
An explainable and efficient deep learning framework for video
anomaly detection

Chongke Wu1 • Sicong Shao1 • Cihan Tunc2 • Pratik Satam1
• Salim Hariri1

Received: 20 September 2021 / Revised: 20 September 2021 / Accepted: 28 September 2021 / Published online: 23 November 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Deep learning-based video anomaly detection methods have drawn significant attention in the past few years due to their

superior performance. However, almost all the leading methods for video anomaly detection rely on large-scale training

datasets with long training times. As a result, many real-world video analysis tasks are still not applicable for fast

deployment. On the other hand, the leading methods cannot provide interpretability due to the uninterpretable feature

representations hiding the decision-making process when anomaly detection models are considered as a black box.

However, the interpretability for anomaly detection is crucial since the corresponding response to the anomalies in the

video is determined by their severity and nature. To tackle these problems, this paper proposes an efficient deep learning

framework for video anomaly detection and provides explanations. The proposed framework uses pre-trained deep models

to extract high-level concept and context features for training denoising autoencoder (DAE), requiring little training time

(i.e., within 10 s on UCSD Pedestrian datasets) while achieving comparable detection performance to the leading methods.

Furthermore, this framework presents the first video anomaly detection use of combing autoencoder and SHapley Additive

exPlanations (SHAP) for model interpretability. The framework can explain each anomaly detection result in surveillance

videos. In the experiments, we evaluate the proposed framework’s effectiveness and efficiency while also explaining

anomalies behind the autoencoder’s prediction. On the USCD Pedestrian datasets, the DAE achieved 85.9% AUC with a

training time of 5 s on the USCD Ped1 and 92.4% AUC with a training time of 2.9 s on the UCSD Ped2.

Keywords Security � Video surveillance � Anomaly video analysis � Abnormal event detection � Deep features �
Context mining � Interpretability

1 Introduction

Security cameras are becoming widely used and powered

with networking technologies, improved surveillance

capabilities, and advancements in storage systems. It has

been observed that the installation of surveillance cameras

significantly reduces the crime rate. For example, the total

crime in downtown Baltimore (Maryland, USA) reduced

about a quarter in four months after installing the surveil-

lance camera. Similarly, violent crime declined about 20%

in Chicago (USA) [1]. Besides the public security field,

surveillance cameras are also applied on business opera-

tions, health care, smart home applications, etc. The

industry research HIS Markit reported that there existed

approximately 770 million security cameras worldwide in

2019, and the total number of security cameras will

increase to 1 billion before 2022 [2]. However, storing and
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manually evaluating a large amount of data from many

surveillance cameras are no longer practical, which started

the discussions and studies in anomaly detection in

surveillance. Moreover, the detection using opaque models,

such as the deep learning models, lacks explanations of

how the model decides the results. Therefore, the inter-

pretability of anomaly detection in the video has become a

main challenge in the surveillance system. In this paper, the

anomaly is defined as the abnormal behavior and event in

the surveillance videos. The objective of explainable video

anomaly detection is to autonomously detect an anomalous

event in the video recording with supportive explanations

(i.e., not only giving the result of if an anomaly occurs but

also explaining why it is considered as an anomaly—cur-

rent studies mainly focus on just detection without suffi-

cient explanation).

Powered by the huge performance improvement of deep

learning methods, many autoencoder-based video anomaly

detection approaches have been studied in the last few years.

For example, Appearance andMotionDeepNet (AMDN) [3]

trained deep convolutional neural networks for processing

the input raw RGB (Red, Green, Blue) image and the optical

flow map. Two-Stream Variational AutoEncoder (VAE) [4]

improves the detection accuracy by adapting the VAE.

(Spatio-Temporal Adversarial Network) STAN [5] detects

the anomaly by using the Generative Adversarial Network

(GAN). For explaining the anomaly detection results, cur-

rently, many methods rely on highlighting the suspicious

region without further description. For instance, the

University of California San Diego (UCSD) Ped1 and Ped2

datasets provide pixel-level anomaly localization as the

dataset. Some methods [3, 4, 6–8] not only show the frame-

level anomaly detection but also shows the pixel-level

anomaly detection result.

However, current approaches have faced a number of

challenges. First, many deep-learning-based approaches need

to train models using large-scale datasets [9] and require large

model complexity [10]. For example, STAN has 17 convolu-

tional layers [5]. However, they pay little attention to model

complexity reduction. Hence, these methods may lead to high

overhead, long training time, and therefore impede the devel-

opment and slow the deployment. The highmodel complexity

also requires careful parameter tuning [11, 12]. Second, many

real-world video anomaly detection tasks are still suffering

from insufficient training data (i.e., anomaly detection requires

enough training data to represent regular patterns). As a result,

it is hard to reach the claimed performance on the benchmark

dataset for the complex models when applying them in many

real tasks. Third, the deep learningmodel is mostly treated as a

‘‘black-box’’ whose decision-making process is hard to inter-

pret. In video anomaly detection, this problem is reflected in

the insufficient explanation for the anomaly detection results.

The pixel-level anomaly detection can be used to interpret the

anomalies.Yet, the detectionperformance ismuch lowerwhen

using them to explain the anomaly detection result than the

frame-level results. For example,AMDN[3] achieves a frame-

level AUC (area under the receiver operating characteristic

curve) 92.1% on the Ped 1 dataset, but it only has pixel-level

AUC67.2%; Lu et al. [8] achieve frame-levelAUC91.8%and

pixel-level AUC 63.8% on Ped1 dataset. Also, pixel-level

anomalies usually propose higher computation workload

requirements to the hardware because of the patch-based

testing scheme. In Two-Stream VAE [4], the running time of

pixel-level anomaly detection is 50–100 times slower than the

frame-level. Furthermore, the anomaly localization only

reflects the abnormal spatial relationship in the same image.

The localization is less explainable when presenting the tem-

poral anomalies such as a sequence of unusual activities, the

combination of objects, and the crowd activities, where the

contextual features could be more explainable with the self-

explaining descriptive feature. Therefore, it is imperative to

provide a deep learning framework with a lightweight model,

workable with a small training dataset, and explainable for the

anomaly detection results.

Inspired by the recent studies showing that SHapely

Additive exPlanations (SHAP) are capable of interpreting

model prediction [13], we propose a novel deep learning

framework that uses high-level features from existing pre-

trained CNN models to train the anomaly detection model

and combine SHAP and autoencoder to explain the anomaly

alerts. This leads to a significant complexity reduction in our

anomaly detection model without losing its model inter-

pretability. Further, we integrate contextual features in our

video analysis by exploring the inter-object relationship and

further improving detection accuracy and performance. In

video analysis, context is used to define the semantics

(meaning) of the observed motion and interactions between

humans and objects [14]. Hence, we combine the features

derived from pre-trained Convolutional Neural Networks

(CNNs) (such as object position category in background

segmentation, multi-object tracking, and object classifica-

tion) to obtain the context information. To our knowledge,

this is the first work using SHAP of autoencoders to explain

video anomaly alerts. Our contextual mining provides high-

level features as the autoencoder input for SHAP interpre-

tation. The integration of SHAP to video anomaly detection

provides a more transparent and interpretable decision-

making process for video anomaly detection.

