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Abstract
Extant sequential wrapper-based feature subset selection (FSS) algorithms are not scalable and yield poor performance

when applied to big datasets. Hence, to circumvent these challenges, we propose parallel and distributed hybrid evolu-

tionary algorithms (EAs) based wrappers under Apache Spark. We propose two hybrid EAs based on the Binary Dif-

ferential Evolution (BDE), and Binary Threshold Accepting (BTA), namely, (i) Parallel Binary Differential Evolution and

Threshold Accepting (PB-DETA), where BDE and BTA work in tandem in every iteration, and (ii) its ablation variant,

Parallel Binary Threshold Accepting and Differential Evolution (PB-TADE). Here, BTA is invoked to enhance the search

capability and avoid premature convergence of BDE. For comparison purposes, we also parallelized two state-of-the-art

algorithms: adaptive DE (ADE) and permutation based DE (DE-FSPM), and named them PB-ADE and P-DE-FSPM

respectively. Throughout, logistic regression (LR) is employed to compute the fitness function, namely, area under the

receiver operator characteristic curve (AUC). The effectiveness of the proposed algorithms is tested over the five big

datasets of varying dimensions. It is noteworthy that the PB-TADE turned out to be statistically significant than the rest. All

the algorithms have shown the repeatability property. The proposed parallel model attained a speedup of 2.2–2.9. We also

reported feature subset with high AUC and least cardinality.

Keywords Feature subset selection � Differential evolution � Threshold accepting � MapReduce � Apache spark �
Multithreading

1 Introduction

Selecting relevant and important feature subset is a para-

mount pre-processing step in the Cross-industry standard

process for data mining (CRISP-DM) methodology [1] of

data mining projects. This process of selecting the impor-

tant group of features is popularly known as Feature subset

selection (FSS) [2, 3]. The main objective of FSS is to

select the most relevant and highly discriminative feature

subsets. The spectacular benefits of FSS are as follows: it

improves the comprehensibility of the models, reduces the

model complexity, improves the training time, avoids

overfitting, and sometimes improves the model’s perfor-

mance. Further, the resulting model becomes parsimo-

nious. The ubiquitous presence of big datasets in every

domain made FSS a mandatory pre-processing step.

FSS can be performed primarily in three distinct ways:

filter, wrapper, and embedded approaches. The main dif-

ference lies in the fitness value computation and selecting

the salient features individually or group-wise. The filter

approaches measure the fitness value based on statistical

measure such as Information gain, Mutual information,

Gain ratio, etc. These methods are fast but result in less
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accuracy and cannot account for the interaction effects

amongst the features. Wrapper approaches comprise a

metaheuristic optimization algorithm that searches for the

best feature subsets as indicated by the highest fitness value

determined by a classifier (for a classification problem) or a

regression model (for a regression problem). These

approaches are computationally intensive but highly

accurate while accounting for the interaction effects of the

features. In embedded approaches, the feature subset

selection is embedded as a part of the model-building

phase. These approaches combine the advantages of being

less computationally expensive than wrapper and give

better accuracy than filter approaches. Even though wrap-

per approaches impose high complexity, the selected fea-

ture subset is highly generalized to the underlying

classifier.

In the current study, FSS is formulated as a combina-

torial problem because, for a given n features, the total

possible number of feature subsets is 2n � 1. Accordingly,

the total number of feature subsets that can be formed

constitutes the search space. The objective is to search for

an efficient feature subset that comprises less redundant

features. The best feature subset is found by checking all

the possible feature subsets. However, this brute force

method becomes unwieldy when the feature space dimen-

sion n become large, as in big datasets. Metaheuristics

(evolutionary algorithms (EAs) subsumed) have demon-

strated their superiority over conventional optimization

methods in solving various combinatorial and continuous

optimization problems. Metaheuristics are of two different

types: (i) point-search-based methods such as Threshold

Accepting (TA), Simulated Annealing (SA) etc., (ii) EAs,

which are population-based EAs such as genetic algorithm

(GA), differential evolution (DE), particle swarm opti-

mization (PSO) etc. Recently, many new population based

metaheuristics were also proposed such as monarch but-

terfly optimization (MBO) [4], slime mould algorithm

(SMA) [5], moth search algorithm (MSA) [6], hunger

games search (HGS) [7], colony predation algorithm

(CPA) [8], and Harris hawks optimization (HHO) [9]. All

of these algorithms were applied to solve many machine

learning and engineering problems [2, 3, 10–14]. Between

these two types, the point-search methods consume a lot of

time to converge because their exploration capability is

weaker than that of the population-based EAs [15]. The

strategy of performing population based search entails the

EAs inherent parallelism. Hence, the population-based EAs

are considered to be robust in maintaining both the

exploration and exploitation capabilities. Often the popu-

lation based EAs outperformed point-search methods in

various engineering problems [15, 16]. The property of

inherent parallelism of the EAs is exploited in this current

study to bring in process parallelization via Apache Spark.

The present research study posed the FSS in a single

objective environment where the objective function maxi-

mizes the AUC, thereby selecting the feature subsets of

length less than or equal to k (where k\ n) while achieving

the best possible AUC.

As the data is generated in large volumes at a phe-

nomenal rate, scalability becomes a major concern while

developing solutions to analyze such big data. Therefore,

designing scalable solutions gained prominence. Several

new programming models were proposed to compute such

large-scale computations on the commodity hardware.

Distributed frameworks like MapReduce [17] or Spark [18]

provide scalability with an improved performance by

drawing capabilities from the underlying commodity

hardware. These frameworks provide inherent support

mainly: data distribution, load balancing, fault tolerance,

and parallel processing. MapReduce [17] is a distributed

programming paradigm used in handling big data. It mainly

consists of two steps: map and reduce. MapReduce solu-

tions are proven to be scalable. There are different big data

frameworks available to design MapReduce solutions.

Among them, Spark is faster due to its in-memory com-

putation feature. Spark is an open-source, fast computing

distributed engine used to handle large amounts of data.

Spark uses in-memory computing by using Resilient Dis-

tributed Datasets (RDDs) that boost the performance,

thereby avoiding the disk-access. Spark RDD is inherently

distributed, follows lazy evaluation, and is immutable.

Apache Spark also provides versatility by combining other

big data tools such as Hadoop.

Extant EA-based wrapper algorithms are sequential and

limited to small datasets. Even though they can be applied

to larger datasets, they perform poorly. In the current

world, the data growth is phenomenal, thereby demanding

the development of scalable wrappers for FSS. There is a

growing need to develop such parallel wrappers for FSS in

the context of big data. These motivated us to propose a

couple of scalable wrappers for FSS in a single objective

environment. In the current study, the objective function is

to select the feature subset of length less than or equal to

k (where k\\ n) while achieving the best possible AUC.

To the best of our knowledge, no work has been reported so

far, where feature subset selection is either performed by a

scalable wrapper involving parallel and distributed EC

techniques or their hybrids under the Apache Spark

environment.

In the current study, we considered DE from the popu-

lation-based EA, because it is proven to be the robust

search algorithm [19] in solving the optimization problems.

Although DE is a robust algorithm, it still suffers from

premature convergence [12] and faces difficulty to con-

verge in not linearly separable functions [19]. Hence, these

drawbacks motivated us to develop the hybrid EAs which
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are based on memetic approach. In this approach, the

control shifts between the constituent algorithms at a log-

ical point of time of the execution in order to enhance the

search ability and increase the probability of avoiding

premature convergence. TA is chosen from the point-based

metaheuristic because it is a deterministic variant of sim-

ulated annealing and exploits the search space well and

because of this nature, it is more suitable for combinatorial

optimization problems. For the purpose of better

hybridization, we developed a population based TA. We

have designed the hybrid EAs comprising both the DE and

TA. It is important to note that the current hybrid

sequential DETA is distinct from the hybrid version pre-

sented in Chauhan and Ravi [20]. The DE-TA [20] is

implemented as a two-stage hybrid model, was a loosely–

coupled hybrid system, wherein DE is executed in stage-I

till it is converged later, the TA was invoked in stage-II.

However, the current hybrid (variants of DE and TA) is a

tightly-coupled hybrid system, where DE and TA work in

tandem and this scheme is executed every global iteration.

The major reasons behind proposing the parallel hybrid

EA designed under the Apache spark environment are as

follows: (i) Hybrid EA, being inherently parallel by design,

are eminently amenable for process parallelization and

hence suitable for analysing high-dimensional big data

problems. (ii) Further, sequential implementations are not

scalable to handle large, high dimensional datasets. Hence,

the parallel algorithms are designed under Apache spark to

make the algorithm suitable to analyze big datasets. (iii)

The hybrid EA is designed to enhance the search ability so

that it could reach the global optimal solution or near-

global optimal solution. (iv) Also, the hybrid EA increases

the probability of avoiding premature convergence because

it has got high exploration capability by virtue of fusing TA

with DE in every iteration.

This paper’s significant contributions are as follows:

(i) Parallel DE is designed under Apache Spark to develop

wrappers for FSS. (ii) Binary versions of the TADE and

DETA are proposed, developed and parallelized under

Apache Spark. These are named as PB-TADE and PB-

DETA, respectively. DETA was initially introduced as a

part of the ablation study and it turned out to be signifi-

cantly different from TADE. (iii) Then, these are invoked

to develop wrappers for FSS, where logistic regression is

chosen as the classifier to evaluate the fitness function,

namely the AUC. (iv) To compare our methods with the

state-of-the-art methods, we found that the adaptive dif-

ferential evolution ADE [21] and permutation based dif-

ferential evolution DE-FSPM [22] are competitive. But they

are sequential in nature. Hence, we parallelized these two

algorithms and refer to them as PB-ADE and P-DE-FSPM

throughout the paper. (v) To achieve scalability and

algorithm parallelization, we proposed a novel MapRe-

duce-multithread based framework.

