{ LIVERPOOL

JOHN MOORES
UNIVERSITY

LJMU Research Online

Maamar, Z, Asim, M, Boukadi, K, Shamsa, TB, Saeed, S, Guidara, |, Yahya, F,
Ugljanin, E and Benslimane, D

Towards a Quality-of-Thing based Approach for Assigning Things to
Federations

http:/Iresearchonline.ljmu.ac.uk/id/eprint/11852/

Article

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Maamar, Z, Asim, M, Boukadi, K, Shamsa, TB, Saeed, S, Guidara, |, Yahya, F,
Ugljanin, E and Benslimane, D (2020) Towards a Quality-of-Thing based
Approach for Assigning Things to Federations. Cluster Computing, 23. pp.
1589-1602. ISSN 1386-7857

LJMU has developed LUMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LUIMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Noname manuscript No.
(will be inserted by the editor)

Towards a Quality-of-Thing based Approach for
Assigning Things to Federations

Zakaria Maamar - Muhammad Asim -
Khouloud Boukadi - Thar Baker - Saad
Saeed - Ikbel Guidara - Fadwa Yahya -
Emir Ugljanin - Djamal Benslimane

Received: date / Accepted: date

Abstract In the context of an Internet-of-Things (IoT) ecosystem, this paper
discusses 2 necessary stages for managing federations of things. The first stage
defines things in terms of duties and non-functional properties that define
the quality of these duties. And, the second stage uses these properties to
assign appropriate things to future federations. Specialized into adhoc and
planned, federations are expected to satisfy needs and requirements of real-life
situations like traffic control that arise at run-time. A set of experiments using
a mix of real and simulated datasets, demonstrate the technical doability of
thing assignment to federations and are presented in the paper, as well.

Keywords Federation - IoT - Quality-of-Things - Assignment.

1 Introduction

In [10], we presented the concept of Thing-Federation-as-a-Service (TFaaS) as
a novel way to address the silo constraint that impedes the collaboration
of loT-compliant things (things, for short). A federation is a group of things

Z. Maamar
Zayed University, Dubai, UAE

E-mail: zakaria.maamar@zu.ac.ae

M. Asim and S. Saeed
FAST-NUCES, Islamabad, Pakistan

K. Boukadi and F. Yahya
University of Sfax, Sfax, Tunisia

T. Baker
Liverpool John Moores University, Liverpool, UK

I. Guidara and D. Benslimane

Claude Bernard Lyon 1 University, Lyon, France
E. Ugljanin

State University of Novi Pazar: Novi Pazar, Serbia

2 Zakaria Maamar et al.

that are put together in order to handle a particular real-life situation such
as tunnel closure triggered by a car accident. With respect to this situation,
things forming a federation could be traffic light, speed-limit sign, speed cam-
era, and flip-disc display; they all collaborate towards achieving smooth traffic
diversion. We also presented in [10] how things are defined using a set of
Quality-of-Thing (QoT) non-functional properties, how federations are special-
ized into planned and ad-hoc, and how federations could be deployed on top
of a cloud/edge architecture. In conjunction with these contributions, a set
of experiments using emergency services were carried out to demonstrate the
technical doability of thing federation. In this paper that extends our work
in [10], we focus on QoT-based assignment of things to federations.

According to Gartner!, 6.4 billion connected things were in use in 2016,
up 3% from 2015, and will reach 20.8 billion by 2020. The wireless world
research forum also reported that in 2017, there were 7 trillion wireless de-
vices serving 7 billion people leading to loT formation [16]. This large and
ever-growing number of things need to be “harnessed” so, that, things’ collec-
tive over individual behaviors prevail. We exemplify the collective behavior by
combining things’ duties that we specialize into sensing, reasoning, actuating,
and communicating [9]. In fact, a federation is about combining separate duties
from separate things.

To respond to changes in loT ecosystems, we specialize federation into
planned and ad-hoc. On the one hand, the former is put in place ahead of time
and, hence, has its thing members already identified with respect to a situa-
tion’s needs and requirements. On the other hand, the latter is put in place
on-the-fly when none of the ready-to-use/available planned federations can
handle a situation and, hence, needs to have its thing members identified, se-
lected, and finally assigned. According to Perera et al. [2], the existence of mul-
tiple things will facilitate the emerge of marketplaces of things. Tapping into
these marketplaces’ opportunities (e.g., competition and substitution between
things) would require new loT-based mechanisms and means for defining, an-
nouncing, and selecting things. To address the concern of thing selection, we
resort to existing practices like those based on Quality-of-Service (QoS) [3,8] to
develop our thing selection approach based on QoT properties. Our QoT prop-
erties permit to capture things’ peculiarities in terms of reduced size, restricted
connectivity, continuous mobility, limited energy, and constrained storage.

Our contributions compared to [10] include adoption of QoT model when
selecting things, development of a thing selection process, and implementa-
tion of the process using a mix of real and simulated datasets of things. The
rest of this paper is organized as follows. Section 2 presents the QoT model.
Section 3 is about thing federation in terms of concepts and operations. Sec-
tion 4 presents the thing selection process that leads to assigning things to
federations. Section 5 is an overview of some related work. Finally, Section 6
concludes the paper and presents some future work.

1 www.gartner.com/newsroom/id/3165317.

