
Noname manuscript No.
(will be inserted by the editor)

DiG: Enabling Out-of-Band Scalable High-Resolution
Monitoring for Data-Center Analytics, Automation and
Control (Extended)

Antonio Libri · Andrea Bartolini · Luca Benini

Received: date / Accepted: date

Abstract Data centers are increasing in size and com-

plexity, and we need scalable approaches to support

their automated analysis and control. Performance

counters and power consumption are their key “vi-

tal signs”. State-of-the-Art (SoA) monitoring systems

provide built-in tools to collect performance measure-

ments, and custom solutions to get insight on their

power consumption. However, with the increase in mea-

surement resolution (in time and space) and the ensuing

huge amount of measurement data to handle, new chal-

lenges arise, such as bottlenecks on the network band-

width, storage and software overhead on the monitoring

units. To face these challenges we propose a novel mon-

itoring platform for data centers, which enables real-

time high-resolution profiling (i.e., all available perfor-

mance counters and the entire signal bandwidth of the

power consumption at the plug - sampling up to 20 µs -

with an error below 1 %) and analytics, both at the

edge (node-level analysis) and on a centralized unit

(cluster-level analysis). The monitoring infrastructure

is completely out-of-band, scalable, technology agnos-

tic and low cost, and it is already installed in a SoA

high-performance compute cluster (i.e., D.A.V.I.D.E. -

18th in Green500 November 2017).

Antonio Libri
D-ITET, ETH Zurich, Zurich, Switzerland
E-mail: a.libri@iis.ee.ethz.ch

Andrea Bartolini
DEI, University of Bologna, Bologna, Italy
E-mail: a.bartolini@unibo.it

Luca Benini
D-ITET, ETH Zurich, Zurich, Switzerland
DEI, University of Bologna, Bologna, Italy
E-mail: lbenini@iis.ee.ethz.ch, luca.benini@unibo.it

Keywords Data centers · HPC · High-Resolution

Monitoring · Edge Analytics · Machine Learning ·
Deep Neural Networks

1 Introduction

Data centers and High Performance Computing (HPC)

systems are becoming increasingly complex and the need

for novel methods to support their automation, analyt-

ics and control is garnering considerable attention [29].

In this direction, industry and academia researchers

are pushing toward the use of Artificial Intelligence

(AI) and Machine Learning (ML) techniques to ad-

dress non-trivial challenges such as efficient manage-

ment of computational / infrastructure resources, detec-

tion of anomalies and failures, and predictive mainte-

nance. As an example, Duplyakin et al. [13] have shown

how to get high-confidence predictions of the time-to-

completion and energy consumption of scientific appli-

cations (which can help for a more efficient usage of the

resources) via Active Learning techniques applied to re-

gression problems. Other examples are based on unsu-

pervised learning, such as [5] which introduces methods

for real-time anomaly detection on streaming data (use-

ful for an early warning about problems in the system

and the hosted applications), and [33] that shows a way

to detect malware using hardware features.

All these techniques exploit low-level monitoring of

the hardware of the data-center infrastructure (i.e., ap-

plication and system performance, and related power

and energy consumption). In particular, depending on

the target use-case, some features can reveal more infor-

mation than others: a highly flexible monitoring has to

collect as many metrics as possible. On the other hand,

this implies to face three main bottlenecks related to

ar
X

iv
:1

80
6.

02
69

8v
2 

 [
cs

.D
C

] 
 1

7 
Ju

l 2
01

9



2 Antonio Libri et al.

the large amount of monitoring data produced: (i) over-

head on the network’s bandwidth, (ii) overhead on the

data storage capacity (to save measurements for post-

processing analysis) and (iii) overhead on the software

tools that have to handle the measurements (in real-

time and offline).

Centralized 
Monitoring

& 
Analytics

Edge Monitoring
& Analytics

Low 
Data-Rate

Huge 
Data-Rate

Centralized 
Monitoring

& 
Analytics

Bottlenecks:
• Network BW
• Storage
• SW Overhead

(1) (2)

Infrastructure Sensors (e.g., CRAC, PDU, Etc.)

Node-1 Node-n Node-nNode-1

Infrastructure Sensors (e.g., CRAC, PDU, Etc.)

Fig. 1 Data-center monitoring design and bottlenecks.

This is depicted in Figure 1 (left), which shows that

the node dedicated to the monitoring software stack

has the complete view of the status of the cluster (and

thus can exploit measurements for ML analysis), but

has to deal with the above mentioned bottlenecks. To

give an example, Ilsche et al. developed a high resolu-

tion power monitoring system (i.e., HAEC [20]) that

supports a sampling rate of 500 kS/s (kilo Samples per

second) on 4 custom sensors. In general, high resolu-

tion power monitoring instrumentation is the current

trend for both industrial and academia HPC facilities

and data centers [20,17,24]. This is useful to appreci-

ate the power consumption of application phases, but
of course the finer the granularity the more difficult is

to scale to a large number of nodes in a machine. For

instance, instrumenting with HAEC the supercomputer

Sunway TaihuLight - 2nd in Top500 of June 2018 and

that includes around 41 thousand computing nodes [14]

- would require a data collection network bandwidth

of around 82 GS/s, with obvious overheads on software

and storage to handle it.

An intuitive solution is to bring some of the “moni-

toring intelligence” to the edge and codesign the moni-

toring infrastructure to leverage data analysis between

distributed monitoring agents and a centralized unit.

This is represented in Figure 1 (right), which shows

distributed smart monitoring agents that can carry out

real-time analysis per node (e.g., feature extraction, ML

inference, etc.) and share information with the central-

ized monitoring at a much lower rate (e.g., detection

of an anomaly in a node, plus other measurements at

a lower rate needed for cluster level analysis). In this

distributed architecture, each monitoring agent has the

complete knowledge of the status of its node, while the

centralized monitoring unit has the complete view of

the cluster, thus can carry out analysis at a higher level.

Current State-of-the-Art (SoA) monitoring solu-

tions allow to collect measurements in-band and out-

of-band by means of built-in tools (e.g., Amester [31]

or RAPL [22], which expose hardware performance

counters) or custom sensors (e.g., HDEEM [17] or

HAEC [20], which provide fine grain power measure-

ments), where the benefit of the out-of-band solution is

no overhead on the computing resources. However, to

the best of our knowledge, there is not yet a monitor-

ing infrastructure for compute clusters and high perfor-

mance machines that provides a flexible way to analyze

all possible features (i.e., all available hardware perfor-

mance counters and the entire signal bandwidth of the

node’s power consumption). This paper, which builds

upon and extends our previous publication [25], focuses

on a novel scalable and high resolution monitoring in-

frastructure for data centers and HPC systems. The

system is completely out-of-band and provides a highly

flexible environment to work both at the edge and at

cluster-level for data center analytics, automation and

control.