The remainder of the paper is structured as follows:

Sect. 2 presents the literature review. Section 3 presents an

overview of the evolutionary algorithms employed. Sec-

tion 4 presents the proposed scalable, parallel and dis-

tributed wrapper. Section 5 describes the datasets, Sect. 6

discusses the results obtained. Finally, Sect. 7 concludes

the paper.

2 Literature review

Differential evolution, one of the widely used algorithms

for feature subset selection, is proposed by Storn and Price

[23]. Table 1 presents the works on filter and wrapper

sequential versions of DE, where feature selection is posed

as a combinatorial optimization problem. Zhang et al. [24]

proposed a modified DE with self-learning (MOFS-BDE).

In [24], the authors had introduced three different opera-

tors, namely: (i) modified binary mutation operator based

on the probability difference, (ii) one-bit purifying search

operator (OPS) to improve the self-learning capability of

the elite individuals, and (iii) non-dominated sorting in the

selection phase to reduce the computational complexity

involved in the selection operator. Vivekanandan and

Iyengar [25] designed a two-phase solution, where the

critical features are selected by the DE and fed into the

integrated model of the feed-forward neural network and

fuzzy analytic hierarchy process (AHP) [26]. Nayak et al.

[27] proposed FAEMODE, a filter approach using elitism-

based multi-objective DE. It can handle both the linear and

non-linear dependency among the features via both the

correlation coefficient (PCC) and mutual information (MI).

Mlakar et al. [28] designed a multi-objective DE (DEMO)

based wrapper for facial recognition systems. In their

approach, the important features are initially extracted

based on the histogram of the oriented gradient descriptor

(HOG) and fed to the DEMO to find the Pareto optimal

solutions. Khushaba et al. [29] proposed DE with a sta-

tistical repair mechanism, DEFS, for selecting the optimal

feature subsets in datasets with varying dimensionality. In

their proposal, the probability of the feature distribution is

fed to DEFS by the roulette wheel. Hancer et al. [30]

proposed filter-based DE, MIFS, where the fisher score

determines the mutual relevance between the features and

class labels. The features are assigned a rank based on their

fisher score. Hancer [31] proposed a new multi-objective

differential evolution (MODE-CFS) with two-stage muta-

tion, (i) centroid-based mutation to perform clustering, and

(ii) feature-based mutation to perform feature selection.

Non-dominated sorting is applied to determine the Pareto

optimal solution set. Ghosh et al. [32] proposed a self-
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adaptive DE (SADE) based wrapper for the feature selec-

tion in the hyperspectral image data. The selected feature

subsets are fed into fuzzy-KNN to obtain accuracy. Bhadra

and Bandyopadhyay [33] improved the modified DE. They

proposed an unsupervised feature selection approach called

MoDE with the objective functions as (i) average dissim-

ilarity of the selected feature subset, (ii) average similarity

of the non-selected feature subset, and (iii) the average

standard deviation of the selected feature subset. All the

objectives mentioned above use normalized mutual infor-

mation. Baig et.al [34]. proposed modified DE-based

wrapper for the motor imagery EEG having a high

dimensional dataset. SVM is used here as a classifier.

Almasoudy et al. [35] designed a wrapper feature selection

based on modified DE. The authors considered Extreme

Learning Machine (ELM) as a classifier and tested its

effectiveness over the intrusion detection dataset NSL-

KDD. Zorarpaci and Ozel [36] proposed a hybrid FS

approach based on DE and Ant-Bee Colony (ABC), where

the J48 classifier from Weka computes the fitness score.

This hybrid model achieved a significant F-score with less

cardinal feature subset than the stand-alone DE and stand-

alone ABC.

Then, a quantum-inspired wrapper based on DE (QDE)

with logistic regression as the classifier was proposed by

Srikrishna et al. [37]. The authors have introduced the

quantum crossover and quantum mutation operators. They

also used LR as the classifier, and the results obtained by

the QDE are better than the ADE algorithms. They also

reported that QDE achieved better repeatability than the

BDE. Lopez et al. [22] proposed a wrapper based on per-

mutation DE, where the permutation-based mutation

replaced the mutation operator. The diversity of the gen-

erated children solutions is controlled by using a modified

recombination operator. Zhao et al. [38] developed a two-

stage wrapper feature selection algorithm, where in the first

stage, the fisher score and information gain are applied to

filter the redundant features. Then in the second stage, the

top-k features are passed to the modified DE to perform the

feature selection on four different breast cancer datasets.

Hancer [39], for the first time, used fuzzy and kernel

measures as filters to calculate the mutual relevance and

redundancy with DE to handle continuous datasets. Li et al.

[40] designed DE-SVM-FS and compared it with the

default SVM approach, and they demonstrated that the DE

and SVM-based FS achieved better accuracy than the

Table 1 Sequential versions of DE and its wrapper variants

Authors # objectives Algorithm Wrapper (classifier)/filter Parallel/sequential

Zhang et.al. [24] Multi Objective Self-Learning DE Wrapper (KNN) Sequential

Vivekanandan and Sriraman [25] Single Objective Modified DE Filter Sequential

Nayak et.al. [27] Multi Objective FAEMODE Filter Sequential

Mlakar et.al. [28] Multi Objective DE ? HOG Wrapper (SVM) Sequential

Khushaba et.al [29] Single Objective DEFS Filter Sequential

Hancer [31] Multi Objective MODE-CFS Filter Sequential

Hancer et.al. [30] Multi Objective DE ? MIFS Filter Sequential

Ghosh et.al. [32] Multi Objective SADE Wrapper (Fuzzy-KNN) Sequential

Bhadra and Bandyopadhyay [33] Multi Objective MoDE Filter MI Sequential

Bhaig [34] Multi Objective Modified DE Wrapper (SVM) Sequential

Almasoudy et.al. [35] Multi Objective Modified DE Wrapper (ELM) Sequential

Zorarpaci et.al. [36] Single Objective DE ? ACO Weka J48 classifier Sequential

Srikrishna et.al[37] Single Objective Quantum DE Wrapper (LR) Sequential

Lopez et.al. [22] Single Objective DE-FSPM Wrapper (SVM) Sequential

Al-ani [92] Single Objective DE ? Wheel based strategy Filter Sequential

Zhao et.al. [38] Single Objective Modified DE Wrapper (SVM) Sequential

Hancer [39] Multi Objective DE Filter(Fuzzy ? Kernel) Sequential

Li et.al. [40] Single Objective DE Wrapper (SVM) Sequential

Wang et.al. [41] Single Objective DE Wrapper (KNN) Sequential

Krishna and Ravi [21] Single Objective Adaptive DE Wrapper (LR) Sequential

Current Study Single Objective PB-TADE,

PB-DETA, PB-DE,

PB-ADE,P-DE-FSPM

Wrapper (LR) Parallel
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stand-alone SVM. Wang et al. [41] proposed DE-KNN,

where the KNN is the classifier. DE-KNN performed both

the feature selection as well as the instance selection.

Along with DE, several other EAs [10, 42–45] consid-

ered the FSS problem as a combinatorial optimization

problem. Khammassi and Krichen [46] proposed two

schemes, namely, (i) The NSGA-BLR approach to handle

binary-class datasets and (ii) The NSGA-MLR to handle

multi-class network intrusion datasets. Chaudari and Sahu

[47] proposed a binary version of the popular crow search

algorithm (CSA) with time-varying flight in wrapper ver-

sion BCSA-VF. Binary Dragon Fly algorithm (BDA) is

proposed by Too and Mirjalili [48] by taking the Covid-19

dataset as a case study. Recently many new metaheuristics

were proposed to solve FSS. Hu et al. [5], introduced the

dispersed foraging strategy inspired by ant-bee colony

(ABC), into the slime mould algorithm (SMA), and named

it as dispersed foraging slime mould algorithm (DFSMA),

to avoid former’s premature convergence and to maintain

population diversity. The dispersion foraging strategy

works as follows: an adaptive dispersion rate (DR) is

maintained which is responsible to maintain the diversity in

the population. DR decreases as the number of iterations

increases which regulates the movement towards the opti-

mal solutions. Hu et al. [49], had improved the grey wolf

optimizer (GWO) by introducing the following operators:

(i) covariance matrix adaptation evolution strategy

(CMAES) to improve the exploration ability, (ii) levy flight

mechanism to improve search accuracy, and (iii) orthogo-

nal learning (OL) strategy to predict the optimal search

direction and named GWOCMALOL. The authors con-

ducted Wilcoxon signed rank test and proved that proposed

GWOCMALOL obtained superior results in terms of

convergence speed and accuracy. Hu et al. [50], introduced

chaotic local search (CLS) mechanism into the GWO and

named SCGWO to avoid local optimal, improve global

exploration capability, individual moment is randomness.

