asynchronous MPI send is invoked. Asynchronous

MPI receives are also launched to accept messages in

the “receive buffer”s. In the second step, while waiting

for the ghost blocks from other processes, ghost blocks

from local boxes are copied to the appropriate ghost

areas of the local destination boxes, which is the “local

copy” operation in Figure 7(a). Finally, after all the re-

mote ghost blocks have arrived at the receive buffers,

the ghost blocks are copied to their corresponding ghost

areas in the local boxes, referred to as the “unpack”

operation in Figure 7(a). boundary calculation is done

only for boxes on the boundary of the whole domain,

which builds the ghost blocks using data inside the do-

main.

In this process, we found that most of the time in

boundary exchange is spent on “pack”, “unpack”, and

“local copy”, which copy data between communication

buffers (receive buffers and send buffers) and the box,

as well as between local boxes. A simple way to reduce

this overhead is implementing exchange boundary and

boundary calculation on the CPEs, and invoking them

before launching the kernel function of smooth. This

approach helps to reduce the time of data copy, be-

cause the memory bandwidth is higher for CPE with

the DMA data transfer. However, it still involves data

movement between the communication buffers and the

boxes in main memory. To further reduce the overhead

of memory copy, we design a new execution sequence for

smooth, fusing exchange boundary and boundary calculation

into the smooth kernel function.

The restructured smooth with boundary fusion is

shown in Figure 7, where the original procedure in Fig-

ure 7(a) is transformed to Figure 7(b), showing two

iterations in smooth. This transformation requires two

major rearrangements of operations in every iteration.

One is moving the “pack” operation to the kernel of the

previous iteration, which is done by writing the data

in ghost blocks of the current sub-block into the send

buffer with a DMA operation, after the computation

of one sub-block in a plane. This is illustrated by the

red stars in the figure, where the star in Figure 7(a)

denotes packing operation in iteration N + 1. In the

transformed code, the “pack” operation is accomplished

by the kernel in Iteration N , which copies the data to

send buffers in the computation loop, shown as the star

in Figure 7(b). Another rearrangement is moving “un-

pack” and “local copy” out of exchange boundary, and

inserting them in the kernel which runs on the CPEs.

Those operations are also fused into the computation

of each sub-block, right after the collective loading of

the box data, and before the stencil computation. This

is demonstrated in Figure 8 conceptually. In the orig-

inal execution process in Figure 8(a), all of the ghost

blocks are copied to the box in main memory before

the kernel. In Figure 8(b), the ghost blocks are copied

from receive buffers to the LDM in small pieces by each

CPE. boundary calculation is also fused into the CPE

kernel, as it requires the data loaded from the receive

buffer in some cases, and cannot be done before the

fused kernel.

4.4 Other Optimization

Because the tile size and register communication pat-

terns may be different for boxes at different scales, we

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Wenjing Ma et al.

Pack

SPAWN

Local

copy

Collective

load of

box data

Stencil

computation

Write

data

back

Repeat for every plane

JOIN

Unpack
Boundary_

calculation

Prefetch

Pack

SPAWN

Local

copy

Collective

load of

box data

Stencil

computation

Write

data

back

Repeat for every plane

JOIN

Unpack
Boundary_

calculation

Prefetch

MPE

CPE

SPAWN

Unpack
Local

copy

Repeat for every plane

JOIN

Prefetch

MPE

CPE

(a) Two iterations in the original execution sequence of smooth

(b) Two iterations in the fused execution sequence of smooth

Collective

load of

box data

Stencil

computation

Write

data

back

Pack

Boundary_

calculation

SPAWN

Unpack
Local

copy

Repeat for every plane

JOIN

Prefetch

Collective

load of

box data

Stencil

computation

Write

data

back

Pack

Boundary_

calculation

MPI_Irecv MPI_Isend MPI_Wait

Iteration N Iteration N+1

Iteration N Iteration N+1

Fig. 7 The execution procedure of smooth with and without fusion. Iteration N and N + 1 are shown in the figures, with
yellow blocks showing operations on the MPE, and light blue blocks showing those on the CPEs. The green, blue and purple
blocks are communication operations. The stars imply the same “Pack” operation, but done in different iterations in the two
approaches.

...

Receive Buffer

Main memory

LDM

...

Receive Buffer

Main memory

LDM

(a) (b)

Fig. 8 Fusing boundary processing into the computation ker-
nel. In the fused code, the boundary is loaded from receive
buffer in small pieces when they are required by the compu-
tation of each sub-block.

keep various versions of kernel functions for different

levels. It is better than putting all the cases in a single

kernel function, which imposes more branches and de-

grades the performance. We also interleaved the DMA

operations and the other statements in some code seg-

ments, which gives the compiler more opportunities to

arrange the instructions in a way that overlaps floating-

point computation and DMA operations. Additionally,

in the collective loading of the box data, loading n rows

for each sub-block (in our implementation n is 2 or 3) is

done by using n DMA operations, instead of one strided

DMA operation. This is a choice based on experiments

which show that the latter approach yields better per-

formance.

