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Abstract
The application of evolutionary game method to study user behavior in social networks is a current hot issue. Most of the

current evolutionary game models are proposed based on the game between nodes, which cannot accurately describe the

diverse behaviors of users, and ignores the influence of network dynamics on evolutionary game. In order to solve the

above problems, an edge evolution game (EEG) model is proposed in this paper. Firstly, the edge game model combines

the pairwise interaction mode with the prisoner’s dilemma payoff matrix to calculate the user income. Secondly, on the

basis of strategy update, the disconnect–reconnect mechanism is proposed to promote the updating of user relationship. In

this mechanism, nodes perform the disconnect–reconnect based on the incomes: the betrayal neighbor with the lowest

incomes is disconnected, and the neighbor of the disconnected neighbor with the highest incomes is reconnected. Finally,

three kinds of networks are selected for experimental verification. The experimental results show that the cooperation

clusters are formed in all three kinds of networks, which greatly promote the cooperation evolution among users.
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1 Introduction

At present, social networks have become an important

channel and carrier for maintaining relationships and dis-

seminating information in human society. Users can pub-

lish and receive all kinds of topics and opinions related to

national economy and people’s livelihood through mobile

phones and other mobile terminals anytime and anywhere.

Taking online social network as a platform to provide

various services and applications, many researchers have

carried out extensive studies on individual user behaviors

such as microblog posting, searching, browsing and

commenting, as well as user group interaction behaviors

such as relationship building and content selection [1]. The

methods used to study user behavior in social networks

include technology acceptance model, queuing theory and

planned behavior theory.

In recent years, it has become a hot issue to study the

modeling and application of interaction behavior among

individual social users from the perspective of game.

Among them, the research on user behavior analysis of

social networks based on game theory is widely applied in

public opinion analysis, privacy protection and benefit

analysis of e-commerce platforms [2–4]. In the aspect of

pre-warning and analysis of public opinion, based on the

completely rational game analysis of the cost and income

of users in the communication of public opinion, verified

the relationship between individual trust, importance of

public opinion and communication of public opinion in

social relations. In terms of e-commerce platform, based on

the theory of game and multi-objective decision making,

the game optimization analysis of different types of par-

ticipants is carried out, so as to realize the in-depth exca-

vation of potential benefits of cross-border e-commerce. In

the aspect of user privacy protection, by analyzing the
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problems of user privacy protection and incentive in social

networks, a user privacy behavior analysis model based on

evolutionary game and a privacy protection investment

decision framework are proposed to improve the balance

ability between the privacy protection and incentive

mechanism of social users.

Although most social network user behavior analysis

based on node game model has achieved good application

effect, compared with node-based game strategy, edge-

based game strategy is more suitable for depicting the high

complexity and dynamic characteristics of social network

structure, and makes the description of the diversity of

cooperative behaviors among users more accurate. At

present, there are few researches on user behavior of edge-

based game model, and the following problems exist: (1)

most researches focus on using grid network and Random

network, that is, the influence of social network dynamics

on cooperation level is ignored; (2) in the existing edge-

based game model, most of the disconnect–reconnect

mechanism adopts the one-to-many strategy, which will be

affected by the benefits of all the surrounding neighbors. In

other words, different user behaviors adopt the same update

strategy, which leads to inaccurate depiction of user

behavior diversity.

In order to solve the above problems, a user behavior

analysis model of social network based on edge evolution

game (EEG) is proposed, which sets the behavior interac-

tion mode between users by defining the social game net-

work. The payoff function is designed based on the

prisoner’s dilemma problem. Considering the second-order

propagation of information, the update strategy and the

disconnect–reconnect mechanism are proposed to describe

user behavior. The cooperative clusters generated in the

evolution of the EEG model promote user cooperative

behaviors in social networks, and the results provide a basis

for studying user game behaviors and cooperative emer-

gence in social networks. Its contributions are as follows:

(1) Based on the influence range of second-level

neighbor nodes, the mechanism of disconnect–reconnect is

proposed, which effectively simulates the relationship

between network dynamic change and user behavior.

(2) In different dynamic network environments, the

influence of different initial cooperation ratio, betrayal

temptation and strategy update probability on the evolution

of cooperation is discussed. Compared with other models,

the authenticity and validity of EEG model for promoting

cooperation evolution are verified.

(3) The influence of edge-based game evolution model

on user behavior and network structure is analyzed and

discussed. The interaction between node cooperative

cluster formed by EEG model and user cooperative

behavior is verified.

The whole article is organized as follows: in Sect. 2, the

theory, model and application of the combination of game

theory and social network are discussed and analyzed; in

Sect. 3, the differences between edge-based game and

node-based game in user behavior analysis and the

advantages of side game are discussed; in Sect. 4, the

framework of EEG model is proposed, and the calculation

of benefit matrix, the design of disconnect–reconnect rule

and the strategy updating process are discussed in detail; in

Sect. 5, according to the set parameters, evolutionary game

experiment and result analysis are carried out. Compared

with similar models, the superiority of EEG model is

verified; finally, the conclusion and the future work is

discussed.

