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Abstract
The rapid growth in virtualization solutions has driven the widespread adoption of cloud computing paradigms among

various industries and applications. This has led to a growing need for XaaS solutions and equipment to enable tele-

working. To meet this need, cloud operators and datacenters have to overtake several challenges related to continuity, the

quality of services provided, data security, and anomaly detection issues. Mainly, anomaly detection methods play a critical

role in detecting virtual machines’ abnormal behaviours that can potentially violate service level agreements established

with users. Unsupervised machine learning techniques are among the most commonly used technologies for implementing

anomaly detection systems. This paper introduces a novel clustering approach for analyzing virtual machine behaviour

while running workloads in a system based on resource usage details (such as CPU utilization and downtime events). The

proposed algorithm is inspired by the intuitive mechanism of flocking birds in nature to form reasonable clusters. Each

starling movement’s direction depends on self-information and information provided by other close starlings during the

flight. Analogically, after associating a weight with each data sample to guide the formation of meaningful groups, each

data element determines its next position in the feature space based on its current position and surroundings. Based on a

realistic dataset and clustering validity indices, the experimental evaluation shows that the new weighted fuzzy c-means

algorithm provides interesting results and outperforms the corresponding standard algorithm (weighted fuzzy c-means).

Keywords Datacenter � Virtual machine � Abnormal behaviour � Workload monitoring � Weighted fuzzy C-means

clustering � Starling birds

1 Introduction

In the current age of virtualization and new technologies,

datacenters are undergoing rapid evolution and are facing

several challenges in the coming years: the development of

predictive analytics, the growth of cloud and serverless,

edge computing, the arrival of 5G, and more recently, the

COVID-19 epidemic that has snatched the world are

among the topics that will be at the heart of their concerns.

The virtual machine (VM), being a core element of the

cloud environment, is typically required to perform and

maintain the operating system’s operation and storage and

ensure the normal functioning of the operating system

(OS). As the cloud platform is constantly growing, it is

becoming more prominent and more complex. Conse-

quently, a variety of challenges have arisen in terms of the

competitive partitioning of the platform’s hardware

resources and the resulting VM bugs. Any abnormal

behaviour of the VM (the workload executed in the VM,

respectively) can disrupt the regular system functioning,

leading to a significant loss for the enterprise, which results

in a reduced computing capacity or even hinders the suc-

cessful deployment and operation of cloud computing.

Knowing workloads executed on the system can play a

significant role in ensuring efficient resource usage and

data security. Identifying workloads that intensively utilize

shared resources enables implementing different schedul-

ing models [1]. Several research works have proposed

models for either scheduling or live migration of VMs
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based on workload knowledge. We cite, for example, the

work presented in [2]; authors have introduced a machine

learning-based model to analyze and predict the resource

utilization of co-located applications that share resources;

then, a scheduling strategy has been built based on

knowledge levied by the prediction model. In the same

way, depending on the applications running externally or

inside a VM, Ayaz Ali et al. [3] have recently proposed a

consolidation technique, consisting of selecting the most

efficient migration of an individual VM, a container, or a

specific application which runs inside a container. Besides,

authors in [4] have used a perturbation tool to discover

service and resource dependencies to minimize the system

outage and improve data reliability. The authors have

confirmed the importance of knowing the most common

workloads and their characteristics for distributed system

control.

Datacenter operators do not usually recognize which

tasks are being executed in the system at a given time. The

physical hosts can be shared by numerous users and

simultaneously run hundreds or thousands of applications

per day [5]. Static workload analysis has been proven to be

ineffective in detecting the exact behaviour of the running

applications and jobs [6]. Furthermore, the applications

executed in a virtualized environment impose a workload

expressed as memory utilization, processing time, storage,

and network bandwidth. Typically, the actual resource

usage is less than the number of resources requested by the

customer. Therefore, naive methods for identifying the

workload’s behaviour, such as looking at the information

given by the users in the form of resource request or a pre-

defined service level agreement (SLA), are not useful.

To address the before-mentioned challenges, we focus,

in this work, on the employment of a fuzzy clustering

approach for workload characterization. For a better

understanding of workload characteristics and behaviour,

monitoring data is investigated, including extensive infor-

mation on resource usage such as central processing unit

(CPU) usage, network activities, etc., which is collected

periodically at runtime from a computing cluster. We

propose a new weighted fuzzy c-means (WFCM) algorithm

that adopts starling birds’ collective behaviour to build

meaningful clusters. A starling naturally diffuses some

information to its close neighbours to maintain its position,

and subsequently, this information is spread to the whole

swarm [7]. According to this analogy, we develop a tech-

nique for computing each sample’s weight iteratively based

on its current position in the feature space (in relation to its

closest neighbours). It is a kind of informational commu-

nication between the individual (object) and its nearest

neighbours.

