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Gregorio Bernabé Garcı́a1 • Félix J. Garcı́a Clemente1

Received: 4 May 2021 / Revised: 5 September 2021 / Accepted: 24 November 2021 / Published online: 31 March 2022
� The Author(s) 2021

Abstract
The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things

technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow

performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a

novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of

agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze

data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation

from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error

achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from

sensors was 6.71.
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1 Introduction

Automation has reached all areas of our society, and farms

and agriculture are no exception. In this context, more and

more farms and agricultural fields contain some type of

automation to increase the performance of their production

processes [15]. This increase in automation, together with

the arrival of mobile next-generation networks (5G) and

Internet of Things (IoT) technologies, will allow the con-

nection of millions of devices with high bandwidth and

minimal latency. In addition, Big Data technologies,

together with Machine Learning (ML) and Deep Learning

(DL) techniques, will allow the analysis and extraction of

information from the data in a matter of seconds [14].

Among all these technologies, IoT has had a huge

impact on agriculture, enabling the integration of com-

munication capabilities to sensors and actuators [11, 23].

This translates into the possibility of using hardware

devices in the final installations to communicate informa-

tion related to the production environment, such as the pH

of the water, the level of fertilizers, or the level of lumi-

nosity. This information from the sensors is sent to a local

server or a server in the cloud. In general, in order to

achieve low latency responses, part of the data processing

is performed in compute nodes close to the sensors fol-

lowing the Edge Computing (EC) paradigm [21]. In con-

trast, the rest of the information is stored in the cloud

databases to be analyzed later. Once the analysis is com-

pleted, IoT technologies also allow actuators to receive
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commands to take corrective actions on the system. This

communication is usually performed through wireless

channels, and it is frequent that IoT devices form Wireless

Sensor Networks (WSN) using open standards.

In recent years, ML/DL technologies have gained

prominence in the context of crop quality prediction [31].

These techniques are based on developing models capable

of extracting information from the input data and contin-

uously predicting the final product quality. The develop-

ment of these models is usually divided into two distinct

stages. The first stage is called training and is where the

model learns the information underlying the data. In the

second stage, called the test, the models are tested with

previously unseen data to determine their performance.

Thus, ML/DL can analyze information from agricultural

sensors and improve decision-making tasks.

Despite the extensive use of IoT architectures on farms

and in the field of precision agriculture, many of these

architectures are aimed at monitoring variables. One of the

biggest challenges today is integrating IoT architectures

with ML/DL models that help us extract precise informa-

tion to make the right decisions. In this way, the production

of farms can be improved. The current solutions only

monitor crops to extract statistics that can be used to

improve future plantations. However, some unexpected

events can be produced during the crop growth that can

reduce the plantation production. Combining monitoring

and corrective actions will minimize the effect of these

unexpected events, and therefore maximizing the produc-

tion. In the specific case of crop quality, another relevant

challenge is the assessment of the product quality using

information from diverse sensors such as environmental

sensors or RGB cameras. For example, RGB cameras can

give more insight into certain pests that perform a visual

degradation of the crop color. In contrast, other sensors

such as wind speed or pH water can give more information

about chemical and physical information. Data aggregation

and harmonization are complex tasks that must be tackled

[6].

To overcome the aforementioned challenges, we present

the following contributions:

• FARMIT, which is an IoT architecture designed for

continuous crop quality assessment. The layers of

FARMIT can be divided into three categories: physical,

edge, and cloud. The goal of these layers is to gather

information about the crop and analyze them. Based on

the analysis, the architecture can take corrective actions

to improve the quality of crops.

• A deployment of FARMIT in a real scenario in order to

assess the quality of tomatoes under greenhouses. We

show the experimental result obtained from this

deployment, where FARMIT uses ML/DL techniques.

The remainder of this manuscript is structured as follows.

Section 2 reviews the state of the art in terms of IoT

architectures proposed for smart farming and precision

agriculture. In addition, in this section, ML/DL techniques

for crop prediction and crop quality are also reviewed. In

Sect. 3, we present the IoT architecture to gather and store

sensing information from farms. The scenario where we

applied the previous architecture is presented in Sect. 4. In

Sect. 5, the results regarding the crop quality forecasting

and prediction are presented. Finally, the conclusions and

future work are presented in Sect. 6.

2 Related work

In this section, we review the literature in the field of both

IoT architectures in farms and precision agriculture and the

usage of ML/DL techniques to evaluate crop quality.

2.1 IoT architectures for farms and precision
agriculture

The IoT architectures combine different communication

protocols, security mechanisms, and smart devices that are

resource constrained [12]. Generally, these architectures

are supported by the Fog [28] or Edge [21] computing

paradigm. For example, the authors of [24] propose a novel

and secure Cache Decision System following the Fog

computing paradigm that operates in a wireless network

focused on smart-buildings. In this sense, the Cache

Decision System proposed enables a safer and more effi-

cient environment for internet browsing and data man-

agement. In addition, new approaches have been proposed

to improve the performance of such architectures. For

example, the authors of [3] introduce a variant of the

optimistic concurrency control protocol in cloud-fog

environments. They probed that the proposed mechanism

reduces the communication delay significantly and enables

low-latency fog computing services of the IoT applications.

In the security context, the authors of [18] propose a novel

approach to generate and detect watermark in images with

the goal of share image information in smart cities y a

safety way. On the one hand, the generation method takes a

gray image watermark that is encoded as watermark signal

into the block Discrete Cosine Transform (DCT) compo-

nent. On the other hand, the method to detect and extract

the watermark is based on a cooperative Convolutional

Neural Network (CNN).