2 Related works

Evolutionary game theory focuses on how bounded rational

individuals maximize their returns over time in repeated

games. Based on individual game, Allen et al. proposed the

conditions for the evolution of cooperative behavior on any

interaction graph and substitution graph (in which the

propagation graph is connected). Then, based on the theory

of coalescing Random walks in the graph, a method to

calculate the critical benefit–cost ratio of cooperative

evolution on arbitrary spatial structure is obtained [5, 6]. At

present, Allen et al. further extends this conclusion, making

the method applicable to any update process and evolu-

tionary prediction applications. Hilbe C. et al. analyzed the

random game theory and evolutionary game theory on the

premise that cooperation increases public resources while

defection decreases public resources, and found that the

dependence of public resources on interaction greatly

enhances the cooperative tendency [7]. Danyang J. et al.

studied the influence of inertia behavior on cooperation in

an evolutionary model with isolated individuals, and found

that individual inertia would hinder the emergence of

cooperation [8]. Guo H. et al. proposed the evolutionary

game model, and people with good reputations could be

rewarded, while those with low reputations would be

punished. Studies have found that this mechanism can

promote cooperation [9]. Xu X. et al. studied the influence

of individual rationality on cooperative behavior in a

structured system with blackmail individuals [10]. Li Y.

et al. assumed in the model that individuals with high

income have sympathy for neighbors with low income, and

introduced a mechanism of income redistribution, which

was found to promote cooperation [11]. Su Q. et al. pro-

posed a multi-person evolutionary game framework with

edge diversity, in which different types of edges described

different social relationships, emphasizing the importance

of social connections, and providing an effective method to
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reduce computational complexity and analyze the evolu-

tion process of real systems [12]. Wang et al. established

the dynamics of mixed stochastic evolutionary game based

on individual strategy updating in Moran process and

imitation process. By studying individual updating rules

and strategies affecting evolutionary games, it was found

that the probability of fixation has nothing to do with the

probability of adopting imitative updating strategies [13].

As an additional strategy of game, voluntary participation

has been proved to be an effective way to promote coop-

erative evolution. Therefore, Shen et al. studied the effect

of coevolution on the evolution of cooperation in voluntary

prisoner’s dilemma game, and the experiment showed that

voluntary participation could effectively improve the pro-

portion of cooperation, and there existed an optimal

increment value that played an utmost role on the evolu-

tionary dynamics [14].

In recent years, scholars have gradually shifted their

attention from the macro level to the micro level to study

users and interaction behaviors among users in social net-

works. Yu et al. studied the interaction between users

discussing products based on their brand preference, loy-

alty and herd psychology, and their research was more

inclined to study the competition between topics [15, 16].

Wang et al. proposed a random game network model to

analyze competitive network behavior [17]. Su proposed a

game theory model of multi-topic communication mecha-

nism in social networks [18]. Zhang et al. introduced a

permanence of expectation dependence in spatial pris-

oner’s dilemma game to promote cooperation between

groups. The sensitivity of strategy persistence to expecta-

tion was characterized by defining tunable parameters, and

the effect of this sensitivity on the evolution of cooperation

was studied. The results showed that the micro-evolution

and sensitivity of cooperation between users could gather

larger cooperative groups to further promote cooperation

[19]. Network users transmit different topics, considering

their reward and personality. By analyzing relevant cases,

it is found that multi-topic communication is influenced by

self-cognition, social interaction and information acquisi-

tion. Wu et al. proposed a trust-based information trans-

mission and prediction model, and discussed the interaction

between information transmission and trust dynamics on

multiple networks [20]. Wang et al. studied the cooperative

evolution of user information sharing behavior in social

networks based on the social evolutionary game model, and

through numerical simulation of the social evolutionary

game model, revealed the influence of updating frequency

of concern relationship between users, users’ pursuit of

reputation and group amplification effect on the evolution

of social networks [21]. He et al. studied that when the

environment performed better than the heredity in the

spatial evolution game, the linear combination of heredity

and environment was defined as individual fitness, and

experimentally verified that joining the dominant envi-

ronment could improve the level of cooperation between

users [22].

In addition, when combining social networks with game

theory, the complexity and dynamics of networks need to

be considered from the perspective of social network

structure. Zimmermann M. G. et al. studied the evolu-

tionary game of dynamic network for the first time, gave

the characteristics of dynamic network game, and dis-

cussed in detail the emergence characteristics of coopera-

tion between users [23, 24]. Wu et al. studied the effect of

dynamic networks on the level of network cooperation, the

model assumes that the connection dynamic process is

faster than the policy dynamic process [25]. By comparing

four co-evolutionary rules, Liu et al. explored how the way

of disconnection and connection establishment affects

cooperation [26]. The effect of changing the strength of

interaction according to the expectation of income on the

level of network cooperation was discussed, and the evo-

lutionary game of multi-layer networks had also attracted

the attention of relevant scholars [27, 28]. At present, most

of the research on evolutionary games in networks has been

conducted on node-based, while relatively few research

results have been conducted on edge-based evolutionary

games, and the nature of edge-based evolutionary games is

not necessarily the same as node-based evolutionary

games. Nepusz T. et al. evaluated edge-based dynamics

processes on networks and demonstrated that the control-

lability of the process is significantly different from node-

based dynamics [29]. Su et al. proposed two models of

interaction singularity and interaction diversity and verified

that interaction diversity promotes user cooperation in

homogeneous and heterogeneous networks, respectively

[30, 31].