5 Performance Evaluation

In this section, we show the performance improvement

obtained by our optimization techniques, and how the

code performs on 8 million cores on TaihuLight. To min-

imize the overhead of ghost area processing and commu-

nication, we make the box size as big as possible. Since

the 4 CGs in a node share the 32GB memory, each Core

Group can use up to 8GB memory. As we map one pro-

cess to one CG, according to the data requirement, the

largest box size that can be accommodated in one pro-

cess is 2563. Therefore, in the following tests, the boxes

in the finest level are set to be of size 2563, and each

CG can process up to 4 boxes.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Solving a Trillion Unknowns per Second with HPGMG on Sunway TaihuLight 9

5.1 Performance Gain of Optimization Schemes

 0.7

 0.8

 0.9

 1

1 8 512

Ti
m

e
of

 s
m

oo
th

 (
se

co
nd

s)

Nnumber of processes

16 doubles
64 doubles
128 doubles

Fig. 9 Execution time of smooth with different data ex-
change schemes for data without ghost areas, showing the
tradeoff between larger access length and more register com-
munication overhead.

We first test the bandwidth-oriented optimizations.

In terms of alignment, we simply set the j dimen-

sion aligned to 128 double-precision numbers, which

is large enough for maintaining good performance. We

test the different collective access patterns, since there

is the tradeoff between larger access length and more

register communication overhead. As mentioned above,

with the 16×8 sub-block size, a naive loading by each

CPE results in an access length of 16 doubles. Col-

lective loading with 4 CPEs and 8 CPEs leads to an

access length of 64 doubles and 128 doubles respec-

tively, with more register communication required (access length

of 64 doubles requires each thread communicate 96 dou-

bles for one sub-block, and access length of 128 doubles

requires communication of 112 doubles). We tested the

three access lengths and show the results in Figure 9.

The code is based on the most optimized version, and

the variation is done on the input data without ghost

areas. The time of smooth is measured by summing all

the smooth kernel execution time of the finest level in

one f-cycle. The legend denotes the access length of the

three collective data loading patterns. We can see that

the performance gain from 16 doubles to 64 doubles is

obvious, which is consistent with the bandwidth tests

in Figure 5. The performance gets a little worse from

64 doubles to 128 doubles, because the bandwidths be-

tween those two access lengths are almost the same,

while the latter has extra overhead of register commu-

nication.

In Figure 5, we showed that though the DMA read

operation can deliver bandwidth of 26GB/s, the per-

formance with mixed read and write can only achieve

up to 16GB/s bandwidth. In our test with the smooth

code, the running time of one iteration on a single CPE

got a bandwidth of about 13GB/s, which means the

bandwidth utilization is about 81%. Considering the

extra data loaded by the overlapped sub-blocks among

CPEs, this bandwidth utilization is very close to that of

the code without computation, implying that we have

achieved good overlapping of DMA operation and com-

putation.

 0

 5

 10

 15

 20

 25

1 8 512

Sp
ee

du
p

Number of processes

baseline
basic-cpe
bw-opt
fused

Fig. 10 Speedup of smooth with different optimization tech-
niques applied, compared to the baseline version on MPE.

Next, we test the code with different optimizations

applied, and show the results in Figure 10. The baseline

version is a single thread execution running only on the

MPE. The basic-cpe version uses the CPE in a very

simple fashion, which partitions the data on the CPE

mesh, and use the LDM for buffering input and out-

put data. The 2.5D partitioning and double buffering

is used for this implementation. The third one, bw-opt,
uses collective data exchange and enlarged j dimen-

sion. The fourth one, fused, is the version that fuses

exchange boundary and boundary calculation into smooth

and residual, which is the most optimized code. The

experiments are conducted on 1, 8, and 512 processes,

with 1 box per process, using a box size of 2563. The

time is the sum of all the invocations of smooth on

the finest level, including time for ghost exchange and

boundary building. In the three cases (1, 8, and 512

processes), basic-cpe got a speedup of 6.6-7× using the

simple blocking mechanism on the CPE cluster. With

collective and aligned memory access, the speedup of

bw-opt over baseline is 18.1× on one process, and 15.8×
on 512 processes. The most optimized version fused

achieved a speedup of 23.7× on 1 process, and 20.9×
on 512 processes over the baseline version. In Figure 10,

we can see the speedup of the optimized versions goes

down with more processes. This is because the overhead

of communication (let us call it Tcomm) is higher on

more processes, and our optimization is mainly for re-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Wenjing Ma et al.

ducing computation time Tcomp. Since the total time

of smooth is Tcomm+Tcomp, a larger Tcomm amor-

tizes the improvement of Tcomp. From 1 process to 512

processes, Tcomm grows from 0 to 0.121s, thus the per-

centage of Tcomp is smaller on 512 processes. However,

this trend will be more flattened with more processes.