In the agricultural context, the usage of IoT has

expanded in the last years, and its use is well documented

in the literature [20]. For example, the authors of [16]

presented an IoT architecture for strawberry disease pre-

diction especially designed for smart farms. The
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architecture is capable of handling the collection, analysis,

monitoring, and prediction of agricultural environment

information. The authors also presented an IoT-hub net-

work model that enables efficient data transfer between IoT

devices. Several IoT-hubs can be deployed, and the com-

munication is powered by LoRa technology. In addition,

the IoT-hub communicates with the upper layers of the

architecture using the oneM2M common platform. On top

of the architecture, the authors presented a service capable

of analyzing the data and predict strawberry infection. The

authors of [25] presented a generic reference architecture

for monitoring remote sensing in the field of precision

agriculture. The work proposed a 7-layer architecture and

discussed the technologies employed in each layer. To be

specific, the layers are: sensor, link, encapsulation, mid-

dleware, configuration, management, and application layer.

The authors also presented a use case based on a 24-hour

real-time saffron cultivation surveillance system that relies

on signal and image collection and preprocessing. The

authors of [7] proposed another IoT architecture for smart

farming called LoRaFarM. This architecture is low-cost,

modular, and Long-Range Wide-Area Network-based IoT

platform intended to manage generic farms in a highly

customizable way. In addition, the platform was evaluated

on a real farm in Italy. In this evaluation, the LoRaFarM

was collecting environmental data for three months.

Apart from the previous solutions, the other two archi-

tectures for smart farming were presented in [4, 29]. A

point in common between those two works is the usage of

Fiware [5], which is an open-source initiative for context

data management, facilitating smart solutions. On the one

hand, the architecture presented in [4] integrates IoT, Edge

Computing, Artificial Intelligence, and Blockchain tech-

nologies. In addition, this architecture was aimed to mon-

itor the state of dairy cattle and feed grain in real-time. On

the other hand, the work proposed by the authors of [29]

presents a flexible platform capable of coping with soilless

culture needs in full recirculation greenhouses using

moderately saline water. The architecture is supported by

three planes: local, edge, and cloud. The local plane

interacts with crop devices to gather information. The edge

plane is in charge of managing and monitoring the main

tasks. Finally, the cloud plane performs the data analysis

process. Both of the previous architectures were imple-

mented in real scenarios.

All the works examined propose architectures for only

collecting one type of sensor data. This means that they

ignore the control opportunities that IoT technologies

provide. In the end, this will cause a loss in crop production

and, therefore, an economic loss. In this work, we present

an architecture for data collection and, depending on the

results of the analysis performed, it can even take correc-

tive actions to improve the quality of the crop, minimizing

production losses. In contrast to previously discussed

solutions, our architecture allows to aggregate data from

different sources such as traditional sensors that give data

about physical and chemical properties and visual sensors

such as RGB cameras that give data about physical

appearance.

2.2 Machine learning and deep learning
to evaluate crop quality

The usage of ML/DL techniques in agriculture has been

widely explored [19]. To be specific, crop management,

livestock management, water management, and soil man-

agement are the most prominent areas where ML/DL are

applied. Among them, we are interested in crop manage-

ment, where we can identify the following activities: yield

prediction, disease detection, weed detection, crop quality,

and species recognition.

In this context, crop quality is the subfield in charge of

estimating the final quality of crops, and it is closely related

to disease detection. The importance of this field is critical

since the price and the competitiveness of companies

depend on the quality of their products. In this sense, the

authors of [30] presented a study focused on the detection

and classification of common types of foreign matter

embedded inside cotton lint. During the study, a short wave

near-infrared hyperspectral imaging system was used. The

authors of [13] presented a study to differentiate between

deciduous-calyx pear (DCF) and persistent-calyx pear

(PCF). In the same direction that previous authors, a non-

destructive hyperspectral imaging technique was used. The

authors stated that PCF and DCF could be differentiated

using the model proposed, which is based on Support

Vector Machines (SVM). The final accuracy achieved was

93.3% for DCF and 96.7% for PCF. Another work to

determine the quality was proposed by the authors of [26].

The authors stated that the quality of the rice depends on

the origin country. They conducted experiments to deter-

mine the geographical origin of rice. Specifically, it was

determined using inductively coupled plasma mass spec-

trometry (ICP-MS) together with different classification

methods. Random Forest and SVM were the techniques

that achieved the best performance (96%). The conclusion

was that the variation in non-essential element profiles in

rice grain depends on the geographical origin.

To predict diseases, the authors of [8] presented a new

image processing technique to detect thrips (Thysanoptera)

on strawberry plants. SVM was used for the classification

of parasites and the detection of thrips. Images taken by a

mobile agricultural robot were the input data to the SVM.

The images were taken at 80 cm distance and under good

natural light conditions. In addition, the images needed to

be converted from RGB to HSV color space. The yellow

Cluster Computing (2022) 25:2163–2178 2165

123



rust wheat disease detection is studied in [1]. The authors

presented a methodology for the timely detection of yellow

rust disease. For this, the authors used reflectance spectrum

and a classification algorithm at different yellow rust

development stages. Using a selection of the top 5% sig-

nificant spectral features, the authors achieved a true pos-

itive rate of 86%. In [9], a CNN approach was used for

identifying plant disease, focusing only on plant leaves

images. Several CNN architectures were tested, being the

one based on VGG, the one that achieved the best success

rate (99.53%). The model was trained with 87 848 images,

and it was tested with 17 548 images.

Finally, in [22], an IoT architecture for smart farming

that incorporates ML algorithms was presented. The ML

method incorporated in the architecture is based on the

PART classification technique, and it is able to predict crop

productivity and drought.