3 Edge-based and node-based evolutionary
games

From Fig. 1, in the node-based game, when Sx is a coop-

erative strategy, node x only has a cooperative strategy for

all its neighbors; while in the edge-based game, node x has

one corresponding strategy for each neighbor: Sxw, Sxy, Sxz,

each of which can be chosen to cooperate or betray.

Therefore, in the edge-based game, node behavior becomes

diversified, which is more in line with the behavior of users

in social networks: different strategies are adopted for

different neighbors.

Compared with the node-based evolutionary game, the

edge-based evolutionary game model has the following

advantages:
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(1) Income calculation the total incomes of a node are

the sum of the income obtained by the game between the

node and each of its neighbors. The node can only choose

one strategy in the node-based evolutionary game. There-

fore, for a cooperative node, the betrayal neighbors can get

benefits from themselves without paying any price, which

reduces their own incomes; while in the edge-based evo-

lutionary game, it can change strategies to the betraying

neighbors in a targeted manner, which reduces losses and

maximizes incomes.

(2) Strategy update when performing imitation update,

if it is edge-based evolutionary game, only the node

strategy to a certain neighbor is changed after successful

update; if it is node-based evolutionary game, every time a

node updates strategy, its strategy to all neighbors is also

changed, instead of just changing the strategy to one

neighbor.

(3) Disconnect–reconnect when performing disconnect–

reconnect, the node chooses whether to disconnect or not

according to the strategy of neighbor to itself. In the node-

based evolutionary game, the node strategy is one-to-many

and will be influenced by the incomes and strategy of all

surrounding neighbors, which lacks relevance; in the edge-

based evolutionary game, the node strategy is one-to-one

and the strategy for a certain neighbor is mainly influenced

by the incomes and strategy of the current neighbor.

Therefore, performing the disconnect–reconnect, the node

will not be disturbed by other factors when choosing the

object of disconnection and has good relevance and

correctness.

4 EEG model construction

Social gaming network can be expressed as

G=(V, E, S, U). V ¼ f1� i� ng represents user set, where

n is the number of users; E ¼ feij j i 2 V; j 2 Vg represents
user relationship set; S ¼ fSij j i 2 V ; j 2 Vg represents the

user strategy set on the edge, where Sij is the strategy of

user i to user j; U ¼ fUi j i 2 Vg represents the income set

of user, where Ui is the total income of user i. The

framework of EEG model is shown in Fig. 2.

Figure 2 shows that the EEG model framework is

composed of network layer, game layer and evolution

layer. In the network layer, user information, relationships

between users, and user benefits and strategies are stored.

The game layer defines the interaction mode of user game

and the calculation rules of user payoff respectively. The

evolution layer includes strategy update and disconnect–

reconnect mechanism, which defines strategy and rela-

tionship update rules respectively. After the user updates

the strategy and performs the disconnect–reconnect

mechanism at the evolution layer, the relationship the

user’s own strategy set and the relationships between users

are updated.

The implementation process of the EEG model in Fig. 2

is as follows:

(1) Mapping the relationships between people in the real

world into nodes and edges in social networks.

(2) The EEG model is used to deal with the relationship

between users in social networks, and the basic information

of users, the relationship between users and benefits are

stored in the network layer.

(3) Based on the social network graph composed of

basic information between users, interactive game between

users is carried out in the game layer, and payoff calcula-

tion is carried out to update their own payoff.

(4) According to the results of payoff calculation, the

strategy is updated in the evolution layer, and the user node

with high payoff is selected to execute the disconnect–

reconnect rule. The strategy set and the relationship

between users are updated through the process of evolution

layer.

(5) After the implementation of multiple rounds of

evolutionary game, the user cooperation cluster is gener-

ated, which greatly promotes the level of cooperation

between users.

Fig. 1 Edge-based and node-

based evolutionary games. a
Node-based evolutionary game,

and b edge-based evolutionary

game. x, y, z and w represent

nodes; Sx in a represents the

strategy adopted by node x; Sxy
in b represents the strategy of

node x to neighbor y, and
similarly, Syx represents the
strategy of node y to neighbor x
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In this paper, the pairwise interaction mode and the

disconnect–reconnect mechanism are adopted. Due to the

behavior diversity of neighbor nodes, the user node inter-

acts with neighbor nodes in pairs to improve the diversity

of user behaviors. However, when executing the discon-

nect–reconnect mechanism, the disconnected object will

not be disturbed by other factors. Therefore, the execution

results of EGG model have good correlation, and the user

behavior presents the characteristics of diversity.

4.1 Income calculation

(1) Payoff matrix

As interpersonal relationship and price competition in

social network satisfy the prisoner’s dilemma game model,

the payoff matrix of prisoner’s dilemma model is selected

in this paper, it is shown in Table 1:

(2) Calculation process

User A games with user B, when a cooperative strategy

is adopted between two users, the game income of each

user is R; when the strategy of user A is cooperation and

user B is betrayal, the game income of users A and B are S

and T, respectively; when a betrayal is adopted between

two users, the game income of each user is P.