Because the percentage of Tcomm does not grow much

on more than 512 processes. For example, Tcomm on

110,596 processes is only 0.133s, just a 10% increase

from that on 512 processes. Therefore, the percentage

of Tcomp on a huge number of processes has not much

difference from that on 512 processes, while the im-

provement of Tcomp stays the same, implying that the

speedup over baseline version on large scale tests would

not be much different from that on 512 processes.

0.1

1

10

100

512(256) 4,096(2,048) 32,768(16,384) 262,144(131,072)

0.2114

1.689

13.25

103.6

10
10

D
O

F/
s

(l
og

)

Number of boxes (Number of processes) (log)

Fig. 11 Weak scaling test, shown as performance of the op-
timized HPGMG on different problem sizes, with 2 boxes on
each process. We demonstrate linear scalability (Note the log-
log plot).

5.2 Performance on 8 Million Cores

With the optimized code, we tested the performance

of HPGMG on Taihulight. As required by the bench-

mark, the number of boxes is a cubic number N , with

N=C × 2r, where C is an odd number less than 12.

And as mentioned above, using a box of size 2563, each

process can hold up to 4 boxes. Thus, on TaihuLight, a

system with 160,000 Core Groups, the biggest number

of processes we can use is 131,072, when each process

keeps two boxes, which means 643=262,144 boxes are

processed in total. Furthermore, using more cores would

incur load imbalance, without yielding higher through-

put. We conducted weak scaling test of our optimized

code2 on 643, 323, 163, and 83 boxes, and show the

2 Some of the optimization is added after the testing on the
whole system, therefore the results shown in this subsection
is a little lower than the performance we can achieve with our
latest code

results in DOF/s (Degrees of Freedom per second) in

Figure 11. From the figure, it can be seen that the per-

formance goes up linearly with more processes. This is

because the communication is mostly with neighboring

processes, which is efficient on TaihuLight, and our fu-

sion strategy for boundary processing helps to reduce

the time on waiting for the packing of data, which ac-

celerates the whole communication procedure. In ad-

dition, the global reduction on TaihuLight has excel-

lent performance, ensuring good scalability of HPGMG.

With 2 boxes per process, on 131,072 processes, we at-

tain 1.036 × 1012 DOF/s, which is the highest perfor-

mance achieved on TaihuLight, and is Number 1 in the

HPGMG ranking in Nov 2017, followed by 8.59× 1011

DOF/s on Cori, and 5 × 1011 DOF/s on Mira 3. The

breakdown of execution time is shown in Figure 12.

smooth is still the most time consuming function, fol-

lowed by residual. Note that ghost exchange takes a

larger percetage on coarser levels (boxes of size 1283

and 643), but remains to be small compared to the to-

tal time. Strong scaling is also tested, on 323 boxes, and

 0

 0.5

 1

 1.5

 2

 2.5

 3

2563 1283 643

Ex
ec

ut
io

n
tim

e

Grid size (number of boxes)

smooth
residual

BLAS1
restriction

interpolation-v
interpolation-f

ghost-exchange

Fig. 12 Fraction of each function in total running time on
262,144 boxes. The boxes sizes denote different levels of the
grid.

the results are shown in Figure 13. The tests are done

on three scales (8,192 processes, 16,384 processes, and

32,768 processes), with each process dealing with 4, 2,

and 1 boxes respectively. The chart shows performance

on three levels, with box size of 2563, 1283, and 643.

Though the coarser levels (box size of 1283 and 643)

have sub-linear performance, the finest level still shows

almost linear scalability. The reason for the sub-linear

performance on smaller boxes is that, the overhead of

communication for ghost area occupies a relatively large

portion. At the finer levels with more computation, the

3 http://crd.lbl.gov/departments/computer-
science/PAR/research/hpgmg/results/results-201711/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Solving a Trillion Unknowns per Second with HPGMG on Sunway TaihuLight 11

0

10

20

30

8,192 16,384 32,768

10
10

D
O

F/
s

(l
og

)

Number of processes

box dimension = 256
box dimension = 128
box dimension = 64

Fig. 13 Strong scaling test, shown as normalized perfor-
mance of 323 boxes on different number of nodes. Each line
plots the performance at various grid levels. Strong scaling is
observed on each line, as the same amount of work is done by
different number of processes. The coarser levels have sub-
linear performance because the time is more dominated by
communication.

communication overhead is amortized by the computa-

tion time.

6 Related work

Benchmarks for supercomputers are important mea-

surements that not only provide basic evaluation stan-

dards for ranking, but also help to direct the design and

optimization of future Exascale hardware and software.