The motivation for using an unsupervised approach like

fuzzy clustering for the classification of abnormalities is

twofold: first, with enough labelled data, supervised

learning techniques perform better in terms of accuracy.

However, in cases where the available data for certain

kinds of anomalies are scarce or the behaviour type is

unknown, the use of unsupervised methods such as clus-

tering may be more appropriate. Second, the purpose of

using clustering is the elicitation of membership functions

of linguistic variables. It is a standard procedure for auto-

matically setting up fuzzy rule-based systems and fuzzy

relational systems.

Clustering can refer to different aspects of the grouping

concept. This paper is interested in a clustering algorithm

that can be considered as a function fitting multiple

observations in a finite, unlabeled, multi-variate dataset to

partitions. Each observation represents a datum’s features

so that the features’ probabilistic or uncertain nature is

taken into account. The problem is to divide the dataset

into groups (clusters) in a way that the data within a cluster

are similar to each other and are as dissimilar as possible

from data belonging to other clusters. A defined distance

metric determines the similarities. Specifically, the two

contributions of this paper are the following:

– We introduce the weighted fuzzy c-means clustering

algorithm based on starling birds behaviour

(sbWFCM): a novel density-based approach involving

the exploration of the topological adjacency of neigh-

bours along with the application of a model search

improving the performance of the WFCM algorithm.

The proposed method yields an interacting algorithm

that provides different clustering alternatives depending

on the number of iterations of bird movement instruc-

tions, and it offers a detailed exploration of different

regions of the feature space.

– The proposed algorithm is utilized for identifying the

abnormal execution of workload within VMs. We use a

real-world dataset (monitoring data collected periodi-

cally at runtime from a computing cluster [8]). The

clustering results are compared to the ground truth (the

real classification of the workloads).

The remaining content of the paper is organized as follows.

We review, in Sect. 2, the existing clustering algorithms

applied to workloads and applications identification in a

datacenter. Then, in Sect. 3, we briefly outline the back-

ground techniques useful for implementing the proposed

work. Section 4 describes the proposed clustering algo-

rithm. Using an experimental dataset, Sect. 5 validates the

proposed algorithm. In Sect. 6, we synthesize the present

work and highlight some directions for future work.
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2 Related work

Currently, there is a wealth of work that introduces the

employment of machine learning-based models for large-

scale and distributed systems (datacenter, High-Perfor-

mance Computing (HPC), etc.) monitoring [9–11], for their

proper adaptation to fulfil the requirement of automatic

detection of anomalies. Supervised and unsupervised

machine learning algorithms are applicable. In supervised

learning, abnormal workload behaviour is categorized

according to a preliminary understanding of the data that

corresponds to regular workload behaviour and abnormal-

ities. We acquire this knowledge through an experimental

execution of the algorithm, referred to as the training

phase. However, unsupervised learning does not involve

prior knowledge and allows for the discovery of unknown

irregularities. The following focuses only on this last; more

precisely, we address the clustering algorithms used for

datacenter workload monitoring.

A large and growing body of literature has investigated

clustering techniques for producing a concise representa-

tion of the system behaviour while executing different

workloads. A study conducted by [12] examined the

K-means clustering approach for Customizing the alloca-

tion policy for VMs. The clustering model they suggest for

allocating cloud resources consists of mapping a group of

tasks to VMs. To perform the clustering, they have focused

on the CPU, memory, and bandwidth utilization by jobs.

They aimed at reducing energy consumption through effi-

cient resource allocation. In [13], authors investigated a co-

clustering algorithm to identify workload patterns that are

executed on a server during a certain time lapse, which

enables the prediction of each VM workload.

Authors in [14] have recently proposed a model that

combines kernel fuzzy c-means (KFCM) with an optimal

type-2 fuzzy neural network (OT2FNN) classifier to detect

potential threats of unauthorized and unlawful access to

data in the cloud. The model consists of two learning

phases: first, KFCM is used to identify meaningful clusters

in the data; second, each resulting cluster is assigned a

type-2 fuzzy neural network to label it as a regular or

intrusive process. The detection mechanism as a whole is

organized following training and test operations.