Ui ¼
X

j2neighbori
Uij ¼

X

j2neighbori
STijMSji: ð1Þ

Where Ui represents the total income of user i, which is the

sum of the incomes obtained by user i game with each

neighbor; neighbori represents the neighbor set of node

i; Sij represents the strategy of node i to neighbor j:M is a

2� 2 matrix, and are expressed by the following Formula

(2) and (3).

Sij ¼
ð1; 0ÞT Sij ¼ C;

ð0; 1ÞT Sij ¼ D;

(
ð2Þ

M ¼
R S

T P

� �
; ð3Þ

where C represents cooperation and D represents betrayal.

Formula (2) vectorized the strategy, using ð1; 0ÞT to rep-

resent the cooperation strategy, and ð0; 1ÞT to represent the

betrayal strategy. The T, R, S, P in the matrix M corre-

spond to the parameters in Table 1, respectively.

In order to eliminate the influence of node degree on

income calculation, the total incomes of the node are

normalized as follows:

U ¼ Ui

di
; ð4Þ

where di represents the degree of node i.

4.2 Strategy update

The strategy of a node in social network to a certain

neighbor will be influenced by the surrounding neighbors

and to different degrees. Therefore, the strategy update is

shown in Fig. 3.

The formula of function f is as follows:

Fig. 2 The framework of EEG model

Table 1 Payoff matrix

B

Cooperation Betrayal

A Cooperation R, R S, T

Betrayal T, S P, P

T [R[ S[P and T þ S[ 2R
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f ðUi � UjÞ ¼
1

1þ exp½KðUi � UjÞ�
; ð5Þ

where K[ 0 represents noise, whose function is to enable

users in social networks to imitate strategies with higher

total incomes than their own with a greater probability, and

to describe user irrational behaviors, enabling users to

imitate strategies with lower incomes than their own with a

small probability. Referring to the classical value of K in

[30, 33], and to increase the irrationality of the user, K is

set to 0.8.

4.3 Disconnect–reconnect

Users in social networks will update their relationships to

obtain higher incomes. For some low-income betrayal

users, they will disconnect from them and establish con-

nections with high-income users. Considering the second-

level propagation characteristics of information dissemi-

nation, the node is restricted to perform disconnect–re-

connect within the second-level neighbors. The rules are as

follows:

(1) Disconnect

Node i will compare the income from the game with

each neighbor, and choose the neighbor with the lowest

game income. If the neighbor strategy for node i is

betrayal, it is selected as the disconnect node j, the math-

ematical expression is as follows:

Uij ¼ minUik;k2neighbori ; Sji ¼ D; ð6Þ

where minUik;k2neighbori represents the minimum value of

the game income between node i and each neighbor, Uij

represents the income of node i after the game of node j, Sji
represents the strategy of the disconnect node j to node i.

There are two special cases for the above strategies,

which are handled as follows:

(a) If the disconnect node j has only one neighbor node i,

the disconnect–reconnect fails.

(b) There is only one neighbor of node i, and its strategy

to node i is betrayal, then the neighbor is directly selected

as the disconnect node j.

In case (a), if the disconnect node j has only one

neighbor node i, an isolated node j will be generated after

the edge is disconnected. After multiple rounds of the

game, a large number of isolated nodes will be generated,

which is not conducive to the spread of cooperation. In

case (b), a successful round of disconnect–reconnect con-

sists of disconnection and reconnection. Therefore, after

node i disconnects the only neighbor node j, it will choose

another node to reconnect, and no isolated node will be

generated.

(2) Reconnect

After disconnecting the edge, node i will select a node m

from the neighbors of the disconnect node j to reconnect.

The reconnect node m needs to satisfy the following

conditions:

Um ¼ maxUk;k2Q Qj j[ 1;

Um [Uj Qj j ¼ 1;

�
ð7Þ

where Um;Uk;Uj respectively represents the total incomes

of node m, k and j; Q ¼ neighborj � i represents the

neighbors of j except i.

Formula (7) indicates that when Qj j[ 1, there are

multiple nodes in Q, and the node with the highest total

incomes is selected as the reconnect node m; When

Qj j ¼ 1, there is only one node in Q. If the total incomes of

this node is greater than the total incomes of node j, it is

selected as the reconnect node m.

After successful execution of the disconnect–reconnect,

the reconnection edge is assigned strategies, the rules are as

follows:

Smi ¼ D;

Sim ¼ Sij:

�
ð8Þ

The strategy Smi of the reconnect node m to node i is set to

betrayal, and the strategy Sim of node i to the reconnect

node m is consistent with the strategy Sij of node i to dis-

connect node j. The advantage of assigning strategies to

reconnecting edges in this way to ensure that the number of

cooperation and betrayal strategies in the network remains

the same before and after the disconnect–reconnect, and to

eliminate the influence of artificially adding cooperation or

Fig. 3 Node i is randomly selected for strategy update, it randomly

selects the edge eij (dotted line). When updating the strategy Sij, node
i selects j as the imitation object with probability p, and performs the

imitation update with probability f ðUi � UjÞ according to fermi

function (red arrow); or randomly selects one of the surrounding

neighbors (k, l, m) as an imitation object with probability 1� p. As in
[32], p is set to 0.90. Assuming that the selected imitation object is k,
node i will imitate the strategy Ski with probability f ðUi � UkÞ (blue
arrow) (Color figure online)
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betrayal strategies to the network. In the process of evo-

lutionary gaming, the nodes will update the strategy or

perform the disconnect–reconnect according to the proba-

bility. The probability of strategy update is ss, and the

probability of performing the disconnect–reconnect is sr.
In social network, users always change their strategies,

but rarely change their own relationships. Therefore, the

probability of node updating strategy is higher. To satisfy

the situation, the experimental set ss is between 0.90 and

0.98 in this paper.