HPL (High Performance LINPACK) [16] has been the

traditional benchmark for evaluating supercomputers,

which solves linear equations with Gaussian elimina-

tion, using mainly dense matrix operations. As comple-

ments and alternatives to HPL, new benchmarks are
being proposed, such as HPCG and HPGMG. HPCG

(High Performance Conjugate Gradient) includes com-

putation patterns that are closer to the computational

applications, including sparse matrix vector multipli-

cation, symmetric Gauss-Seidel relaxation, etc. [15,25].

HPGMG, as a new benchmark, is a solver which could

be utilized in real world applications. Evaluation of

HPGMG has been done on a variety of platforms, in-

cluding those with multi-core CPUs and many-core GPUs

[4,25]. For instance, researchers have done thorough

tests and analysis on Blue Waters, a Cray XE6/XK7

hybrid system, to evaluate the performance of HPGMG

in different configurations. They have made an effort to

make use of both the multi-core CPUs and the many-

core GPUs, by running multiple processes on each GPU

and varying the box size and other parameters to find

the sweet spot for the best performance. It provides

an important basis for optimization and tuning of ap-

plications on hybrid systems [25]. Efforts are made on

compilation to improve the performance of geometric

multi-grid, leveraging function fusion [7,8]. Optimiza-

tion of geometric multigrid on modern GPUs has also

been studied, leveraging auto-tuning technique to find

the best thread block configuration and loop tiling [9],

and using the unified memory and nvlink to reduce the

overhead of communication [24,23,32,31]. For Taihu-

Light, we reduce the memory copy overhead with the

ghost area by fusing the copy for boundary into the

kernel, as introduced in Section 4.3.

Stencil computation, which is the main body of HPGMG,

is a hot spot in the research of high performance com-

puting. Many works have been done to optimize stencil

operations on GPUs, utilizing various techniques such

as reuse of data in shared memory [40,26,29,27,21].

Aldinucci et al. built a parallel pattern for a large class

of applications with the LOOP-OF-STENCIL-REDUCE

within the FastFlow framework, providing optimized

device memory manipulation for the iterative compu-

tation [3]. Cao et al. provided a thorough solution to op-

timization of high-order stencil computation in a clus-

ter with GPUs, including optimization to GPU kernels,

work load balancing between GPUs and CPU cores,

and pipelining of communication, packing and compu-

tation among processes, which is similar to the work

flow of HPGMG [10]. Though the SW26010 CPU is

also a many-core platform, it is still quite different from

GPUs. Therefore, we adopt the same 2.5D partition,

but use register communication for data sharing, as the

LDM is private to each CPE. Computation reuse has

been investigated for multi-core CPUs and many-core

GPUs, both in optimizing hand written stencil code [12,

33] and in optimization of automatic code generation [6,

26,20]. However, it is not applicable in our code, be-

cause smooth is a stencil computation involving 6 ar-

rays, which is not “constant coefficient”. Stencil com-

putation has also been implemented and tuned on the

IBM Cell processors, which assembles the architecture

of SW26010. On both simulators and the real architec-

tures, the blocking strategy, alignment for stanza data

access, and the double buffering mechanism are effective

for memory bandwidth optimization [37,11]. In our im-

plementation, we adapt similar methodology, tailored

for SW26010, as it is a larger processor mesh which

supports communication among cores. Stencil opera-

tions on Sunway platform have been optimized with

collective data access [5,38]. We adapted similar regis-

ter communication schemes, after systematic analysis

of the DMA data access behaviors, and tailored them

in a way that favors the HPGMG code. Vectorization is

also an important optimization for stencil computation

on Sunway platform [22,5]. We did not use vector op-

erations for smooth in HPGMG, as such a complicated

stencil involving strided updates (the red or black el-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Wenjing Ma et al.

ements are not contiguous) and a large number of pa-

rameters would use up the vector registers, and result

in too much overhead on loading and shuffling the data.

Function fusion is a widely used optimization for

stencil computation [8,7], which reduces data commu-

nication significantly, at the cost of computing with

deeper ghost depth. However, we did not adopt this

strategy in our code, for the following reason. Fusing

two iterations implies computation with a deeper ghost

area in the smooth kernel, which requires more data

to be stored in the LDM, not only for u, but also for

the three beta arrays. As the current implementation is

already making almost full usage of LDM in each CPE,

we cannot fit all the data required for the fused kernel

with deep ghost depth into LDM. Therefore, function

fusion is not applied in our code.

7 Discussion

In this section, we conduct some discussion on the inter-

action of optimization methods and architectural fea-

tures, and compare the optimization methods as well

as the performance of HPCG and HPGMG on Sunway

TaihuLight.

7.1 Optimization of Iterative Computation and

Communication

As mentioned in Section 4.3, in the optimized code of

smooth, we leave the inter-process communication out

of the computation kernel, but fuse the memory copy

(packing, unpacking, local copy) into the computation

kernel.