QoT-based thing assignment 3

2 Quality-of-Things model

By defining a QoT model for things we align ourselves with the trend of de-
veloping similar models in other ICT domains such as quality model for cloud
services [4] and quality model for Web services [3]. To enable a competitive
selection of things with respect to a situation’s requirements, we resort to our
QoT model that captures in an abstract way the 4 core duties of a thing that
are sensing, reasoning, actuating, and communicating [10]. In Fig. 1, (0,1) refers
to either disabling or enabling a duty with respect to a situation’s require-
ments (e.g., traffic-status broadcasting does not require reasoning) and filled
circles identify the duties that interact with the cyber-physical surrounding.
Fig. 2 is a screenshot of our in-house tool allowing to define things’ duties.

Cyber-physic

~ Thing

Fig. 1 Duties defining a thing’s QoT model

From an operational perspective, a thing senses the cyber-physical sur-
rounding to generate (raw) data that would be shared with actuating, rea-
soning, and/or communicating (“feeds” in Fig. 1); a thing actuates on top
of the cyber-physical surrounding based on the sensed data and/or the data
that results from reasoning; a thing reasons over the sensed and/or actuated
data to make decisions that could lead to adjusting sensing, actuating, and/or
communicating (“adjusts” in Fig. 1); and, finally, a thing communicates with
the cyber-physical surrounding the data that result from sensing, actuating,
and/or reasoning. We provide hereafter some potential QoT properties for each
duty. QoT properties for sensing include:

— Frequency of sensing (e.g., continuous versus intermittent).

— Quality of sensed outcome that determines for instance, the accuracy and
validity of the outcome (e.g., high versus low accuracy; high-accuracy out-
come would not require any further verification).

— Resource (e.g., energy, CPU, and storage) consumption during sensing
(e.g., high versus low energy).

QoT properties for actuating include:

4 Zakaria Maamar et al.

Thing federation Home Situations Things Metrics

List of existing Things

Name Type Description QoT

hum1 Sensor,Humidity A humidity sensor from Apple precision = 98 percent(s)
correctness = 96 percent(s)

hum2 Sensor,Humidity A simple humidity sensor precision = 98 percent(s)
not available correctness = 97 percent(s)

MyLampThing Actuator,Lamp Asmart lamp precision = 95 percent(s)
m correctness = 97 percent(s)

MyTempSens Sensor,Temperature A temperature sensor precision = 97 percent(s)
available | correctness = 99 percent(s)

PhiLampThing Actuator,Lamp precision = 99 percent(s)
not available

correctness = 99 percent(s)

Fig. 2 Tool for defining things’ duties

— Quality of actuated outcome that determines for instance, the accuracy and
validity of the outcome.

— Resource (e.g., energy, CPU, and storage) consumption during actuating
(e.g., high versus low energy).

QoT properties for reasoning include:

— Timeliness determines the time spent processing for making a decision.

— Accuracy determines the decision suitability with respect to a situation’s
requirements.

— Resource (e.g., energy, CPU, and storage) consumption during reasoning
(e.g., high versus low energy).

Finally, QoT properties for communicating include:

— Reception rate of sensed, reasoned upon, and/or actuated outcome (incom-
ing flow) that determines for instance, data loss, data volume with respect
to a bandwidth, etc.

— Acceptance rate of received outcome is about the outcome that has been
accepted for distribution; some received outcome could be rejected.

— Delivery rate of sensed and/or actuated outcome (outgoing flow) that de-
termines data loss, data volume with respect to a bandwidth, etc.

— Acceptance rate of delivered outcome is about the outcome that has
been accepted after distribution at the recipient end; some delivered
outcome could be rejected.

— Resource (e.g., energy and bandwidth) consumption during communicating
(e.g., high versus low bandwidth).

© 000Uk WN -

QoT-based thing assignment 5

In conjunction with defining the QoT model, we describe things in com-
pliance with the Web of Things (WoT) Thing Description?. This description
includes QoT properties per duty and other properties related to semantic
metadata, security, communication, and interaction resources. For illustration
purposes, Listing 1 presents a moisture-sensor description in JSON-LD. In
this listing, lines 2-3 refer to semantic metadata, lines 4-6 refer to details
about the thing, lines 7-17 refer to interaction resources, lines 18-21 refer to
communication, lines 22-26 refer to security, and, finally, lines 27-57 refer to
QoT properties.

Listing 1 Moisture sensor’s WoT CP description

{
"@context": ["https://w3c.github.io/wot/w3c-wot-td-context.jsonld",
"https://w3c.github.io/wot/w3c-wot-common-context.jsonld"],
"Q@type": ["Semsor"],
"name": "myMoistureSensor",
"base": "coap:///www.example.com:5683/moisture-sensor/",
"interaction": [{
"Q@type": ["Property","Moisture"],
"name": "MoistureSensor",
"schema":{ "type": "number" },
"writable": false,
"observable":true,
"form": [{
"href": "val",
"mediaType": "application/json"
1,
31,
"link": [{
"href": "coap://moisture.example.com:5683/ev",
"mediaType": "application/json"
1,
"security": {
"cat": "token:jwt",
"alg": "HS256",
"as": "https://authority-issuing.example.org"
}s
"quality":[{
"type":"sensing",
"name":"Frequency of sensing",
"property":"frequency",
"value":"continuous"
b Ao
"type":"sensing",
"name":"Quality of sensed outcome",
"property":"outcomequality",
"value":"high"
b o
"type":"sensing",
"name":"Resource",
"property":["resource", "energy"],
"value":"high"
b
"type":"communicating",
"name":"Reception rate of sensed outcome",
"property":["reception","bandwidth"],
"value":"high"
b o
"type":"communicating",
"name":"Delivery rate of sensed outcome",
"property":["deliveryrate","bandwidth"],
2

www.w3.org/TR/wot-thing-description.