Most of the works examined propose evaluating the

quality of the crop or carrying out the detection of pests

from the study of the crop images. This approach ignores

other useful chemical information that is crucial to deter-

mine crop quality. As a result, considering only the images

at specific moments of crop growth limits the development

of predictive models. For example, to develop a model to

predict the quality of a crop in the following week, it is

necessary to provide the model with other features that

provide information about the conditions in which the crop

has grown, such as the pH water, wind speed or pesticides

used. In our proposal, visual information is considered to

evaluate the appearance of the crop. However, measures of

quality, growth, and pest registration are also used to pre-

dict the quality of the crop in the near future.

3 FARMIT architecture

In this section, we describe the proposed IoT architecture

to evaluate crop quality. The architecture, called FARMIT,

was designed to be scalable and flexible. To accomplish

these requirements, FARMIT makes use of both the

cloud [27] and the edge [21] computing paradigm and it is

powered by FIWARE [10]. The architecture presents three

different layers: physical, edge, and cloud. The physical

layer is the nearest to the activities carried out on the farm.

This layer allows the data acquisition and transmission to

the Farm Controller (FC) located in the edge layer. The FC

receives data from the previous layer and transmits it to the

cloud layer. In addition, the FC is responsible for con-

trolling and managing the infrastructure. Finally, in the

cloud layer, we find three tiers: data, analysis, and appli-

cation. The data tier is in charge of receiving data and

context information from FC and storing it in the cloud

database (Cloud DB). The analysis tier is in charge of

processing information and extracting relevant metrics and

features from the data. Another responsibility of this tier is

to train a prediction model and integrate a decision maker

based on the predictions. Finally, the application tier

comprises multiple operational and business applications

that can be developed over the analysis tier.

The FARMIT architecture works in two different pha-

ses: training and production. During the training phase, the

architecture uses all the data gathered from sensors to train

the ML/DL models in the analysis tier. In contrast, during

the production phase, FARMIT is ready to evaluate data

recently gathered, analyze them, and perform the proper

action to correct any anomaly. Except for Decision Maker

and Action Enforcement Module, the modules work simi-

larly in both phases. In particular, these two modules

mentioned above do not take place in the training phase.

A global view of the architecture is presented in Fig. 1.

In the following sections, we detail each layer and the

components that integrate them.

3.1 Physical layer

This layer is the closest to the activities carried out on the

farm. It is mainly made up of sensors responsible for col-

lecting data from different sources and executing specific

actions using actuators. Both sensors and actuators are

implemented in combination with resource-limited hard-

ware, i.e., Microcontroller Units (MCU) [2]. MCUs are in

charge, on the one hand, of obtaining information from the

Fig. 1 Scheme of the proposed FARMIT architecture
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sensors using the analog-digital converters. On the other

hand, they interact with the actuators through digital-ana-

log converters. In addition, to communicate with the sen-

sors and actuators, the MCU can use different protocols

designed for this purpose. It is usual to follow a master-

slave communication scheme where the MCU initiates

communication, and the sensor or actuator responds to the

request. Among the protocols used in this area, we can find

the SPI and I2C protocols [17].

There are a wide variety of sensors, from those that

measure air quality to those that determine the pH level in

the water. In general, it is common to find sensors that take

measurements of temperature, ambient humidity, soil

humidity, electrical conductivity, wind speed and direction,

carbon dioxide, pH, light intensity, solar radiation, and

atmospheric pressure, among others. Concerning actuators,

we also find different types, but in general, they are related

to sensors. It is common to find actuators that correct the

deficiencies measured by the sensors. For example, if the

soil humidity measured by a sensor is not adequate, an

actuator will proceed to let more or less water pass to the

crop as necessary. Regarding FARMIT architecture, it is

focused on data aggregation, and it is not limited to certain

types of sensors or actuators, but also FARMIT can inte-

grate a wide range of these devices since the upper layer is

in charge of managing them. In this sense, our proposal

gives freedom when it comes to deploying the necessary

sensors for a particular application.

Additionally, the devices deployed in this layer usually

have a restriction in relation to energy consumption. Fre-

quently, these devices are deployed in the open field where

it is not possible to connect them to the electrical network.

Therefore, it is necessary to equip these devices with bat-

teries. Thus, the optimization of electricity consumption

becomes a critical aspect to extend the life of batteries.

The other responsibility of this layer is to allow com-

munication between the sensors/actuators and the FC.

Specifically, we can find gateways that act as wireless

access points for the infrastructure devices and route data

packets. The need for these gateways is motivated by two

fundamental points. The first is to homogenize the com-

munication protocols, and the second is related to the

optimization of the energy consumption of the sensors/

actuators.

3.2 Edge layer

The FC is located at the edge and serves as an intermediary

between the physical and cloud layers. The goal is to

achieve low latency in communication with the sensors

layer and carries out controlling and management tasks on

physical devices. The FC consists of three modules: data

management, device management, and control

management. The FC can be deployed in a physical or

virtualized server in the farm facility, and each FARMIT

deployment needs to be considered the current sensors and

the future sensors that can be deployed.

3.2.1 Device management module

This module is in charge of managing the devices that are

in the lower layer. In particular, this module manages the

connection of new sensors/actuators in the FARMIT

architecture and, moreover, ensures the correct operation of

all the devices of the lower layers. When a new device is

connected, it must communicate with the device manage-

ment module to obtain its configuration. For example, a

configuration parameter could be the interval in which

samples must be collected by sensor devices. Also, network

gateways get both routing and security configuration

information from the device management module.

Once the device is configured, the device management

module gives it a unique ID and records its activity in the

local database. In this database, in addition to recording the

data sent by the device, there is also information on the

location of the device and its network configuration. Using

this information, the device management module can carry

out periodic checks to verify communication with the

device is correctly configured, and information is being

sent according to the established intervals.