Another approach for dealing with the ghost areas

is separating the inner area and edge areas [5]. With

this approach, the inner data are processed first, by the

CPEs, while the communication of the ghost areas is

being conducted by the MPE. The edge areas, which

require ghost data, are processed when the communi-

cation is completed. Thus, communication and compu-

tation can be overlapped. Table 1 lists the computation

time for different areas with this approach in the first

two rows, where Tij is the time of computing top and

bottom faces, Tik is the time for computing south and

north faces, and Tjk is the time for computing left and

right faces. The last two rows list the time of the ap-

proach in this paper, with Tcomp representing the kernel

computation time and Tcomm standing for the commu-

nication time. The difference among Tij , Tik, and Tjk is

mainly caused by different amounts of redundant data

and various DMA access stanzas. Obviously, the benefit

of avoiding inter-process communication does not over-

weigh the overhead of extra time spent on processing

the edge areas, and that is why we did not use this ap-

proach for HPGMG on TaihuLight. The next question

is, when should we switch to the overlapped approach?

Let us assume the system is described with a set of

parameters BD, BM , L, where BD is the DMA band-

width, BM is the MPE memory bandwidth, and L is

the network latency. Examining Table 1, we can find

that Tinner is only slightly smaller than Tcomp, because

the amount of work on the inner area is comparable to

that on the whole box, especially with collective mem-

ory access. As the total time of the two approaches are

approximately Tcomp+Tcomm and Tinner+Tij+Tik+Tjk
respectively, the switch happens when Tij + Tik + Tjk
is smaller than Tcomm. Since the computation is bound

by the DMA bandwidth BD, and the communication

is determined by the network latency L, the selection

of the two approaches can be roughly decided with the

following rule. Let f = (Tij + Tik + Tjk)/Tcomm, with

the current system setting. For a new system with pa-

rameter set {B′D, B′M , L′}, we would switch to the over-

lapping approach when (B′D ∗ L)/(BD ∗ L′) > f . If L

is unchanged, then the crossover point is B′D/BD > f ,

which means BD is improved by f times (for example,

if HBM or HMC is used, or more/faster DMA channels

are added).

Table 1 Processing time breakdown of the smooth operation
with 512 processes.

overlapped Tinner Tij Tik Tjk

0.835 0.0397 0.0738 0.192
fused Tcomp Tcomm

0.853 0.092

7.2 Comparison between HPGMG and HPCG

As another important benchmark, HPCG has also been

optimized on various supercomputers. In this section,

we conduct a brief comparison on the computation pat-

terns, optimization methods, and performance between

HPGMG and HPCG.

The two benchmarks have a lot in common, as both

solve an elliptic equation, using a numerical method

on 3D grids. However, there are many differences be-

tween the methods used for the two benchmarks, listed

as Table 2. An important difference between the two

benchmarks is that HPCG is an iterative solver, and

the benchmark terminates when achieving the same

level of residuals as the reference run with 50 itera-

tions, while HPGMG is a non-iterative solver which

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Solving a Trillion Unknowns per Second with HPGMG on Sunway TaihuLight 13

solves the equation after one f-cycle. For both of them,

the most time consuming function is the smooth oper-

ation, but as the data structure, data requirement, and

the algorithm are different on the two benchmarks, the

optimization approaches are also different, as shown in

Table 3. One thing to notice is that the multi-color par-

allelization of HPCG changes the semantic of the orig-

inal code, therefore changing the number of iterations,

but as the metric for HPCG is Pflops, the overhead in-

troduced by extra iterations caused by parallelization is

not accurately counted in the performance metric. The

performance of the two benchmarks on TaihuLight is

listed in Table 4. In terms of system utilization, since

we use large boxes, and each processes only 2 boxes,

we were only using 32,768 nodes (131,072 CGs) in the

system (using more processes would lead to imbalanced

work load which would not reduce the total time), while

HPCG can make use of all the 40,000 nodes (160,000

CGs). In terms of the number of grid levels, HPCG

only works on 4 levels, while HPGMG needs to pro-

cess logN levels, where N is the size of each dimension

of the domain. This implies that HPGMG has a more

complicated communication pattern.

Table 2 General comparison of HPGMG and HPCG.

HPGMG HPCG
Solve Equation

−∇· β(x)∇u(x) = f(x)
Solve Equation ∇2u = f

Matrix free sparse matrix

Full geometric multi-grid
Conjugate gradient with
multi-grid preconditioner

Stencil computation Sparse matrix computation
Gauss Seidel

Red-Black smoother
Symmetric Gauss
Seidel smoother

Table 3 Comparing optimization methodologies of HPGMG
and HPCG on Sunway TaihuLight.