6 Zakaria Maamar et al.

"value":"high"

FoA
"type":"reasoning",
"name":"Accuracy of decision",
"property":"accuracy",
"value":"high"

1

}

3 Federations of things

Federation existence strictly depends on situations that arise at run-time and
hence, need to be handled (Fig. 3). Things that populate federations are ex-
pected to satisfy situations’ changing requirements. With respect to the tunnel
closure, on one occasion the requirements revolve around streaming quality,
and on another occasion the requirements revolve around streaming reliability.
Thus, it is not necessary that same things populate all federations associated
with the same situation. In this part of the paper we discuss some concepts
and operations related to federations and then, illustrate how federation could
be reused and compared. More details about federations are included in [10].

Thing federation Home Situations Things Metrics

+ New Situation

Situation's description

FIRST SITUATION X
Options

Flow ID: b5f74829.826478, Flow Label: Flow 1
List of situation's requirements

Notcurrent. Required things types:

QoTProperty Metric Value Unit
Accuracy precision 98 percent
Accuracy correctness 96 percent
Metrics

Required things types: EXIIF) (VA

QoTProperty Metric Value Unit
Accuracy precision 98 percent
Accuracy correctness 97 percent
Metrics

Fig. 3 Tool for describing situations

3.1 Concepts

A federation gets (most likely heterogeneous) things together based on the fact
that their respective QoT-based duties allow to satisfy the needs/requirements

QoT-based thing assignment 7

of a situation (e.g., tunnel closure) that is assigned to this federation. To
differentiate planned from ad-hoc federations (Table 1), we specialize things
into abstract and concrete.

— A planned federation has, at both design- and run-time, all its concrete
thing members identified and ready to act, should this federation be as-
signed a situation.

— An ad-hoc federation has, at design-time, its abstract thing members de-
fined. When a situation arises at run-time and none of the existing planned
federations can handle this situation, concrete things instantiate the ad-
hoc federation’s abstract things and then, start acting. Following successful
handling of the situation, we label the ad-hoc federation as planned. How to
select concrete things among a set of similar things and assign the selected
things to federations is detailed in Section 4.

Table 1 Planned federation versus Ad-hoc federation

Types of federation
Planned Ad-hoc

Design Necessary concrete things are QoT- | Necessary abstract things are QoT-based
time based identified defined
Run Concrete things are invoked Abstract things are instantiated af-
time ter QoT-based identification of concrete

things

Concrete things are invoked

To remain competitive, a federation could make a concrete thing sign-off
(or eject it) if its QoT-driven performance (e.g., unreliable data and recurrent
failure) does not meet this federation’s expectations. We recall that federations
are expected to satisfy situations’ requirements. A thing can also leave a feder-
ation, should the business in the federation become less rewarding (e.g., data-
sharing rate among the members drops below a threshold). To avoid/reduce
departures from federations, incentives (monetary or in-kind) could be used
to ensure the long-term commitment of things to federations.

Whether planned or ad-hoc, a language to define the individual and collec-
tive operations of things in federations is deemed necessary. Individual oper-
ations target separate things whereas collective operations require composing
things. By analogy to other domains like Web services, composition is ex-
emplified with either orchestration (centralized) or choreography (decentral-
ized) [14]. In the field of loT, Thuluva et al. propose Recipes as a program-
ming language to specify the structure and configuration of loT systems [18,
19]. Acting as an abstract template, a recipe is about ingredients and interac-
tions that define the data flow between loT devices, referred to as offering. A
recipe’s run-time instantiation happens through some offering selection rules.
In another work, Khanda et al. suggest Jolie as a programming language for
connecting microservice-based loT in the context of smart buildings [7]. Jolie
treats microservices as first-class citizens that can be reused, orchestrated, and
aggregated with others.

8 Zakaria Maamar et al.

3.2 Operations

Fig. 4 represents our ecosystem of both things and federations of things. Fed-
erations transition through 4 stages: assembling, storage, either activation (for
planned federation) or instantiation (for ad-hoc federation), and ultimately
disassembling.

[IT infrastructure j
Things
5y g
Ecosystem 5 g
4 N\
P
Pool of insertion
planned
federations
S
8
Federation [activation ;|\ federation. /~) @
activation £
g
S
2
&
Federation
8 instantiation | instantiation Ad-hoc Announcement
8 federation board
3 = v
/f\ O
N_ A
Pool of
ad-hoc
federations
- J

fojdep
foydep

(IT infrastructure j

Fig. 4 Representation of the ecosystem of both things and federations of things

- Assembling stage is about identifying the necessary things that will pop-
ulate federations. A thing is either concrete in a planned federation or
abstract in an ad-hoc federation. During assembling, a thing’s duties in a
federation are enabled along with agreeing upon the collaboration means
between the things in this federation.

- Storage stage is about grouping planned federations in a dedicated pool
in preparation for their selection and then activation, and, also, grouping
ad-hoc federations in another dedicated pool in preparation for their load-
ing and then, instantiation. At any time, a situation is related to many
ready-to-trigger planned federations and one ready-to-instantiate ad-hoc
federation.