Likewise, a detection technique has been developed in

[15] to identify intrusions at the virtual machine’s moni-

toring tier. The proposed mechanism starts by using FCM

to split large datasets into smaller clusters to allow the

support vector machine classifier (SVM) to learn effi-

ciently. Based on the values of the selected cluster, the

SVM modules are then trained, and the fuzzy aggregation

module is used to combine the eventual results of the

hypervisor inspector. It has been shown that the hybrid

mechanism (FCM-SVM) can identify anomalies

accurately.

Abdelsalam et al. have developed an approach to detect

anomalous VM behaviour in scenarios that imply auto-

matic scaling in Infrastructure as a Service (IaaS) clouds

using unsupervised learning [16]. A modified version of the

K-means sequential clustering algorithm has been used to

detect abnormalities based on resource usage variations.

These variations can be encountered when insiders or other

malware attempts to run malicious tasks on VMs of cloud

customers.

In [17], authors have proposed a model that combines

K-means clustering along with the Extreme Learning

Machine (ELM) to predict VM requirements in a data

center. This work involved a combination of clustering of

users together with CPU and memory workload in a pre-

diction system. In addition, they conducted a comparative

study between k-means clustering and FCM, which were

used to analyze VMs and user behaviour so that each VM

request was mapped to a single cluster.

Similarly, the performance of the Principal Component

Analysis (PCA) and K-means has been investigated in [18].

The authors have evaluated these techniques in a monitored

cloud testbed environment where both an attack and a

migration occur simultaneously or separately, resulting in

measures such as performance measurement. Authors have

assumed that the undefined number of unwanted attacks

and false alarms produced while migrating VMs from one

host to another could make the behaviour of the VM

unpredictable. Therefore, they have asserted that the

widely-used PCA and K-means clustering methods can be

directly involved in the live migration aspect. Mainly, their

work has focused on the effect of VM migration on

anomaly detection techniques.

The work, proposed by Amruthnath and Gupta [19], was

initiated as a testbed to evaluate different unsupervised

learning algorithms for early failure detection. They have

chosen a simple vibration dataset collected by an extraction

fan and adapted different unsupervised learning algorithms

such as PCA, hierarchical clustering, K-Means, and FCM.

Then, they proposed a methodology to evaluate different

algorithms and choose the final model.

In addition, a typical clustering algorithm has been

designed for aggregating data, with a similarity metric, into

clusters [20]. Given that the VM performance would be

monitored continuously round-the-clock by the cloud

platform, authors have designed the Incremental VM

workload clustering algorithm to gather performance

information with similar VM workloads into a single

cluster. The experimental results presented in this work

have shown that the proposed clustering framework could

effectively gather performance information with
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comparable VM workloads in a single cluster to help

prevent negative actions when anomalies are detected.

The work proposed by Zhang et al. [21] consisted of

task-level anomaly detection procedure in a software

agnostic manner; they applied the unsupervised learning

technique DBSCAN to learn the regular behaviour with the

accurate task profiling level metrics in the unlabeled his-

torical data. They then used the clustering result to detect

the potential performance anomaly. They established the

relationship between the task and the network connection.

In [22], a hybrid system for anomaly detection has been

introduced. The authors have employed the FCM clustering

algorithm with Artificial Neural Networks (FCM-ANN) to

detect the abnormal behaviour of VMs. The proposed

system detects the attack patterns which are stored previ-

ously in a database. This database must be updated fre-

quently. To avoid the manual update, authors have adopted

the FCM clustering algorithm to capture the news attacks

automatically. Similarly, in our previous work, the Gath-

Geva clustering algorithm has been used for identifying

similarities between different applications running on an

HPC system [23].

Although there have been numerous works using clus-

tering for the detection of the anomalous behaviour of VMs

in a datacenter, we argue that all current approaches are far

from ideal. Some approaches assume prior knowledge of

the workloads running on the VMs. However, our proposed

model enables us to act with no previous knowledge

required. Moreover, work such as [12, 16, 18] studied the

conventional (hard) clustering for detecting workload

abnormalities. This requires well-defined boundaries

between clusters, which is not the case in many, even most,

natural systems. In this work, we propose a fuzzy cluster-

ing approach distinguished from hard clustering. It enables

an observation to belong to more than one cluster with

various degrees of membership. Such factors can express

the ambiguity or certainty of an observation’s belonging to

a given cluster. More interestingly, clustering algorithms

browse a limited region within the partition space. The

explored portion is driven mainly by the algorithm and the

underlying assumption about the data distribution or the

model used. Several steps are involved in exploratory

analysis using clustering, including the selection and

implementation of the algorithm, the validation based on

certain cluster validity indices, and a last, critical step of

interpretation. This last is contingent on the domain of

applicability and requires domain experts who play a cru-

cial role in identifying relevant clusters, i.e., clusters rep-

resenting the real structure of the data. Compared to

K-means, FCM is shown, in the experimental studies

reported in the literature above, to be effective in this

domain; however, it does not allow a complete exploration

of the data. Our approach provides significant assets over

FCM. It enables detailed exploration of different regions of

the feature space, and it generates different partitioning

alternatives depending on the number of iterations that a

domain expert can control.