4.4 EEG model algorithm description

The implementation of the EEG model is shown in Algo-

rithm 1.

Algorithm 1 EEG
tab1
Input: initial network G, initial cooperation ratio λ, payoff matrix M , strat-

egy update probability τs, the noise K, probability of imitating neighbors
on the selected edge p, number of evolutionary rounds N

Output: the number of cooperation after each round of the evolutionary
game, the network snapshots in the process of the evolution

1: for node in G.node():
2: calculate game income // Calculate the game income of each node in

the network
3: while n < N do // Set the number of evolutionary rounds
4: if random.random() < τs: then // Strategy update with probability τs
5: i = random.choice(G.node()) // Node i is chosen randomly
6: j = random.choice(G.neighbors(i)) // Node i randomly chooses

neighbor node j
7: if random.random() < p: then // Node i selects neighbor node j

with probability p as the imitation object
8: if random.random()< 1/{1 + exp[K ∗ (Ui − Uj)]} then
9: Sij = Sji

10: end if
11: else // Node i selects other neighbor nodes j with probability 1−p

as the imitation object
12: m = random.choice(G.neighbors(i) - j)
13: if random.random()< 1/{1 + exp[K ∗ (Ui − Um)]} then
14: Sij = Smi

15: end if
16: end if
17: update i, j game income
18: else // Disconnect-reconnect with probability 1 − τs
19: i = random.choice(G.node())
20: Select disconnect node j according to formula (6)
21: if len(G.neighbors(j)) >1 then
22: disconnect eij
23: select reconnect node m according to formula (7)
24: reconnect eim
25: Sim = Sij

26: Smi = D
27: end if
28: update i, j, m game income
29: end if
30: end while

Algorithm 1 complexity analysis: assuming the number

of network nodes is n and the average degree of network

nodes is m. Lines 1–2 traverse the nodes in the network to

calculate the income. In calculating the income, the

neighbors of each node need to be traversed and the time

complexity is O(n2). Lines 3–30 are for loops with a time

complexity of O(N). Lines 4–17 are strategy updates: line

17 calculates the game income of nodes i and j, and

traverses their respective neighbors in time complexity

O(2 � m). Lines 18–29 are disconnect–reconnect: lines 20–

23 traverse the neighbors of the nodes when choosing the

disconnect node and reconnect node in time complexity of

O(2 � m). Line 28 calculates the game incomes of nodes

i, j, and m, which traverse their respective neighbors in

time complexity of O(3 � m). Since the probability of

strategy update and disconnect–reconnect are 90% and

10%, respectively, the time complexity within the for loop

is O(0:9 � 2mþ 0:1 � 5m) � O(2m). The time complexity

of the EEG model is O(n2) ? O(2mN) = O(n2 þ 2mN).

5 Experimental results and analysis

5.1 Comparison of model parameters

Under different initial cooperation numbers, three networks

of Random, WS small-world, and BA scale-free networks

were selected separately to explore the effects of betrayal

temptation T and strategy update probability ss on the

evolution of cooperation. The parameters are set as fol-

lows: Initial network G is randomly generated by using the

functions of the networkx package in Python, the param-

eters of these three networks are shown in Table 2 Initial

cooperation ratio k; number of evolution rounds N ¼
6 � 107 and payoff Matrix M is shown in formula (9).

M ¼
1:0 � 0:4

T 0

� �
: ð9Þ

A total of multiple experiments was carried out for each

network, and the average of the multiple evolutionary

results was taken as the experimental results, as shown in

Figs. 4 and 5.

As shown in Fig. 4, the curves show an overall

decreasing trend under the three networks, indicating that

the ability of the model to promote cooperative evolution

decreases with the growth of T, and it cannot promote

cooperative evolution at higher T.

In the WS and Random networks, at the same T, the blue

curve is always the highest, the yellow curve is the second

highest and the green curve is the lowest. In the two

Table 2 Network data sets

network Total number of nodes Total number of edges

BA 500 500

WS 500 500

Random 100 500

BA scale-free network fixed 500 edges, WS small-world network fixed
500 edges, Random network fixed 100 nodes
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networks, the higher the initial cooperation rate k is, the

higher the cooperation rate in steady-state Fc is, and the

stronger the EEG model can promote cooperation. The

correlation between k and Fc does not remain constant on

the BA network; when T\1:7, k and Fc correlations are

the same as the WS and Random networks; when T [ 1:7,

the higher k, the smaller Fc instead, and the lower the EEG

model can promote cooperation.