- Activation stage is about executing a planned federation following its se-
lection from the pool of planned federations. This selection depends on

QoT-based thing assignment 9

a situation’s requirements. The planned federation’s concrete things are
already identified and now need to be put-into-action (Table 1).

xor

Instantiation stage is about searching for concrete things that will instanti-
ate the abstract things associated with the ad-hoc federation. The search
and selection of concrete things depends on the situation’s requirements
and are QoT-driven (Table 1).

- Disassembling stage is about putting an end to a planned federation after
reviewing its performance like limited competitiveness compared to other
planned federations that are all, including the one to dissemble, associated
with the same situation. We recall that upon instantiating an ad-hoc feder-
ation, this one becomes a planned federation and is inserted into the pool
of planned federations. Thus, disassembling targets planned federations,
only. Ad-hoc federations are not subject to any dissembling.

The modules that support the functioning of the ecosystem of both things
and federations of things are listed below (Fig. 4):

1. Thing-vetting module has a dual role. For the incoming flow, the vetting
ensures that concrete things, first, comply with the ecosystem’s regulations
in order to maintain a safe and competitive ecosystem and, second, are
properly described so they are assigned to federations. For the outgoing
flow, the vetting ensures that concrete things do not for instance, carry
any private detail or “abuse” any peer prior to leaving the ecosystem.
Thanks to the vetting module, all things in the ecosystem are declared
“clean”. It is stated that “The loT era not only brings new opportunities,
but also presents an expanded attach surface, already being exploited by
cyber criminals”® and “loT devices can and do get hacked regularly, and
the consequences are severe”™.

2. Federation-activation module targets planned federations whose necessary
concrete things and their duties are identified ahead of time. The ecosystem
engineer identifies these things after screening the announcement board
upon which concrete things post their duties. The federation-activation
module is coupled to the pool of planned federations.

3. Federation-instantiation module targets ad-hoc federations whose necessary
abstract things and their duties are identified waiting to be instantiated
after screening the announcement board upon which concrete things post
their duties. The federation-initiation module is also coupled to the pool
of ad-hoc federations.

4. Announcement-board module acts as a “broker” between federations having
situations’ needs/requirements to satisfy /meet and concrete things having
duties to offer.

Back to Fig. 1 about the 4 duties of a thing, they can be put together in
a way that permits to develop composite duties as per some of the following
illustrative cases:

3 go.armis.com/iot-security-buyers-guidev5.
4 tinyurl.com/y9v5lgfq.

10 Zakaria Maamar et al.

1. Sensing — actuating — communicating: the outcomes of sensing are passed
on to actuating whose outcomes are passed on to communicating.

2. Sensing — actuating: the outcomes of sensing are passed on to actuating
whose outcomes are finals.

3. Sensing — reasoning — actuating — communicating: the outcomes of sens-
ing are passed on to reasoning whose outcomes are passed on to actuating
whose outcomes are passed on to communicating.

Composite duties illustrate how a duty’s QoT properties could impact the
QoT properties of other duties. For instance, a high-quality actuated out-
come should lead to a better acceptance of this outcome when communicated
to potential recipients. The opposite would happen when the actuation is of
low quality.

3.3 Reuse and comparison

In this section, we discuss 2 cases that could help sustain the benefits of fed-
erations in the context of an IoT ecosystem. These cases are about federation
reuse and federation comparison. The former helps adapt existing (planned)
federations to new situations and the latter helps compare existing (planned)
federations.

Federation reuse: The current definition of federation assumes a perfect match
between a situation’s requirements and the different things that populate
the federation that handles this situation. We refer to this federation as
perfectly-populated. However, it happens that an existing federation could
be assigned to a new situation although this federation has either more
or less things than what this situation handling requires. An existing fed-
eration that has a proven-track record of good performance, for example,
could be potentially reused to handle new situations rather than develop-
ing new (ad-hoc then planned) federations from scratch. In this context,
2 options could arise:

1. Over-populated: some existing things in a federation are deemed unnec-
essary for a situation (based on their duties). 2 exclusive options are
offered to the federation: (i) expel the unnecessary things with the risk
of looking for other things (could be the expelled ones) when new sit-
uations emerge and this federation along with its initial set of things
would have been an ideal candidate or (i7) compensate the unnecessary
things for remaining idle in the federation, i.e., doing nothing.

2. Under-populated: all existing things in a federation are not sufficient for
a situation. This triggers the search for new things at the risk of chang-
ing the internal structure (in terms of things) of the federation with
respect to the situation to which this federation was initially assigned.

Federation comparison: Since several (planned) federations are associated with
a situation (regardless of its non-functional requirements), it would be in-
teresting to compare them using specific metrics that could be monitored

QoT-based thing assignment 11

over an observation window (w). These metrics could address questions
like what is the mostly/least included concrete thing in federations, what
is the mostly/least reliable concrete thing in a federation, and what is the
mostly /least requested federation of things? Another benefit of these met-
rics is that once an ad-hoc federation is formed and then instantiated, it
could be compared to existing planned federations.

In the following, S denotes situation, F' denotes federation, T" denotes

thing, and N denotes the total number of federations linked to a situa-

tion. N changes over time once an ad-hoc federation becomes labeled as
planned or a planned federation is dismantled.