SCGWO has apparent advantages in processing unimodal,

multimodal and composition functions. Too et al. [51],

proposed MEHHO which follows an energetic learning

strategy which considers the global best experience to

update the locations of the other search agents, memory

saving and updating mechanism where the best solution is

stored and hawk is allowed to imitate its best solution if the

fitness value becomes worse. The authors applied their

proposed algorithm to the classification of electromyogra-

phy signals. Zhang et al. [52], embedded the salp swarm

algorithm (SSA) and proposed improved harris hawks

optimization (IHHO) to improve the searchability of the

HHO. The update stage in the IHHO is done in the fol-

lowing way: (i) SSA generates the population and it is

called SSA-based population. (ii) generate hybrid individ-

uals using SSA and HHO. (iii) by using greedy selection

and HHO’s mechanism update the search agent. The

authors demonstrated that the proposed IHHO achieved a

faster convergence speed and maintained a better balance

between exploration and exploitation. Several variants of

DE are employed, for example, in the estimation of tool-

wear during the milling process [11], optimal resource

scheduling [12], energy-efficient model [13], and anomaly

detection [14].

Now we shift our attention to the works more relevant to

the current study. Several parallel and distributed versions

of the evolutionary algorithms [53–56] are proposed to

handle high-dimensional datasets and big data. Various

parallel and distributed implementations of the DE are

presented in Table 2. Zhou [57] discussed various strate-

gies for implementing parallel DE MapReduce versions

and their pros and cons in the Hadoop distributed frame-

work. Teijeiro et al. [58] designed parallel DE under the

Spark environment, and the experiments were conducted in

the AWS cloud environment to solve benchmark opti-

mization problems. Recently, Cho et al. [59] designed a

parallel version of DE to solve large-scale clustering

problems. Another parallel version of DE Classifier

(SCDE) was proposed by Al-Sawwa and Ludwig [60] to

handle the imbalanced data. SCDE found the optimal

centroid and assigns the class to the data point based on the

Euclidian distance.

Chen et al. [61] proposed a parallel version of the

modified DE using single-program multiple-data (SPMD),

with improved genetic operators. They employed both fine-

grained and coarse-grained approaches for cluster opti-

mization. Adhianto et al. [62] proposed a fine-grained

parallel version of DE using OpenMP to solve the optical

networking problem, where the shared memory multi-

processing is supported. Deng et al. [63] proposed a par-

allel DE for solving the benchmark functions and reported

the speedup. He et al. [64] proposed the parallel framework

for five variants of DE under the Spark cloud computing

platform. They analyzed the speedup by solving the

benchmark functions. Wong et al. [65] developed the

Computed Unified Device Architecture (CUDA) frame-

work for self-adaptive DE solving benchmark functions.

Cao et al. [66] proposed a message passing interface (MPI)

based co-evolutionary version of DE, where the population

is divided and co-evolved together to solve large-scale

optimization problems. Ge et al. [67] proposed an adaptive

merge and split strategy for DE, namely, DE-AMS using

MPI, to improve resource utilization, which is a vital aspect

to minimize while handling large-scale optimization

problems. Falco et al. [68] designed MPI-based DE under a

CUDA grid environment and tested it on different resource

allocation strategies. Veronse and Krohling [69] developed

the first implementation of the CUDA version of DE. The

proposed algorithm was tested on well-known benchmark
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functions, and compared the computing time with the

standalone implementation. Glotik et al. [70]. parallelized

the DE using parallel MATLAB to solve the hydro-

scheduling problem. Daoudi et al. [71]. developed the

MapReduce version of DE under the Hadoop environment

to solve the clustering problem. Kromer et al. [72] devel-

oped a parallel version of DE using Unified Parallel C to

handle large-scale clustering problems. Thomert et al. [73]

developed a parallel version of DE using OpenMP to

achieve the optimized workflow placement into the realm

of practical utility.

In summary, the drawbacks observed in the extant

approaches are as follows:

1. The existing EA based wrapper techniques, listed in

Table 1, are sequential and are applied to small

datasets. When applied to big datasets, sequential

approaches will take large computation time, and result

in poor performance. Hence, there is a need to develop

parallel EA techniques and make them amenable to big

datasets.

2. Moreover, the current parallel and distributed EA

algorithms (refer to Table 2) are not yet applied to FSS

problem.

These drawbacks motivated us to design and propose

scalable, parallel EA-based wrapper techniques. As previ-

ously mentioned, the population-based EAs alone suffer

from premature convergence. Hence to decrease the

probability of premature convergence and to improve the

search ability of the DE, a point-based metaheuristic viz.,

TA is invoked. Accordinlgy, we designed two parallel

hybrid variants and named them PB-DETA and PB-TADE.

Table 2 Parallel and distributed versions of DE and its variants

Authors Algorithm Environment Problem solved

Zhou [57] DE Spark Pros and cons of various approaches are discussed

Teijeiroet.al. [58] DE Spark ? AWS Tested on benchmark functions

Chou et.al [11] DE Spark Clustering

Al-Sawwa and Ludwig

[60]

DE Spark Designed a DE based classifier

Chen et.al [61] Modified DE SPMD Cluster Optimization

Adhianto et.al [62] DE OpenMP Optical Network problem

Liu et.al. [93] DE Distributed

Cloud

Power electronic circuit optimization

Deng et.al. [63] DE Spark Tested on benchmark functions and reported speedup

Wong et.al. [65] Self-Adaptive DE CUDA Tested on benchmark functions and reported speedup

He et.al. [64] Five variants of

DE

Spark ? Cloud Developed a ring topology model and evaluated benchmark functions to

report speedup

Cao et.al. [66] DPCCMOEA MPI Developed co-evolutionary based DE to solve large scale optimization

Ge et.al. [67] DDE-AMS MPI Developed adaptive population model to solve large scale optimization

Falco et.al [68] DE MPI Resource allocation

Veronse and Krohling

[69]

DE CUDA To solve large scale optimization in GPU environment

Glotik et.al. [70] PSADE MATLAB Hydro Scheduling algorithm

Thomert et.al. [73] NSDE-II OpenMP Cloud work placements

Daoudi et.al [71] DE Hadoop Clustering

Kromer et.al. [72] DE Unified

Parallel C

To solve large scale optimization problems

Current study PB-TADE,

PB-DETA, PB-

DE,

PB-ADE,P-DE-

FSPM

Spark A parallel EA based wrapper algorithm solving FSS
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3 Overview of the evolutionary algorithms
employed

Evolutionary algorithms (EAs) [19, 74, 75] effectively

obtain global or near-global optimal solutions. The

designing of the heuristics in EAs is inspired by natural

selection of Darwinian evolution [19], and social beha-

viour. They start by initializing the population of solutions

randomly. This population is evolved in order to find better

solutions. For evolution, EAs utilize specialized heuristics

to generate new solutions and compute the corresponding

fitness score given by the fitness function or (objective

function). EAs are perfect for both continuous and binary

search spaces. This section discusses a detailed explanation

of all the methods employed in the current work.

3.1 Solution encoding scheme

Kohavi and John [76] are the pioneers in proposing the

wrappers for FSS by posing the FSS as a combinatorial

optimization problem. Here, wrappers take the help of a

classifier or a regression model since it may involve the

fitness score evaluation of a given feature subset. Wrappers

using metaheuristics (EAs subsumed) require the funda-

mental step of solution encoding. EAs randomly initiate the

population consisting of a set of solution vectors. Each

solution vector in the population represents a feature sub-

set. Such a vector comprises bits, where 1 indicates the

presence, and 0 indicates the absence of a feature. The

dimension of this array is equal to the number of features in

the dataset.

3.2 Binary differential evolution

Binary Differential Evolution (BDE), a stochastic popula-

tion-based global optimization algorithm, includes the

three heuristics, namely: mutation, crossover, and selection

in that order. BDE starts by initializing the random popu-

lation, consisting of n candidate solution vectors (Xi),

where n is the population size. This candidate solution

vector follows the binary encoding scheme. Each candidate

solution vector is subjected to all the three heuristics in

each iteration (or generation) of the algorithm.

In each generation t, in a dimensional search space (d),

then the candidate solution vector (Xt
i) subjected to the

mutation operation and produces the mutant vector (Mt
i).

The mutation operation is applied as presented in Eq. (1):

Mt
i ¼ Xt

i1 þ MF � Xt
i2 � Xt

i3

� �
ð1Þ

where Xt
i1;Xt

i2andXt
i3 are three randomly chosen distinct

vectors from the current generation t. MF is the mutation

factor, is a user-defined parameter, and lies in the range

[0,1]. After this, the mutant vector may not be a binary

anymore. Hence, sigmoid based discretization process (see

Eq. 2.) is applied to every mt
ij ; jth member of the Mt

i

thereby converting a continuous vector into a binary vector.

mt
ij ¼

1; ifrandð0,1Þ\sigmoidðmt
jÞ

0; else

�
ð2Þ

Thus discretized mutant vector is subjected to crossover

operation where it was subjected to the mating with the

corresponding candidate solution vector to generate the

trail vector. The crossover operation is applied to trail

vector Ut
i, as presented in Eq. (3):

ut
ij ¼

mt
ij; ifrandð0,1Þ\CRandj 6¼ randi

xt
ij; ifrandð0,1Þ�CRandj 6¼ randi

�
ð3Þ

where j = 1,2,…d, ut
ij is the jth bit of Ut

i, rand(0,1) is the

random number generated in the interval [0,1] from a

uniform distribution. randi is a randomly chosen index to

make sure that the generated trail vector is different from

the mutant vector. CR represents the crossover rate, is a

user-defined parameter, and lies in the range [0,1].