As can be seen from the experimental results, with the

increase of T, the income of the individual who adopts the

betrayal strategy increases, and more and more users are

more willing to imitate their strategy and establish contact

with them. Therefore, Fc decreases with the increase of

T. When T increases to a certain value, it is difficult for

cooperative clusters to resist the intrusion of betrayal

strategy, and finally betrayal dominates most of the

network.

It can be seen from Fig. 5 that for the same strategy

update probability ss, the curve values of the three net-

works are blue with the largest, yellow with the second

largest and green with the smallest. The ability of the EEG

model to promote cooperation increases with the increase

of the initial cooperation rate k.
In the three networks, the curves have different trends.

In BA network, the curve remains stable at first, and

decreases with the increase of ss after ss [ 0:94. In WS and

Random network, the curve shows an increasing trend and

the curve value changes greatly. On BA network, the

ability of EEG model to promote cooperation decreases

slightly with the increase of ss, but it becomes more stable.

In WS and Random networks, the ability of EEG model to

promote cooperation is greatly affected by ss and increases

with the increase of ss. The curve change rates of WS

network and Random network are different. In WS net-

work, ss [ 0:94, the curve increases rapidly in the early

stage, and then tends to be flat and stable. In the Random

network, the curve tends to be flat and stable when

ss [ 0:94.

It can be seen from the experimental results in Fig. 5

that ss has different effects on Fc in different networks. In

BA network, Fc is less affected and can be almost ignored,

while in WS and Random network, Fc is more affected. As

BA network itself has large degree nodes, it is easy to form

cooperative clusters. For WS and Random networks,

appropriate adjustment of relationships can promote the

formation of cooperative clusters and thus promote the

evolution of cooperation. Frequent relationship adjustment

is not conducive to the formation of collaborative cluster,

and it is always unable to resist the intrusion of betrayal

strategy, resulting in the decrease of Fc.

5.2 Analysis of evolution processes

The payoff matrix is shown below:

M ¼
1:0 � 0:4

1:5 0

� �
:

To explore how the model EEG affects the evolution of

cooperation, an experimental analysis of the evolutionary

trend of the cooperation number was conducted. The

parameters were set as in Sect. 5.1 except for the betrayal

temptation T ¼ 1:5, the initial cooperation ratio k ¼ 15%,

and strategy update probability ss ¼ 0:98. The results are

shown in Fig. 6.

From Fig. 6, it can be seen that when only updating the

strategy, on the BA scale-free network, the initial number

of cooperation has increased after a small decline, and

finally the cooperation has almost spread the network; on

the WS small world network, the number of cooperation

shows a oscillating downward trend, disappearing around

3 � 107 rounds, and betrayal dominates the whole network;

on the random network, the evolution trend of the number

of cooperation is roughly the same as that of the WS small

world, except that the amplitude of oscillation is different.

In the end, cooperation disappears and betrayal prevails.

Therefore, when the social network satisfies the scale-free

characteristics, users are more willing to obtain the

Fig. 4 Fraction of cooperators at steady state Fc for the three networks with the betrayal temptation T ¼ 1:5; 1:6; 1:7; 1:8; 1:9; 2:1; 2:3, under the
strategy update probability ss ¼ 0:98 and the initial cooperation ratio k ¼ 15%; 30%; 50% (Color figure online)
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maximum benefit through cooperation; when the social

network satisfies the small world and random characteris-

tics, the users who initially adopted the cooperative strat-

egy changed their strategy due to the temptation of

betrayal, and the cooperative behavior disappeared.

After adding the disconnect–reconnect, cooperation has

been promoted on all three types of networks. In Fig. 6a,

the cooperation number initially decreases more and then

rises; compared with not adding the disconnect–reconnect,

it rises slightly slower at the early stage of evolution and

becomes faster after many rounds of evolution; in Fig. 6b,

the number of cooperation starts to rise after a small

decline and rises faster, while it becomes slower and

gradually tends to steady state after 900; in Fig. 6c, the

number of cooperation increases after a small decline, the

initial increase is relatively fast, and then oscillates and

rises slowly. The reason is: the addition of the disconnect–

reconnect changes the relationship between nodes, which

in turn changes the original network structure of the

community, and has an impact on the evolutionary results.

In order to explore the process of the node relationship

update and network structure evolution after adding the

disconnect–reconnect, the time snapshots of the three

network evolution game processes are analyzed and com-

pared, as shown in Figs. 7, 8 and 9. The black dots in the

figure indicate the nodes in the network, and the node size

is proportional to the node degree: the larger the node

degree, the larger the black dot; the edges in the network

are represented by three different color line segments: red

indicates two strategies on the edge are all cooperation;

blue indicates that one strategy is cooperation and the other

strategy is betrayal; black indicates that both strategies are

betrayal.

In Fig. 7, during the evolution, a cluster with a large

central node and a smaller degree of the surrounding nodes

is formed in the network, and most of the edges within the

cluster are red, which is called the cooperative cluster.