Contributions of the work:

1. design of an out-of-band monitoring infrastructure

- we named it DiG (i.e., Dwarf in a Giant) -

that exploits edge monitoring agents and central-

ized cluster-level monitoring for data centers ana-

lytics, automation and control. The platform design

provides a highly flexible environment to tackle dif-

ferent challenges. We designed a custom power sen-

sor at the plug to monitor the power consumption

at high resolution, covering the entire signal band-

width (sampling up to 20 µs) with a measurements

precision below 1 % (σ) (therefore also suitable for

the most rigorous power measurement requirements

to benchmark a computing system in Top500 [16]).

The system allows to interface with existing out-

of-band telemetry (e.g., Amester [31], IPMI [21]),

but also with in-band built-in tools if required (e.g.,

RAPL [22]). All the measurements are synchronized

at sub-microseconds precision to obtain a detailed

picture over time of the nodes and cluster state. We

adopted a scalable and lightweight interface to the

centralized monitoring (i.e., MQTT [19]) to sup-

port large-scale computing centers. The monitoring

infrastructure is technology agnostic (i.e., already

tested on different architectures, such as Intel, ARM

and IBM) and low cost (i.e., the custom power sen-

sor does not require any motherboard redesign).

2. we report (i) the performance of the monitoring

agents (i.e., measurements granularity, precision,



DiG 3

synchronization, software overhead and scalability),

along with (ii) an extensive campaign of ML infer-

ence benchmarks running on the dedicated embed-

ded computers and based on deep Residual Net-

works (a.k.a. ResNets [18]), to obtain an assess-

ment of their real-time inference capabilities, and

(iii) an extensive set of tests based on frequency-

domain analysis to show the capability of the high

resolution monitoring to unveil high-frequency com-

ponents directly related to the computation activity

and including also two use-cases that can be used for

anomaly detection.

3. we validated and calibrated our high-resolution

power measurements, and provide detailed informa-

tion on accuracy and precision (best in class w.r.t

SoA data centers monitoring systems); moreover,

we integrated the monitoring infrastructure in a

SoA HPC cluster (i.e., D.A.V.I.D.E. [6] - 18th in

Green500 November 2017) that is already in pro-

duction and available to the users community since

more than one year.

4. We provide detailed information of both hardware

and software architectures for the whole monitor-

ing infrastructure (Sections 2.1, 2.2, 2.3 describe the

edge infrastructure, while the cluster-level software

- namely ExaMon - can be downloaded from [3]).

Outline: Section 2 presents the monitoring architec-

ture. Its performance is analyzed in Section 3, together

with several case studies of frequency-domain analysis

on the high-resolution power measurements. We report

related works in Section 4 and conclude the paper in

Section 5.

2 Monitoring System Architecture

One of the main challenges we faced during the mon-

itoring system design was to make it suitable for dif-

ferent hardware architectures and low cost. With this

goal, we targeted only what is missing on today’s built-

in monitoring solutions [20]: a custom power sensor that

allows high resolution monitoring. We placed it at the

node power source to completely avoid motherboard

re-design or modification. We then interfaced it with a

dedicated low-cost embedded computer (one per node)

that is suitable for monitoring applications.

A second challenge was to make the system highly

flexible in terms of monitoring capabilities. With this

goal, we interfaced the embedded computer with built-

in tools to get per-component monitoring (i.e., hard-

ware performance counters) and have the complete

knowledge of the status of the node. This information,

along with the high resolution power monitoring, can

reveal not only insights on application behavior but also

patterns on performance / failures of components (e.g.,

fans, HDDs).

Finally, we exploited a scalable and lightweight in-

terface (i.e., MQTT) to send information to a central-

ized monitoring unit and perform cluster-level analyt-

ics. Figure 2 shows the main components of the moni-

toring system that will be described in this section.

PSU
Power Monitoring

Current 
Sensor

Voltage 
Sensor

MQTT
Subscriber

Node-2

Node-1

Node-3

Node-n

DC
DC

PEPE

PEPE

MQTT
Publisher

Pub(topic, data)

Sub(topic)

Embedded 
Computer

Centralized
Monitoring

Edge Analytics
Cluster-level

Analytics

MQTT
Broker

Perf Monitoring

Fig. 2 Sketch of the monitoring system architecture.

2.1 High-Resolution Power Sensing

To provide high resolution measurements of the nodes’

power consumption we placed a power sensing module

between the Power Supply Unit (PSU) and the DC-DC

converters that provide power for all the processing el-

ements (PE) / electrical components within the node.

Figure 3 shows the schematic of the power sensing mod-

ule. We use a voltage divider based on high precision

resistors to measure the voltage and a current trans-

ducer to measure the current. Their outputs are then

connected to the ADC integrated in the embedded mon-

itoring board, via first-order low-pass filters needed to

counter aliasing effects. Indeed, due to the high operat-

ing frequencies of data centers / HPC nodes, the power

consumption is highly dynamic, and therefore an anti-

aliasing filter is required. We have chosen a voltage di-

vider as it provides a simple but effective solution to

properly scale the voltage in input to the ADC without

any additional hardware (e.g., an isolated power supply

would be needed if using active components).

For the current transducer, we tested two configu-

rations: one based on a Hall Effect (HE) sensor and one

based on a current mirror and shunt resistor. Thanks

to the high output linearity, both solutions obtain sat-

isfactory results. We tested the first configuration with

Intel Xeon E5-2600 (Haswell) and ARM Cavium Tun-

derX architectures, while the second one on a cluster

based on OpenPOWER IBM Power8 [6]. In particular,



4 Antonio Libri et al.

12V

GND

Computing 
Node

(dummy load for 
calibration)

Current
Transducer

R1

R2 C1

VoutR3

Voltage Divider

Vout

VIout

Config. 1

HE 
sensor VIout

12V

GND
Voltage
Divider

Config. 2

VIout

12V

GND

Current 
Mirror

Rshunt

Power Sensing Module

Power
Supply

BBB

Fig. 3 High-Resolution power sensing module.

the HE sensor is the Allegro MicroSystems ACS770 [7].