3 Background

3.1 Weighted fuzzy c-means fundamentals

WFCM is an extended algorithm derived from the FCM

clustering algorithm. It consists of attaching, to each data

element, a weight value that defines the relative relevance

the element while building the clustering solution. For a

given set of objects O ¼ fo1; o2; . . .; oNg, we associate a set

of observations X ¼ fx1; x2; . . .; xNg in Rd . xi represents the

characteristic value describing the object oi. WFCM aims

at minimizing the following objective function:

QWFCM ¼
XC

k¼1

XN

i¼1

wiu
m
kijjxi � vkjj2A ð1Þ

wi is the corresponding weight of each datum xi, noting that

objects with a high weight have a greater influence on the

clustering process than low weighted objects. m[ 1 is

being the so-called fuzziness parameter that regulates the

influence of the members’ ratings. uki denotes the mem-

bership of observation xi in the kth cluster, where k ¼
1; . . .;C and C is the number of clusters. uki takes values in

[0,1], 0 corresponds to non-membership while 1 refers to

total membership. Vectors say ui are arranged as columns

of C�N-matrix U ¼ ½uki�C�N . uki are computed as follows:

uki ¼
1

PC
j¼1ð

jjxi�vk jj
jjxi�vjjjÞ

2
m�1

ð2Þ

vk refers to the centroid of the kth cluster and can be

updated by the following equation:

vk ¼
PN

i¼1 wiu
m
kixiPN

i¼1 wiu
m
ki

ð3Þ

We notice that the cluster prototype (center) vk is a

weighted sum of the feature vectors since each object xi has

a different predetermined impact given by a relative weight

wi. Determining the weight associated with each observa-

tion can be carried out following different strategies. We

cite, among others, the use of neighbourhood density

information of each sample (the number of objects that are

near to the sample using a distance threshold) or user-

defined constants [24]. The optimization of the objective

function 1 through an iterative process builds the fuzzy

partitions. The algorithm is outlined in Algorithm 1.
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Algorithm 1 WFCM clustering algorithm
Input: X, m, initial C, initial wi, and ε
1: Choose primary centroids vk.
2: while (||u(t+1)

ki − u
(t)
ki || ≥ ε) do

3: Compute the membership degree of all features in all clusters using equation 2
4: Update the centroids vk using equation 3
5: Update the weight wi

6: end while

3.2 The collective behaviour of starling birds

The collective movement of groups of animals is one of the

most spectacular phenomena observed in nature. These

collective movements arise from local interactions between

individuals and are supported by the formation of large-

scale spatial and temporal structures. To understand the

characteristics of these collective movements, it is signifi-

cant to characterize the dynamics of interactions between

individuals. To do this, many researchers studied a species

of bird, starlings, to develop an algorithm that analyzes the

individual trajectories and determines for each bird, and at

each moment, how many of its neighbours influence its

movement [25, 26]. Similarly, in 1986, a computer scien-

tist, Craig Reynolds, developed rules that simulate the

behaviour of clouds of birds, such as schools of fish. He

named these virtual birds ‘‘boids’’ (a short-language word

for ‘‘birds’’) [27].

According to Wayne Potts’ study [28], every bird reacts

to what surrounds it, and only to that. This means that its

behaviour can be modelled so that each bird reacts only to

its neighbours. Understanding collective information-pro-

cessing mechanisms in birds living in groups opens up

prospects for the development of bio-inspired algorithms

for the distributed control of artificial systems such as

automated highway systems [29], co-operative robotic

recognition [30], manipulation control [31], group-based

flight control [32], distributed sensor network deployment

[33], etc.

In this work, we follow the Reynolds simulations that

consist of the following. During the flight of starlings, the

direction of the movement of each starling depends not

only on self-information but also on information provided

by other nearby starlings. A starling reacts to its close

neighbours in the flock and adapts its flight direction pro-

gressively to follow the direction of its fellow starlings, as

shown in Fig. 1.