The remainder of this paper is organized as follows. In

Sect. 2, we discuss the related research on exploring con-

textual information in video anomaly detection and inter-

preting video anomaly detection results. In Sect. 3, we

describe our anomaly surveillance system architecture, the

anomaly detection model, as well as the video anomaly

explanation approach. In Sect. 4, we present the
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experimental results of our video anomaly analysis.

Finally, we conclude this paper in Sect. 5.

2 Related work

In this section, we first introduce the current research and

application of video anomaly detection. Then, we discuss

the interpretability of video anomaly detection and the

approach of deep learning model interpretation. Finally, we

show the related fundamental work to generate meaningful

contextual features.

Traditional video anomaly detection methods proposed

non-deep learning models using low-level features, such as

probability model with dynamic textures [6] or optical flow

[15], Social Force model with grid particle on image [16],

and Gaussian Mixture model with compact feature set [17].

Here optical flow is the motion of objects between con-

secutive frames and the grid particle is the anchor point for

tracking the motion. These features are hard to explain

since they do not contain the descriptive information of

anomalous events. In recent years, deep learning-based

approaches have gained popularity due to their excellent

performance on model accuracy. The deep learning meth-

ods introduce CNNs for feature extraction and autoencoder

for anomaly detection [3, 4, 18]. Based on the CNN and

autoencoder, applying Generative Adversary nets (GAN)

achieves state-of-art performance with 97.4% AUC for the

UCSD Ped1 dataset [5, 19], while GAN is notoriously

computationally intensive. These deep learning methods

focus more on detection accuracy but suffer from the

insufficient explanation of the model decision due to the

‘‘black-box’’ nature of the deep learning network. They

only provide the suspicious region of the anomaly but

missing further explanation. In real-world tasks, such as

city surveillance, companies like Hikvision embedded

anomaly detection capabilities in their video surveillance

products, providing capabilities to detect abnormal

behavior like sudden running or wandering [20]. Their

solution also includes face recognition for blacklist alarms

(e.g., trigger alert when detecting a fugitive face). How-

ever, they use simple anomaly detection logic and cannot

handle complex scenarios such that if an event is abnormal

but has not been listed on the blacklist, then this event will

never be alerted. The interpretation of the detected event is

only decided by the user-defined blacklist [20].

In video anomaly explanation, most deep-learning

methods explain anomalies by displaying error maps (i.e.,

the distance map between reconstrued input and original

input). Zhao et al. [21] display the reconstruction error map

while highlighting the anomaly regions with rectangles.

Nguyen et al. [22] show the error map of optical flow and

the anomalous regions has deeper color. Xu et al. [3] use

both image and optical flow maps as the input, then com-

pute the error map by pixel-level fusing. Instead of using

the error map. Some other methods use explainable fea-

tures to explain video anomalies. Mahadevan et al. [6]

locate the anomaly regions with the discriminant saliency

criteria [23] and provides the spatial abnormality map by

computing the saliency at each location. Zhu et al. [14]

propose a structural model to learn the patterns of the inter-

relationship between activity classes. Scene graph consists

of object nodes and the relationship between nodes and has

better interpretability and reasoning capability. Chen et al.

[24] propose an interpretable video anomaly detection

approach by using scene graphs as input. The anomaly

detection approach in [24] is also more transparent than the

deep learning model since it consists of multiclass SVM

and multinominal Naı̈ve Bayes. Those methods provide

interpretability but performance is relatively low since

there is not a methodology to adapt the deep learning

method while maintaining interpretability. Our approach

achieves a comparable performance of the state-of-the-art

method while keeping the interpretability by integrating

SHAP.

SHAP is a unified explanation method to interpret model

prediction and it has been widely used on model-agnostic

prediction interpretation, especially on the deep learning

model interpretation. Bulathwela et al. use SHAP to

explain the model prediction of video lecture engagement

[25]. Zhou et al. explain the model prediction of factors

affecting injury severity by using SHAP [26]. Kristjan-

poller et al. interpret the model prediction of evaluating the

quarantine policy for COVID-19 by using SHAP plots [27].

The method proposed by Antwarg et al. [28] is the first

work to use SHAP to explain autoencoder for anomaly

detection. The method attributes the anomaly detection to

the input feature SHAP value. It verifies the effectiveness

of the method with four datasets and expert evaluation.

SHAP for autoencoder proposed by Antwarg et al. [28]

provides us a perspective to convert existed deep video

anomaly detection algorithm for improving the inter-

pretability. Since SHAP for autoencoder explains the

model output by spotlighting the important input features,

the understandable features should be considered first. The

input features can be classified as low-level features and

high-level features [14] by the content of semantic infor-

mation. For example, the RGB value and Optical flow are

low-level features since the user cannot get meaningful

information from those values; as a comparison, the object

label and annotation are the high-level features. The high-

level features provide semantically meaningful activities,

though they could have a higher error rate in classification

tasks. With the development of the convolutional neural

net (CNN)-based computer vision applications, the accu-

racy of image classification, object detection, and image
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tracking has achieved better performance compared to the

traditional methods like the post-processing method pro-

posed by Gao et al. [29, 30]. This fact inspires many

researchers to use CNNs to extract features [22, 31]. Using

high-level features for anomaly detection can reduce model

complexity and improve anomaly alert interpretability

[24]. Contextual features are semantically meaningful

features that can be mined from other high-level features. It

captures relationships among the basic event such as the

semantic relationships between action, activities, human

pose, social role, etc. Wang and Ji propose event recog-

nition methods by contextual features [32]. Zhang et al. use

the semantic context information, such as motion pattern

and path, to improve abnormal event detection in traffic

scenes where an abnormal event is defined as vehicles

breaking the traffic rules by considering the trajectories

[33]. Pasini et al. present a semantic anomaly detection

method to detect anomalies and provides an inter-

pretable explanation [34]. They construct the semantic

vector from the textual labels obtained from the pre-trained

image labeling software.

To reduce the training workload and improve the model

performance, many deep learning approaches integrate the

pre-trained models. Computer vision tasks with meaningful

output (object detection, object tracking, background seg-

mentation, etc.) are wildly using pre-trained models. For

object detection, He et al. introduced ResNet [35] in 2015

and the model was extremely successful by winning the

first price of several object detection tasks including

ILSCRC 2015 (with 3.57% top-5 error rate) and COCO

2015 (with 48.4% mean average precision). It has been

wildly used as the pre-trained model and can be found in

the machine learning platform TensorFlow and Pytorch.

For background segmentation, Kirilov et al. propose

Panoptic Feature Pyramid Networks (PFPN) [36] to solve

the panoptic segmentation task (unifying instance seg-

mentation and semantic segmentation). This model and its

variant show great segmentation performance and have

been used as the pre-trained models in tomography diag-

nose [37], real-time object detection [38], person detection

[39], etc. Although ResNet and PFPN are popular when

used as the pre-trained models, to our best knowledge, our

work is the first video anomaly detection approach that

uses them directly as pre-trained models without further

fine-tune training process.