Finally, the fitness score is computed for the trail vec-

tors. Then the selection operation is applied by comparing

the corresponding target vectors and trail vector to produce

an offspring. Better solutions survive and form the parent

population for the subsequent iteration. The selection

operation follows the rule as presented in Eq. (4):

Xtþ1
i ¼ Xi; iff Xið Þ[ f ðUiÞ

Ui; otherwise

�
ð4Þ

As mentioned earlier, this is continued till the comple-

tion of maximum iterations or other convergence criteria, if

any, is met.

3.3 Binary threshold accepting

Dueck and Scheuer [77] proposed Binary Threshold

Accepting (BTA) algorithm. Later, Ravi and Zimmermann

[78] optimized a fuzzy rule-based classification model

using modified TA. They developed the solution in three

phases: feature selection was used as a preprocessing step,

a modified fuzzy rule-based classification system was

invoked over the selected feature subset, and finally,

modified TA (MTA) was invoked to minimize the rule base

size while guaranteeing high accuracy. Ravi et al. [79]

proposed a modified TA (MTA) to minimize the number of

rules in a fuzzy rule-based classification system. Then,

Ravi and Zimmerman [80] proposed a continuous version

of TA as an alternative to the backpropagation algorithm to

overcome its limitations while training a neural network

model. The trained neural network was utilized for feature

selection, and the selected features were fed to the fuzzy
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classifier optimized by the MTA proposed in [79]. Later,

Ravi and Pramodh [81] proposed a principal component

neural network architecture trained by TA for bankruptcy

prediction of banks. Chauhan and Ravi [20] proposed a

hybrid approach, involving DE and TA in that order to

solve a set of benchmark unconstrained benchmark prob-

lems. This hybrid is a tightly-coupled system and is

implemented as a two-stage model, where DE is executed

first and then TA is executed.

Threshold Accepting is a deterministic variant of sim-

ulated annealing. BTA, a binary version of the TA (MTA

in [79]), is presented in Algorithm 1. BTA is applied to a

single solution. BTA performs a neighbourhood search by

flip-flopping the bits in the current solution vector one at a

time, starting them in the left-most position. Each flip flop

yields one neighbourhood solution. If the first neighbour-

hood solution is not accepted, then the bit is reversed to its

original value. Likewise, 2nd bit is flip-flopped so on and

so forth until a neighbourhood solution is accepted. How-

ever, it is not necessary to exhaustively search all the

neighbourhood solutions. BTA calculates the difference in

the fitness score of the present and previous solutions. BTA

accepts the neighbourhood solution if its fitness value is not

much worse than that of the current solution.

Algorithm 1: Threshold accepting (TA) algorithm

3.4 Adaptive differential evolution

Adaptive Differential Evolution (ADE) algorithm [82] is

employed to perform FSS by Krishna and Ravi [21]. The

main objective of the adaptive algorithms is to obviate the

manual fine tuning of the hyperparameters, and help in

faster and better convergence without compromising per-

formance. This algorithm is different from the original DE

in the following way:

(i) Instead of manually fine-tuning the hyperparame-

ters MF and CR, ADE adjusts them adaptively by

using the roulette wheel selection based on the

success rate of the parameters.

(ii) Mutation and Crossover rate operations are per-

formed in the same way as the Differential

Evolution (refer to Sect. 3.1).

Like DE, ADE also starts by initializing the random

population of size n and also follows the binary encoding

scheme. Similarly, each candidate solution vector is sub-

jected to all the three heuristics in each iteration (or gen-

eration) of the algorithm. Based on the success rate of the

combinations, the MF and CR are adaptively adjusted by

Roulette wheel selection. Inherently, there are 12 sets of

parameters having different probabilities qh, h = 1,2,3…H

(here H = 12). Using hth setting, the heuristics namely
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Mutation as per the Eq. (1), and Crossover as per the

Eq. (3) apply on the parent solution xi resulting in gener-

ating an offspring solution yi. If f(yi)[ f(xi), then the

probability of hth setting is adjusted by using Eq. (5).

qh ¼ nh þ no
PH

j¼1 nj þ no
� � ð5Þ

where nh is the current combination success rate, no[ 1 is

a constant term to prevent the sudden change in the success

rates by just one random success achieved by a setting. In

each generation, the parent population is subjected to

mutation (Eq. 1) and Crossover (Eq. 3) operations. But

unlike previous algorithms, MF and CR are adaptively

determined by the Roulette wheel selection based on the

success rate. Then the selection operator applies, which

results in better solutions. The better obtained solutions

become the parent population for the subsequent iterations.

This process continues till the completion of maximum

iterations or other convergence criteria, if any, is met.

3.5 Permutation based differential evolution

Lopez et al. [22] proposed permutation-based Differential

Evolution and named it DE-FSPM. This is different from

the traditional DE in the following way:

(i) Instead of a binary vector, here the population

consists of the integer valued vector to encode all

features of a dataset. Each feature is assigned with

a number starting from 1 (one) i.e. and range

between {1,2,..nfeat} and 0(zero) acts as a delim-

iter to select the features. For example, for the

candidate solution Xt
i1= [7,3,5,8,6,0,1,4,2} where

the left part of the 0(zero) is the selected feature

subset, and the right part is the non-selected

feature subset.

(ii) The permutation-matrix based mutation operator

can be used to create mutant solutions. Here also

the three solutions are randomly chosen namely,

Xt
i1;Xt

i2,X
t
i3. But the difference is that here the

permutation based mapping operations is done to

generate the mutant vector. Initially, the permuta-

tion based mapping is done from Xt
i1toXt

i1fromPM:

The size of the matrix, PM is nfeat*nfeat, where

nfeat is the number of features. PM is a binary

vector of size nfeat *nfeat. This is permuted to

form a new permutation matrix, namely PM’.

Then, PM’ maps the Xt
i1 and forms the mutant

vector Mt
i1.

(iii) It also follows the same crossover operation as

presented in Eq. (3). But the only difference is that

it is applied on the integer valued vector instead of

binary encoded vector. After applying this

operation, there is a chance few of the features

are placed in multiple locations and a few of the

features may be discarded. By example, Xt
i1 = [

7,3,5,8,6,0,1,4,2], and Xt
i2= [3,5,2,6,1,0,7,8,4],

might result in the trail vector,

[3,5,5,6,1,0,7,8,4], which selects the feature 5

twice whereas feature 2 is discarded completely.

Hence, a simple repair mechanism is implemented

between the Xt
i1andXt

i1 to ensure the feasible

candidate solutions only, to ensure all the features

are selected only once in the trail vector.

DE-FSPM, starts by initializing the integer valued vector

of population. Then, this vector is subjected to the per-

mutation based mutation, which is followed by the Cross-

over operation Eq. (3) with the simple repair mechanism

resulting in the generation of offspring population. Then

the selection operation is applied as presented in Eq. (4),

resulting in the new population. This process continuous

till the completion of maximum iterations or other con-

vergence criteria, if any, is met.

4 Proposed scalable, parallel
and distributed wrapper

To perform FSS, we chose DE and TA, and built hybrids

around them. DE explores and exploits the search space

globally and is stochastic in nature. However, DE some-

times gets bogged down in local minima before conver-

gence [12], thereby slowing down the convergence rate. If

the search space becomes large, this phenomenon gets

accentuated. Hence, it needs support from a local search-

based optimization algorithm. Here, we chose to employ

Binary Threshold Accepting (BTA) for that purpose. The

deterministic way of accepting the candidate solutions in

BTA helps in exploration, exploitation, and fast

convergence.

Even though the EAs are intrinsically parallel, explicit

parallel versions of EAs have to be designed so that they

meet the following requirements: optimal utilization of the

distributed resources, scalability, and low communication

overhead. In general, the explicit parallelism from the

population perspective of EAs is achieved by two main

models:

Master–slave (MS) strategy [58], which is also known as

the global model, has only a single global population.

Here, the master takes the responsibility of applying

metaheuristics (EAs subsumed) while the slave manages

the fitness function evaluation.
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The island strategy [58] is where the population is

divided into islands, upon which the heuristics (opera-

tors) are applied independently.

The types mentioned above differ in the underlying

topology and the migration rules to determine the com-

munication between the nodes. A hybrid strategy can also

be designed by combing the two strategies. In the current

study, we proposed and designed a MapReduce multi-

threaded framework, which mimics the combination of the

above-mentioned strategies.

The distributed framework like Apache Spark is not

affected by the underlying topology because, in these

frameworks, independent of the underlying topology,

migrant solutions are broadcast to all the partitions.

The comparative analysis is carried out across PB-DE,

PB-DETA, PB-TADE, PB-ADE, and PB-DE-FSPM to

establish the importance of hybrid global and local search

optimization heuristics. We developed a parallel BTA, too,

independent of the DE. If BTA alone is employed for FSS,

then it consumed enormous computational time without

yielding useful results. Hence, the comparative study

excludes BTA. All the approaches follow the same solution

encoding scheme and the population RDD encoding

scheme as mentioned in Sect. 4.1. In what follows, algo-

rithm-agnostic details of the parallelization strategy pro-

posed here are presented in Sect. 4.2, while the algorithm-

specific details of the parallelization strategy proposed here

are presented in Sect. 4.3. Thus, Sects. 4.1 through 4.3,

succinctly capture the proposed parallelization mechanism

in an unambiguous manner.

Algorithm 2: Biased sampling driven population

initialization.