4 The proposed sbWFCM clustering
algorithm

At its core, the flocking model assumes that there are three

basic behavioural steering patterns, which describe how an

individual employs the relative position of close peers to

decide its next position and direction. Separation means

maintaining a minimal distance from surrounding boids;

alignment to adapt the direction to that of boids in the

vicinity; and cohesion which refers to moving towards the

center of the perceived density of birds in the neighbour-

hood. The three behaviours are modelled as outlined in

Table 1. Flocking is a way that an individual i responds to

peers in a small area that is defined by a distance dil and a

flight path of the starling boids exi . As a result, a force is

produced, called the social force, consisting of a summa-

tion of the three forces fsi , fai and fci , to determine the next

position of the individual i.

Fsociali ¼ fsi þ fai þ fci ð4Þ

The communication between individuals in the flock

involves the dissemination of information to all starlings

within the flock after a certain time, with no direct inter-

action. That way, the consistency of the starling flock can

be achieved by grouping the birds with the same direction,

while maintaining a distance from the other flocks.

To develop the proposed algorithm, this metaphor is

substantiated as follows. Each oi object is represented as an

individual in the starling flock (cluster), and xi corresponds

to its position in the feature space. Supposedly, the forward

Fig. 1 A simplified example of the collective behaviour of starling

birds
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direction exi varies according to the distance to each cluster

prototype; it is given by Eq. (5). The social force (given by

Eq. 4) is used to update the weight assigned to each object,

given the separation, alignment and cohesion expressions

defined in Table 1.

Mainly, sbWFCM algorithm performs as described in

Algorithm 2. Noting that dN is a distance given to identify

the set of neighbours N�
i . Given a set of features X and the

initialized parameters, a ponderation coefficient, based on

the Reynold’s formulation, can be embodied into the

functional cost of sbWFCM. First, we compute the forward

direction of X elements. Next, we identify the surrounding

of each element by computing the distance (given by dil),

as well as the forward direction of the surrounding. Each

element is driven then by a weight to approach its sur-

rounding. This step is critical to conciliate similar features.

Thereafter, we compute the separation force to maintain

distance from dissimilar elements that belong to different

clusters. Eventually, the three forces are associated to

provide the next position of data elements in the feature

space.

Table 1 The description and the mathematical formulation of the

three elementary behaviours, separation, alignment, and cohesion

where N�
i is the set of individuals in the interaction area, ws, wa, wc

are respectively the separation, alignment, and cohesion weighting

factors, rs is the required avoidance distance between individuals, ex
is the forward direction of each individual, g is the avoidance rate

(given as function of the proximity to the neighbour), and r is the

Gaussian Standard Deviation

Behaviour Description Formula

Separation 2a The individual i is guided by a force fsi to flow in the opposing

direction from the average of other N�
i positions in its proximity

fsi ¼ � ws

jN�
i j
X

l2N�
i

gðdilÞdil

gðdilÞ ¼
1 dil � rs

expð� ðdil � rsÞ2

r2
Þ dil [ rs

8
<

:

Alignment 2b The individual i is attracted by a force fai to be aligned with the

mean forward-direction of its N�
i neighbour. fai ¼ wa

P
l2N�

i
ðexl � exi Þ

k
P

l2N�
i
ðexl � exiÞk

Cohesion 2c The individual i is subjected to a force fci to move toward the

average position of the N�
i local flockmates in its neighbourhood

fci ¼
wc

jN�
i j
X

l2N�
i

vildi

gðdilÞ ¼
0 dil � rs

1 dil [ rs

�

Algorithm 2 sbWFCM clustering algorithm
Input: X, m, initial C, ws, wa, wc, rs, dN and σ
1: Choose primary centroids vk.
2: for a given number of iterations do
3: Compute the membership degree of all features in all clusters using equation 2
4: Compute the forward direction exi

exi =
C∑

k=1

(vk − xi)
‖(vk − xi)‖

(5)

5: for each l �= i do
6: Compute the distance dil = ‖(xi − xl)‖2
7: if dil ≤ dN then

8: Compute the forward direction exl =
C∑

k=1

(vk − xl)
‖(vk − xl)‖

9: end if
10: end for
11: Compute the forces fs, fa, and fc (table 1) and update the weight wi

wi = fsi + fai + fci (6)

12: Update the centroids vk using equation 3
13: end for
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One of the most influential parameters of a partitioning

clustering algorithm is the number of clusters C. The

clustering process may effectively reveal the actual struc-

ture of the data only if C matches the number of existing

subgroups. The selection quality of a given C is often

assessed by a cluster validity analysis, and one possibility

is to run the clustering algorithm repeatedly. Our proposed

algorithm is guided by a number of iterations that corre-

sponds to the movement of elements in the feature space.