3 Proposed method

3.1 Framework design and proposed method

Most of the existing deep learning studies for video

anomaly detection require a large volume of normal video

stream training data, resulting in high model complexity

and a long training time [11]. Also, the explanation process

for detection is difficult since there are no semantic features

that can be easily interpreted. Most of them only provide

the abnormal event localization, which cannot reflect the

temporal causal or the unusual human-object relationship

[22]. To address these limitations, we propose an

explainable and efficient deep learning framework for

video anomaly detection. This framework uses pre-trained

models with meaningful outputs for visualization and

interpretability and captures the required features related to

abnormal events. Our proposed architecture is shown in

Fig. 1, where our system is divided into three layers:

Hardware, processing, and application layers.

Fig. 1 Design of the proposed deep learning framework for video

anomaly detection. The hardware layer provides the raw data stream

to the middle layer. The processing layer embedded with pretrained

Deep Learning model generates the explainable high-level features to

the application layer. In the application layer, the high-level features

are visualized. It generates the contextual features based on the

definition of the anomaly behavior
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We consider the hardware layer as a set of distributed

cameras and related drivers, which will transfer raw video

streams into the system. The camera selection, position, and

orientation decide the overallmonitoring area andprovide the

associated coordination of the region of interest. For example,

if the user needs to monitor the car plates, then the high-

resolution camera will be selected. However, these problems

of camera orientation and focus areas are not the main focus

of this work. The camera operation-related tasks like camera

hand-off and data fusion are handled in the processing layer.

In the processing layer, the raw video data are preprocessed

and made appropriate representation based on the deep

learning model selection, further required by the surveillance

task. The surveillance task in the processing layer may vary

depending on the application layer’s explanation requirement

and the task definition. For example, the main focus in a

supermarket is preventing shoplifting, whereas, in a train

station, we may use multi-object tracking to provide crowd

statistics. Then, the outputs of the selected surveillance tasks

are combined and sent to the application layer for anomaly

detection and explanation. The application layer provides the

user interface of the surveillance systemwhere it includes the

functionalities like video visualization and camera control.

The user can provide more information for the anomaly

behavior based on the defined rules. For instance, in the traffic

system, there must be rules that govern the movement of

vehicles; for example, when the traffic light color is red, the

car should stop. The rules can be implemented as relation-

ships between traffic light colors and vehicles in the object

classification task [40]. The high-level features will be fed

into the anomaly detection module to generate alerts to the

user whenever an abnormal event is detected. Furthermore,

the sensor tasking module in the application layer receives

commands from the user to control the behavior of the

cameras, like turning and zooming in/out to receive more

detailed information on the region of interest.

To illustrate the deep learning framework for video anomaly

detection shown in Fig. 1, we select the outdoor surveillance

task. Compared to the indoor surveillance task [41], the outdoor

surveillance task is more complex, with more objects to be

analyzed, a larger region to monitor, and more variations in the

background (parking lot, avenue, playground, etc.). To address

the outdoor surveillance task with the proposed deep learning

framework, we present a novel explainable video anomaly

detection method (summarized in Fig. 2). This method pro-

cesses the contextual features (such as human location and

background categories relationship) directly from the pre-

trained model outputs. For our case of crowd surveillance, we

choose pre-trainedmodels for background segmentation, object

tracking, and object classification. By learning features from

pre-trained model output, we focus our research effort on only

developing the anomaly detection method to study the indi-

vidual frames, reducing the complexityof theanomalydetection

model. We also propose an algorithm to explain the video

anomaly detection results of abnormal behaviors and events by

integrating SHAP for autoencoder [28]: (1) The proper repre-

sentation of anomalies in videos. For example, a keyframe

containing the most anomalous activity information can be

selected as the anomaly representation. (2) Explanation of the

decision-making of the anomaly detection. To address these

problems, our anomaly explanation utilizes video summariza-

tion and generates interpretations of the abnormal keyframes

with SHAP for autoencoder.

3.2 Video anomaly detection

We denote a video as H ¼ fh1; h2; . . .; hng, where hi rep-
resents the ith video frame and i ¼ 1; 2; . . .; n. The problem

Fig. 2 The architecture of the proposed explainable anomaly

detection framework. In the upper part, the CNN pretrained models

generate the high-level features from the video stream and feed it into

the denoising autoencoder with anomaly temporal denoising. In the

lower part, the video anomaly explanation consists of keyframe

selection, SHAP for auto-encoder, and the sorted explainable features
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of frame-level video anomaly detection can be defined as

follows.

Scorei ¼ F hið Þ ð1Þ

where F denotes the prediction function and Scorei rep-

resents the prediction score of the video frame. Conven-

tional deep learning-based video anomaly detection

methods get F through learning end-to-end deep model

[11]. More specifically, the models use the input video

frame to directly get Scorei. However, deep model training

in an end-to-end fashion lacks interpretability and needs a

long training time. To attain accurate, explainable, and

efficient results, we extract high-level features from pre-

trained models when designing F . Generally, video anal-

ysis tasks need to perform image segment, object identifi-

cation, and tracking. Besides, context mining is often used

for video analysis. With this kind of data, we can predict

and interpret a video frame comprehensively. Hence, we

design a function F that firstly uses pre-trained CNN

models to obtain the high-level concept and context fea-

tures based on background segmentation, object classifi-

cation, multi-object tracking, and semantic context

information, and then, uses DAE with temporal denoising

process to predict the video frame base on these features.

The features are also used by DAE to explain anomalies

through SHAP and video summary. According to the above

consideration, an explainable and efficient deep learning

framework is proposed. The architecture of the proposed

framework for video anomaly detection is shown in Fig. 2.

3.2.1 Feature extraction

There exist many possible causes of abnormal events, such

as abnormal object appearance, abnormal motion, and

abnormal object location. We use pre-trained models such

as background segmentation, object classification, and

multi-object tracking to extract the anomalies in a video.

To build the background segmentation feature, we consider

the Panoptic Feature Pyramid Network (PFPN) [36]. As

discussed in Sect. 2, PFPN provides instance segmentation

and background segmentation and has proved to be a

stable solution by being wildly used as a pre-trained model

on many other fields [37–39]. We run this CNN-based

model on the Detectron2 platform (The Facebook AI

Research software system) [42]. It provides state-of-art

detection and segmentation algorithms and a large set of

baseline results and pre-trained models. PFPN solves the

unified task of instance segmentation and semantic seg-

mentation (for stuff classes: amorphous background

regions, e.g., rivers, wall). The model is pre-trained on the

COCO train2017 dataset and validated on COCO val2017

[43]. COCO dataset is a large-scale object detection dataset

and proving over 330,000 images and 1.5 million object

instances. The large volume of training data provides better

accuracy and generalization for the pre-trained model. This

model has an inference speed of 0.067 s per image and

masks average precision (AP) of 38.5 on COCO val2017

with GPU V100. The speed allows us to have near-real-

time (up to 15 FPS) visualization of the background seg-

mentation results. We only select semantic segmentation

for background segmentation. The output can be written as

LMb�Nb�Cb
¼ Fbg Tð Þ ð2Þ

where for the input image at time T , the PFPN model Fbg

outputs a matrix with Cb classified background labels as

well as height Mb and width Nb information. Here we note

that this model can be trained on different datasets to

improve the segmentation result. For the video anomaly

detection task, the background segmentation will only

update their results when the vision content changes (e.g.,

the changing of the ambient light, turning the camera

direction, switching the camera). We did not directly utilize

the matrix output of background segmentation into the

anomaly detection model. Instead, we perform a contextual

feature extraction method to process the output and then

convert it to a scalar output.