4.1 Population RDD encoding scheme

Let the population, denoted by P, be initialized randomly

using biased sampling from Uniform distribution between

0 and 1 as presented in Algorithm 2. Our objective is to

select the less cardinal feature subsets yielding the highest

AUC value. Hence, the parameter in the biased sampling is

taken as 0.99. If the pseudo-random number is greater than

0.99, then the bit is assigned the value 1, indicating the

feature’s presence, and 0, otherwise, meaning the absence

of the feature. Thus, according to Algorithm 2, the ini-

tialized population is taken as population RDD and the

dataset as different RDD. The population RDD is presented

in Fig. 1. The key is solution-id, and the first index of the

value is the solution vector of binary type. It conveys

which feature subset is selected. The second index stores

the names or ids of the features, which helps us form the

column-reduced dataset and the construction of pipeline

RDD for the respective solutions. The last index stores the

AUC corresponding to the solution vector.

4.2 Algorithm-agnostic details
of the paralellization

This subsection overviews the proposed parallel model.

This framework consists of three stages: (1) population

initialization, (2) training phase (3) test phase. These stages

are common for all the algorithms. In this section, we

discuss the changes occurring to population RDD during

these phases in a generic way to understand the workflow

of the framework.
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4.2.1 Changes occurring to population RDD
during population initialization

This is stage 1, where the chosen algorithm initializes the

population according to Algorithm 2 which follows the

biased sampling driven population initialization. Thus ini-

tialized population is stored in a different RDD which

follows the schema as depicted in Fig. 1. Complete details

are presented in Sect. 4.1. All the necessary parameters

associated with the algorithm are broadcasted to all the

worker nodes. Once a variable is broadcasted, it is cached

by the executor and utilized for other RDD operations, viz.,

transformations and actions. They are meant for read-only

variables. By broadcasting, these variables are shared

across the cluster, thereby reducing the communication

overhead.

4.2.2 Changes occurring to population RDD during training
phase

Once the population is initialized, its fitness score is

computed. As mentioned earlier, the Population RDD is

divided into different partitions, and each partition repre-

sents an island. These islands asynchronously undergo

heuristics (which are algorithm specific) as a separate

thread in Spark. As explained earlier, population RDD

follows the schema as depicted in Fig. 1. The population

information corresponding to the current generation is

stored in the binary vector column of each solution. Using

this binary vector information, the corresponding selected

features are stored in the selected feature column of the

population RDD. EAs spend most of the time computing

the fitness value. Hence, adopting an asynchronous way of

fitness score (namely, AUC) calculation is the major task.

This is achieved by initiating the thread pool mapper,

where the number of threads is equal to the number of

worker nodes. One cannot create the number of threads

arbitrarily because arbitrary creation of the threads may

increase the communication overhead. Hence, after rigor-

ous trials, the ideal size of the thread pool is found to be the

number of worker nodes. The size of the thread pool also

affects the speedup. A low-size thread pool leads to poor

performance, whereas a higher thread pool leads to huge

communication overhead.

Each thread in the thread pool is responsible for com-

puting the AUC of the population island. Once this map is

called, the reduced dataset is formed based on the feature

subset information using the selected feature index of each

solution. Then, the machine learning (ML) pipeline is

constructed where the reduced dataset and LR model are

bound together, thereby giving pipelined RDD. Such a

generated pipelined RDD is a subclass of the RDD, an

immutable and partitioned collection of elements where all

the operations are executed in parallel. LR model is trained

by creating the vector assembler that has to be created for

the corresponding selected features. Thus, a vector

assembler is created over the obtained reduced data frame.

This kind of vector assembler is created for every solution

in each iteration. As we have adopted the pipelined RDD,

the above operations are executed in parallel and dis-

tributed across the nodes, thereby achieving fine-grained

parallelism. Later, the AUC is evaluated with the training

dataset in the same thread. All this process is repeated for

each thread in the fitness value computation step. By

adopting this strategy, the computation of AUC is per-

formed in an asynchronous fashion. The same strategy is

employed in all the proposed approaches to parallelize the

fitness function evaluation. Thus, the AUC’s are updated in

the population RDD accordingly. This serves as the parent

population. All the subsequent iterations follow the same

thread pool mapper strategy to evaluate AUC.

As mentioned earlier, the binary encoded solution is

stored in the binary vector field. Hence, by using the binary

vector field information, the population is subjected to

exploration and exploitation heuristics (which are algo-

rithm specific) thereby forming the offspring population

which also follows the same structure as the one depicted

in Fig. 1. The corresponding selected feature is also

updated using the binary vector information of thus formed

offspring. Then the thread pool mapper is called, where the

LR model evaluates the AUC on the reduced datasets. With

the computed AUC of each solution, the corresponding

AUC column is also updated. The selection operator is

applied on both the parent and offspring populations, and

the worst parent with less AUC is replaced with offspring

having higher AUC. These better solutions are formed as

one population, which serves as the parent population for

the next iteration. It is important to note that all the algo-

rithms follow a similar fitness score evaluation scheme.

This process of computing AUC and selecting the better

solutions, thereby achieving the evolution of the popula-

tion, is repeated for maxIter number of iterations.Key Value : Solution Vector
Key

Key

, selected Features

, selected Features

, AUC Scores

, AUC Scores

…...

Fig. 1 Schema of the population RDD

Cluster Computing (2023) 26:1949–1983 1959

123



4.2.3 Changes occurring to population RDD during test
phase

Thus, fully evolved population at convergence, which is

nothing but the set of the required feature subsets obtained

after convergence is evaluated on the test dataset in the test

phase. The test AUC is computed and the corresponding

solutions and test AUC are reported.

It is important to note that this stage is common for

all the algorithms.

4.3 Algorithm-specific details
of the parallelization

In this subsection, the discussion pivots on the proposed

parallel algorithms. It is important to note that all the

algorithms are subjected to the same framework as dis-

cussed in Sect. 4.2. Further, all the algorithms are identical

in the following way: in the fitness score evaluation and

test phase. Hence, the discussion on these two is obviated.

The discussion is limpid more on the algorithm specific

differences in detail i.e., population initialization and

training phase.

4.3.1 Parallel binary differential evolutionary (PB-DE)

The proposed PB-DE based wrapper algorithm is presented

in Algorithm 3, and the flowchart of the execution flow is

depicted in Fig. 5 in the Appendix.

Population initialization

The PB-DE algorithm starts by initializing the popula-

tion as mentioned in Sect. 4.2. The following information

is broadcasted to all the nodes: mutation factor (MF),

crossover rate (CR), number of features (nfeat), and pop-

ulation size (n). Then the AUC is evaluated by the LR on

the initialized population and is done in an asynchronous

fashion by creating the thread pool as mentioned in

Sect. 4.2. All the necessary information is updated in the

population RDD.

Training phase

Using the binary vector field information, the population

is subjected to DE heuristics, viz., mutation and crossover

thus forming the offspring population which follow the

RDD structure depicted in Fig. 1. By utilizing the binary

vector information of the offspring population information,

the corresponding selected feature subset is updated. Then

the thread pool mapper (refer to Sect. 4.2) is called, where

the LR model evaluates the AUC on the reduced datasets.

With the obtained AUC of each solution, their corre-

sponding AUC column is also updated. The binary vector

field information is extracted from parent and offspring

population RDD which serves as the parent and offspring

population. Then the selection operator is applied on both

the parent and offspring populations, and the worst parent

with less AUC is replaced with the better offspring with

higher AUC. These better solutions are formed as one

population, which serves as the parent population for the

next iteration. This process of computing AUC and

selecting the better solutions, thereby achieving the evo-

lution of the population, is repeated for maxIter number of

iterations.
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Algorithm 3: Proposed PB-DE based wrapper
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Algorithm 4: Proposed parallel PB-DETA based

wrapper
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4.3.2 Parallel binary DETA (PB-DETA)

The proposed parallel approach PB-DETA is presented in

Algorithm 4, the schematic representation is depicted in

Fig. 2, and the flow chart of the execution flow is depicted

in Fig. 6 in the Appendix. This hybrid variant of DE and

TA is a tightly-coupled hybrid system, where DE and TA

work in tandem and this scheme is executed every global

iteration.

Population initialization

The population is initialized as per Algorithm 1 and then

AUC is computed on this initialized population. All the

initialized parameters such as MF, CR, nfeat, and n are

broadcasted.

Training phase

As mentioned earlier, the BDE and BTA are executed in

tandem i.e., one after another in one complete generation.

Similarly, here also parent population is subjected to BDE

heuristics, viz., crossover and mutation, thereby forming

the offspring population. As mentioned in Sect. 4.2; now

the thread pool mapper is called on the offspring popula-

tion to evaluate the AUC, and the corresponding fields are

updated. Then, the better offspring solutions replace the

parent solutions. Thus evolved population is subjected to

BTA heuristics as outlined in Algorithm 2.

Then, the thread pool mapper is called on, thus forming

the offspring population to evaluate AUC, and also the

corresponding fields are also updated. Here, the offspring

solution, which is not much worse than the threshold limit

value, replaces the solution in the parent population. BTA

heuristics are invoked for maxIter2 times. Thus emerged

population after maxIter2 times serves as the parent pop-

ulation. After this, the whole process of BDE and BTA in

tandem is repeated until maxIter1 number of iterations is

completed.

… 

… 

TA-1 TA-2 TA-3 … TA-n

… 

Binary Differential Evolution 

DE Phase

Population 

based  

TA Phase 

Fig. 2 Schematic representation

of the DETA based wrapper
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Algorithm 5: Proposed parallel PB-TADE based

wrapper.