It can measure currents in the range 0–100 A with low-

intrusiveness, good linearity and high precision sensitiv-

ity (40 mV/A). It has a typical bandwidth of 120 kHz

and an internal conductor resistance of 100 µΩ, which

implies a negligible power loss. All these features make

it suitable for integration with standard PSUs used on

Intel and ARM architectures.

For the configuration based on current mirror and

shunt resistor, we exploited the same current mirror al-

ready used by the Baseboard Management Controller

(BMC) on IBM Power8 to measure at a coarse grain

the total node power consumption. This provides a

twofold benefit: measuring currents in a wider range

(0–250 A) and avoiding extra cost for current sensing

components. Finally, to avoid a possible measurement

accuracy degradation due to heating effects on the re-

sistors of the voltage dividers, we have chosen resis-

tors with equal Temperature Coefficient of Resistance

(TCR), and placed them close to each other (similar

temperature on both) and far from external sources of

heating (to avoid uneven heating effects).

2.2 Embedded Monitoring and Edge Analytics

We selected a Beaglebone Black (BBB) [34] as em-

bedded computing board as it provides several in-

teresting features off-the-shelf: (i) it includes a 12-

bit Successive Approximation Register (SAR) ADC

needed for the power-sensing module, (ii) hardware sup-

port for Precision Time Protocol (PTP) which allows

sub-microsecond measurements synchronization [27,

26], and (iii) an ARM Cortex-A8 processor with NEON

technology, useful for DSP processing and edge ML

inference (e.g., by leveraging the ARM NN SDK [2],

which enables efficient translation of existing neural

network frameworks, such as TensorFlow, to ARM

Cortex-A CPUs). Moreover, the Sitara AM335x chip

used in BBB includes two programmable real-time units

(PRUs) useful for real-time acquisition and extra pro-

cessing on-board.

It should be noted that standard computing servers

already integrate an embedded system used for real-

time monitoring and management, namely the BMC.

This is usually a closed platform with no access to

the firmware, but thanks to the recent OpenBMC

project [31] few vendors started to release it open-

source. We decided to do not use the BMC for this pur-

pose as (i) we needed to add extra hardware to integrate

an ADC and interface it with the custom power sensor

(the BBB already includes an ADC), (ii) it does not

provide hardware support for PTP, and (iii) it is based

on an old ARM processor family (i.e., ARM11 [9])

which is not a good choice for edge analytics. Moreover,

(iv) it is a critical component to ensure safe working

conditions of the nodes, thus it is more convenient to

do not overwhelm its limited processing resources with

our monitoring / edge-analytics software stack.

Figure 4 reports the embedded monitoring stack

design. The bottom layer represents the ADC hard-

ware module. We exploit the ADC continuous sampling

mode to continuously sample the two input channels

(i.e., current and voltage), average and store them in a

hardware FIFO that is managed by a kernel driver. By

tuning the ADC sampling frequency (FsADC) and the

hardware averaging (AVG), it is possible to set the fre-

quency (Fs) at which samples enter the software layers.

When the hardware FIFO reaches a watermark on

the number of samples acquired (we set it to 16), an

interrupt is raised and the samples are flushed into the

main memory (kernel FIFO) by the ADC driver. In

particular, the ADC driver involves two routines (IRQ

handlers): the top half, which monitors the watermark

on the hardware FIFO, and the bottom half that is used

to flush the samples into the kernel FIFO.

Finally, the power measurements are exposed via

the Industrial I / O (IIO) Subsystem API to a user-

space monitoring daemon, which is in charge of convert-

ing data from integer to Watt and associate them with

a timestamp. This daemon also collects node’s perfor-

mance measurements from hardware performance coun-

ters via built-in tools (e.g., IPMI [21], Amester [31] and

RAPL [22]). In this way, we can perform edge analytics

on a target use-case (e.g., ML inference for anomalies

detection) and send the results, together with the power

and performance measurements at a lower rate, to the

centralized monitoring unit for cluster-level analytics.

It should be noted that by using the continuous

sampling mode, the hardware guarantees a negligible

uncertainty on the acquisition time of consecutive sam-

ples, ensuring correctness of the energy computation

at a fine granularity [17]. Moreover, to make negligible



DiG 5

(1) Power Monitoring Stack

Monitoring daemon

User-Space

MQTT

IIO Subsystem

ADC Driver

HW-FIFO

Kernel-Space

Hardware

ADC
ADC 

Input Pins

Top Half

Bottom Half

KFIFO

Fs
FsADCAVG

FsFs

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

100 50 25 12.5 6.25

%
 C

P
U

 L
o

ad

Fs (kS/s)

bottom-half

top-half

app_user-space

AVG 1FsADC 100 kS/s

FsADC 800 kS/s AVG 8

AVG 2

AVG 16

AVG 4 AVG 8 AVG 16

(2) CPU Load vs Sampling Rate

Fig. 4 Embedded power monitoring stack (left) and software
overhead (right).

both overhead and uncertainty introduced by the times-

tamp’s function call, we only generate timestamps at

each flush of the kernel FIFO, and not for every sample

(timestamps for every sample are then derived accord-

ingly to the number of samples acquired).

2.3 Centralized Monitoring Unit and Cluster-Level

Analytics

We exploit centralized monitoring, based on the open-

source ExaMon monitoring platform [3,11], to carry out

cluster-level analytics with data coming from multiple

nodes. To send data from the distributed monitoring

agents to the centralized monitoring unit, we adopted

MQTT [19], which is a robust, lightweight and scalable

protocol, already used for large-scale systems both in

industry and academia (e.g., Amazon, Facebook, [19,

11]). Figure 2 outlines its publish / subscribe commu-

nication model, where the publishers (running in the

embedded computers) send measurements to a broker,

along with a topic that corresponds to the monitored

metric (e.g., power consumption). The broker resides in

the centralized monitoring unit together with the sub-

scriber. The latter is used to filter and collect the data

that is interested in, and expose them to a Big Data

engine, namely Apache Spark [36]. The measurements

are also stored in a scalable database - Apache Cassan-

dra [1] - enabling ML analytics both in streaming and

batch mode.

3 Experimental Results

This section starts by reporting the performance of

the monitoring agents, along with the validation of the

high-resolution power measurements from the point of

view of accuracy and precision. It then presents a set

of monitoring use cases based on Fourier analysis to

show the capability of the high-resolution monitoring

in revealing fine grain computation activity. Finally, we

report a campaign of ML inference benchmarks, based

on ResNets running on the embedded monitoring plat-

form, to show an example of the capability of DiG on

carrying out edge ML analytics.