Considering most outdoor activities involving pedes-

trian movement, we use the Joint Detection and Embedding

(JDE) model [44] to get the pedestrian detection and

tracking feature. JDE is a variant of real-time object

detection YOLOv3 (you only look once, version 3) [45] for

real-time multi-object tracking. The JDE model is pre-

trained on the MOT-16 training set. The model inference

speed is around 38 FPS with the input frame size 576�
320 pixels on an Nvidia Titan Xp GPU. The output is

person tracking results, which can be written as:

pĉ; sĉ; vĉ ¼ Fot ĉ; Tð Þ ð3Þ

where p
bc
; s
bc
; v
bc
represent the box coordinates, size (width

and height), and the velocity of the person with ID bc. Given

an image at time T as the input of the multiple objects

tracking model Fot, we will obtain the above outputs for

each person. The tracking feature could provide statistical

information for each person (trajectories and average

speed). We will use these features as the crowd activity

analysis in the context mining module.

For the appearance feature, we consider the model

ResNet-101 (R101) [35] implemented on the Detectron2

platform. As we mentioned in Sect. 2, ResNet is one of the

most successful object detection architectures and has been

integrated into many official machine learning platforms,

such as TensorFlow and Pytorch. We choose ResNet as the

object detection backbone of our deep learning framework

by considering its extensive usage and outstanding per-

formance. It has been pre-trained on the COCO train2017

dataset. The output includes 80 object categories. The
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R101 model is a CNN-based model that is 101 layers deep.

The pre-trained model has an inference speed of 0.051 s

per image and the box AP of 42.0 on COCO val2017 with

GPU V100. The output of the R101 model is written as

CKod
¼ Fod Tð Þ ð4Þ

where the output is a vector with a length equal to the

output categories number Kod. When given the frame input

at time T , the R101 model FodðTÞ will produce category

outputs as a vector. We directly use this vector as an input

for the anomaly detection model. We note here the object

classification model is crucial to the performance of the

video anomaly detection since many abnormal frames are

followed by the appearance of the unseen object. We

choose the COCO dataset to make it the baseline for the

context mining comparison.

3.2.2 Context mining

Even though pre-trained models provide useful features, we

still need inter-relationship information between objects.

Hence, we process contextual features to improve anomaly

detection performance. For that, we classified the extracted

contexts as spatial context, temporal context, and group

context. The contextual features can reflect prior knowledge

from the user who evaluates the pre-trained models’ visu-

alization results. If the visualization shows the pre-trained

model result is wrong, then the related erroneous context

should be adjusted or removed. For example, the user can add

a weapon appearance into a blacklist to trigger an alert when

a weapon shows up in the video frame. By allowing users to

add self-defined contextual features, the searching space for

anomaly events can be significantly reduced.

Features that capture the relative spatial relationships

among persons or objects of interest are defined as spatial

context. We denote the mining spatial relationship process

between different pre-trained models result as Rspatial. The

spatial relationship including the intra-spatial relationship

and the inter-spatial relationship. The intra-spatial rela-

tionship represents the inclusion result S1; S2; . . .; SC of

regional classifications L with height Mb and width Nb and

the not object detection/tracking results with coordinates

pi; i ¼ 1; . . .; not. The inter-spatial relationship consists of

the adjacent object combinations. One type of spatial

anomaly is a certain type of object that is not allowed to

appear in a certain type of region. For instance, ‘‘trucks are

not allowed to drive on the sidewalk’’. In our case, we use

the following formula to represent the spatial relationship

between object tracking and background segmentation:

OCb�Ct
¼ Rspatial Fbg;Fot

� �

ð5Þ

where the output represents the regional relationship

between Cb types region and Ct types of tracking objects.

The Rspatial Fbg;Fot

� �

denotes considering the intra-spatial

relationship Rspatial between models Fbg and Fot. Some

approaches learned trajectories in training data to determine

feasible areas, which means that regions without moving

objects will be treated as prohibited regions. For example,

Zhao et al. predict car trajectory and label the moving car on

the Traffic dataset [21]. This kind of mapping has two major

shortages. Firstly, it needs to collect enough trajectories in

training data to cover the feasible region, which is hard,

especially when the monitoring area is large. Secondly, the

location will degenerate when the camera position or ori-

entation is adjusted. By using the spatial relationship

between tracking objects and the background type, the

above shortages will be overcome since we do not consider

the absolute coordinates but the categorized relationship.

Features that capture the relative temporal relationships

among the temporal attribute of persons or objects of interest

are defined as temporal context. We denote the mining

temporal relationship process among the pre-trained models

result with timestamps as Rtemporal. The temporal context is

widely used in the activity recognition task since the current

action could imply the next action. For example, ‘‘get off the

car’’ is likely to have ‘‘closed-door’’ behavior followed. In

our case, we could consider the speed history of each person

then update the Overspeed sign:

STemp ¼ Rtemporal Fotð Þ ð6Þ

where STemp is the frame-level Overspeed sign in the time

range T . Rtemporal Fotð Þ denotes the relative relationship

Rtemporal among the results of object tracking output Fot.

This feature smooths the speed measurement of the object

tracking output. In frame-level anomaly detection, the

object speed in each frame is not a reliable feature since

many movement speeds are periodic (walking, running,

riding a bicycle with changing direction, etc.). In this case,

we consider the maximal average speed for each person

and find the corresponding appearance in each frame.

Finally, we consider mining the group context

RgroupðFotÞ (frame-level crowd activity statistic) from

object tracking features. It includes the min, max, and

median value of the coordinates, and speed. We also use

the sum of residuals in the least-squares solution of coor-

dinates and speeds to measure the crowd sparsity. When all

persons move in the same direction, then the sum of

residuals will equal zero since the moving direction falls

into line (each residual is zero).

3.2.3 Anomaly detection method

For anomaly detection, we are mainly focusing on the

behavior analysis of pedestrians by applying denoising

autoencoder (DAE), which is a variant of the basic
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autoencoder (AE) [46]. DAE is trained through recon-

structing a clean input x by a corrupted input bx,

wherebx ¼ xþ s � t, s is the noise factor, and t is the noise

data distribution. In a basic one-layer DAE, the forward

propagation for a basic AE with one hidden layer is:

h ¼ Q W 1ð Þ
bx þ b1

� �

ð7Þ

y ¼ Q W 2ð Þhþ b2
� �

ð8Þ

where h is the vector of the hidden layer unit activities, y is

the reconstruction feature vector in the output layer, Q is

an activation function, W 1ð Þ is the weight matrix between

the input layer and the hidden layer, W 2ð Þ is the weight

matrix between the hidden layer and output layer, and b1
and b2 are the offset vectors. A basic DAE is learned by

minimizing the loss function L x; yð Þ. Deep DAE can be

achieved by using multiple hidden layers that can learn the

complicated distribution by given samples due to its mul-

tiple feature representation spaces [47]. The backpropaga-

tion algorithm [48] is used to train DAE. Our DAE uses the

sigmoid activation function for each hidden layer and

identity function for the output layer.