HPGMG HPCG

Parallelization
Decomposition
based on boxes

Multi-coloring

Blocking
2D on XY-plane with
pipelining on Z-axis

3D

On-chip
data movement

Collective memory
access in groups

All-to-all
data exchange

Communication
optimization

Fusion of
Pack/Unpack
and smooth

Pack/Unpack
on CPEs

8 Conclusion and Future Work

We provide a high performance implementation for HPGMG

on Taihulight, the fastest supercomputer in the world,

Table 4 Comparing performance of HPGMG and HPCG on
Sunway TaihuLight.

HPGMG HPCG
Grid size 4.398×1012 5.033×1011

#processes 131,072 160,000
Performance 1.036×1012 DOF/s (1.2Pflops) 0.481Pflops

using SW26010 processors. With our optimization strate-

gies including 2.5D blocking with tuned tile size, band-

width oriented optimization using register communica-

tion, and a transformed execution sequence fusing the

boundary processing into the computation kernel, we

achieved 1.036 × 1012 DOF/s on 8.5 million cores. In

the future, we are planning on two directions of ex-

pansion based on this work. One is more systematic

investigation on the instruction level parallelism, which

requires schedule adjustment of the assembly code. The

other one is to apply the optimization techniques to real

world applications with similar computation patterns.

Acknowledgements The authors would like to thank the
anonymous reviewers for helping improve the quality of the
paper. This work was supported in part by National Key
R&D Plan of China (grant# 2016YFB0200603) and Beijing
Natural Science Foundation (grant# JQ18001). Dr. Williams
was supported by the Advanced Scientific Computing Re-
search Program in the U.S. Department of Energy, Office of
Science, under Award Number DE-AC02-05CH11231.

References

1. https://graph500.org (2017)
2. Adams, M.F., Brown, J., Shalf, J., Straalen, B.V.,

Strohmaier, E., Williams, S.: HPGMG 1.0: A Bench-
mark for Ranking High Performance Computing Systems
(2014)

3. Aldinucci, M., Danelutto, M., Drocco, M., Kilpatrick,
P., Misale, C., Peretti Pezzi, G., Torquati, M.: A par-
allel pattern for iterative stencil + reduce. The Jour-
nal of Supercomputing 74(11), 5690–5705 (2018). DOI
10.1007/s11227-016-1871-z. URL https://doi.org/10.

1007/s11227-016-1871-z
4. Ao, Y., Liu, Y., Yang, C., Liu, F., Zhang, P., Lu, Y., Du,

Y.: ”Performance Evaluation of HPGMG on Tianhe-2:
Early Experience”, pp. 230–243. Springer International
Publishing, Cham (2015)

5. Ao, Y., Yang, C., Wang, X., Xue, W., Fu, H., Liu, F.,
Gan, L., Xu, P., Ma, W.: 26 PFLOPS Stencil Computa-
tions for Atmospheric Modeling on Sunway TaihuLight.
In: 2017 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2017, Orlando, FL, USA,
May 29 - June 2, 2017, pp. 535–544 (2017)

6. Basu, P., Hall, M., Williams, S., Straalen, B.V., Oliker,
L., Colella, P.: In: 2015 IEEE International Parallel and
Distributed Processing Symposium

7. Basu, P., Hall, M., Williams, S., Van Straalen,
B., Oliker, L.: Converting stencils to accumulations
for communication-avoiding optimization in geometric
multigrid, pp. 9–16. Association for Computing Machin-
ery, Inc (2014)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Wenjing Ma et al.

8. Basu, P., Venkat, A., Hall, M., Williams, S., Van Straalen,
B., Oliker, L.: Compiler generation and autotuning of
communication-avoiding operators for geometric multi-
grid. IEEE Computer Society (2013)

9. Basu, P., Williams, S., Van Straalen, B., Oliker, L.,
Colella, P., Hall, M.: Compiler-based Code Genera-
tion and Autotuning for Geometric Multigrid on GPU-
accelerated Supercomputers. Parallel Comput. 64(C),
50–64 (2017)

10. Cao, W., Xu, C.f., Wang, Z.h., Yao, L., Liu, H.y.:
Cpu/gpu computing for a multi-block structured grid
based high-order flow solver on a large heterogeneous sys-
tem. Cluster Computing 17(2), 255–270 (2014). DOI
10.1007/s10586-013-0332-1. URL https://doi.org/10.