3.1 Monitoring Agents Performance

Performance Measurements: To provide completely

out-of-band monitoring, we integrated our infrastruc-

ture in a SoA OpenPOWER computing cluster, namely

D.A.V.I.D.E. [6,10], that consists of 45 nodes (3 racks

with 15 nodes each) based on IBM Power8. In this sys-

tem we take advantage of its out-of-band telemetry and

collect via Amester through the On Chip Controller

(OCC) [31] 242 metrics per-component every 10 s (e.g.,

the performance of Core, Cache, FAN, etc.), and via

IPMI 89 metrics per-component every 5 s. All these

measurements are sent to the centralized monitoring

for cluster-level analytics, but can also be exploited on-

board for real-time edge analysis on a target use-case

(e.g., detection of anomalies).

Power Measurements: To cover the full power con-

sumption bandwidth at the node plug (i.e., tens of mi-

croseconds, observed with a professional oscilloscope

- Keysight DS0X3054T - attached to the power sen-

sor) and at the same time to avoid overwhelming the

CPU with the data acquisition routine, we tested sev-

eral sampling rates (Fs) that we report in Figure 4.2.

In particular, the best trade-off corresponds to a sam-

pling rate of 800 kS/s per channel and hardware aver-

aging every 16 samples. This is equivalent to 50 kS/s

(i.e., 20 µs) and allows to obtain several benefits: (i) to

cover the entire signal bandwidth, (ii) to keep the CPU

load below 35 % and (iii) to reach a precision below 1 %

(σ) of uncertainty (a.k.a. oversampling and averaging

method [35]). It is noteworthy that this precision makes

our system suitable for the most rigorous requirement

needed to benchmark an HPC system in Top500 [16].

Finally, we send the measurements to the central-

ized monitoring for cluster-level analytics at the rates of

1 s and 1 ms, while measurements at higher resolution

can be analyzed directly at the edge.

Software overhead: The entire BBB CPU load of the

monitoring software stack (power and performance) is

below 46 %. In particular, performance monitoring re-

quires roughly 11 % and the power monitoring around

35 %. We have run also some benchmarks to evaluate

the computing capabilities of the embedded platform:

we can perform (i) real-time Power Spectral Density

(PSD) analysis of the high resolution power measure-

ments (e.g., useful for feature extraction [28]), in a time



6 Antonio Libri et al.

window of around 40 ms with roughly 7 % of CPU us-

age, and (ii) ML inference via TensorFlow on these

PSDs, implementing ResNet with 8 layers and chan-

nels {8, 8, 16, 32} and respecting a real-time constraint

of 30 ms per spectrogram (a detailed analysis can be

found in Section 3.4). Moreover, it must be noted that

we did not use any optimization to run ML inference

(e.g., ARM NN SDK [2] or TensorFlow Light [4]), which

means these results can be further improved.

Synchronization: To ensure accurate and precise

timestamping of the measurements, we exploit PTP

hardware obtaining sub-microsecond synchronization

(i.e., smaller than the sampling period) across multiple

nodes and embedded monitoring devices. Moreover, re-

sults in [26] show that with a proper setting of NTP, it

is possible to reach synchronization with an uncertainty

of a few microseconds in today’s data centers and HPC

clusters.

Scalability: To benefit from a scalable inter-

face to the centralized monitoring unit, we exploit

Mosquitto [11] which is a Linux implementation of

MQTT that consists of a single thread process. Our

tests show that Mosquitto broker (i.e., the bottleneck

of the network) running in an Intel Xeon E5-2600

(Haswell) can handle up to 16 publishers that send

data every millisecond using just 30 % of a core, and

of course, it is possible to increase the number of bro-

kers if needed. In our current configuration of the moni-

toring system integrated in the D.A.V.I.D.E. HPC ma-

chine, we use one broker for all performance counters

and three brokers (one per rack) for the power measure-

ments, with no particular issue for the users / system

admins of the data center since November 2017. More-

over, we tested MQTT with a similar configuration on

all 516 computing nodes of GALILEO at CINECA,

Italy (Intel Xeon E5-2630v3 processors), proving that

this interface is suitable for even larger scale systems.

3.2 Power Measurements Validation

To verify the accuracy and precision of the high resolu-

tion power measurements, we attached the DiG power

sensing module to a dummy load (depicted in Figure 3)

and calibrated the current and voltage sensors against

a high-precision reference multimeter. In this way, we

can also determine the conversion factors (offset and

gain) for both voltage and current needed for comput-

ing power consumption in Watt. Figure 5 reports the

results of the current measurements after calibration

for both configurations, namely HE Sensor and current

mirror plus shunt resistor. In particular, the x-axis cor-

responds to the different input loads that we applied

to the power sensing module accordingly to the allowed

current range (i.e., 0–100 A for the HE Sensor and 0–

200 A for the shunt resistor), while the y-axis reports

the current measured by DiG (dots) and a linear regres-

sion on the measurements (straight line). As can be seen

from the plot, all the DiG measurements well match the

input load, so the curve is linear across the full range

(i.e., coefficient of determination R2
Shunt = 0.9999 and

R2
HE = 0.9997), except around zero, which is anyway

not a problem as compute nodes never work in this low

range of currents. We carried out the same procedure

for the voltage measurements and obtained similar re-

sults.

0 25 50 75 100 125 150 175 200
Node Load (Input Current) [A]

0

25

50

75

100

125

150

175

200

M
e
a
su

re
d
 C

u
rr

e
n
t 

[A
]

DiG Accuracy on Current Sensor

Shunt - I-Meas (range 0-200A)

Shunt - I-LinRegr (R2
Shunt=0.9999)

HE - I-Meas (range 0-100A)

HE - I-LinRegr (R2
HE=0.9998)

Fig. 5 Accuracy of the DiG current sensors.

After calibrating DiG, we can evaluate the precision

on the power measurements (i.e., standard deviation -

σ - and coefficient of Variation - CV). With this goal,

we can start by quantifying the precision of each ADC

channel (current and voltage) independently, and use

the propagation of uncertainty theorem for computing

the uncertainty of the resulting power [8]. Indeed, given

the measured current and voltage with uncertainties,

I ± σI and V ± σV (where I and V correspond to the

measured average value), under the assumption they

are not correlated, the uncertainty on the power mea-

surements is:

σP ≈
√
I2σ2

V + V 2σ2
I (1)

Table 1 reports the resulting precision at 50 kS/s

for three different server operating conditions: idle,

medium load and maximum load (e.g., to give an idea in

an Intel Xeon E5-2600 these conditions corresponds to

roughly 180 W, 600 W and 1200 W, respectively). The

precision for around 68.3 % of the power measurements

(σ) is bounded between 1.73–3.96 W, for the minimum

(idle) and maximum load, respectively, and increases

of a factor of 3 when considering 99.7 % of the samples



DiG 7

Table 1 DiG Precision based on dynamic software average.