One important aspect of our version of DAE is that we

use batch normalization (BN) that enables performance

improvement and more stable training of DAE [49]. BN

uses the mean and variance of batches of training data to

perform batch normalization. As a single unit in DAE, its

output is given by:

yNN x
0
: w

0
; b

0� �

¼ g x
0
w

0 þ b
0� �

ð9Þ

where w
0
is the learned weight, b

0
is the learned bias, and x

0

is the input. After applying BN, its output is given by:

yBN x
0
: w

0
; c; b

� �

¼ g
x
0
w

0 � l x
0
w

0� �

r x
0
w

0ð Þ cþ b

 !

ð10Þ

where x
0
is a batch training data that can compute the mean

l and the standard deviation r. In the test phase, the

parameters c and b learned by the original model param-

eters are used to represent the ranges of inputs to g.

Our DAE architecture is shown in Fig. 3. The number of

units in the input is determined by the input feature space.

To reconstruct observations, the output layer also has the

same number of nodes in the input layer. We add three

fully connected hidden layers into DAE to form deep DAE.

The layer nodes numbers are 50, 30, and 50, respectively

(this configuration set provided the best results based on

our experiments). The code layer (The middle layer with

Fig. 3 The architecture of DAE for video anomaly detection
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the 30 nodes) stores the compressed representation space

for the input features. Gaussian distribution noise matrix is

added into the input vector. Our version of DAE learns the

parameters using Adam gradient-based optimization algo-

rithm [50] with mini-batch training to minimize the mean

squared error (MSE) used as the reconstruction error. After

completing the training phase with denoising Gaussian

noise, our DAE can detect the anomaly. An observation

that belongs to normal or abnormal is determined by

reconstruction error. During the test phase, an observation

is normal if it has a low reconstruction error while it is

abnormal if its reconstruction error is large.

3.2.4 Temporal denoising

The frame-level output anomaly scores are determined by

the reconstruction error between feature input and

autoencoder feature output. In our pre-trained-CNN

method, feature values are easily affected by the false alerts

of the pre-trained model, such as the misclassification of

the object detection results. The outlier value in the

anomaly score curve is more likely introduced by the false

alert of the pre-trained model input. To remedy this prob-

lem, we present the post-temporal denoising scheme after

the autoencoder output based on the assumption that the

consecutive frames have similar feature distribution.

Compared with other smoothing functions (such as Tri-

angular filtering and average smoothing), the Savitzky–

Golay filter (S-G filter) could better preserve the area, posi-

tion, andwidth of the peak.Hence, in our temporal-denoising

process, the reconstruction errors of a series of frames

e1; e2; . . .; en is filtered by the Savitzky–Golay filter [51]:

bej ¼
1

Nnorm

Xi¼ws

i¼�ws

�
a i
ejþi ð11Þ

where Nnorm is the normalizing factor, �
a i is the convolu-

tion coefficient determined by the polynomial degree, ws is

the window size. Note here the window size and the

polynomial degree of the S-G filter are decided by the pre-

trained model accuracy. If the false-alert rate of the pre-

trained model is higher, the required smoothness decided

by �
a i and ws can be increased accordingly.

3.3 Video anomaly explanation

To increase the interpretability of our video anomaly

detection method, we propose a video anomaly explanation

method by using SHAP (see the lower part of Fig. 2). We

first introduce the background of our method, including

SHAP, and using SHAP to explain the autoencoder. Then,

we demonstrate how our method integrates SHAP and

autoencoder to explain the anomaly detection results.

3.3.1 SHAP (SHapely Additive exPlanations)

With the rapidgrowthofdeep learning research, the accuracyof

the method has been significantly improved. However, there is

also an urgent need for a more transparent model to explain the

model decision-making. In some applications that emphasize

interpretability, researchersprefer touse a simplemodel like the

linear model to predict even its accuracy is lower than other

complexmodels. For explaining the prediction results of black-

boxmodels, manymethods have been proposed to interpret the

model output, such as DeepLIFT [52] and LIME [53]. To

generalize those related methods, Lundberg and Lee propose

SHAP (SHapely Additive exPlanations) as a unified approach

to interpret model prediction [13].

An explanation model gex can be expressed as:

gex z
0� � ¼ /

0
þ
PMin

i¼1/iz
0
i ð12Þ

where z
0
is the simplified binary input vector with length

Min and value 0 or 1. The original input xf can be mapped

from the simplified input xs ¼ hxsðx
0
sÞ and

gex z
0� � � f exðhxsðz

0 Þ. Once we found the result of the

explanation model, the weight /i explains the importance

of the input feature z
0
i. /i can be calculated from game

theory results, where the /i is known as Shapely value.

The weighting kernel pxs can be used to approximate the

Shapely value [13], which are given by:

pxs z
0� � ¼ Min � 1

ðMinchoosejz0 jÞ z0j j Min � z0j jð Þ ð13Þ

where z
0�
�

�

� is the length of non-zero elements. The loss

function L for optimization is defined as:

L f ex; gex; pxsð Þ ¼
P

z
0 2Z f ex h�1

xs
z
0� �

� �

� gex z
0� �

h i2

pxs z
0� �

ð14Þ

By minimizing the loss function L over the training

dataset Z, the approximation of Shapely value can be

calculated:

n ¼ argmin
gex2G

L; gex; pxsð Þ þ X gexð Þ ð15Þ

where X is the penalty term of gex complexity.

3.3.2 Using SHAP to explain autoencoder

Autoencoder has been widely used on anomaly detection

tasks [54]. However, there is little research on explaining

the results of the autoencoder. Based on the model-agnostic

explanation method kernel SHAP, Antwarg et al. propose a

method to explain the anomalies detected by autoencoder

[28]. The main procedure of using SHAP to explain the

autoencoder are summarized as follows:
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(1) Given the trained autoencoder and input instance, the

features with top reconstruction errors are selected as

the target output features.

(2) For each selected high error feature, fit the SHAP

explainer with training background set, then use

SHAP explainer to attribute the input features for

predicting these high error features. In this step, the

target function for SHAP to approximate is the

selected feature element in the autoencoder output.

(3) The input features can be classified as contributing and

offsetting features based on whether the reconstruction

error is negative and positive. The contributing feature

means this feature pushes the predicting value away

from the true value, while the offsetting feature pushes

predicting the value towards the true value.

This method inspired us to design and implement an

explainable autoencoder for video anomaly detection.

3.3.3 The proposed method for video anomaly explanation

We propose a novel method for explaining video anomaly

detection. Our method first uses a video summary to find the

representative frames in a video with anomalies, then

explains the autoencoder output of the keyframes using

SHAP. The output is the sorted features by the importance of

contributing to the anomalies in the video,which explains the

video anomaly detection decision-making process.

The algorithm calculates the explainable video features

using pre-trained models and trained denoising autoen-

coder to process the raw video frames (see Algorithm 1).