We use an iterative algorithm to find a reasonable number

of clusters, which involves successive executions of

Algorithm 2 with a variable number of iterations. For each

number of iterations, the number of candidate clusters is

determined based on the calculation of the internal Xie-

Beni Index (XBI) for clustering validation, given in

Appendix A. Typically, the number of iterations can be

determined dynamically by a domain expert to recognize

meaningful clusters that actually constitute the data

structure.

5 Experimental results and discussion

5.1 Dataset outlines

To evaluate the proposed algorithm, we use a realistic

dataset provided by Jo et al. [8]. More than thirty work-

loads benchmark suites and applications reflecting real-

world loads have been employed. To generate the dataset,

the benchmark suites have been performed on a cluster

comprising four identical servers with a 4-core Skylake i5-

6600 processor, 16 GB memory, a 1 gigabit network card

designed for migration traffic, and a SSD-based storage

cluster connected via NFS protocol. Many features cover-

ing various memory and CPU use pattern characteristics of

a VM have been considered. For more details, the inter-

ested reader is referred to [8]. In this work, we focus on

CPU, I/O, and memory usage patterns generated by run-

ning OLTPbenchmark [34], SPECWeb2009 [35], and

MPlayer [36] benchmarks.

To adopt the data to our analysis, we consider three

performance metrics, downtime, memory consumption,

and CPU overload. For each metric, we set a level: low or

high. For example, for the downtime metric, if a VM

exceeds a certain threshold (given in milliseconds) while

performing a workload or while migrating from one

physical machine to another, the possibility that the VM

causes downtime is high. This way, we define five status

that can be assigned to a VM and are described in the

Table 2. Moreover, we have verified the distribution of the

values of the features, and we have removed outliers using

the Thompson Tau method [37].

5.2 Implementation notes

We assess the results of a typical run of the algorithm

where the fuzzifier parameter was set to m ¼ 2, data were

normalized to zero means, and other parameter settings

given in Table 3. The number of iterations is also an

important parameter requiring a proper setting. The

experiment consists of 50 trials to ensure a statistical

evaluation of the algorithm. To validate the different

alternatives proposed by the algorithm, internal XBI [38]

and external Adjusted Rand Index (ARI) [39] are consid-

ered and briefly reviewed in Appendix A. The ARI is one

of the most recommendable external validation indices

used for measuring the similarity of two partitions. In this

work, these partitions are the ground truth, i.e., the actual

partition and the hypothetical partition produced by

applying the clustering method. For visualization, the

classical Sammon data dimensionality reduction approach

is used [40]. The Sammon model creates a non-linear

projection of a high-dimensional into a lower-dimensional

space, aiming to maintain the structure of inter-point dis-

tances in both spaces.

5.3 Clustering results and discussion

The proposed sbWFCM algorithm is applied to the

resulting dataset. Some reasonable partitions were dis-

closed. Figure 3 shows the quality of the different structural

alternatives provided by the algorithm based on the XBI. In

this figure, the results correspond to the evolution of the

Table 2 The defined status of a VM

Id Downtime CPU overload Memory use

S1 Low Low Low

S2 High Low Low

S3 High Low High

S4 High High Low

S5 High High High

Table 3 Specifications of the

hyper-parameters with the

default values

Parameter Default entry

dN 0.8

ws 0.5

wa 0.5

wc 0.8

rs 0.05

r 0.8
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XBI and the corresponding number of clusters as a function

of the number of iterations for a typical execution of

sbWFCM algorithm. The local minima of the index cor-

respond to a reasonable number of clusters. The analysis of

Fig. 3 shows that partitions with a number of clusters equal

to 3 and 5 (C 2 f3; 5g) constitute reasonable structural

alternatives. Figure 4 presents illustrations of the two dif-

ferent perspectives using Sammon projection, where the

Fig. 2 The visual description of

the elementary behaviours in the

Raynolds simulation model,

where a, b, and c correspond

respectively to separation,

alignment, and cohesion
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Fig. 3 The evolution of the XBI

and the corresponding number

of clusters as a function of the

number of iterations for a

typical execution of sbWFCM

algorithm
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red � indicates the center of each cluster; ten solid line

curves of different colors ranging from red to dark blue are

drawn around it; each curve represents a contour of similar

membership rank, i.e., the membership value becomes

lower as the curve is further from the center (the darker the

blue, the lower the belonging).