1. In-Demand metric identifies the federation that has been assigned most
of (or least) the situation handling requests. This metric is measured by
the number of times a federation is assigned a situation over the total
number of times this situation has arisen (Equation 1).

inDemand(g,) = Wéw (1)
K3

2. Satisfaction metric represents the subjective opinion of how a federa-
tion performed when assigned a situation. Persons responsible for mon-
itoring situation completion provide opinions. This metric is measured
based on the aggregate positive and negative votes that a federation
has received from all persons (Equation 2).

POS(s,,F))

satisfaction(g. gy =
(S:,Fy) pos(Si,Fj) + neg(si,Fj)

(2)

3. Activity metric represents the participation levels of a thing in the dif-
ferent federations to which it belongs so, that, it remains in these feder-
ations for longer periods of time. This level could be linked for instance,
to a threshold that indicates when a thing should sign off from a fed-
eration. A reason could be the limited number of situation handling
requests that are assigned to a federation. We formulate the activity
metric based on the number of times a situation has been assigned to a
particular federation in which a particular thing resides over the number
of times this situation has been assigned to all federations associated
with this situation and in which this particular thing resides too (Equa-
tion 3). The threshold’s value varies from one thing to another.

lassign (.S, Fj)+,, |
Z;yzlﬂassign(si,Fj)tkD

3)

activity(s, p, ¢,) =

4 Thing assignment to federations

Assigning things to federations depends on things’ QoT properties and fed-
erations’ requirements. In this section we discuss the assignment in terms of
design and implementation.

12 Zakaria Maamar et al.

4.1 Assignment design

In a federation, operational dependency exists between all things. This depen-
dency occurs when a thing (t;) needs a peer (t;) to complete its duty. For
instance, input (4) is passed to t; that will process it before sending it to to for
extra processing till the final output (o) is obtained. Thus, ts is dependent on
t; to complete its duty. In a real-world scenario, there will be multiple things
having similar duties that could fulfill the operational dependency between
things. However, the concern is how to select the most suitable thing in term
of compatibility from a set of duty-wise similar things. We formally describe
below how the operational dependency is handled.

Notations and definitions. 2 sets are defined.

— T ={tp, tp, trs, ---, ty, } is a set of duty-wise similar things, where
ty, (1<x<n) is the 2" thing and n is the total number of things. f
is a similar duty that these things perform but with different levels of
quality.

— QoT; = {qoty,, qoty,, qoty,, ---, qoty,} is a set of QoT properties,
where qot ¢, is the 2! property and n is the total number of properties.

In addition to QoT properties, we consider an extra QoT property, Comp(ty,, s,),

that indicates the compatibility level between 2 things ¢y, and ¢y,. The

higher the better showing a strong coupling between things in term of

data exchange, for example.

Similarity computation. Based on some requirements related to an ideal thing ¢y, ,
we use the set of duty-wise similar candidate things, 7. We would like to
find the best thing from this set which is similar in terms of QoT properties
to ty, . To this end, we suggest Equation 4

1

SIM(ty, . ty,) =
ZqotGQoT:qottf‘ <q0ttf1, | thtfz - thtfi |

(4)

QoT is the set of common QoT properties present in both t¢, and ty,, and
qot, —qoty, is the difference between the QoT property of an ideal thing
and a candidate thing. qot;, < got, condition is a threshold which tells
that all QoT properties of the candidate thing should be narrowed down for
summation whose QoT value is less than the ideal thing’s corresponding
QoT wvalue. The greater the difference the more it negatively affects the
similarity. Another factor to consider here is the compatibility that tells
the coupling level of 2 things when they worked with each other in the past.
This factor is defined by v whose value can be -1<v<1. If v is positive it
means positive compatibility; otherwise negative compatibility. Here ¢y, is
the candidate thing and ¢y, is the thing which needs ty, to complete its
duty (Equation 5).

v = Comp(ty,,tys;) (5)

QoT-based thing assignment 13

Score(ty,) denotes the overall score of the candidate thing ¢;, and is calcu-
lated using Equation 6.

v

Score(tf;) = SIM(tfi,tr;)

(6)

Algorithm 1 is our proposed thing selection approach that is based on
QoT properties and operational dependency. It takes tf,, T, and t¢; as inputs
and produces Score as an output. In lines 1 to 5, the difference of common
QoT properties of ¢¢; and tf, is summed up by considering the threshold of
qoty,, < qoty,,. Similarity computation is done through lines 6 and 8 according
to the satisfying conditions. Line 11 refers to the computation of compatibility
level between ty; and ¢s;. Finally, the Score assessment is done for ¢¢; (line 12)

which is dependent upon compatibility calculation and similarity computation
done in the previous steps.

Algorithm 1 Computing score for candidate things
INPUT: te, Tf, ty;

OUTPUT: Score

1: for all ty; € Ty do

2 SumDiffono-r +~— 0

3 for all got € QoT do

4: if (goti;; < goti,,) then

5: SumpifrofQeT < SuUMpifforQeT + | qotiy, — qoti, |
6: 1

7

8

S|M(tfx,tfi) —
else

SumpiffofQoT

: S||V|(tfz,tfi) — 1
9: end if
10: end for
11: v < Comp(tys,ts;)
12: Score(t f;) W
13: end for

4.2 Assignment implementation

For evaluation needs, we carried out several experiments based on some in-
house Python programs that we developed to simulate things. The programs
run on a Dell notebook with the following technical specification: Intel(R)
Core(TM) i5-2540M CPU @ 2.60GHz, 4GB RAM with Windows 10 Enter-
prise. These programs select things using similarity related to QoT properties
(like response time and throughput) and operational dependency that allows
to connect things together. Each thing has a set of response time values for
past usage experiences that we average out, so that each thing has a single
value. We also generated compatibility values for 200 random things with each
other. These values are between -1 and 1, where -1 shows minimum compatibil-
ity (i.e., low eagerness to work together) and 1 shows maximum compatibility
(i.e., high eagerness to work together).