At the beginning, the blue edges are distributed rela-

tively scattered, as shown in Fig. 7a; in the early stage of

the evolution, the blue edges gradually disappear, and the

network evolves a small number of cooperative clusters

with relatively scattered distribution, as shown in Fig. 7b;

as the evolution proceeds, the cooperative clusters split to

form small cooperative clusters and move closer to the

center, as shown in Fig. 7c; in the middle stage of the

evolution, the cooperative clusters continue to split, and the

Fig. 5 Fraction of cooperators at steady state Fc for the three networks with the strategy update probability ss ¼ 0:98; 0:96; 0:94; 0:92; 0:90,
under T ¼ 1:5 and the initial cooperation ratio k ¼ 15%; 30%; 50% (Color figure online)

Fig. 6 Evolution process of cooperation on social network. a On BA

scale-free network, b on WS small world network, and c on random

network. (Blue line) the evolution of cooperation with increasing

number of games when nodes only update their strategies without the

disconnect–reconnect; (yellow line) the evolution of cooperation after

adding the disconnect–reconnect (Color figure online)
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cooperation spreads from the clusters to the surroundings,

as shown in Fig. 7d; in the later stage of the evolution, the

cooperative clusters increase, and most of the network is

occupied by the red edges, as shown in Fig. 7e; after

multiple rounds of evolution, the growth of cooperation

slows down, and finally cooperation almost occupies the

Fig. 7 Evolutionary snapshots on BA scale-free network. a–f Snapshots of the initial network, 1 � 105; 5 � 106; 1 � 107; 4 � 107 rounds and the

final network, respectively (Color figure online)

Fig. 8 Evolutionary snapshots on WS small-world network. a–f Snapshots of the initial network, 1 � 105; 5 � 106; 1 � 107; 4 � 107 rounds and the

final network, respectively (Color figure online)
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network, as shown in Fig. 7f, the network structure

becomes diffuse as a whole.

In Fig. 8, at the beginning of the network, most of the

edges are blue, and the distribution is relatively concen-

trated, as shown in Fig. 8a; in the early stage of evolution,

the network evolved to generate a small number of coop-

erative clusters, as shown in Fig. 8b; then, the network

gradually evolves into a radial shape, forming a large-scale

cooperative cluster in the center, with a small number of

nodes of degree one distributed around, and most of the

edges between nodes are black, as shown in Fig. 8c; in the

middle stage of evolution, the cooperation spreads outward

from the central cooperative cluster, and the number of

cooperation increases, as shown in Fig. 8d; in the later

stage of evolution, the cooperative clusters becomes dis-

persed, and the nodes with degree one increase and are

more evenly distributed around the cooperative clusters, as

shown in Fig. 8e; after multiple rounds of evolution, the

cooperative clusters move closer to each other, and the

number of cooperation increases less, as shown in Fig. 8f.

The network structure becomes cohesive and in a state of

shock.

Compared with the scale-free network in Fig. 7, the

cooperative clusters on the small-world network are more

concentrated, and the final network structure is relatively

more aggregated. The reason is that the disconnect–re-

connect restricts nodes from updating their relationships

within the second-level neighbors. Therefore, if the initial

network with tightly connected nodes becomes cohesive in

its structure after evolution and forms more concentrated

cooperative clusters; conversely the structure becomes

divergent and forms more dispersed cooperative clusters.

In Fig. 9, the network is initially mostly blue edges with

more concentrated distribution, as shown in Fig. 9a; in the

early stage of evolution, the nodes move closer to the

middle to form small cooperative clusters, as shown in

Fig. 9b; as the evolution proceeds, tight cooperative clus-

ters are formed in the center of the network, as shown in

Fig. 9c; in the middle stage of evolution, cooperation

spreads outward, but there are more blue edges in the

cooperative clusters, as shown in Fig. 9d; in the later stage

of evolution, the number of cooperation increases, and the

cooperative clusters gradually become larger, but there are

still a few blue edges inside, as shown in Fig. 9e; after

multiple rounds of evolution, the blue edges become less

and a more stable cooperative cluster is formed, and in the

end, the cooperation was greatly promoted, as shown in

Fig. 9f. Among the three networks, the random network

has the most densely connected initial nodes, the final

network structure is the most cohesive, and the cooperative

clusters are the most concentrated; compared to the small-

world network, the nodes with degree one are fewer and

closer to the central cluster.

From the experimental results obtained in Figs. 7, 8 and

9, it is clear that cooperative clusters are the key to pro-

moting user cooperative behavior in social networks, and

Fig. 9 Evolutionary snapshots on random network. a–f Snapshots of the initial network, 1 � 105; 5 � 106; 1 � 107; 4 � 107 rounds and the final

network, respectively (Color figure online)

Cluster Computing (2022) 25:4397–4412 4407

123



their formation is mainly influenced by two factors: net-

work structure and disconnect–reconnect.

(1) Network structure cooperative clusters are easily

formed in networks where clusters are initially present,

such as scale-free networks.

(2) Disconnect–reconnect since the initial number of

cooperation is set low, there are only a small number of red

edges and the nodes are mostly surrounded by black edges

in the network, and the income R from both sides of the

game taking cooperation is greater than the income P from

both taking betrayal. Therefore, when performing the dis-

connect–reconnect, the nodes are more willing to establish

connections with the cooperating nodes. As the evolution

proceeds, the central cooperating node attracts the sur-

rounding nodes to establish connections to form small

cooperative clusters, and the small cooperative clusters in

turn attract the surrounding nodes to establish connections

to form large cooperative clusters.