1007/s10586-013-0332-1
11. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter,

J., Oliker, L., Patterson, D., Shalf, J., Yelick, K.: Stencil
Computation Optimization and Auto-tuning on State-
of-the-art Multicore Architectures. In: Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing,
SC ’08, pp. 4:1–4:12. IEEE Press, Piscataway, NJ,
USA (2008). URL http://dl.acm.org/citation.cfm?

id=1413370.1413375
12. Datta, K., Williams, S., Volkov, V., Carter, J., Oliker, L.,

Shalf, J., Yelick, K.: Auto-tuning Stencil Computations
on Multicore and Accelerators. CRC Press (2010)

13. Dong, W., Kang, L., Quan, Z., Li, K., Li, K., Hao, Z., Xie,
X.H.: Implementing Molecular Dynamics Simulation on
Sunway TaihuLight System. In: 2016 IEEE 18th Interna-
tional Conference on High Performance Computing and
Communications; IEEE 14th International Conference on
Smart City; IEEE 2nd International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pp. 443–
450 (2016). DOI 10.1109/HPCC-SmartCity-DSS.2016.
0070

14. Dongarra, J.: Confessions of an accidental bench-
marker. http://sc13.supercomputing.org/ sites/default-
/files/WorkshopsArchive/pdfs/wp156s1.pdf

15. Dongarra, J., Heroux, M.A., Luszczek, P.: High-
performance conjugate-gradient benchmark: A new met-
ric for ranking high-performance computing systems. In-
ternational Journal of High Performance Computing Ap-
plications p. 1094342015593158 (2015). DOI 10.1177/
1094342015593158

16. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK
Benchmark: past, present and future. Concurrency Com-
putat.: Pract. Exper. 15, 803–820 (2003). DOI 10.1002/
cpe.728

17. Fu, H., He, C., Chen, B., Yin, Z., Zhang, Z., Zhang,
W., Zhang, T., Xue, W., Liu, W., Yin, W., Yang, G.,
Chen, X.: 18.9Pflopss Nonlinear Earthquake Simulation
on Sunway TaihuLight: Enabling Depiction of 18-Hz and
8-meter Scenarios. In: Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’17, pp. 2:1–2:12. ACM,
New York, NY, USA (2017)

18. Fu, H., Liao, J., Ding, N., Duan, X., Gan, L., Liang, Y.,
Wang, X., Yang, J., Zheng, Y., Liu, W., Wang, L., Yang,
G.: Redesigning CAM-SE for Peta-scale Climate Model-
ing Performance and Ultra-high Resolution on Sunway
TaihuLight. In: Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, SC ’17, pp. 1:1–1:12. ACM, New
York, NY, USA (2017)

19. Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X.,
Yang, C., Xue, W., Liu, F., Qiao, F., Zhao, W., Yin, X.,
Hou, C., Zhang, C., Ge, W., Zhang, J., Wang, Y., Zhou,

C., Yang, G.: The Sunway TaihuLight supercomputer:
system and applications. Sci. China Inf. Sci. pp. 1–16
(2016). DOI 10.1007/s11432-016-5588-7

20. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S.,
Dubach, C.: High performance stencil code generation
with lift. In: CGO, pp. 100–112. ACM (2018)

21. Holewinski, J., Pouchet, L.N., Sadayappan, P.: High-
performance Code Generation for Stencil Computations
on GPU Architectures. In: Proceedings of the 26th ACM
International Conference on Supercomputing, ICS ’12,
pp. 311–320. ACM, New York, NY, USA (2012)

22. Jiang, L., Yang, C., Ao, Y., Ma, W.: Towards Highly
Efficient DGEMM on the Emerging SW26010 Many-core
Processor. In: The 46th International Conference on Par-
allel Processing’ (2017)

23. Köstler, H., Feichtinger, C., Rüde, U., Aoki, T.: ”A Ge-
ometric Multigrid Solver on Tsubame 2.0”, pp. 155–173.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

24. Köstler, H., Ritter, D., Feichtinger, C.: ”A Geomet-
ric Multigrid Solver on GPU Clusters”, pp. 407–422.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

25. Kwack, J., Bauer, G.H.: HPCG and HPGMG bench-
mark tests on Multiple Program, Multiple Data (MPMD)
mode on Blue Waters - a Cray XE6/XK7 hybrid sys-
tem. https://cug.org/proceedings/cug2017 proceedings
/includes/files/pap118s2-file1.pdf (2017)

26. Ma, W., Gao, K., Long, G.: Highly Optimized Code Gen-
eration for Stencil Codes with Computation Reuse for
GPUs. J. Comput. Sci. Technol. 31(6), 1262–1274 (2016)

27. Maruyama, N., Aoki, T.: Optimizing stencil computa-
tions for nvidia kepler gpus (2014)

28. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H., Mar-
tin, M.: Top 500 Supercomputer Lists (2016). URL
http://www.top500.org

29. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey,
P.: 3.5-d blocking optimization for stencil computations
on modern cpus and gpus. In: 2010 ACM/IEEE Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–13 (2010)

30. Qiao, F., Zhao, W., Yin, X., Huang, X., Liu, X., Shu, Q.,
Wang, G., Song, Z., Li, X., Liu, H., Yang, G., Yuan, Y.:
A Highly Effective Global Surface Wave Numerical Simu-
lation with Ultra-high Resolution. In: Proceedings of the
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’16, pp. 5:1–
5:11. IEEE Press, Piscataway, NJ, USA (2016). URL
http://dl.acm.org/citation.cfm?id=3014904.3014911