14 Zakaria Maamar et al.

The experiments were carried out using 2 datasets: WSDream dataset®
and an in house dataset of randomly generated compatibility values for the
200 things. Thus, we made a dataset suitable for thing selection based on
QoT properties and operational dependency.

Experiments were performed in 2 phases, In phase 1, we selected 5 random
target things which are dependent on others to complete their duties. For each
target thing i, we narrow down 10 candidate duty wise similar things which
can fulfil the operational dependency with thing i Next, we select the most
optimal thing in term of operation dependency among the selected candidate
things. For example, in Table 2, candidate thing 8 with score 0.96 has been
selected as the most optimal thing in term of operational dependency for target
thing 5 and overall time taken for calculating the score of candidate things 1,
2,3,4,11,6, 7, 8,9 and 10 is 0.00012 seconds

Table 2 Choosing duty-wise optimal thing with number of candidate things equal to 10

Target Thing 5 9 15 22 37
Candidate Thing 1 (Score) 1 (0.52) 5(0.99) 24(0.34) 36(-0.58) 49(0 04)
Candidate Thing 2 (Score) 2 (0.64) 17(-0.33) 36(0.32) 41(-0.25) 56(-0.4)
Candidate Thing 3 (Score) 3 (0.57) 24(-0.97) 44(-0.7) 48(0.05) 64(0.99)
Candidate Thing 4 (Score) 4 (-0.81) 25(-0.48) 58(-0.62) 57(-0.37) 77(-0.49)
Candidate Thing 5 (Score) 11(0.28) 67(-0.96) 67(-0.96) 69(0.58) 89(0.19)
Candidate Thing 6 (Score) 6 (-0.38) 75(0.72) 75(0.72) 75(0.56) 92(-0.06)
Candidate Thing 7 (Score) 7 (-0.36) 84(0.06) 82(0.38) 82(0.38) 106(0.32)
Candidate Thing 8 (Score) 8 (0.96) 69(0.51) 96(-0.01) 91(1.0) 117(-0.52)
Candidate Thing 9 (Score) 9 (-0.1) 95(-1.0) 104(-0.46) 105(-0.3) 128(0.4)
Candidate Thing 10 (Score) 10 (0-0.53) 101(-0.59) 115(-0.69) 115(-0.69) 135(-0.11)
Optimal Thing 8 5 75 91 64
Time(seconds) 0.00012 0.00022 0.00020 0.00010 0.00023

In phase 2 we selected 5 random target things which are dependent on
others to complete their duties. For each target thing i, we narrow down 15
candidate duty-wise similar things which can fulfil the operational dependency
of thing 7. Next, we select the most optimal thing in term of operation depen-
dency among the selected candidate things. For example, in Table 3, candidate
thing 35 with score 0.91 has been selected as the most optimal thing in term
of operational dependency for target thing 6 overall time taken for calculating
the score of candidate things 7, 9, 11, 13, 15, 17, 19, 21, 23, 5, 31, 35, 38, 40
and 42 is 0.0001692 seconds

5 wsdream.github.io.

QoT-based thing assignment

15

Table 3 Choosing duty-wise optimal thing with number of candidate things equal to 15

Target Thing 6 8 10 13 19
Candidate Thing 1 (Score) 7(0.62) 1100.71) 12(-0.02) 15(0.99) 21(0.22)
Candidate Thing 2 (Score) 9(-0.05) 13(0.9) 14(-0.53) 17(-0.2) 23(-0.34)
Candidate Thing 3 (Score) ~ 11(-0.1) 15(0.73) 16(0.53) 19(0.77) 25(0.37)
Candidate Thing 4 (Score) 13(0.25) 17(-0.63) 18(0 88) 21(0.41) 27(0.25)
Candidate Thing 5 (Score) 15(0.87) 19(-0.59) 20(0.64) 23(0.48) 29(0.38)
Candidate Thing 6 (Score) ~ 17(0.89) 21(-0.68) 22(-0.41) 25(0.25) 31(0.82)
Candidate Thing 7 (Score) 19(0.78) 23(0.33) 24(0.15) 27(-0.44) 33(0.17)
Candidate Thing 8 (Score) ~ 21(-0.39) 25(0.68) 26(-0.32) 29(0.25) 35(-0.95)
Candidate Thing 9 (Score) 23(-0.73) 27(0.44) 28(-0.58) 31(0.56) 37(0.32)
Candidate Thing 10 (Score) 5(0.13) 20(0.22) 30(0.02) 33(0.52) 41(0.63)
Candidate Thing 11 (Score) 31(-0.45) 31(0.83) 32(0 3) 35(-0.4) 43(0.07)
Candidate Thing 12 (Score) ~ 35(0.91) 33(0.68) 34(0.57) 37(0.21) 45(0.32)
Candidate Thing 13 (Score) 38(-0.85) 35(0.44) 36(0.54) 39(-0.92) 47(0.24)
Candidate Thing 14 (Score) 40(0.26) 37(-0.22) 38(0.07) 41(0.66) 49(-0.44)
Candidate Thing 15 (Score) 42(0.36) 39(0.83) 40(-0.14) 43(-0.1) 39(0.32)
Optimal Thing 35 13 18 15 31
Time(seconds) 0.0001692 0.0001682 0.000172 0.0002585 0.0001718