Idle Mid-Load Max Load
σ (CV) σ (CV) σ (CV)

50 kS/s 1.73 W (0.96%) 2.58 W (0.43%) 3.96 W (0.33%)
25 kS/s 0.5 W (0.28%) 1.26 W (0.21%) 2.28 W (0.19%)
1 kS/s 0.47 W (0.26%) 1.14 W (0.19%) 2.16 W (0.18%)
1 S/s 0.32 W (0.18%) 1.02 W (0.17%) 2.04 W (0.17%)

(5.2–11.88 W for 3σ). Of course, the CV follows the op-

posite trend: it decreases when the power consumption

increases (from 0.96 % in idle to 0.33 % for maximum

workload).

The table reports also the precision when sampling

at lower rates - by applying a software average -, namely

25 kS/s, 1 kS/s and 1 S/s. As can be seen, σ drastically

improves to a few watt precision already at 25 kS/s

(even at the maximum load). With the goal to dynami-

cally increase the DiG precision on the power measure-

ments when required, the monitoring daemon can be set

to dynamically switch to a lower sampling rate (e.g., to

25 kS/s) by averaging in software the power samples if

it is monitoring low currents for a certain time period.

Thanks to this trade-off we can always keep the mon-

itoring precision below a pre-set threshold (up to sub-

watt precision), which makes DiG suitable to be used

in production environments as a high-precision HPC

energy monitoring solution.

3.3 Feature Extraction Benchmarking

This section aims at showing the capability of the high

resolution monitoring in unveiling high-frequency com-

ponents directly related to the computation activity.

We exploit Fourier analysis as an example of feature

extraction technique for time series that is suitable for

deep learning algorithms (e.g., Deep Neural Networks

- DNNs [28]). Future works can extend this real-time

analysis targeting specific use-cases (e.g., anomaly de-

tection in workloads) and (i) exploit it, together with

performance counters, as input data for DNN mod-

els running inference in the monitoring agents [28]; or

(ii) just send it with lossy compression algorithms (data

are sparse, as shown by the following tests) to the cen-

tralized monitoring for cluster-level analytics. We note

that due to the limitations of SoA power monitoring

support for computing nodes, up until now this kind

of analysis could not be performed in production data

centers.

We start the evaluation with a synthetic benchmark

on the computing node, consisting of an Interrupt Ser-

vice Routine (ISR) that we run every ∼10 ms (roughly

100 Hz) with different sets of instructions. In particular,

PSD - ISR @100Hz and Duty Cycle=~20%

frequency (Hz)

PSD - ISR @100Hz and Duty Cycle=~50%

0 100 200 300 400 500 600 700
-40

-20

0

20

40 X: 98
Y: 22.8 X: 294

Y: 11 X: 490
Y: 1.7Po

w
er

/f
re

qu
en

cy
 (d

B
/H

z)

-40

-20

0

20

40
X: 98
Y: 15.4

X: 196
Y: 12.9

X: 294
Y: 9.1 X: 392

Y: 3.1
X: 489
Y: 1.2 X: 587

Y: -4.3

0 100 200 300 400 500 600 700

Fig. 6 PSD of an ISR at 100 Hz with different sets of instruc-
tions.

the first set of instructions corresponds to a duty cycle

of 20 % in power consumption (i.e., 2 ms of workload

and 8 ms of sleep), while the second set to 50 %. Figure 6

shows the PSD for the two cases, computed in a time

window of 40 ms. According to Fourier analysis, the set

of instructions with duty cycle 20 % (top) shows the

fundamental at around 100 Hz plus all its harmonics,

while the one at 50 % (bottom) correctly reports only

the fundamental and the odd harmonics (even harmon-

ics are not completely null due to the not exact 50 %

duty cycle). This example shows that our monitoring

can really capture spectral properties of different work-

loads in execution.

The second set of benchmarks, reported in Figure 7,

aims at demonstrating distinctive frequency-domain

signatures of real bottlenecks (e.g., CPU or memory

limitations) and scientific applications. Goal of this test

is not to analyze in depth the reasons behind the peaks,

but instead to show that different patterns emerge in

the power spectrum with different workloads, which can

be used as input features for DNN algorithms.

In particular, comparing the first four plots we can

clearly see four different patterns (peaks highlighted

with dark / light circles to indicate stronger / weaker

magnitude): the first plot portrays the PSD of the com-

puting node in idle and reveals five main peaks (dark

red circles) plus other weaker peaks (light red circles)

spread in the entire bandwidth 0–12 kHz (richer activity

in 0–4 kHz); notice that these main peaks persist also

in all other benchmarks; the second and third plot de-

picts respectively a memory bound and a CPU bound

synthetic benchmark, where the former is bound in the

SDRAM, while the latter is stuck in the CPU ’front-

end’ process (i.e., phase where instructions are fetched

and decoded into operations - it differs from the CPU

’back-end’ process where instead the required compu-



8 Antonio Libri et al.

tation is performed); these two benchmarks report a

rich activity up to 6 kHz and are almost flat for fre-

quencies above; moreover, they can be clearly distin-

guished from their pattern (three main peaks in the

tested memory bound application vs. ten main peaks in

the CPU bound). It is noteworthy that, while measur-

ing only a power consumption coarse-grain value would

not be enough to discern any difference between the

two bottlenecks, DiG (w.r.t SoA monitoring systems)

can detect spectral components associated to different

usage of architectural resources in the two benchmarks.

Finally, the fourth plot shows a real scientific applica-

tion (i.e., Quantum Espresso - QE [15]) and reports

four main peaks more with respect to idle (dark yellow

circles) and rich activity in all the spectrum.

With the next three plots in Figure 7, we demon-

strate that we can appreciate the activity of short re-

gions of code. More in detail, we report the PSD of the

computing node when it is running sets of instructions

at a desired frequency and duty cycle (i.e., pulse train

of instructions where we alternate high load computa-

tion phases with idle phases). The black circles in the

plots highlight we can capture the activity of software

routines running roughly every 150 µs, 110 µs and 90 µs,

with a respective duration of 75 µs, 55 µs and 45 µs (i.e.,

routines at 6.5 kHz, 9 kHz and 11 kHz with 50 % duty

cycle between idle and computation).