4.3.3 Parallel binary TADE (PB-TADE)

The proposed parallel approach PB-TADE is presented in

Algorithm 5, the schematic representation is depicted in

Fig. 3, and the flow chart is depicted in Fig. 7 in the

Appendix. This hybrid variant of DE and TA is also a

tightly-coupled hybrid system, where TA and DE work in

tandem which means TA executes first, and the evolved

population is given as input to the DE and this scheme is

executed for every global iteration.
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Population initialization

The population is initialized as per Algorithm 1 and then

AUC is computed on thus initialized population. All the

initialized parameters such as MF, CR, nfeat, and n are

broadcasted.

Training phase

This algorithm is a hybrid of BTA and BDE. Here, BTA

is executed first for maxIter2 times, followed by BDE. It

means that first, the local exploitation happens in each

solution individually. Later, it is followed by global

exploration and exploitation over the entire population.

By utilizing the binary vector field information, the

parent population, is subjected to BTA heuristic as pre-

sented in Algorithm 2, thus forming the offspring popula-

tion. Then, AUC is evaluated by calling the thread pool

mapper on the offspring population. The offspring solu-

tions which are not much worse than the corresponding

parent solution in terms of fitness value are selected. This

process is continuted for maxIter2 times which results in an

evolved population that serves as the initial parent popu-

lation for BDE. Thus evolved population obtained from

BTA was subjected to the BDE heuristics, viz., crossover

and mutation. After that, the thread pool mapper is called,

and the AUC of the offspring population is evaluated.

Then, the selection operation is applied, replacing the

worse parent solutions with their better offspring solutions.

This serves as the parent population for the next iteration.

After this, the whole process of BTA and BDE in tandem is

repeated until maxIter1 iterations are completed.

4.3.4 Parallel binary ADE (PB-ADE)

The proposed parallel approach PB-ADE is presented in

Algorithm 6, and the flow chart is depicted in Fig. 8 in the

Appendix. As this is also implemented in the same envi-

ronment, P-DE-FSPM, also follows the same structure, the

difference is the adoption of the MF and CR parameters, as

mentioned in detail in Sect. 3.4.

Population initialization

The population is initialized as per Algorithm 1 and then

AUC is computed on this initialized population. All the

initialized parameters such as MF, CR, nfeat, and n are

broadcasted.

Training phase

Using the binary vector field information, the parent

population, is subjected to ADE heuristics as presented in

Algorithm 6, thus forming the offspring population. Then,

AUC is evaluated by calling the thread pool mapper on the

offspring population. Then, the selection operation is

applied, replacing the worse parent solutions with their

better offspring solutions. This serves as the parent popu-

lation for the next iteration. Now the rate of the success is

calculated for the current MF and CR combination (refer to

Eq. 5) and then stored accordingly. Then the roulette wheel

is called in order to choose MF and CR. This whole process

of applying heuristics and calling roulette wheel is repeated

until maxIter iterations are completed.

… 

… 

TA-1 TA-2 TA-3 TA-n

… 

Binary Differential Evolution 

Population

based TA 

DE Phase 

Fig. 3 Schematic representation

of the PB-TADE based wrapper
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Algorithm 6: Proposed PB-ADE based wrapper.

4.3.5 Parallel permutation based DE (P-DE-FS.PM)

The proposed parallel approach P-DE-FSPM is presented in

Algorithm 7, and the flow chart is depicted in Fig. 9 in the

Appendix. P-DE-FSPM, has some special heuristics which

are permutation inspired and require the integer value of

the solution. Hence, along with the binary encoded form of

the solution, the integer valued vector is also stored to

undergo the underlying permutation based heuristic as

depicted in Fig. 9.
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Algorithm 7: Proposed P-DE-FSPM based wrapper.

Population initialization

PB-DE-FSPM algorithm requires the initialization of the

integer valued vector (refer to Sect. 3.5). The delimiter of

the selected and non-selected feature is ‘0’, where the right

side portion is the selected feature subset. Based on the

selected feature subset, the binary vector is generated and

thus forms the population following the structure as

depicted in Fig. 4 as per the chosen population size (n).

The major difference between the previous and current

population RDD structure is the additional storage of the

integer valued vector. Similarly, all the initialized param-

eters such as MF, CR, nfeat, and n are broadcasted. The

same strategy which is used in the fitness function in earlier

algorithms is also used here. Then AUC is computed on the

initialized population.

Training phase

Using the binary vector field information, the parent

population is subjected to DE-FSPM heuristics namely the

permutation based mutation, crossover and the repair

mechanism as presented in Algorithm 7, thus forming the

offspring population. Now after applying the heuristics by

using the integer value information the corresponding

binary form of the vector is generated and updated in the

corresponding column. As mentioned in Sect. 4.2, the

AUC is evaluated by calling the thread pool mapper on the

offspring population. Then, the selection operation is

applied thereby replacing the worse parent solutions with

their better offspring solutions. This serves as the parent

rotceVnoituloS:eulaVyeK
Key , Integervalued Vector , selected Features , AUC Scores

Key , Integervalued Vector , selected Features , AUC Scores

…...

Fig. 4 Schema of the population

RDD for the P-DE-FSPM
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population for the next iteration. The whole process is

repeated until maxIter iterations are completed.

4.4 Classification algorithm

Logistic Regression (LR) is employed as the classifier for

the proposed FSS. LR is chosen because it is fast to train

and is nonparametric. It does not make any assumptions

about the errors or variables and has no hyperparameters to

fine-tune.

4.5 Fitness function

Area under the ROC Curve (AUC) is the fitness function

for our proposed wrappers. It is proven to be a robust

measure than accuracy for unbalanced datasets. It is

defined as the average of specificity and sensitivity. The

cut-off for the probability to label samples into one of the

two classes is taken as 0.5. Accordingly,

AUC ¼ Sensitivity þ Specificity

2
ð6Þ

where sensitivity is the ratio of the positive samples that are

correctly predicted to be positive to all the predicted pos-

itive samples. This is also called True Positive Rate (TPR).

Sensitivity ¼ TP

TP þ FN
ð7Þ

where TP is true positive and FN is false negative and

specificity is the ratio of the negative samples that are

correctly predicted to be negative to all the predicted

negative samples. This is also called True Negative Rate

(TNR).

Specificity ¼ TN

TN þ FP
ð8Þ

where TN is true negative and FP is false positive.

4.6 Time complexity

This subsection estimates the computational complexity of

all the algorithms listed in Table 3. Zielinski [83] is the

pioneer in investigating the time complexity of differential

evolution. Let the population size be P, handling d-di-

mensional space and assume that DE converged after

globalGmax, maximum global generations. Then, the com-

putational complexity of DE is O(P*d*globalGmax). TA is

a point-based EA, hence it is applied only for a single

solution. Then the complexity of TA handling d-dimen-

sional space by executing for globalGmax iterations, is

O(d*globalGmax). As we designed the population based

TA, then the complexity becomes O(P*d* globalGmax).

The complexity of the TADE, where the global maximum

iteration is globalGmax and local iterations where the TA is

executed is localGmax then the complexity of the TADE

becomes, O(globalGmax * (P * d ? localGmax * P *

d)) = O(globalGmax * localGmax * P * d). Similarly, the

DETA complexity is also O(globalGmax * localGmax * P *

d). Hence, one can observe that the complexity of both the

DETA and TADE is identical and as these algorithms are

tightly coupled hybrids. The hybrid algorithms will have

the more time-complexity than the native algorithms. The

time complexity of the ADE is also the same as that of the

DE because the underlying heuristics complexity is the

same. Lopez et.al [22] mentioned the algorithm complexity

of the DE-FSPM is as O(P*d*d*globalGmax).

5 Dataset description

The meta-information of the benchmark datasets is pre-

sented in Table 4. All other datasets except for the

Microsoft Malware dataset, contain categorical features.

Thus, categorical features are handled by using the one-hot

encoding mechanism. All the datasets pertain to binary

classification problems. The Microsoft Malware dataset is

accessed from the Kaggle repository [84], the IEEE mal-

ware dataset from the IEEE data port [85], whereas

OVM_Omentum and uterus are genomic datasets from

Table 3 Time complexity of the algorithms

Algorithm Time complexity

DE O(P*d*globalGmax)

DETA O(globalGmax * localGmax * P * d)

TADE O(globalGmax * localGmax * P * d)

ADE O(P*d*globalGmax)

DE-FSPM O(P*d*d*globalGmax)

Table 4 Description of the

benchmark datasets
Name of the dataset # objects # features # classes Size of the dataset

Epsilon 5,00,000 2000 2 10.8 GB

Microsoft Malware 32,59,724 76 2 1.8 GB

IEEE Malware 15,00,000 1000 2 3.2 GB

OVM_Omentum 1584 10,935 2 108.3 MB

OVM_Uterus 1584 10,935 2 108.3 MB
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open source OpenML datasets [86], and the Epsilon dataset

from LIBSVM binary dataset repository [87].