Fig 5 and Fig 6 show the time consumed for calculating score for each
target thing with different number of candidate things. The x-axis for each
graph represents the ids of target things and y-axis for each graph represents

time in seconds

0.00020

0.00015

O 00010

Time(seconds)

0.00005

0.00000
5 10

15

Target Things

22

27

Fig. 5 Performance evaluation based on time and for 10 candidate things

16 Zakaria Maamar et al.

0.00025

0.00020

0.00015

= 0.00010

Time(seconds)

0.00005

0.00000
4] 8 10 13 19

Target Things

Fig. 6 Performance evaluation based on time and for 15 candidate things

The results shows that our approach takes maximum of 0.00022 seconds
when the number of candidate things is 10 and 0.00025 seconds for 15 things.

5 Related work

Despite the growing interest in loT [15], there are not, to the best of our
knowledge, dedicated works that examine thing federation (except of [12]) nor
thing assignment to federations using non-functional properties. The below
related-work paragraphs discuss the concept of federation in different domains
for instance, device, cloud, and identity.

Heil et al. define loT as a context-aware federation of devices® [6]. The
objective of setting-up this federation is to support users access, connect, and
locate arbitrary devices according to their functionalities. Heil et al.’s thing
federation is different from ours; we advocate for gathering devices/things to-
gether in response to specific situations’ needs, and, not, for accessing these
devices/things, only. Heil et al.’s approach takes advantage of the concept
of Federated Devices Assemblies (FDX) to integrate real-world devices into
service federations. This integration encapsulates and exposes devices’ capa-
bilities for external use in terms of operations, status variables, and events.
According to the authors, FDXs are already designed to communicate among
each other irrespectively of the hardware addressed underneath.

Mathlouthi and Ben Saoud discuss cloud federation so, that, a flexible com-
position of System of Systems (SoS) is enabled [11]. A SoS is about the coop-
eration of several constituents that are complex, heterogenous, autonomous,
and independently governed, but capable at the same time of working in a

6 “Devices can be as small as lightbulb or as large as an airplane” [13].

QoT-based thing assignment 17

cooperative way to achieve common goals. These constituents’ characteris-
tics raise concerns with respect to interoperability, fault tolerance, continuous
monitoring, etc. Because SoSs are deployed over different clouds, the feder-
ation of clouds at the software level (SaaS where the 1°* S could be SoS) is
deemed necessary. In line with Mathlouthi and Ben Saoud, we later show that
thing federation could benefit from cloud federation in the sense that thing
federations could be deployed over multiple collaborative clouds when complex
situations need to be handled.

*aaS where everything is software, platform, infrastructure, data, or thing
federation” is a model that exposes “resources” to the external world through
services for different reasons thoroughly discussed in the literature [17]. To
allow exposing thing federation as a service, Celesti et al. discuss loT-as-a-
Service (loTaa$S) in conjunction with the development that cloud computing is
going through and that is leading to IoT cloud and cloud federation [1]. The
authors suggest 3 stages towards a true loT cloud federation. The first stage,
“monolithic loT clouds”, is the current stage where loT clouds are indepen-
dent; loT devices interact with a remote cloud system that collects the sensed
and actuated data coming from heterogenous loT devices. The second stage,
“vertical supply chain”, requires a smart, improved coordination system to
enable the cooperation of different involved loT cloud providers. Finally, the
third stage, “loT cloud federation”, calls for a logical layer between the physi-
cal infrastructure and services. 2 types of clouds exist in a federation: home loT
and foreign loT. The former is a provider that needs extra external sensing and
actuating duties and, consequently, forwards federation requests to the latter
with the purpose of elastically enlarging its loT infrastructure. Before conclud-
ing this section, it is worth noting that an loT cloud provider could simulta-
neously be home cloud and foreign cloud. Finally, Celesti et al. recommend
a 3 layer cloud federation reference-architecture that would meet automation
and scalability, interoperable resource provisioning, and interoperable security
requirements. The 3-layers are virtualization, virtual infrastructure manager,
and cloud manager. The latter is capable of providing loTaa$S in the form of
laaS, PaaS, and SaaS.

Farris et al. achieve the dynamic cooperation of loT cloud providers by
proposing a model in which Mobile loT Federations are exposed as Services (MIFaaS) [5].
The authors note that today’s ICT landscape is characterized by a large num-
ber of heterogeneous devices and objects that offer a wide range of services such
as computation, storage/caching, and sensing/actuating. MIFaa$S is about fed-
erating private and public mobile loT clouds and forming coalitions in these
federations from an opportunistic perspective so, that, loT cloud providers
would not think of leaving the coalition. MIFaa$S, also, taps into the benefits
of edge computing so, that, latency during data transmission to/from remote
data centers remains under control.

Torroglosa-Garcia and Skarmeta-Gomez discuss the interoperability of iden-
tity federation systems [20]. These federations unify and simplify user and

7 With the first three defining the essence of cloud computing.

18 Zakaria Maamar et al.

service management using trust relationships. However, the large number of
federations, each focussing on different areas, necessitates their interoperabil-
ity to ensure a consistent access across all these federations, and, hence, the
same digital identity is used. Identity federation systems are like our proposed
collaboration of planned and ad-hoc federations.