Finally, we report in the last three plots of Figure 7

two use-cases of anomaly detection in the computing

nodes. In particular, the first plot corresponds to a case

of misconfiguration, where we disabled in the system

the dynamic tick. This is enabled by default in Linux

OS in order to potentially make the system more en-

ergy efficient (i.e., the kernel can save power when idle

because it does not have to wake up regularly just to

service the timer tick). Comparing the PSD of the sys-

tem in idle with the dynamic tick enabled (first plot)

with the one without dynamic tick we can clearly see

the peak at 1 kHz (frequency of the static tick) and

all its harmonics (at multiples of the fundamental) till

11 kHz. We envision this kind of high resolution moni-

toring along with edge ML analytics to help on catching

anomalies in next generation of data centers.

Another interesting scenario for detection of anoma-

lies is related to the detection of cyber-attacks. Network

security is a crucial challenge in data centers and cloud

infrastructures, to prevent attackers from getting access

into the system and steal sensitive data or illegally use

computing resources [32,12]. Before intruding into the

system attackers need to gather information about the

target machine and its running services, and thus about

vulnerabilities that can be exploited. This is called scan-

ning phase, and one of the most popular tools for port

scanning is NMAP [30].

The use case scenario is an attacker that tries to col-

lect information about the front-end node of data cen-

ters / clouds to get access into the local network. Thus

we run NMAP from a remote computer (outside the

local network) with the OS detection mode enabled,

which means we want to understand open ports, run-

ning services and OS of the front-end node. The scan-

ning attack requires around 10 seconds and the last two

plots of Figure 7 show the PSD of the DiG power mea-

surements when monitoring the front-end node. With

the goal to show that different phases of NMAP corre-

spond to different patterns of PSD, which are also dif-

ferent from the PSD of the system in idle, we report the

attacked node at second 2 and second 8, on the first and

second plot, respectively. As can be seen, results show 2

different patterns: the plot at second 2, with regards to

plot at second 8, reports main peaks only up to 5 kHz

and is almost flat for the frequencies above; instead, the

plot at second 8 reports main peaks spread in the en-

tire bandwidth (i.e., 1, 2, 3, 3.5, 4, 7, 8, 9, 10.5 kHz). This

pattern recognition analysis, based on high resolution

power measurements, can be used in future works to ex-

ploit ML classifiers running on the edge and correlate

this information with SoA signature-based IDS (e.g.,

SNORT) to help on preventing from intrusions.

3.4 Edge ML Benchmarking

In this section we show the performance of ResNets [18]

running on the embedded monitoring platform with dif-

ferent layers and sizes on a dataset of pre-computed
PSDs of 2048 points in frequency each (i.e., 4096 B per

spectrogram, which correspond to a time window of

40 ms), to show an example of the capability of DiG

on carrying out edge ML inference. In particular, we

use TensorFlow inference compiled for ARM architec-

ture in order to exploit the NEON SIMD accelerator.

Figure 8 reports the results of the benchmarks,

where the x-axis corresponds to the chosen batch size

(i.e., number of test images per iteration) and the y-axis

to the processing time per image (milliseconds). Results

show that the best trade-off is between batch sizes 3 and

5, which can give an improvement up to around 10 ms

w.r.t. using the same ResNet with no batch mode en-

abled. For bigger batch sizes the improvement is negli-

gible (in the best case up to 1 ms). Moreover, as a mat-

ter of comparison we have run a ResNet with 8 layers

and channels {8, 8, 16, 32} both exploiting the NEON

accelerator (gray triangles) and without using it (pur-

ple triangles), and results show a 3.8× improvement

when using NEON, which is a relevant processing time



DiG 9

Frequency (kHz)

-60
-40
-20

0
20 idle

-60
-40
-20

0
20

-60
-40
-20

0
20

memory bound

QE

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-60
-40
-20

0
20

0 2 4 6 8 10 12

CPU bound

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-60
-40
-20

0
20

-60
-40
-20

0
20

-60
-40
-20

0
20

-60
-40
-20

0
20

Pulse Instr 6.5 kHz (150μs)

Pulse Instr 9 kHz (110μs)

Pulse Instr 11 kHz (90μs)

idle - NoDynTick

0 2 4 6 8 10 12
-60
-40
-20

0
20

0 2 4 6 8 10 12
-60
-40
-20

0
20

NMAP @sec 2

NMAP @sec 8

Fig. 7 Example of PSD patterns of real bottlenecks and applications.

when handling high resolution measurements and live

analysis.

Finally, considering a time constraint of 40 ms for

running real-time PSDs on the edge (4096 B per spec-

trogram), results suggest that ResNet with 8 layers and

channels {8, 8, 16, 32} (and below), but also 14 layers

and channels {4, 4, 8, 16} (and below), are suitable for

running on high resolution power measurements, while

larger ResNet size and layers can be used together with

performance measurements acquired at a lower rate. It

should be noted that in our benchmarks we did not

use any optimized ML framework for our embedded

platform, such as ARM NN SDK [2] or TensorFlow

Light [4], which we believe would further improve these

results.



10 Antonio Libri et al.

0 10 20 30 40 50
Batch Size

20

40

60

80

100

120

P
S
D

P
ro

ce
ss

in
g

T
im

e
[m

s]

DiG Resnet Benchmarks

Res14_{16,16,32,64}

Res14_{4,4,8,16}

Res8_{16,16,32,64}

Res8_{12,12,24,48}

Res8_{10,10,20,40}

Res8_{10,10,20,30}

Res8_{8,8,16,32}

Res8_{8,8,16,32} - no NEON

Res8_{4,4,8,16}

Fig. 8 ResNet benchmarking with TensorFlow on BBB.

4 Related Work

Existing off-the-shelf methods to measure power and

performance of computing nodes in data centers rely

on in-band or out-of-band telemetry depending on the

technology vendors. In particular, an example of in-

band solution is Intel RAPL [22], while examples of

out-of-band solutions are IBM Amester [31] and the two

standards IPMI [21] and Redfish [23] (i.e., new proto-

col for managing data centers hardware, that fixes the

security vulnerabilities of IPMI [31]). All these built-in

tools allow a fine grain per-component monitoring (i.e.,

based on hardware performance counters and up to 1 s

for IPMI, 1 ms for RAPL and 250 µs for Amester [22,

31,17]), but not high-resolution power monitoring (i.e.,

covering the entire signal bandwidth - tens of microsec-

onds).

Pushed by the growing interest in fine-grained

power monitoring, industry and academia researchers

are providing custom solutions for data centers.