Usually, consecutive frames are similar; thus, in practice,

to reduce the complexity, it is widely accepted to remove

the consecutive frames when they have the minimum

amount of difference. Hence the first step of Algorithm 1 is

to uniform sample the input video in a fixed interval to

eliminate the redundant frames. In video summary, the

algorithm still can summarize the major information of the

video even the FPS is lowered to 5 [55]. Next, we get the

feature set from the sampled frames using the pre-trained

models. Then, the feature set is clustered by a K-means

algorithm [56]. The nearest frame to the cluster center is

the representative frame. Finally, the frames are filtered

with the autoencoder anomaly scores since we focus on

explaining the anomalies. We then explain the filtered

output keyframes.
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Once we find the keyframes that we are interested in, we

use Algorithm 2 to get the most important features for each

frame contributing to the anomalies. Algorithm 2 requires

the input frame features, trained autoencoder, and the

background set. The background set is part of the samples

that represent the dataset for training the SHAP model. In

our case, it consisted of the samples of the high-level and

contextual features. The reconstruction errors are first

calculated by comparing the distance between autoencoder

input and output. Then we get the top error features by

sorting the reconstruction errors. The features with a high

error are considered as the significant factor in deciding

whether the instance is abnormal. For each high error

feature, we treat the autoencoder as a multi-input–single-

output function to use SHAP to explain the prediction

concerning the certain input instance. Depending on the

positiveness of the reconstruction error, the related features

of the high error feature can be classified into contributing

features and offsetting features.

We sorted the feature by two different methods: the

mean of SHAP value and the mean of absolute SHAP

value. Intuitively, the sum of the SHAP value should

indicate the importance of a certain feature contributing to

the anomaly decision. However, many factors can affect

the accuracy of the explainable model (such as the back-

ground set selection, the selection of the number of error

features, etc.). Some major features have a small mean of

SHAP values because the contributing value and offsetting

value from different error features are neutralized. So we

consider the feature importance from the sorted order of the

mean of SHAP value and the mean of absolute SHAP

value.

Finally, the important features of each key abnormal

frame are summarized as the explanation of the anomalies

in a video. We present the workflow of video anomaly

explanation in Fig. 4. In shorts, our proposed method can

be summarized as follows. First, select keyframes by uni-

form sampling the raw video and clustering the rest frames

by high-level features. Then, select anomalous keyframe

by the anomaly score and explain the keyframe with SHAP

Top k explainable feature

return top k1 features, top k2 features
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for the autoencoder method. Finally, sort the most impor-

tant features by SHAP value, and use them to explain the

anomalous event in the video.

4 Experimental results and evaluation

4.1 Dataset

One of the most common outdoor activities is the move-

ment of pedestrians. To evaluate our proposed method for

outdoor activities surveillance, we show the anomaly

detection result on the UCSD Ped1 and Ped 2 datasets [6].

The UCSD datasets provide video of people on pedestrian

walkways at the University of California San Diego. As a

popular video anomaly detection public dataset, it has been

wildly used as the evaluation of video anomaly detection

algorithm. The Ped1 dataset has 34 training videos and 36

testing videos. Each video consists of 200 frames with

238� 158 pixels at 30 FPS. The Ped2 dataset has 16

training videos and 12 testing videos. The video frame

number of the Ped2 dataset ranges from 120 to 180 frames

with 360� 240 pixels. The training video only includes

pedestrians. Both Ped1 and Ped2 provide completed frame-

level abnormal labels and partial pixel-level abnormal

labels. In this experiment, we only consider the frame-level

samples since our work mainly considering the contextual

features. The abnormal event includes unexpected entities

(bicycle, skateboard, motorcycle, etc.), irregular trajectory

(deviate from the major moving direction), and entering the

prohibitive region (walking on the grass).

4.2 Experiment Setup

We get high-level features from the pre-trained models.

The details are demonstrated in Sect. 3. The inference of

the pre-trained model is running on the Google Colabora-

tory [57] server.

The DAE is implemented on Tensorflow and Keras. We

use the Adam optimizer and the MSE loss function to

optimize the model. The epoch of training for Ped1 and

Ped2 was set to 25 and 28, respectively. The batch size was

set to 120. In the experiments, we set the noise factor as

{0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} and choose

the better result. The training and test evaluation of the

anomaly detection models are running on a computer with

the 64-bit Windows 10 Operating System and equipped

with 16 GB DDR4 RAM and an Intel Core i7-9750H CPU

running at 2.60 GHz.

4.3 Visualization

To understand the outputs of context mining, we visualize

the results of the embedded computer vision task on both

datasets. Figures 5 and 6 present examples of the visual-

ization results on both training datasets. For each figure, the

images in the first row show the background segmentation

results. In the implementation, the user is supposed to

select the frames with clear segmentations since their

segmentation results are not affected by the ambient light.

Only when the camera position is adjusted, the background

segmentation should be updated. The images in the second

row show the multiple object tracking results. The model

assigns a unique ID to each pedestrian. By calculating the

difference between the frames, we can get the movement of

each person. In the images of the third row, we present the

object classification result used as baseline features of our

video anomaly detection model, and the accuracy deter-

mines the lower bound of our model performance since

most anomaly event comes from the occurrence of abnor-

mal objects. When the embedded pre-trained model results

are visualized, the user can evaluate the quality of the

Fig. 4 The workflow of video anomaly explanation
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outputs and decide the principle of formulating contextual

features. For instance, if the background segmentation

results are unqualified (obvious boundary mismatch or

misclassification in pre-trained model evaluation), we

should not consider the relative position context as the

anomaly detection feature. In our case, we keep all the pre-

trained model outputs to generate the contextual features

on the Ped1 dataset and we discard the background seg-

mentation results in the Ped2 dataset since the visualization

shows that most of the background segmentation results are

unsatisfactory. Since we removed the background seg-

mentation, the relevant mined spatial contexts are also

removed from the features. In Ped1, the dimension of input

features is 100 while in Ped 2 it is 81 since we remove the

unreliable features by checking the visualization results.

4.4 Results

We evaluate the performance of our video anomaly

detection method by considering the effect of the contex-

tual features and training data volume. Receiver Operative

Characteristic curve (ROC curve), Area Under the ROC

curve (AUC), and Equal Error Rate (EER) are the used

metrics since they are widely used metrics for the UCSD

Ped1 and UCSD Ped2 datasets [6, 58]. To study the

effectiveness of our approach, we compare it with state-of-

the-art approaches. The ROC curve results are shown in

Figs. 7 and 8. The AUC and EER results are summarized

in Table 1. Here we use the bold text to highlight the state-

of-the-art performance.

For the method without contextual features, we only

keep the appearance feature (for more information, refer to

the approach in [31]). The result shows that the contextual

feature effectively integrates the information of movement

Fig. 5 Visualization of the embedded task result from Ped1 training

dataset. From 1st to 4th row is the background segmentation,

pedestrian tracking, object classification, origin frames, respectively.

Note: the first row is using the same image since the background

segmentation should keep constant when the camera is fixed
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and semantic result and improves the performance of the

anomaly detection method. Without contextual feature, the

AUC of our approach is 73.1% and 80.1% in the UCSD

Ped1 dataset and the UCSD Ped2 dataset, respectively. Our

approach with contextual feature has achieved the AUC of

85.9% and 92.4% in the UCSD Ped1 dataset and the UCSD

Ped2 dataset.