Since FARMIT is an architecture powered by FIWARE,

this module is implemented using the proper IoT Agent,

which is a Backend Device Management Generic Enabler.

In particular, this component behaves as the gateway to

route the information to the upper layer using specific

topics defined in the MQTT server.

3.2.2 Data management module

This module is in charge of managing and storing the data

from sensors. The data model used by FARMIT is provided

by the FIWARE project, i.e., the agrifood data model.

When the devices collect data from the physical world,

these data are sent to the FC, which are received by the data

management module that has mainly two functions. The

first of these functions is to preprocess and store the data in

the local database on the FC. The second function is to

synchronize the FC database with the database in the cloud

layer.

The data preprocessing allows removing unwanted data

and noise filtering present in the data. On the one hand, the

data from the sensors can represent a large volume of

network traffic and may even contain data that is not rel-

evant to the tasks to be performed in the cloud layer. This

module allows us to select which data will be transferred to

the cloud. Imagine that the FC receives a wide range of
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data that are not required for the crop quality task, but it is

essential to carry out other tasks such as sensors or crop

tracking. In the control panel, the operators can define that

this information must not be sent to the cloud. On the other

hand, the physical layer sensors can introduce noise

inherent to the technology used or present outliers. This

module allows us to filter this noise so that the data that

finally reach the cloud layer are useful for quality assess-

ment tasks. For example, imagine that a certain tempera-

ture sensor sends extremely large values because of a

malfunction, i.e., it is broken. In this case, the operator can

establish basic rules to ignore such values until the sensor

was replaced. It is worth mentioning that bot processes

require the operator’s intervention to define the action in

the control panel.

Data synchronization is performed following a two-way

scheme. This means that not only data from FC is sent to

the cloud layer, but if there is a loss of information in the

FC, the data management module can recover that infor-

mation from the cloud database and store it in the local

database located at the edge layer.

3.2.3 Action enforcement module

This module is in charge of monitoring and controlling the

execution of commands in actuators. The FC is not only

capable of monitoring the data sent by the sensors, but

based on these measurements and decisions delivered by

the cloud layer, it can autonomously take corrective

actions. These commands end up reaching the actuators

and producing an effect in the physical world that will

ultimately correct the anomaly measured by the sensors.

On the one hand, the corrective actions can be directly

applied by operators registered in the FARMIT application

tier and propagated through the architecture until they

reach the FC, where they are transmitted to the actuators.

On the other hand, the local database stores the normal

values, defining the range of values where measurements

made by sensors must be enclosed. If any of these mea-

surements are outside the range of normal measurements

for each sensor, the FC can autonomously take action to

correct this situation. A third way to perform a corrective

action is based on the result reported by the Analysis tier. If

this tier discovers any anomalies in the data, it can com-

municate with this module to take the proper corrective

action.

To perform corrective actions, operators can define

policies. They are stored both in the local database and in

the database of the cloud layers. These policies are made

up of an antecedent and a consequent. The antecedent

establishes a condition based on data stored in the local

database (e.g., sensor data) that, if fulfilled, will cause the

consequent to be evaluated. The consequent establishes the

actions to take.

3.3 Data tier

Depending on the needs of the farm facility, it may be

required to deploy two or more FC that will collect and

manage their own data and devices. In many cases, the

devices that each of the FC manages will be different. This

layer receives data from the different FC deployed in farm

facilities, managing and aggregating this data and manag-

ing the context information. This layer is made up of the

Data Acquisition module and the Contextual Information

module.

3.3.1 Data acquisition module

This module receives the information from the different FC

deployed in the facility and is responsible for storing it in

the database present in this layer (Cloud DB). The received

information includes data from the sensors and includes

data from the FC itself, such as its geographical position

and operating statistics. Besides, each FC is identified with

a unique ID that is assigned during its installation. This

unique ID links the data stored in the database with each of

the deployed FC. Among other functions, this allows that if

there is a loss of information in the FC, it can recover the

information by making a query to this layer and requesting

the lost information.

3.3.2 Context information module

The main objective of this module is to harmonize and

aggregate the data received by the data acquisition module

and stored in the cloud database. The data received by this

layer came from different sources. On the one hand, there

are traditional sensors deployed in crop fields that measure

temperature, humidity, or wind direction. On the other

hand, the information in the form of images can also be

received, either through fixed cameras or even cameras

installed on drones. Additionally, the QA staff can provide

operational information through applications deployed in

the application tier. This information could complement

IoT sensor measurements and, therefore, should be taken at

different intervals and during different hours of the day.

This module is in charge of extracting context information

from all this data and making it available for later analysis

in the upper layers.

This module is implemented using the Orion Context

Broker provided by the FIWARE project. In particular,

Orion Context Broker receives the data from the different

sensors provided by the Data Acquisition module and
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makes it available to the upper layer through the cloud

database.

3.4 Analysis tier

This tier includes the necessary procedures to extract

knowledge from the data tier. The main goal is to train an

ML/DL model to serve the result on demand to the appli-

cation tier. Most of the modules in this tier are oriented to

process and curate the data to be used with ML/DL algo-

rithms. Specifically, this layer comprises four modules:

Data Processing, Feature Filtering, Feature Extraction,

Prediction Model, and Decision Maker. The workflow

begins by retrieving the data from the cloud database at the

lower tier. This database contains both information from

traditional sensors as well as data extracted from sensors

capable of taking images (whether thermal, infrared, or

RGB). This data goes through the Processing Module to

adapt it to be used in the following modules. The Feature

Filtering module removes those features that do not pro-

vide information to the model. Once the filtering is done,

the Feature Extraction module extracts new features that

provide more information to the model. Next, the Model

Prediction module trains the model and provides the

application tier with prediction results. Finally, the Deci-

sion Maker module compares the Model Prediction output

with the corrective policies defined in the cloud database. If

any policy is fulfilled, this module makes the proper

decision to correct the crop quality deviation.