Examples are HDEEM [17], PowerInsight [24] and

HAEC [20]. The first two systems provide power con-

sumption measurements up to millisecond time reso-

lution, while the last one has a much more fine grain

insight, with a sampling rate up to 500 kS/s. All these

custom solutions focus on only monitoring the power

consumption (i.e., no performance knowledge) and send

all the measurements to a centralized monitoring unit

for analysis. Thanks to them, new opportunities for

research on energy efficiency and other challenges are

now possible, but going toward high resolution mea-

surements this kind of monitoring design entails scala-

bility issues (e.g., as discussed in [20], HAEC is suitable

for high resolution monitoring in just a node, but not

for an entire cluster).

Comparison with SoA: In our system (i.e., DiG)

we combined all these features to enable research on

several challenges for analytics, automation and con-

trol of data centers, with a highly-flexible monitor-

ing platform: (i) we work completely out-of-band (i.e.,

no impact / perturbation on the computing resources);

(ii) we collect all performance counters and (iii) the full

power bandwidth at the plug (i.e., sampling at 50 kS/s)

(iv) with high precision (i.e., below 1 % - σ); (v) we

provide highly synchronized measurements (i.e., sub-

microsecond) for a detailed correlation of the activities

within the cluster; (vi) we leverage the monitoring be-

tween edge and a centralized unit, by exploiting ded-

icated embedded computers to collect measurements

(they have complete knowledge of the status of their

node) and have the possibility to carry out both edge

and cluster-level analytics; (vii) the system is scalable

(thanks to our flexible design, based on edge monitor-

ing agents and a robust and scalable protocol - MQTT

- to the centralized monitoring, where we analyze data

at a lower rate), (viii) technology agnostic (i.e., tested

on ARM, Intel and IBM) and (ix) low cost (i.e., no

motherboard redesign required).

5 Conclusion

This work reports on the design of a novel monitoring

infrastructure - namely DiG - that enables real-time

high-resolution profiling and analytics of data centers,

for their automation and control. Main design choices

include complete out-of-band monitoring of power and

performance, with a dedicated embedded computer per

node to perform edge analysis, and a custom power sen-

sor at the plug for high-resolution and high-precision

measurements. We report (i) architecture design choices

of both hardware and software, (ii) monitoring plat-

form performance, (iii) an extensive set of tests based

on Fourier analysis to show the high resolution moni-

toring insights and (vi) a campaign of benchmarks of

ML inference, running on the embedded computer, to

provide an overview of the real-time edge analytics ca-

pabilities of DiG.

Acknowledgements This work has been partially supported
by the EU H2020 FET project OPRECOMP (g.a. 732631),
the EuroLab-4-HPC project, the Italian supercomputing cen-
ter CINECA and E4 Computer Engineering SpA.

References

1. Apache cassandra. URL http://cassandra.apache.org/

2. Arm NN SDK. URL https://developer.arm.com/

products/processors/machine-learning/arm-nn

3. Examon HPC Monitoring. URL https://github.com/

EEESlab/examon

http://cassandra.apache.org/
https://developer.arm.com/products/processors/machine-learning/arm-nn
https://developer.arm.com/products/processors/machine-learning/arm-nn
https://github.com/EEESlab/examon
https://github.com/EEESlab/examon


DiG 11

4. TensorFlow Lite. URL https://www.tensorflow.org/

mobile/tflite/

5. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsuper-
vised real-time anomaly detection for streaming data.
Neurocomputing 262, 134 – 147 (2017). DOI https:
//doi.org/10.1016/j.neucom.2017.04.070

6. Ahmad, W.A., Bartolini, A., Beneventi, F., Benini, L.,
Borghesi, A., Cicala, M., Forestieri, P., Gianfreda, C.,
Gregori, D., Libri, A., Spiga, F., Tinti, S.: Design of
an energy aware petaflops class high performance clus-
ter based on power architecture. In: 2017 IEEE In-
ternational Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pp. 964–973 (2017). DOI
10.1109/IPDPSW.2017.22

7. Allegro MicroSystems: Thermally Enhanced, Fully Inte-
grated, Hall Effect-Based High Precision Linear Current
Sensor IC with 100 µΩ Current Conductor. ACS770xCB
Datasheet Rev. 4, 2015

8. Arras, K.: Technical Report EPFL-ASL-TR-98-01 R3
(1998). URL https://infoscience.epfl.ch/record/

97374/files/TR-98-01R3.pdf

9. ASPEED: AST2500 Advanced PCIe Graphics & Remote
Management Processor. AST2500 Datasheet

10. Bartolini, A., Borghesi, A., Libri, A., Beneventi, F.,
Gregori, D., Tinti, S., Gianfreda, C., Altoè, P.: The
D.A.V.I.D.E. big-data-powered fine-grain power and per-
formance monitoring support. In: Proceedings of the
15th ACM International Conference on Computing Fron-
tiers, CF ’18, pp. 303–308. ACM, New York, NY, USA
(2018). DOI 10.1145/3203217.3205863. URL http://doi.

acm.org/10.1145/3203217.3205863

11. Beneventi, F., Bartolini, A., Cavazzoni, C., Benini, L.:
Continuous learning of hpc infrastructure models us-
ing big data analytics and in-memory processing tools.
In: Design, Automation Test in Europe Conference Ex-
hibition (DATE), 2017, pp. 1038–1043 (2017). DOI
10.23919/DATE.2017.7927143

12. Defense, R.C.T.: Cloud Security Trends, +17 Tips to
Fortify Your Public Cloud Computing Environment
(2017). https://veristor.com/wp-content/uploads/2017/
11/RedLock_CloudSecurityTrends_Veristor.pdf

13. Duplyakin, D., Brown, J., Ricci, R.: Active learning in
performance analysis. In: 2016 IEEE International Con-
ference on Cluster Computing (CLUSTER), pp. 182–191
(2016). DOI 10.1109/CLUSTER.2016.63

14. Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang,
X., Yang, C., Xue, W., Liu, F., Qiao, F., Zhao, W.,
Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J., Wang,
Y., Zhou, C., Yang, G.: The sunway taihulight super-
computer: system and applications. Science China In-
formation Sciences 59(7), 072001 (2016). DOI 10.1007/
s11432-016-5588-7

15. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car,
R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococ-
cioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris,
S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis,
C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari,
N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello,
A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero,
G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentz-
covitch, R.M.: Quantum espresso: a modular and open-
source software project for quantum simulations of ma-
terials. Journal of Physics: Condensed Matter 21(39),
395502 (2009)