As shown in Table 1, our model outperforms the

approaches with low model complexity (MDT [6], Adam

[6], Social force [16], Compact feature set [17], convex

polytope ensemble [59], and RBM [60]) and several

approaches with large model complexities by adding con-

volutional layers (ConvAE [11], ConvLSTM-AE [12],

Two-Stream R-ConvVAE [4]), and can achieve compara-

ble performance compared to ST-AE [58], and AMDN [3].

Our method achieves 92.4% AUC on the Ped2 data set and

85.9% AUC on the Ped1 dataset. Hence, the DAE with

relatively low model complexity can achieve comparable

results using the features derived from the pre-trained deep

models. Our model without contextual features achieves

80.1% AUC in Ped2 while 73.1% on Ped1, which means an

accurate pre-trained model will improve our final model

performance. Most of the competing methods in this study

trained the large model while we only consider using the

high-level and contextual features derived from pre-trained

models to reduce the model complexity for the anomaly

detection model. For example, in the Ped1 dataset, the

ConvAE model uses the fully convolutional autoencoder

[11]. It has 6 convolutional layers and 4 pooling layers in

the encoder and decoder. The input layer dimension is

238� 158� 10. The training process requires up to 16,000

epochs to converge. ConvLSTM-AE model adds 10 con-

volutional long short-term memory layers that are inter-

connected in addition to the convolutional layers [12]. The

training process requires up to 60,000 epochs. In our case,

we only use 3 fully connected layers with an input

Fig. 6 Visualization of the embedded task result from the Ped2 training dataset. From 1st to 4th row is the background segmentation, pedestrian

tracking, object classification, origin frames, respectively. The first row uses the selective fixed results
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dimension of 100 and the training process only requires up

to 25 epochs to converge in the Ped1 dataset and 200

epochs in the Ped2 dataset with an input dimension of 81.

We also list the state-of-the-art approaches (STAN [5], ST-

CaAE [18], and Optical flow-GAN [19]). In addition to

training CNN to learn the spatial features, STAN and

Optical flow-GAN takes the Generative Adversarial Net-

work architecture to improve the performance. However, it

increases the model complexity. For example, STAN has

17 convolutional layers with kernel size between 5� 5 and

3� 3 where the number of layers has almost tripled

compared to ConvAE. ST-CaAE consists of adversarial

network ST-AAE and convolutional network ST-CAE. ST-

AAE has four 3D convolutional layers and the corre-

sponding four 3D deconvolutional layers, while ST-CAE

has three 3D convolutional layers and three 3D deconvo-

lutional layers. Each convolution layer uses kernels with

the size 3� 3� 3, and the number of kernels is 16 in the

input convolutional layer. The ST-CaAE also needs to be

trained on appearance stream and motion stream, respec-

tively, which further increases the model complexity.

Compared to the above models, our approach extracts the

complicated part into pre-trained models and only needs to

train the decision model with the fully connected layers.

Our model also shows the advantages of the inter-

pretability of abnormal event decisions. The other models

such as Two-Stream R-ConvVAE use the reconstruction

error on each pixel to locate the anomaly region [4]. This

method only reflects the spatial features of decision-mak-

ing and cannot explain the temporal or group anomalies.

Since our input features are high-level features and

semantically meaningful features, we can directly show the

reconstruction error vector to explain the decision-making

process. Note that here we just use three pre-trained deep

models to extract features, and we have shown in the

experiments that they are already beneficial. It is

expectable that more profit can be attained by using more

pre-trained models that can be used to derive varied fea-

tures. We leave the possibilities for future exploration.

4.5 Time analysis

We compare our method running time with several algo-

rithms, as shown in Table 2. It reports the average running

time of each frame during the test phase. Our method is

significantly faster than MDT [6], AMDN [3], Xu et al.’s

method without GPU [61], and Hierarchical framework

[62]. Our method is also faster than ST-CNN [63], AED

[64], and ICN [65]. Compared to the state-of-the-art

method like XU et al. method with GPU and Two-Stream

R-ConvVAE [4], our method achieves comparable run

time speed. Note that the GPU is only used on the pre-

trained models for getting the high-level features in our

approach. We calculate the pre-trained models running

time by taking the maximum value of inference time per

frame from PFPN, JDE, and R101 since these pre-trained

models can run simultaneously by their corresponding

GPU described in Sect. 3.2.1, which is 0:067s. The pre-

trained model inference speed can be improved by the

advance of computer vision research and the improvement

of GPU technologies. Our lightweight denoising autoen-

coder does not need GPU, and the average inference time

Fig. 7 ROC curve of Ped1 dataset

Fig. 8 ROC curve of Ped2 dataset
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for each frame is 2:18� 10�5s on the UCSD Ped1 dataset

and 3:71� 10�5s on the UCSD Ped2 dataset.

We also show the training time comparison among

algorithms, as shown in Table 3. Since our method relies

on the pre-trained model features, a large amount of

training time can be saved. We only need to focus on the

training of the lightweight denoising autoencoder. We take

the mean value of the 10 repetitive measurements and our

method only requires 5s; 2:9 s; and 9:6 s for the Ped1, Ped2,

and Avenue dataset (here Avenue dataset only be used for

training time analysis, the epoch is set as 28), which is

significantly faster than AMDN, ConvAE, TSC, and

sRNNAE [66].

4.6 Explanation of video anomalies

The experiment results of the video anomaly explanation

method are discussed. We demonstrate our method by

displaying three cases from the USCD Pedestrian dataset.

We set the upper limit of the number of keyframes as 3 and

the number of top important features as 6. It is worthwhile

Table 1 Frame-level

performance comparison of the

anomaly event detection

Methods Ped1 [6] Ped2 [6]

AUC (%) EER (%) AUC (%) EER (%)

Adam [6] 65.0 38.0 63.0 42.0

Social force [16] 67.5 31.0 63.0 42.0

MDT [6] 81.8 25.0 82.9 25.0

Compact feature set [17] 82.0 21.1 84.0 19.2

Convex polytope ensemble [59] 78.2 24.0 80.7 19.0

RBM [60] 70.3 35.4 86.4 16.5

ST-AE [58] 89.9 12.5 87.4 12.0

ConvAE [11] 81.0 27.9 90.0 21.7

ConvLSTM-AE [12] 75.5 N/A 88.1 N/A

Two-Stream R-ConvVAE [4] 75.0 32.4 91.7 15.5

AMDN [3] 92.1 16.0 90.8 17.0

STAN [5] 82.1 N/A 96.5 N/A

ST-CaAE [18] 90.5 18.8 92.9 12.7

Optical flow-GAN [19] 97.4 8 93.5 14

Our preliminary work [67] 84.1 23.8 92.4 14.9

Our method 85.9 22.0 92.4 13.5

Our method without Context 73.1 34.8 80.1 29.3

Table 2 Frame-level anomaly detection running time comparison

Method Platform CPU GPU Running time (seconds per frame)

UCSD Ped1 UCSD Ped2

MDT [6] – 3.0 GHz – 25 –

AMDN [3] MATLAB 2.1 GHz Nvidia Quadro K4000 5.2 7.5

XU et al. [61] without GPU Pytorch 2.1 GHz – 2.68 6.84

Hierarchical framework [62] MATLAB 3.0 GHz – 5 5

ST-CNN [63] Caffe 2.8 GHz – 0.37 0.39

AED [64] N/A N/A N/A 0.073 –

ICN [65] Tensorflow 2.4 GHz NVIDIA Tesla K40c – 0.18

XU et al. [61] with GPU Pytorch 2.1 GHz Nvidia TITAN X 0.00242 0.00265

Two-Stream R-ConvVAE [4] Tensorflow 2.6 GHz Nvidia TITAN X 0.0012 –

Oursa Tensorflow 2.6 GHz Nvidia V100, Nvidia TITAN Xp tpre þ 2:18� 10�5 tpreþ
3:71� 10�5

aOur pre-trained model running timetpre ¼ 0:067
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to mention that the number of keyframes is a hyperpa-

rameter, and the value varies by the setting of video, such

as the video length, event number, etc. As described in

Algorithm 2, we skip the keyframe without abnormal

events since we are only interested in explaining anomaly.