3.4.1 Data processing module

The first task that this module performs is to process all

data stored in the cloud database. The data must be pro-

cessed depending on its data type, i.e., an image needs to be

processed differently from a traditional sensor such as a

temperature sensor. For example, FARMIT supports the

usage of visual and non-visual information. In the highly

recommended case that RGB cameras are deployed in the

plantation, one of the operations that can be performed is

converting different color spaces. This operation allows

extracting relevant features to the specified prediction

problem in a later module. In contrast, all the data from

traditional sensors are treated similarly by FARMIT

architecture. In particular, one of the most popular ways of

performing the processing is to aggregate data based on a

statistic summary. The second task consists in scaling the

continuous features present in the datasets. This task is

extremely important since many ML/DL models perform

better when the data is on the same scale. Finally, the third

task carried out by this module consists in encoding the

categorical variables following an adequate schema for the

problem under study.

Additionally, under training mode, this module splits the

dataset into training and test datasets and, moreover, offers

two strategies for splitting. On the one hand, it offers the

possibility of choosing these datasets using a random

approach. In other words, the training and test datasets are

generated from random samples of the original dataset. On

the other hand, this module allows making the dataset

division while preserving the temporal coherence of the

data. In general, the second approach is especially useful

when data is used as a time series.

3.4.2 Feature filtering module

This module is responsible for removing those features that

do not provide information to the prediction model,

degrading its performance in the worst case. One of the

primary operations that this module uses to calculate which

features do not provide information is to perform a study of

the variance of each one. This study gives an estimation of

how much the value of these features changes throughout

the whole dataset. Those features that do not change are

candidates to be removed by this module.

3.4.3 Feature extraction module

Once the features have been filtered, the main task of this

module is to extract new relevant features. The primary

technique used by this module is the use of different sta-

tistical metrics. This allows enriching the dataset with

high-level features, extracting patterns from the raw data,

and improving the performance of the model in terms of

prediction.

Although each FARMIT implementation can signifi-

cantly be different, we highly recommend including two

sets of features. The first set is based on the statistical

summary commented above. Among the metric we rec-

ommend are the mean, the minimum, the maximum, the

standard deviation, and the range (defined as the difference

between the maximum and minimum). In contrast, since

crop growth is closely related to time, we recommend

including some type of feature to encode the sense of time.

3.4.4 Model prediction module

This module is in charge of training the model using the

training dataset and then evaluating the prediction model

performance using the test dataset. Three tasks are defined

to carry out the training phase: selection of the model,

selection of hyper-parameters and their values, and training

and fine-tuning of the model, as shown in Fig. 2.

The first task is to select an appropriate model to address

the problem of crop quality prediction. In general, the

models that work with sequences are good alternatives
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since the crop quality can be studied from the succession of

the data given by the sensors over time. However, other

models can be considered, achieving good results. For

example, ML models such as SVM or Random Forests, or

DL models as LSTM or RNN, could be considered. The

second task is to define the hyper-parameters to be tested

and their range. One consideration to keep in mind is that,

in general, the greater the number of hyper-parameters to

be tested, the longer the time in the fine-tuning phase of the

model. Finally, the third task is to establish a search

strategy for hyper-parameters. Among the most popular

strategies, we highlight grid-search and random search. In

general, the first one is used when a small range of hyper-

parameters to be tested is selected. This will allow us to

perform the search by testing all the defined hyper-pa-

rameters in an acceptable time. However, when a wide

range of hyper-parameters to be tested is selected, it is

recommended to use the random search strategy, although

it will not test all possible combinations.

Once the model is trained, it is ready to make predic-

tions on data that it has not previously seen. This mode of

operation will be the most common in the FARMIT

architecture. While the training mode should be done when

the sensor data changes substantially, the prediction mode

is used when a user wants to predict the quality of a specific

crop.

3.4.5 Decision maker module

This module is in charge of deciding the corrective action

to take in the case that any deviation is observed in the crop

quality. To make decisions, this module consults the cor-

rective policies previously defined in the cloud database.

First, the prediction made by the trained model is obtained.

Then, each policy is evaluated to determine if any of them

is fulfilled. If, based on the predictions, any of the policy

precedents are fulfilled, this module will evaluate the pol-

icy consequence to decide the action to take and thus be

able to correct the deviations in crop quality. However, this

module is not responsible for acting. Instead, that respon-

sibility falls on the Action Enforcement module that

receives the action to take and perform it.

Policies are based on the knowledge of experts and

specify the actions to be taken. An example of a corrective

policy is present in Algorithm 1.

Algorithm 1: Reduce water flow by 5% when
sweetness is less than 7.5
if SWEETNESS < 7.5 then

REDUCE AMOUNT WATER(5%)

In this policy, we compare if the sweetness value is

lower than 7.5, then the amount of water must be reduced

by 5%. In the case that the antecedent is true, i.e., the

prediction obtained for sweetness is lower than 7.5, then

the corrective action is triggered and communicated to the

system in order to be enforced by the corresponding IoT

actuators.

In general, the antecedent of the policy is one of the

variables predicted by the Model Prediction Module. In

contrast, the consequent is an action to correct the anomaly.

3.5 Application tier

This tier is responsible for offering different operational

and business applications to the operators. Thanks to the

service-oriented interface that FARMIT exposes, these

applications can be both desktop and mobile, as well as

web applications. Regardless of technology, these appli-

cations communicate with FARMIT through REST ser-

vices. Upon a specific request, the application tier

communicates with the prediction module of the lower

layer to obtain the results. These results will be returned to

user applications as HTTP responses following a REST

scheme.