In the evolution of the three types of networks, the

mechanism by which cooperative clusters can promote

cooperative behavior of users in social networks is as

follows:

Since the majority of the nodes within the clusters adopt

cooperative strategies, the probability of imitating coop-

erative strategies is much higher than that of imitating

betrayal strategies. Therefore, the clusters are more

stable inside the clusters and can assimilate a small amount

of betrayal strategies.

At the edge of the cluster, the total incomes of cooper-

ative nodes are greater than betrayal nodes, nodes are more

willing to imitate cooperative strategies and establish

connections with cooperative nodes. Therefore, the coop-

eration shows a spread from the cluster to the outside.

Fig. 10 Fraction of cooperators at steady state Fc for the three networks with the betrayal temptation T ¼ 1:1; 1:2; 1:3; 1:4; 1:5, under S ¼ 0 and

the initial cooperation ratio k ¼ 15%; 30%; 50% (Color figure online)
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5.3 Analysis of evolution results

Model EEG and VP [14], ADP [19], BC [22] and IID [30]

models are compared. In order to highlight the authenticity

and validity of the model, the payoff matrix of other

models and model EEG were selected for comparison, and

the main differences between the two designs are the S ¼ 0

or S ¼ �0:4. The initial cooperation ratio were also set to

15%, 30%, and 50%, respectively. The experiment is

shown in the Figs. 10 and 11.

As shown in Fig. 10, in BA network, for different initial

cooperation ratios, the curves of EEG, VP and ADP models

are stable with respect to T, but the values of EEG curves

are always larger than those of the other two models. Other

models have different amplitude fluctuations, and the value

of the curve is much smaller than that of the EEG model.

In WS network, the curves of EEG and IID model are

more stable with the change of T under different initial

cooperation ratios, and the value of EEG curve is much

larger than that of IID model. The curve of BC and VP

model fluctuates greatly. The fluctuation of ADP model

curve is small, but the curve value always tends to 0. In

Random networks, when the initial cooperation rate k ¼
15% and 30%, the EEG model shows a small decreasing

trend with the change of T. When k ¼ 50%, the EEG curve

is stable. Compared with EEG, the curve of IID and VP

model is more stable, but the curve value is smaller. VP

model curve value is always 0. Other models are inferior to

EEG models in terms of stability and curve values.

It can be seen from Fig. 11 that in BA network, EEG

shows a decreasing trend with the change of T, while the

performance of other models is relatively stable. When

T\1:7, the curve value of EEG model is significantly

Fig. 11 Fraction of cooperators at steady state Fc for the three networks with the betrayal temptation T ¼ 1:5; 1:6; 1:7; 1:8; 1:9; 2:1; 2:3, under
S ¼ �0:4 and the initial cooperation ratio k ¼ 15%; 30%; 50% (Color figure online)
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higher than that of other models. When T [ 1:7, the curve

value of the EEG model is smaller than that of some

models. The curves of WS and Random networks are more

similar. With the change of T, the change trend of each

model curve in the two networks is similar to that in BA

network. When T\1:7, the curve value of EEG model is

significantly higher than that of other models. When

T ¼ 1:7, it is similar to IID model. When T [ 1:7, the

curve value of EEG model is smaller than that of IID

model.

As can be seen from the experimental results in Figs. 10

and 11, when S ¼ 0, the proportion of cooperation

decreases slightly with the increase of T in the Random

network, but the overall effect of the EEG model pro-

moting the evolution of cooperation is more stable. Com-

pared with other models, EEG models promote

collaboration and are significantly improved. In BA net-

work, when S ¼ �0:4, and T is smaller, EEG promotes

coevolution better than other models, but when T is larger,

EEG promotes coevolution less. In WS and Random net-

works, when T [ 1:7, EEG model is less effective than IID

model in promoting coevolution. In other cases, EEG

models are more effective than other models at promoting

cooperative evolution.

6 Conclusion

In order to accurately describe the diversity of user

behaviors due to the dynamic and complex structure of

social networks, an edge-based game evolution model EEG

is proposed in this paper. Firstly, the differences between

node-based evolutionary game model and edge-based

evolutionary game model in user behavior analysis are

discussed. Secondly, the payoff matrix is calculated based

on the prisoner’s dilemma problem. According to the cal-

culation results of different payoff, the disconnect–recon-

nect mechanism and strategy update rules are proposed for

the dynamic change characteristics of user relationship.

Experiments on EEG models on three types of dynamic

networks show that compared with node-based games,

EEG models can better describe user behavior diversity

and network dynamics in social networks, and greatly

promote the formation of cooperative clusters. Compared

with the existing similar models, EEG model has obvious

advantages in promoting cooperation evolution under dif-

ferent time snapshots and related parameters. The results of

the study provide a theoretical basis for the analysis of user

game behavior in social networks, and the EEG model can

facilitate the research of the evolution of individual coop-

eration and the emergence of cooperation in the group by

adopting disconnect–reconnect and stable cooperative

clusters.

The disadvantage of EEG model is that it has high time

complexity. Therefore, constructing a parallel framework

and computing environment for EEG model, and compre-

hensively consider the related factors such as user’s indi-

vidual reputation and individual memory in the mechanism

of disconnect–reconnect are the future work.
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