4.6.1 Sample case 1: Ped1 video Test017

The video summary result of video Ped1_Test017 is shown

in Fig. 9. In this video, there is one anomaly that occurred.

The video summary presents three keyframes: frames 11,

76, and 151, where frames 76 and frame 151 are discarded

because of the lower anomaly score. The remaining key-

frames 11 summarize the major activities on video

Ped1_Test017.

The ground truth of anomaly in this video consists of a

person riding a bicycle on the pavement, as presented in

Fig. 10. Here Fig. 11 shows the explanation result of frame

11 for demonstration.

We select top 3 most important features from Fig. 11a

and b to explain the frame. Therefore, frame 11 can be

explained by the important features, including

‘‘tracked_occur’’, ‘‘bicycle’’, ‘‘on_tree’’, ‘‘speed_std’’,

‘‘x_max’’, and ‘‘person’’. Obviously, ‘‘bicycle’’ matches

the ground truth description. In addition, other output

features also assist the anomalies decision-making. For

example, ‘‘tracked_occur’’ means some people are moving

much faster in a period and are tracked automatically; this

feature is highly positively related to ‘‘bicycle’’ and

‘‘skateboard’’. The features of ‘‘person’’ and ‘‘on_tree’’

show how many people on this frame and how many

people are walking near the tree. The feature, ‘‘speed_std’’

means the speed standard deviation of the moving objects

in this frame. It implies this scenario has an abnormal event

since the moving object (such as skateboarder, bicycle, and

motorcycle) is faster than the walking person.

Table 3 Training time

comparison
Method Platform CPU GPU Training time

UCSD Ped1 UCSD Ped2 Avenue

AMDN [3] MATLAB 2.1 GHz Nvidia Quadro K4000 9 h 4 h 3.5 h

ConvAE [11] Caffe Unkonwn NVIDIA Tesla K80 Total around 1 h 50 min

TSC [66] TensorFlow Unkonwn Unkonwn – – 30 h

sRNNAE [66] TensorFlow Unkonwn Unkonwn – – 1.2 h

Oursa Tensorflow 2.6 GHz – 5 s 2.9 s 9.6 s

aSince we use pre-trained CNN model, we did not use GPU

Fig. 9 The anomaly score of video Ped1_Test017, the unfilled start marker is the discarded frame. The read shadow interval represents the

ground truth abnormal interval

Fig. 10 The ground truth of anomalies in video Ped1_Test017 frame

11
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4.6.2 Sample case 2: Ped2 video Test004

The video summary result of video Ped2_test004 yields

three keyframes: frames 26, 46, and 96, as shown in

Fig. 12. Frame 26 is discarded since it represents the nor-

mal case. The abnormal keyframes are correctly fallen into

the ground truth abnormal interval and can represent the

major activities of video anomaly in video Ped2_test004.

Here we discuss the explanation results of Frame 46.

The Fig. 13. shows the ground truth content of frame 46,

which is the abnormal keyframe of video Ped2_Test004: A

car occurs on the right side of the pavement. Both sorted

graph results explain this frame, as shown Fig. 14. In this

case, the sorted mean absolute SHAP value features in

Fig. 14a and the sorted mean SHAP value features in

Fig. 14b have the same top 3 features, including ‘‘car’’,

‘‘bicycle’’, and ‘‘peed_min’’. The feature ‘‘car’’ correctly

reflects the ground truth of the anomaly of frame 46.

However, the feature ‘‘bicycle’’ is a false alert since frame

46 does not include a bicycle. The feature ‘‘speed_min’’ is

the minimum speed of all objects in the frame. In this

frame, ‘‘car’’ feature is rank 1st in both Fig. 14a and b,

which increase the confidence of the decision to make the

‘‘car’’ features as the anomalies.

Fig. 11 Explainable features of video Ped1_Test017 frame 76. a The

important features sorted by the mean of absolute SHAP value. b The

important features sorted by the mean of SHAP value

Fig. 12 The anomaly score of video Ped2_Test004, the unfilled start marker is the discarded frame. The read shadow interval represents the

ground truth abnormal interval

Fig. 13 The ground truth of anomalies in video Ped2_Test004 frame

46
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4.6.3 Sample case 3: Ped2_Test005

The video summary result of video Ped2_Test005 consists

of three keyframes: frame 21, frame 76, and frame 136, as

shown in Fig. 15. It covers the major normal and abnormal

events in the video. Similarly, frame 136 will be skipped

during the explanation process because of the low anomaly

score. Here we present the anomaly explanation results of

frame 76.

The ground truth content consists of a person riding a

bicycle from right to left, as presented in Fig. 16. The pre-

trained object detection model successfully detected the

bicycle. Figure 17a shows the ‘‘bicycle’’ is one of the most

contributing features to the anomaly detection result of

frame 76. Other features like ‘‘speed_min’’, ‘‘speed_-

mean’’, and ‘‘speed_max’’ also support the possible

occurrence of the moving object from a contextual

perspective.

5 Conclusion

This work presents a novel design of an explainable and

efficient video anomaly detection framework based on the

high-level features from the pre-trained models and using a

denoising autoencoder to detect anomalous video events

(a)

(b)

Fig. 14 Explainable features of video Ped2_Test004 frame 46. a The

important features sorted by the mean of absolute SHAP value. b The

important features sorted by the mean of SHAP value

Fig. 15 The anomaly score of video Ped2_Test005, the unfilled start marker is the discarded frame. The read shadow interval represents the

ground truth abnormal interval

Fig. 16 The ground truth of anomalies in video Ped2_Test005 frame

76
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and provide anomaly explanations. Our method selects

three pre-trained models (background segmentation, object

classification, and object tracking) to get the appearance

feature and Spatio-temporal feature. The UCSD pedestrian

datasets are used to evaluate our approach and to compare

it with several state-of-the-art methods. Our experimental

results show that contextual features improve model per-

formance and interpretability. Moreover, our proposed

model achieves comparable results and provides more

accurate anomalies explanation with low model complex-

ity, short training time, and low computational overhead.

Our approach is not developed to replace state-of-the-art

approaches; instead, it offers a better understanding of how

pre-trained deep learning models can be used for video

anomaly detection, especially when a large volume of

training data is unavailable for complex models. Our

method can also increase model interpretability, which is

crucial to modern machine learning. In addition, the run

time analysis shows our method is significantly efficient in

the training process.
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