4 Deployment in a tomato plantation

The FARMIT architecture was deployed in a tomato

plantation in the south of Spain. The main objective was to

evaluate and control the taste quality of cherry tomatoes.

The plantation comprises three greenhouses that contained

a certain number of tomato plants. In the physical layer, we

deployed both traditional and visual sensors. The tradi-

tional sensors were in charge of measuring both physical

and chemical properties, while visual sensors were inten-

ded to provide information about the appearance of the

tomatoes. In particular, the traditional sensors deployed

were: temperature, wind, rain, electrical conductivity,

humidity, radiation, carbon dioxide, direction, and wind

speed sensor. Regarding visual sensors, we deployed three

Fig. 2 Model Prediction Module phases in prediction mode
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RGB cameras in several control points in the greenhouses.

These cameras have to deal with different lighting condi-

tions. For example, Fig. 3 shows as these lighting con-

ditions vary depending on whether the images were taken

during the day or at night. Another factor that can influence

the brightness of the images obtained from the cameras is

the meteorological state (cloudy, sunny, or rainy).

Additionally, in the three greenhouses where FARMIT

was deployed, different operational applications for

Human-Machine Interfaces (HMI) were deployed in the

application tier, whose main objective was to allow the QA

staff to input data. These data include necessary measure-

ments performed by the quality department, the pests and

defects that were affecting certain lines and greenhouses,

and the activities carried out by the workers in the plan-

tation. In relation to the pests that could affect the tomato,

we highlight the whitefly, thrips, and tuta. Likewise, other

defects that the tomato could present were registered, such

as anomalies in its color, that the size was less than 22 mm

or that the stem was less than 5 cm thick, among others.

All of these sensors were registered in the FC located in

the edge layer through the Device Management Module.

Once they were registered, they were allowed to send

sensor data, which is managed by the Data Management

Module. The data sent to this module was filtered and

stored in the local database. This communication was

performed using the IoT Agent provided by the FIWARE

project.

Another data that was collected using applications was

the scores obtained during the tastings tests. In particular,

during the ML/DL training phase, a series of different

properties of the tomato were scored by professional tasters

and the QA department. The tastings were performed over

a specific plantation, and each plantation can be evaluated

by different tasting along the time. In each tasting, one or

more tasters evaluated different samples collected from the

plantation. Specifically, the measured tomato properties

were: Brix Degrees, Maturity Index, Hardness, Sweetness,

Acidity, and Tomato Smell. These six metrics, whose

meaning is shown in Table 1, determined were used as

tomato quality measures and, therefore, to label the data in

the training phase of the ML/DL model.

5 Experimental results

This section details the specific operation of the different

FARMIT modules to generate the predictive model. This

process is only required initially when the model has not

yet been generated, and the information from the different

sensors is significant enough to determine the quality of the

tomato. The objective of this predictive model is to eval-

uate tomato quality depending on the information from

visual and non-visual sensors deployed in the greenhouses

as well as the information collected by the QA department.

This section is focused on the analysis tier and its

Fig. 3 Different light conditions

in greenhouses
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components since they are responsible for generating the

model.

5.1 Data processing

Once the FC sent the information and it was stored in the

cloud database, the next step performed by FARMIT was

the data processing to adapt it to be used in the predictive

model. Firstly, preliminary data processing was necessary

because data were not collected at the same time intervals

or under the same conditions. For example, the QA

department weekly collected information about the growth

of the crop (such as the number of leaves on a plant or the

number of fruits on a plant) using a set of control plants for

each season and each greenhouse, as shown in Table 2. In

contrast, the values reported by the sensors in charge of

collecting information about the water, such as electrical

conductivity, water consumption, or pH level, were

recorded for each day of the week as shown in Table 3.

The other sensors, such as temperature, humidity, or wind

speed and direction, were configured to communicate their

measurements with different time intervals. While some

communicated the measurements every 15 seconds, other

sensors reported their measurements every 30 minutes.

This information was stored in a database table indicating

the sensor to which they referred, a timestamp, and the

reported value.

Table 4 shows the number of samples regarding its

source. As can be seen, samples from sensors are the most

numerous, followed by samples from images and samples

related to quality. To relate all these variables, the data

processing module groups them by the year and the week

in which the measurements were taken. All the afore-

mentioned data had this information available except for

some sensors where a timestamp was available.

Table 1 Tomato properties measured and its description

Property Description

Sweetness The basic taste associated with aqueous sucrose solutions.

Acidity The basic taste associated with aqueous solutions of citric acid.

Tomato smell Aromas commonly associated with freshly picked fresh tomatoes, which are generally described as sweet (fructose), acid (citric

acid), fruity, earthy, herbaceous, and ripe.

Hardness The resistance presented by the tomato when biting it.

Brix degrees Measures the concentration of soluble solids dissolved in a mixture, but due to the prevalence of sugars, pectins and organic

amino acids in soluble solids of fruit and vegetable juices, it represents an estimate of the sugar content.

Madurity

index

Value determined by the QA department based on the maturity of the tomato.

Table 2 Crop growth measurements

Season Week Year IdGreenhouse Value Sample

1 43 2019 1 15.0 1

1 43 2019 1 20.0 2

1 43 2019 1 16.0 3

1 43 2019 1 20.0 4

1 43 2019 1 16.0 5

1 43 2019 1 15.0 6

Season, Week, and Year indicate the season, week, and year in which

the measure was taken. Sample indicates the sample measured.