Starting from Fig. 4a, we observe that a cluster formed

by green symbols � (S1), corresponding to workloads that

have low CPU and memory usage and low downtime, is

formed. Similarly, the cluster constituted by black symbols

� (S5) is clearly formed. One can say that the cluster

formed represents workloads that are likely to cause per-

formance degradation; on the other hand, the cluster con-

taining the green symbols does not influence system

performance. Therefore, their separation into two broadly

separate clusters is reasonable. Besides, even if the clusters

formed by blue � and red � are roughly in two separate

clusters, we notice that some elements of both clusters are

misclassified. This can be explained by the fact that both

types of workloads have a high downtime impact.

Curiously enough, by increasing the number of itera-

tions, the number of clusters corresponding to reasonable

partitioning decreases (from 5 to 3). Passing to Fig. 4b,

workloads with low CPU and low memory usage but high

downtime (blue þ) are always seen by the algorithm as

similar to workloads with S1 state. In the same way, the

three types of workload that have high downtime (S3, S4,

and S5) are merged in one cluster with some misclassified

elements. It can be noted that the number of iterations for

updating the weight value assigned to each data point is

important and can be adjusted by a domain expert.

Since in an actual datacenter it is not possible to rec-

ognize all status of VMs while running, we evaluate the

robustness of abnormal behaviour detection when execut-

ing workloads with unknown configurations. Table 4 pre-

sents the ARI values of the different alternatives obtained

by running sbWFCM algorithm to detect the abnormal

behaviour when downtime, CPU overload, or memory use

is not known. We observe that, except for the downtime

metric, our algorithm can identify abnormal behaviours

with over ARI[ 0:7 even when the status of the VMs is

not clear. The ARI tends to decrease when the downtime

configuration is not available in the ground truth. This

decrease can be explained by the fact that a VM’s beha-

viour with an unknown configuration of a metric may be

similar to abnormal behaviour, making the identification

and diagnosis more complex. By way of illustration, the

downtime metric, where a healthy workload runs with an

undefined configuration, may be classified as an abnormal

behaviour; however, VMs with normal behaviour can be

suspended due to CPU or memory overload or for an

eventual migration process.

5.4 SbWFCM vs. WFCM

More interestingly, we compare the proposed clustering

algorithm sbWFCM to a simple density-based WFCM

algorithm. We proceed as if we are interested in the quality

of the final results at hand. We statistically evaluate the

quality of the obtained partitions, as recorded by the

external ARI, for 20 runs of both algorithms for C ¼ 3 and

C ¼ 5 clusters under the same initial parameter settings.

Since the present case does not require any normality or

homoscedasticity of the analyzed samples, we use the non-

parametric statistical Wilcoxon signed-rank test to analyze

the results [41]. In other words, the test serves as a means

of addressing the question of how well the quality of par-

titions can reflect two different populations. The observed

distribution of the ARI over 20 independent runs of the

algorithms for a varying number of clusters is summarized

in Fig. 5 with the corresponding statistical results reached.

The significance level considered is given by a ¼ 0:05,

referring to a confidence interval of 95%. For example,

p� value\0:05 indicates the existence of a statistically

significant difference between the data samples being

analyzed. Based on these experiences, we can conclude

that the sbWFCM outperforms the standard density-based

WFCM for C ¼ 3 and C ¼ 5. Such improvement a purpose

of this type of algorithm; it is a convenient spin-off effect

of the elementary behavioural technique used to conceive

the clustering process. The improvements are noticed for

both number of clusters considered. In practical term, this

basically implies that, in this case, the simple density-based

WFCM is not able to clearly distinguish between data point

for the different workload status, as shown in Fig. 6; we

notice that the clusters identified by the algorithm are not

adequate with the actual classification of the data; for

example, in the upper right cluster exhibited in Fig. 6a, the

data points symbolized by black � are far away from the

center of the cluster.

6 Conclusion

In this paper, we further take advantage of a machine

learning technique for workload and VM performance

monitoring. We have proposed using our newly developed

weighted fuzzy clustering algorithm (sbWFCM) to identify

abnormal behaviours of VMs while running given

Table 4 ARI values obtained by

running sbWFCM algorithm

with unknown configurations

ARI

Memory use 0.83

CPU overload 0.79

Downtime 0.57
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workloads. This algorithm enables to determine the mem-

bership of an object to a cluster, based on its position

according to its neighbourhood, to build significant clus-

ters, i.e., clusters that correspond to the actual data

structure.