6 Results and discussions

All the datasets are divided into training and test sets in the

ratio of 80%:20%. Stratified random sampling is performed

to maintain a similar proportion of the classes in the

training and test datasets. It is well-known that the per-

formance of the EC techniques is susceptible to changes in

hyperparameters. Hence, after rigorous fine-tuning with

several combinations, the hyperparameters are listed in

Table 5. For each algorithm and the dataset, the population

size is fixed at 10, and the maximum number of generations

is taken as 20. In the case of PB-DE, the DE is executed for

20 generations. However, in the case of the two hybrids

(PB-DETA and PB-TADE), DE and TA are individually

executed for 10 generations each, thereby making it 20

generations in all. The algorithms PB-ADE and P-DE-

FSPM, are also executed for 20 generations. The ADE is an

adaptive mode. All the algorithms are run for 20 runs to

nullify the impact of the random seed, which is customary

for all EC techniques. The top solutions that achieved the

highest AUC in each run are considered to report the

average highest AUC and the corresponding average car-

dinality over 20 runs (see Table 6). All the top results

obtained in this study are highlighted in bold.

6.1 Environmental setup

All the experiments are conducted in a Spark-HDFS cluster

with Spark version 2.4.4 [88] and Hadoop version 2.7,

having one master node and four worker nodes with 32 GB

RAM with Intel i5 8th generation.

6.2 Mean AUC comparative analysis

The mean AUC obtained is compared to establish the

importance of proposed hybrid approaches over the PB-DE

and the other baselines PB-ADE and P-DE-FSPM.

The results in Table 6 show that PB-TADE can achieve

the best AUC because PB-DE got stuck in the local min-

ima. Both PB-DETA and PB-TADE avoided this as they

have employed with TA either before or after DE. The

advantage of finding the local search exploitation helps not

to get entrapped in the local minima but also find the better

maxima. The feature subsets selected by PB-DE achieved

less accuracy when compared to both PB-DETA and PB-

TADE. Also, the average cardinality obtained by PB-DE is

relatively high compared to that of both the PB-DETA and

PB-TADE. Both these cases are not ideal for obtaining an

optimal solution. Invocation of TA is also necessary while

designing the hybrid model. Hence, we worked on both

possibilities as part of the ablation study. We designed

parallel BTA, too, independent of the DE. If BTA alone is

employed for FSS, it consumes enormous computational

Table 5 Hyperparameters for

all the approaches
Dataset PB-DE PB-DETA PB-TADE P-DE-FSPM

MF CR MF CR MF CR MF CR

Epsilon 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Microsoft Malware 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9

IEEE Malware 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9

OVM_Omentum 0.75 0.9 0.75 0.9 0.75 0.9 0.75 0.9

OVM_Uterus 0.85 0.9 0.85 0.9 0.85 0.9 0.85 0.9

Table 6 Average Cardinality and mean AUC obtained

Dataset PB-DE PB-DETA PB-TADE PB-ADE P-DE-FSPM

Avg

Cardinality

Mean

AUC

Avg.

Cardinality

Mean

AUC

Avg

Cardinality

Mean

AUC

Avg

Cardinality

Mean

AUC

Avg

Cardinality

Mean

AUC

Epsilon 617.3 0.7932 486.1 0.8029 457.7 0.8089 555.65 0.797 558 0.7971

Microsoft

Malware

29.6 0.6872 21.7 0.7002 18.60 0.7054 16.95 0.682 15.8 0.6924

IEEE Malware 643.45 0.7929 477.9 0.8035 463.9 0.8009 463.5 0.790 499.55 0.7937

OVA_Omentum 47.28 0.8607 35.54 0.8722 26.15 0.8817 49.3 0.846 32.9 0.870

OVA_Uterus 37.3 0.8607 28.60 0.8712 27.12 0.8802 46.2 0.845 49.7 0.871
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time with inferior results. Hence, the comparative study

excludes BTA.

In the ablation experiment involving PB-TADE and PB-

DETA, the former achieved little lesser average cardinality

of the feature subsets than the latter. In addition to that, the

mean AUC is a little less but quite comparable in the case

of IEEE Malware and Microsoft Malware. The former

outperformed the latter because (i) BTA is essentially very

good at local search by virtue of it being a point-based

algorithm and a deterministic variant of simulated

annealing. (ii) even though we proposed a population-

based BTA, in these hybrids, the hallmark of population-

based evolutionary algorithm, namely passing on the

knowledge learned by the individual solutions to one

another from generation to generation, is conspicuously

missing by design. Therefore, they are the most population

size number of BTA instances running independently. (iii)

Thus, in PB-TADE, after BTA does the exploitation well,

the baton is passed on to the BDE, which is demonstrably

superior in both exploration and exploitation. This process

continues in every iteration. (iv) However, in PB-DETA,

the BDE does the job of exploration and exploitation well

before the BTA is invoked, which only minimizes the fit-

ness values obtained by DE. Further, we should note that

both BTA and BDE are run for 10 iterations each, which

means that they are run with relaxed convergence criteria

without adversely impacting the fitness value or the AUC.

This is a significant departure from the traditional imple-

mentations of both BDE and BTA for solving combinato-

rial optimization problems, where they are typically run for

many iterations for convergence. This strategy is designed

to reduce computational time, primarily because we deal

with big data sets in a distributed manner in this paper.

Further proposed hybrids PB-TADE and PB-DETA

outperformed the PB-DE, PB-ADE, and PB-DE-FSPM in

terms of mean AUC. Among the latter three, PB-DE-FSPM

stands out to be the best algorithm because, in Microsoft

Malware and Omentum datasets, its average cardinality is

less than the PB-DETA with a little cost of AUC. Along

with this P-DE-FSPM achieved significantly comparable

results with the PB-DETA viz., with high dimensional

datasets in terms of AUC but the cardinality of the selected

feature subset is higher than the later. Moreover, P-DE-

FSPM outperformed both the PB-DE and PB-ADE in most

of the datasets.

Further, no feature subset selection work is reported in

analyzing Microsoft Malware and IEEE Malware datasets

to the best of our knowledge. In the Epsilon dataset, Peralta

et al. [89] designed MapReduce for evolutionary feature

selection. They used CHC as the evolutionary strategy, and

logistic regression as the classifier and achieved a 0.6985

AUC with 721 features, whereas PB-TADE obtained an

average AUC of 0.8098 with 457.7 average number of

features. Moreover, Pes [90] conducted feature selection by

using Symmetric Uncertainty (SU), while AUC the scores

are computed using Random Forest (RF). They reported an

AUC of 0.695 and 0.6 in the OVA_Uterus and

OVA_Omentum datasets, respectively. However, they did

not report the optimal number of features that obtained

these scores. But, PB-TADE achieved an average AUC of

0.8802 and 0.8817. In comparison, the OVA_Uterus and

OVA_Omentum datasets have an average number of fea-

tures, 27.12 and 26.15, respectively. Thus, our proposed

methods outperformed the state-of-the-art results in these

datasets.

6.3 Repeatability

Repeatability is one of the critical criteria for determining

how robust and stable the designed wrapper method is. The

more an optimal feature or feature subset repeats itself, the

more powerful the underlying EA is said to be. In this

subsection, repeatability analysis is conducted in two ways:

firstly, concerning the features repeated individually among

the often-repeated feature subsets with the highest AUC

and secondly, the repetition of a whole feature subset as

corresponding to the highest AUC.

6.3.1 Repeatability of the individual features

All the most often repeated features part of an optimal

feature subset with the highest AUC are identified and

presented in Table 7. The features repeated for more than

50% of the total individuals obtained by 20 runs are con-

sidered and presented. Results accommodate the most

repeated top five features selected by each approach. It

turns out that the repeated features selected by PB-DETA

and PB-TADE are almost identical whereas the features

chosen by the PB-DE and PB-ADE are slightly different.

Interestingly, the most repeated individual features selected

by the PB-TADE are also selected by the PB-DETA and

P-DE-FSPM in most of the datasets.

6.3.2 Repeatability of the feature subsets

All the feature subsets that yielded the highest AUC and

repeated often are reported in Table 8. The #s1 represents

the cardinality of the most-repeated feature subset, and the

corresponding AUC. In the case of the Epsilon dataset, PB-

DE has selected 639 features resulting in 0.79. PB-TADE

outperformed the rest in terms of AUC and also by

selecting a less cardinal feature subset. In the Microsoft

Malware dataset, PB-DE achieved a 0.69 AUC with 31

features, while both PB-DETA and PB-TADE could

achieve a better AUC than PB-DE with a less cardinal

feature subset. Also, the P-DE-FSPM and PB-ADE
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achieved better AUC with a less cardinal feature subset

compared to that of PB-DE but achieved less AUC com-

pared to that of PB-DETA and PB-TADE. Even though in

the case of the IEEE Malware dataset, the cardinality of the

selected feature subsets is the same for the PB-DETA and

PB-TADE, the AUC is different because the selected fea-

tures are not identical. The same is the case in

OVA_Omentum and OVA_Uterus datasets. Hence, the

results indicate that PB-TADE can achieve lower cardi-

nality with better AUC than PB-DETA and PB-DE in all

the datasets in terms of repeatability. Similarly, PB-DETA

outperformed PB-DE. In terms of AUC, overall PB-TADE

outperformed the rest of the algorithms. PB-DETA and

P-DE-FSPM achieved comparable performance in terms of

AUC in almost all the datasets. Also, the PB-ADE

achieved comparable performance except in Omentum and

Uterus datasets.