IdGreenhouse indicates the ID of the greenhouse where the sample

was taken. Finally, Value indicates the value measured

Table 3 Values measured for pH

Season Week Year IdGreenhouse Value Day of week

1 47 2019 1 3.69 1

1 47 2019 1 3.62 2

1 47 2019 1 3.58 3

1 47 2019 1 5.14 4

1 47 2019 1 2.98 5

1 47 2019 1 3.17 6

Season, Week, Year, and Day of week indicate the season, week, year,
and day of week in which the pH was measured. IdGreenhouse
indicates the ID of the greenhouse where the pH was measured.

Finally, Value indicates the pH measured

Table 4 Number of samples in the dataset regarding its source

Source sample Number of samples

Task-related 2 521

Defect-related 1 495

Growth-related 6 579

Quality-related 17 248

Histogram-related 45 803

Sensor-related 8 497 937

Pest-related 355
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Fortunately, the week number and the year could be

extracted from the timestamp, allowing to group them with

all the other database tables easily.

Additional work was carried out on integrating the

information on the pests affecting the tomato crops, the

tasks performed during the entire cultivation time, and the

defects in the tomato crops during the entire cultivation

time. These data were encoded following the One Hot

Encoding (OHE) strategy, resulting in a dataset with 409

features divided into the categories shown in Table 5.

Additionally, this module created the time series to train

the predictive model using two different approaches. The

first approach generates time-series considering every week

from the planting week to the week when the tasting was

carried out. In other words, tasting number n included data

for all the weeks between the week of planting and the

week in which the tasting was performed. The second

approach takes advantage of the fact that each plantation

was exposed to several tastings tests. Therefore, this second

approach generates the time series considering the weeks

when the current and the last tastings were performed. In

other words, if a tasting was carried out in week number 12

and another in week number 17, the generated time-series

only contains the data between these two tastings tests. In

both approaches, each of the generated time series was

labeled with the mean of the tasters’ scores.

Once all the data were grouped, the data processing

module generated the training and test datasets. This par-

tition could be done in two different ways. The first was to

divide the data preserving temporal coherence between

them. In contrast, the second consisted of selecting these

datasets in a uniform random way, following a standard

i.i.d. sampling scheme. Both approaches followed an 80/20

partition scheme. In other words, 80% of samples were

used for training purposes, and 20% of samples were used

for testing.

The last task of this module consisted of scaling the data

so that all of them were on the same scale and could be

used to train ML/DL models.

5.2 Feature filtering

This module removed those features that did not contribute

information to the model. To accomplish this task, a study

of the variance of each of the features in the dataset was

performed. Finally, those features whose values remained

constant throughout the dataset were removed. Specifi-

cally, a total of 248 features were removed from the

dataset. Additionally, the year, week, and season features

were removed since they did not provide useful informa-

tion to the model. Taking into account the previous fea-

tures, the total number of features removed was 161,

divided into the categories show in Table 6.

5.3 Feature extraction

This module extracted high-level features that could be

useful for generating the predictive model. Specifically,

three groups of features were extracted.

The first group of features was extracted from the

information grouped by the data processing module. In

order to relate the information from different sensors, the

data were grouped by week and year. From this aggrega-

tion, the feature extraction module calculated a statistical

summary. Specifically, the mean, the standard deviation,

the variance, the median, the minimum, the maximum, the

sum, and the range metrics were computed and added to

the dataset.

The second group of features was extracted from the

images captured by the RGB cameras. These images were

converted to the Lab color space for two reasons. The first

is that it allows separating the luminosity (the L channel),

making it possible to independently study the color

(channels a and b). The second reason is that Lab color

Table 5 Number of features in the dataset after the data processing

step

Features Number of features

Task-related 104

Defect-related 26

Growth-related 48

Quality-related 48

Histogram-related 120

Sensor-related 56

Pest-related 3

Others 4

The category Others includes: year, week, season, and IdGreenhouse

Table 6 Number of features removed in the feature filtering process

Features Number of features

Task-related 97

Defect-related 21

Growth-related 0

Quality-related 0

Histogram-related 30

Sensor-related 10

Pest-related 0

Others 3

The category Others includes: year, week, and season
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space allows differentiating small color changes. Then, the

histograms for each channel were calculated and used as

new features for the predictive model.

The last group of features was drawn from the previ-

ously removed week feature. This feature was encoded in

the form of a unit circle extracting two new features rep-

resenting the sine and cosine. This time representation

eases the learning of repetitive patterns.

5.4 Predictive model

This module trained the predictive model. In particular, a

model based on a Random Forest (RF) regressor with 100

estimators was selected to test performance in our scenario.

The selection of the RF model was made based on its

explainability, which is a desirable property in tasks where

the path followed to make the prediction is required. In

particular, due to its tree representation, the decisions take

by RF can be interpreted by the operator. The metric we

used to evaluate performance was Mean Squared Error

(MSE), defined in Equation 1. One of the most interesting

properties of this metric is that it is sensitive to large errors.

In other words, it is a good metric when there are potential

outliers in the dataset. This is particularly interesting when

considering data gathered by sensors that may introduce

errors in the measurement or when the operator can

introduce erroneous data in the database through HMI. The

MSE computes the square difference between the ground-

truth, Y, and the predicted value, Ŷ , of each sample, i. Then,

the result is divided by the number of total samples, n.

MSE ¼ 1

n

Xn

i¼1

ðYi � ŶiÞ2 ð1Þ

Since the data processing module allowed the selection of

different approaches to generate the dataset, this resulted in

a total of four possible combinations shown in Table 5

along with the error obtained in the test dataset. Despite the

different dataset generation approaches, all of them gen-

erated a training dataset with 80% of the total samples and

a test dataset with 20% of the samples.