The proposed algorithm sbWFCM is inspired by the

collective movement of groups of starling birds. According

to Reynolds simulations, each starling movement’s direc-

tion depends on self-information, along with information

provided by other close starlings, during the flight. A

starling reacts to its neighbours and adapts its flight

direction progressively to follow its fellow starlings. The

coherence of the starling flock can thus be ensured by

grouping the birds in the same direction while maintaining

a distance from the other birds in the flock; the sbWFCM

algorithm follows this intuitive mechanism to build clus-

ters. The proposed algorithm involves grouping similar

elements of data based on a particular distance metric. This

last consists of a weight that drives clusters’ formation,

allowing items with the same neighbourhood and direction

to belong to the same cluster while maintaining distance

from other groups with different position in the feature

space.

The experimental results showed that the sbWFCM

could provide a number of reasonable partitions for dif-

ferent numbers of iterations pre-defined and validated by a

domain expert. Reasonable partitions are determined by an

internal validation index, in this case, the XBI. Moreover,

an external validity index (ARI) has been used to evaluate

the mechanism of anomalous behaviour detection using the

proposed algorithm applied to a dataset with missing

configurations. Also, we compare sbWFCM with an

existing density-based WFCM; results have shown that, for

both cases considered in this work, the proposed sbWFCM

outperforms this last by producing partitions with better

ARI scores.

This paper’s results demonstrate the ability of the pro-

posed clustering algorithm to identify abnormal behaviours

of workloads running within given VMs. However, the

detection process is of-line, which can be limited when

real-time detection is required. As prospects, we will

integrate our algorithm into an online unusual behaviour

detection framework, which exploits previously observed

sbWFCM WFCM
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performance and resource consumption data to build and

detect the patterns of previously observed irregularities.

Simultaneously, we will explore a new variant of sbWFCM

that can automatically scale the number of iterations nee-

ded to achieve the optimal partitioning results instead of

being adjusted by a domain expert.

A. Appendix: Evaluation criteria

The primary purpose of the illustration was to judge the

performance of the proposed algorithm. For the standard

FCM algorithm and its variants, the number of clusters C is

the most significant parameter. If C matches the unspeci-

fied number of subsets existing in the data, it is more likely

that the clustering process provides an effective insight into

the underlying structure of the data. Thus, two cluster

validity indices are used to verify the effectiveness of the

choice of C.

– The Xie–Beni Index (XBI): is an internal fuzzy

clustering index, defined as a ratio between the

compactness and the separation of the fuzzy clustering

algorithm. The XBI has been mathematically proven by

its dependence on Dunn’s index, a robust cluster

validity function [38]. The goal is to achieve a

clustering structure in which element in the dataset

strongly belongs to a certain cluster while maintaining

as much separation as possible from the centers of the

other clusters. The XBI can be mathematically

expressed as follows:

XBI ¼
PC

k¼1

PN
i¼1 ukijjxi � vkjj2

mini6¼k kvk � vik2
ð5Þ

Note that a low value of XBI signifies that the clusters

are compact and clearly separated.

– Adjusted Rand Index (ARI): is an external validation

index. It is the bias-adjusted formulation of the Rand

Index (RI) [39]. The RI measures the similarity

between a partition G, representing the ground truth

labels of items in the dataset, and a partition H

generated by the clustering process. It is given by the

following:

RIðG;HÞ ¼ p00 þ p11

p00 þ p01 þ p10 þ p11

¼ p00 þ p11

pt
ð6Þ

where p00 is the sum of the separated pairs in both G

and H partitions; p11 is the total number of pairs that are

joined together in both partitions; p01 (p10, respectively)

is the number of pairs that cluster in G (H, respectively)

but not in H (G, respectively); pt ¼
N
2

� �
¼ NðN�1Þ

2
is

the total number of pairs. As the value of the RI is not

stable, ARI is introduced to overcome this drawback by

considering the following:

ARIðG;HÞ ¼

P
g;h

pgh

2

� �
�

P
g

pg

2

� �
P

h

ph

2

� �

N

2

� �

1
2

P
g

pg

2

� �
þ
P

h

ph

2

� �� �
�

P
g

pg

2

� �
P

h

ph

2

� �

N

2

� �

ð7Þ

where pgh is the number of elements belonging to G

and H, pg and ph are the the number of elements within

G and H. We note that ARI takes values in the interval

[0, 1]; thus, values around 1 correspond to a high

resemblance between the partitions under

consideration.
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