6 Conclusion

This paper presented an approach for assigning things that will populate fed-
erations in charge of handling real-life situations like tunnel closure. The as-
signment relied on a set of non-functional properties that define a thing’s QoT
model. These properties describe the performance of a thing’s potential duties
namely sensing, reasoning, actuating, and communicating. In response to situ-
ations’ requirements, 2 types of federations were proposed, which are planned
and ad-hoc. Federations transition through 4 stages, assembling, storage, ei-
ther activation or instantiation, and ultimately disassembling, in which specific
actions are executed like checking the credentials of things and forming federa-
tions. A set of experiments using a mix of real and simulated datasets allowed
to demonstrate the technical doability of the thing assignment approach. In
term of future work we would like to extend the QoT model to federations so,
that, similar federations could be compared and then assigned to situations.

References

1. A. Celesti, M. Fazio, M. Giacobbe, A. Puliafito, and M. Villari. Characterizing Cloud
Federation in IoT. In Proceedings of the 2016 S0t" International Conference on Ad-
vanced Information Networking and Applications Workshops (WAINA’2016), Crans-
Montana, Switzerland, 2016.

2. P. Charith, L. Chi Harold, J. Srimal, and C. Min. A Survey on Internet of Things From
Industrial Market Perspective. IEEE Access, 2, 2014.

3. M. Daniel A. QoS Issues in Web Services. IEEE Internet Computing, 6(6), 2002.

4. M. Eisa, M. Younas, and K. Basu. Analysis and Representation of QoS Attributes
in Cloud Service Selection. In Proceedings of the 32nd International Conference on
Advanced Information Networking and Applications (AINA’2018), Cracow, Poland,
2018.

5. I. Farris, L. Militano, M. Nitti, L. Atzori, and A. Iera. MIFaaS: A Mobile-IoT-
Federation-as-a-Service Model for Dynamic Cooperation of IoT Cloud Providers. Future
Generation Computer Systems, 70, 2017.

6. A. Heil, M. Knoll, and T. Weis. The Internet of Things - Context-based Device Fed-
erations. In Proceedings of the 40th Hawaii International Conference on System Sci-
ences (HICSS’2007), Hawaii, USA, 2007.

7. K. Khanda, D. Salikhov, K. Gusmanov, M. Mazzara, and N. Mavridis. Microservice-
Based IoT for Smart Buildings. In Proceedings of AINA 2017 Workshops held in con-
junction with the 31st International Conference on Advanced Information Networking
and Applications (AINA’2017), Taipei, Taiwan, 2017.

8. L. Lin, P. Li, X. Liao, H. Jin, and Y. Zhang. Echo: An Edge-Centric Code Offloading
System With Quality of Service Guarantee. IEEE Access, 7, 2019.

9. Z. Maamar, T. Baker, M. Sellami, M. Asim, E. Ugljanin, and N. Faci. Cloud versus
Edge: Who Serves the Internet-of-Things Better? Internet Technology Letters, Wiley,
June 2018 (https://tinyurl.com/y767ybor).

QoT-based thing assignment 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Z. Maamar, K. Boukadi, E. Ugljanin, T. Baker, M. Asim, M. Al-Khafajiy, D. Bensli-
mane, and H. El Alaoui El Abdallaoui. Thing Federation as a Service: Foundations and
Demonstration. In Proceedings of the 8th International Conference on Model and Data
Engineering (MEDI’2018), Marrakesh, Morocco, 2018.

W. Mathlouthi and N.B. Ben Saoud. Flexible Composition of System of Systems on
Cloud Federation. In Proceedings of the 2017 IEEE 5th International Conference on
Future Internet of Things and Cloud (FiCloud’2017), Prague, Czech Republic, 2017.
O. Mrof and K. Meifner. Towards Distribution Options in the End-User Develop-
ment of Multi-device Mashups. In Proceedings of the 2nd International Workshop on
Engineering the Web of Things (ENWOT’2018) held in conjunction with the 18th In-
ternational Conference on Web Engineering (ICWE’2018), Céceres, Spain, 2018.
Editor’s Note. The Age of the Internet of Things. Computing edge, 4(10), October 2018.
M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing:
State of the Art and Research Challenges. IEEE Computer, 40(11):38-45, November
2007.

C. Perera, C.H. Liu, S. Jayawardena, and M. Chen. A Survey on Internet of Things
From Industrial Market Perspective. IEEE Access, 2, 2014.

M.A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. Middleware for Internet
of Things: A Survey. IEEE Internet of Things Journal, 3(1), 2016.

J.W. Rittinghouse and J.F. Ransome. Cloud Computing: Implementation, Manage-
ment, and Security. Taylor & Francis, 2009.

J. Seeger, R.A. Deshmukh, and A. Bréring. Running Distributed and Dynamic IoT
Choreographies. CoRR, abs/1802.03159, 2018.

A.S. Thuluva, A. Broring, G.P. Medagoda, E. Don, D. Anicic, and J. Seeger. Recipes for
IoT Applications. In Proceedings of the 7th International Conference on the Internet
of Things (IoT’2017), Linz, Austria, 2017.

E.M. Torroglosa-Garcia and A.F. Skarmeta-Gomez. Towards Interoperabilty in Identity
Federation Systems. Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, 8(2), June 2017.