16. Group, E.W.: Energy efficient high performance com-
puting power measurement methodology (v.2.0 RC

1.0) (2017). https://eehpcwg.llnl.gov/assets/sc17_bof_
methodology_2_0rc1.pdf

17. Hackenberg, D., Ilsche, T., Schuchart, J., Schöne, R.,
Nagel, W.E., Simon, M., Georgiou, Y.: Hdeem: High def-
inition energy efficiency monitoring. In: Energy Effi-
cient Supercomputing Workshop (E2SC), 2014, pp. 1–10
(2014). DOI 10.1109/E2SC.2014.13

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning
for image recognition. In: The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2016)

19. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: Mqtt-s
– a publish/subscribe protocol for wireless sensor net-
works. In: Communication Systems Software and Mid-
dleware and Workshops, 2008. COMSWARE 2008. 3rd
International Conference on, pp. 791–798 (2008). DOI
10.1109/COMSWA.2008.4554519

20. Ilsche, T., Schöne, R., Schuchart, J., Hackenberg, D., Si-
mon, M., Georgiou, Y., Nagel, W.E.: Power measure-
ment techniques for energy-efficient computing: recon-
ciling scalability, resolution, and accuracy. Computer
Science - Research and Development (2018). DOI
10.1007/s00450-018-0392-9

21. Intel, Hewlett-Packard, NEC, Dell, Rep., T.: IPMI Spec-
ification, V2.0, Rev. 1.1 (2013)

22. Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou,
Z.: Rapl in action: Experiences in using rapl for power
measurements. ACM Trans. Model. Perform. Eval. Com-
put. Syst. 3(2), 9:1–9:26 (2018). DOI 10.1145/3177754

23. Kumari, P., Saleem, F., Sill, A., Chen, Y.: Validation of
redfish: The scalable platform management standard. In:
Companion Proceedings of the10th International Con-
ference on Utility and Cloud Computing, UCC ’17 Com-
panion, pp. 113–117. ACM, New York, NY, USA (2017).
DOI 10.1145/3147234.3148136

24. Laros, J.H., Pokorny, P., DeBonis, D.: Powerinsight - a
commodity power measurement capability. In: Green
Computing Conference (IGCC), 2013 International, pp.
1–6 (2013). DOI 10.1109/IGCC.2013.6604485

25. Libri, A., Bartolini, A., Benini, L.: Dig: Enabling out-of-
band scalable high-resolution monitoring for data-center
analytics, automation and control. In: The 2nd Inter-
national Industry/University Workshop on Data-center
Automation, Analytics, and Control (2018)

26. Libri, A., Bartolini, A., Cesarini, D., Benini, L.: Evalu-
ation of ntp/ptp fine-grain synchronization performance
in hpc clusters. In: 2nd Workshop on AutotuniNg and
aDaptivity AppRoaches for Energy efficient HPC Sys-
tems (ANDARE 2018) (2018)

27. Libri, A., Bartolini, A., Magno, M., Benini, L.: Eval-
uation of synchronization protocols for fine-grain hpc
sensor data time-stamping and collection. In: 2016 In-
ternational Conference on High Performance Comput-
ing Simulation (HPCS), pp. 818–825 (2016). DOI
10.1109/HPCSim.2016.7568419

28. Lin, S., Liu, N., Nazemi, M., Li, H., Ding, C., Wang,
Y., Pedram, M.: Fft-based deep learning deployment in
embedded systems. In: 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 1045–1050
(2018). DOI 10.23919/DATE.2018.8342166

29. Liu, Z., Kettimuthu, R., Foster, I., Beckman, P.H.: To-
ward a smart data transfer node. Future Generation
Computer Systems 89, 10 – 18 (2018). DOI https:
//doi.org/10.1016/j.future.2018.06.033

30. Lyon, G.F.: Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scan-
ning. Insecure, USA (2009)

https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://infoscience.epfl.ch/record/97374/files/TR-98-01R3.pdf
https://infoscience.epfl.ch/record/97374/files/TR-98-01R3.pdf
http://doi.acm.org/10.1145/3203217.3205863
http://doi.acm.org/10.1145/3203217.3205863
https://veristor.com/wp-content/uploads/2017/11/RedLock_CloudSecurityTrends_Veristor.pdf
https://veristor.com/wp-content/uploads/2017/11/RedLock_CloudSecurityTrends_Veristor.pdf
https://eehpcwg.llnl.gov/assets/sc17_bof_methodology_2_0rc1.pdf
https://eehpcwg.llnl.gov/assets/sc17_bof_methodology_2_0rc1.pdf


12 Antonio Libri et al.

31. Rosedahl, T., Broyles, M., Lefurgy, C., Christensen, B.,
Feng, W.: Power/Performance Controlling Techniques in
OpenPOWER. In: J.M. Kunkel, R. Yokota, M. Taufer,
J. Shalf (eds.) High Performance Computing, pp. 275–
289. Springer International Publishing, Cham (2017)

32. Tahir, R., Huzaifa, M., Das, A., Ahmad, M., Gunter, C.,
Zaffar, F., Caesar, M., Borisov, N.: Mining on someone
else’s dime: Mitigating covert mining operations in clouds
and enterprises. In: M. Dacier, M. Bailey, M. Polychron-
akis, M. Antonakakis (eds.) Research in Attacks, Intru-
sions, and Defenses, pp. 287–310. Springer International
Publishing, Cham (2017)

33. Tang, A., Sethumadhavan, S., Stolfo, S.J.: Unsupervised
anomaly-based malware detection using hardware fea-
tures. In: A. Stavrou, H. Bos, G. Portokalidis (eds.) Re-
search in Attacks, Intrusions and Defenses, pp. 109–129.
Springer International Publishing, Cham (2014)

34. Texas Instruments: BeagleBone Black System Reference
Manual. Rev. C.1, 2014

35. Villa-Angulo, C., Hernandez-Fuentes, I.O., Villa-Angulo,
R., Donkor, E.: Bit-resolution improvement of an op-
tically sampled time-interleaved analog-to-digital con-
verter based on data averaging. IEEE Transactions
on Instrumentation and Measurement 61(4), 1099–1104
(2012). DOI 10.1109/TIM.2011.2179335

36. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust,
M., Dave, A., Meng, X., Rosen, J., Venkataraman, S.,
Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S.,
Stoica, I.: Apache spark: A unified engine for big data
processing. Commun. ACM 59(11), 56–65 (2016). DOI
10.1145/2934664


	1 Introduction
	2 Monitoring System Architecture
	3 Experimental Results
	4 Related Work
	5 Conclusion