31. Sakharnykh, N.: https://github.com/e-ago/hpgmg-cuda-
async (2016)

32. Sakharnykh, N.: Beyond GPU Memory
Limits with Unified Memory on Pascal.
https://devblogs.nvidia.com/parallelforall/beyond-
gpu-memory-limits-unified-memory-pascal/ (2016)

33. Stock, K., Kong, M., Grosser, T., Pouchet, L.N., Rastello,
F., Ramanujam, J., Sadayappan, P.: A Framework for
Enhancing Data Reuse via Associative Reordering. In:
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’14, pp. 65–76. ACM, New York, NY, USA (2014)

34. Tan, G., Li, L., Triechle, S., Phillips, E., Bao, Y., Sun,
N.: Fast implementation of DGEMM on Fermi GPU. In:
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, p. 35. ACM (2011)

35. Williams, S.: Hpgmg. https://crd.lbl.gov/assets/pubs presos/
HPGMG-FV-FF2-Proxy-App.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Solving a Trillion Unknowns per Second with HPGMG on Sunway TaihuLight 15

36. Williams, S., Kalamkar, D.D., Singh, A., Deshpande,
A.M., Straalen, B.V., Smelyanskiy, M., Almgren, A.,
Dubey, P., Shalf, J., Oliker, L.: Optimization of geometric
multigrid for emerging multi- and manycore processors.
In: High Performance Computing, Networking, Storage
and Analysis (SC), 2012 International Conference for, pp.
1–11 (2012)

37. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands,
P., Yelick, K.: The Potential of the Cell Processor for
Scientific Computing. In: Proceedings of the 3rd Confer-
ence on Computing Frontiers, CF ’06, pp. 9–20. ACM,
New York, NY, USA (2006)

38. Yang, C., Xue, W., Fu, H., You, H., Wang, X., Ao, Y.,
Liu, F., Gan, L., Xu, P., Wang, L., Yang, G., Zheng,
W.: 10M-core Scalable Fully-implicit Solver for Nonhy-
drostatic Atmospheric Dynamics. In: Proceedings of the

International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’16, pp. 6:1–
6:12. IEEE Press, Piscataway, NJ, USA (2016)

39. Zhang, J., Zhou, C., Wang, Y., Ju, L., Du, Q., Chi, X.,
Xu, D., Chen, D., Liu, Y., Liu, Z.: Extreme-Scale Phase
Field Simulations of Coarsening Dynamics on the Sun-
way TaihuLight Supercomputer. In: SC16: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 34–45 (2016)

40. Zhang, Y., Mueller, F.: Auto-generation and auto-tuning
of 3D stencil codes on GPU clusters. In: 10th Annual
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO 2012, San Jose, CA, USA,
March 31 - April 04, 2012, pp. 155–164 (2012)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Wenjing Ma

Yulong Ao

Chao Yang

Sam Williams

Author Photograph

Wenjing Ma is an associate professor at the Institute of Software, Chinese Academy of

Sciences. She got her Bachelor’s degree in computer science and technology from Nankai

University in 2004, and her Ph.D.’s degree in computer science and engineering from The

Ohio State University in 2011. Her research focus is high performance computing and

parallel computing, code generation and optimization.

Yulong Ao is a postdoctoral researcher at the Peking University. He received his BS of

software engineering in Jilin University in 2012 and earned his PhD from University of

Chinese Academy of Sciences in 2017. His research interests include high-performance

and parallel computing in scientific and engineering applications as well as artificial

intelligent applications, especially on large-scale supercomputing systems and

heterogeneous platforms.

Chao Yang is a professor at Peking University. He received his BS in mathematics from

University of Science and Technology of China in 2002 and earned his PhD from Institute

of Software, Chinese Academy Sciences in 2007. His research interests include numerical

analysis and modeling, large-scale scientific computing, and parallel numerical software.

He has received the 2016 ACM Gordon Bell Prize, the 2017 CAS Outstanding Science

and Technology Achievement Prize, and the 2017 CCF-IEEE CS Young Computer

Scientist Award. He is a member of IEEE, ACM and SIAM.

Sam Williams is a staff scientist in the Performance and Algorithms Research Group at the

Lawrence Berkeley National Laboratory (LBNL). His research interests include high-

performance computing, auto-tuning, performance modeling, computer architecture, and

hardware/software co-design. Dr. Williams received his Ph.D. in Computer Science from

the University of California at Berkeley (UCB) in December of 2008. During this period, his

doctoral research focused on multicore architectures and automated performance tuning.

Previously, within the IRAM project, he implemented the RTL for the integer and floating-

point datapaths, verified the simulators and all RTL, floorplanned the entire VIRAM1 chip,

and performed all necessary place-and-route (PnR) work.

Author Biography