The best result is reached when a random split and

weeks between the last and the current tasting is consid-

ered. Specifically, this approach achieved an MSE of

0.186. The approach considering all the weeks between the

tasting and the plantation and using a random split

achieved the second-best result with an MSE of 0.255. The

third best result was obtained by considering weeks

between the last and the current tasting and following a

sequential split, achieving an MSE of 0.284. Finally, the

worst result was achieved considering all the weeks

between the plantation and the current tasting and follow-

ing a sequential split. In particular, this approach reached

an MSE of 0.338.

Although the approach combining random split and

weeks between the last and the current tasting achieved the

best result, it is not always a realistic approach. The main

limitation is that we are facing a time-series task, and we

need to take into account several considerations. The ran-

dom split is not desirable because each sample is a

sequence of data weeks, and part of these data weeks can

be seen during the training. Besides, the approaches con-

sidering weeks between the plantation and the current

tasting are risky in time-series sequence creation. Imagine

that different tastings were performed over the same

plantation, which is frequent. In this case, all time-series

sequences related to this plantation must be included in the

train or the test dataset but not distributed in both datasets.

This is because future sample sequences will include data

from past weeks that will be seen during the training pro-

cess. Due to the drawbacks previously commented, we

recommend using the approach considering weeks between

the last tasting and the current tasting and following a

sequential split scheme (Table 7).

To illustrate the performance on the test dataset

achieved by the model, Fig. 4 shows the results for eight

samples. The blue bars indicate the value received by the

tasting tests, while the orange bars indicate the values

predicted by the model. We can conclude that the six

variables determined in a tasting test are predicted quite

accurately with very few exceptions. We can see that

sample number 0 is where there is a more significant

deviation regarding the Maturity Index and hardness label.

In addition, Acidity is the label that presents the highest

relative deviation from the ground truth, resulting in the

label that gets the worst performance. However, it can be

seen that FARMIT achieved acceptable performance. For

this reason, we consider that the usage of data from dif-

ferent sources such as those related to quality, growth,

images, and traditional sensor, together with information

regarding pests, defects, and tasks, provide valuable

information when determining the values of the tastings.

Besides, we carried out another experiment to demon-

strate that the approach combining features from different

sources outperforms the approach using standard sensors.

Table 7 Comparison between

different results
Sequential split Random split

Considering weeks between plantation and current tasting 0.338 0.255

Considering weeks between last tasting and current tasting 0.284 0.186
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To do this, we trained another RF model considering only

the samples coming from the traditional sensors. Both the

model trained using all features and the model using only

traditional sensor features were trained using a sequential

split and week data between the last and the current tasting.

Finally, we compute the percentage error of each predicted

sample with respect to the ground truth. Table 8 shows the

mean of the percentage error computed.

Fig. 4 Error in eight samples from the test dataset
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In conclusion, the approach that aggregates different

sources achieved a better performance than the approach

that only uses features from traditional sensors. This

demonstrates that to carry out proper corrective actions, it

is necessary to consider information from different sources.

5.5 Decision maker

Once the predictive model evaluates a sample, the output is

examined to carry out the proper action. In our specific

scenario, and taking into account the specific variables

measured, the operators defined several policies based on

the experts’ knowledge shown in Algorithm 2

Algorithm 2: Decision maker algorithm
if
SWEETNESS < 7.5 || TOMATO SMELL < 6.5
then

REDUCE AMOUNT WATER(5%)
else if ACIDITY ! = 1.7 || BRIX DEGREE > 8
then

REDUCE AMOUNT WATER(10%)
else if BRIX DEGREE < 6 then

INCREASE AMOUNT WATER(5%)
if HARDNESS < 6 then

INCREASE CONDUCTIV ITY (15%)

The QA department concluded that when the sweetness

is less than 7.5, the water reduction helps to correct the

sweetness and back it to desirable levels. In addition, the

reduction of water also helps to improve the acidity when it

is not equal to 1.7, the Brix degrees when they are higher

than 8, and the tomato smell when it is lower than 6.5. In

contrast, the increase of water can increment the Brix

degrees when they are lower than 6. Finally, the QA

department probed that increasing the electrical conduc-

tivity of water when the hardness is lower than 6 can

increase the aforementioned parameter.

6 Conclusions and future work

More and more farms and agricultural fields are automating

their processes to improve their productivity. This

automation, in most cases, is achieved by means of sensors

that measure different variables and actuators that perform

actions in the physical world, and therefore allow us to

correct deviations in the system.

In this work, we proposed a novel three-layer architec-

ture called FARMIT that uses both IoT and ML/DL tech-

nologies to carry out a continuous assessment of the crop

quality using data from different sources. The architecture

provides necessary mechanisms to analyze aggregated

data, extract information from it and recommend actions to

correct quality deficiencies. For this purpose, operators can

define corrective policies that trigger actions when a certain

parameter is outside its range. Additionally, we have

deployed the architecture in a tomato plantation with both

sensors that obtain visual information (RGB cameras) and

non-visual information, i.e., temperature, wind direction, or

pH. From these data, together with the data on pests,

defects and tasks carried out on the crop, an evaluation of

the tomato quality was performed. For this, a Random

Forest model was used to assess the crop quality, obtaining

results very close to those determined by a professional

taster. Besides, we conducted another experiment to com-

pare the performance of our proposal that considers data

from different sources and a traditional solutions that only

consider data from sensors. In this sense, our proposal

achieved a lower percentage error (6.59%) than a tradi-

tional solution (6.71%).

As future work, we consider the inclusion of new types

of information sources, such as aerial images taken from

drones. This will allow us to obtain graphical information

on the entire plantation without installing a large number of

cameras. Additionally, we plan to test DL models that

improve the results we have obtained in this work.
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