Table 7 Most often repeated features selected by each approach

Dataset Approach Most repeated features

Epsilon PB-DE 1,3,5,7,9

PB-DETA 1,3,6,12,19

PB-TADE 1,3,6,12,19

PB-ADE 1,3,5,7,9

P-DE-FSPM 1,3,6,12,9

Microsoft Malware PB-DE AVProductsInstalled,HasTpm,Isprotected,Census_OEMN_Name Identifier,SmartScreen

PB-DETA AVProductsInstalled,HasTpm,IsPassiveMode, OsSuite,SmartScreen

PB-TADE AVProductsInstalled,HasTpm,OsSuite, RipStateBuild,SmartScreen

PB-ADE AVProductsInstalled,HasTpm,Isprotected,Census_OEMN_Name Identifier,SmartScreen

P-DE-FSPM AVProductsInstalled,HasTpm,OsSuite, RipStateBuild,SmartScreen

IEEE Malware PB-DE GetProcAddress,GetThreadId,Sleep,FindClose, RaiseException

PB-DETA GetProcAddress,GetLastError,Sleep,ReadFile, RaiseException

PB-TADE GetProcAddress,GetLastError,Sleep,ReadFile, RaiseException

PB-ADE GetProcAddress,GetThreadId,Sleep,FindClose, RaiseException

P-DE-FSPM GetProcAddress,GetThreadId,Sleep,FindClose, RaiseException

OVA_Omentum PB-DE 158765_at,201608_s_at, 206442_at,207096_s_at,210002_s_at

PB-DETA 1554436_s_at, 201669_s_at, 20644_s_at, 207442_s_at,, 208970_s_at

PB-TADE 1554436_s_at, 201669_s_at, 20644_s_at, 207442_s_at,, 208970_s_at

PB-ADE 158765_at,201608_s_at, 206442_at,207096_s_at,210002_s_at

P-DE-FSPM 158765_at,201608_s_at, 206442_at,207096_s_at,210002_s_at

OVA_Uterus PB-DE 205866_s_at,209682_s_at,217294_s_at, 222421_s_at,220148_s_at,

PB-DETA 202125_s_at,205866_s_at,218132_s_at, 222421_s_at,222784_s_at,

PB-TADE 202125_s_at,205866_s_at,218132_s_at, 222421_s_at,222784_s_at,

PB-ADE 202125_s_at,205866_s_at,218132_s_at, 222421_s_at,222784_s_at,

P-DE-FSPM 202125_s_at,205866_s_at,218132_s_at, 222421_s_at,222784_s_at,

Table 8 Cardinalities and the

corresponding AUC of the Top-

most repeated feature subsets

Dataset PB-DE PB-DETA PB-TADE PB-ADE P-DE-FSPM

#s1 AUC #s1 AUC #s1 AUC #s1 AUC #s1 AUC

Epsilon 639 0.7967 564 0.8068 488 0.8097 505 0.797 555 0.801

Microsoft Malware 31 0.6983 24 0.7057 17 0.7061 17 0.7 20 0.70

IEEE Malware 550 0.7956 486 0.8057 487 0.8058 483 0.804 588 0.798

OVA_Omentum 55 0.8701 37 0.8723 33 0.8779 66 0.866 33 0.876

OVA_Uterus 37 0.8607 28 0.8712 27 0.8802 60 0.86 50 0.877

*Where #s1 is the cardinality of the top-most repeated feature subset
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6.4 Least cardinal feature subset with highest
AUC

In this subsection, the least cardinal feature subset among

the 20 runs with the highest AUC is discussed. The results

are presented in Table 9. It turns out that the PB-TADE

outperformed all the algorithms in detecting the least car-

dinal feature subset. At the same time, PB-DETA and PB-

ADE stand second and third in detecting the least cardinal

feature subset. Except for the OVA_Omentum dataset, PB-

TADE achieved a better AUC with fewer features than the

PB-DETA. In the case of Epsilon, even though PB-TADE

and PB-DETA have achieved similar AUC but PB-TADE

achieved a lesser cardinal feature subset. In all the datasets,

PB-DE, PB-ADE, and PB-DE-FSPM were outperformed by

the proposed hybrid models. This fact further reinforces the

role played by the BTA in this hybridization.

6.5 Speedup

Speedup is defined as the gain obtained by the parallel

version of the algorithm with respect to the sequential

algorithm executed on a single processor as follows in

Eq. (9).

Speed Up ðS:UÞ ¼ Time taken by Sequential Version

Time taken by Parallel Version

ð9Þ

This stands as one of the essential characteristics in

evaluating the performance of the parallel version of the

algorithm. The results are presented in Table 10. It is to be

noted that speedup results are rounded off to two decimals.

We observed that the proposed parallel algorithms

achieved significant speedup. Speedup achieved ranges

from 2.21 to 2.90 times by all proposed algorithms over

their sequential counterparts in all datasets. As the number

of nodes in the cluster is 4, the maximum possible speedup

that could be achieved is 4. The linear speedup is not

achieved because of the synchronization junctions in the

parallel model.

6.6 Statistical testing of the results

The two-tailed t-test at a 5% level of significance and 38

(20 ? 20–2) degrees of freedom is conducted pairwise on

the three proposed algorithms and the other two paral-

lelized baselines to make statistically valid statements

about their performance. The results are presented in

Table 11.

The null hypothesis is H0: both the algorithms are sta-

tistically equal,

while the alternate hypothesis is, H1: both the algo-

rithms are statistically not equal.

It is very important to conduct the t-test to check whe-

ther the numerical superiority of algorithm A over B,

occurred purely by chance or indeed due to the superior

nature of the algorithm A. Hence, in this work, the means

of the top AUC scores achieved by the best solution in the

population by each approach over the 20 runs are consid-

ered for the t-test evaluation. Thus, a two-tailed t-statistic

value is calculated. Using the t-statistic, the p-values are

obtained. The p-value is compared with the level of sig-

nificance to determine whether to accept null hypothesis H0

or not. Hence, even though t-statistic is calculated, it is

used to determine the p-value which in turn helps in

deciding whether to accept or reject H0. As the p-values for

all datasets are less than 0.05, the null hypothesis is

rejected, and the alternate hypothesis is accepted. We infer

that PB-TADE is significantly different from PB-DE, PB-

ADE and P-DE-FSPM as the p-values are significantly

small.

In summary, the results indicate that the PB-TADE

achieved higher AUC with lesser cardinality when com-

pared to the PB-DETA. However P-DE-FSPM, and PB-

ADE are standing second and third respectively, and out-

performed the PB-DE in the majority of the datasets. The

statistical analysis says that the PB-TADE is significantly

different compared to the rest PB-DETA and PB-DE in

both exploration and exploration. All the proposed parallel

approaches achieved significant speedup compared to their

sequential counterparts. Although PB-TADE and PB-

DETA consumed more time than the PB-DE, it is mainly

Table 9 Least Cardinal Feature

subset with the highest AUC
Dataset PB-DE PB-DETA PB-TADE PB-ADE P-DE-FSPM

#s1 AUC #s1 AUC #s1 AUC #s1 AUC #s1 AUC

Epsilon 588 0.7967 471 0.8068 441 0.8068 505 0.797 555 0.801

Microsoft Malware 27 0.6915 22 0.7007 17 0.7061 17 0.7 20 0.70

IEEE Malware 550 0.7956 484 0.8057 487 0.8197 388 0.799 464 0.804

OVA_Omentum 41 0.8504 29 0.8723 31 0.8699 66 0.866 27 0.864

OVA_Uterus 31 0.8504 24 0.8699 26 0.8712 60 0.86 48 0.870

*Where #s1 is the cardinality of the feature subset having least cardinal subset with highest AUC
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due to more function evaluations. Notably, both the hybrid

variants resulting in optimal feature subsets are much better

than those obtained by the PB-DE, PB-ADE and PB-DE-

FSPM in terms of higher AUC and less cardinality.

7 Conclusions and limitations

This paper develops the parallel versions of the BDE,

BDETA, and BTADE and employs them for the wrapper

based feature subset selection, where logistic regression is

chosen as the classifier. We demonstrated their

Table 10 Speedup Analysis of

parallel versions over the

sequential ones

Dataset Algorithm Sequential E.T Parallel E.T S.U

Epsilon PB-DE 12,780 4485 2.84

PB-DETA 12,680 4361 2.90

PB-TADE 12,688 4369 2.90

PB-ADE 12,780 4485 2.84

P-DE-FSPM 12,912 4860 2.65

Microsoft Malware PB-DE 16,412 6741 2.43

PB-DETA 15,781 6447 2.44

PB-TADE 15,779 6432 2.45

PB-ADE 16,222 6741 2.40

P-DE-FSPM 15,640 7077 2.21

IEEE Malware PB-DE 20,412 8151 2.50

PB-DETA 19,793 7936 2.49

PB-TADE 19,801 7938 2.49

PB-ADE 20,517 8817 2.32

P-DE-FSPM 20,331 8996 2.26

OVA_Omentum PB-DE 14,892 5428 2.74

PB-DETA 14,651 5226 2.80

PB-TADE 14,689 5428 2.81

PB-ADE 14,891 5407 2.75

P-DE-FSPM 16,860 6882 2.45

OVA_Uterus PB-DE 14,108 5368 2.62

PB-DETA 13,979 5222 2.68

PB-TADE 13,968 5378 2.68

PB-ADE 14,891 5407 2.75

P-DE-FSPM 16,042 6712 2.39

Top results are highlighted in bold

*Where E.T is the execution time given in seconds

Table 11 Paired t-test results

Model Parameter Dataset

Epsilon Microsoft Malware IEEE Malware OVA_

Omentum

OVA_

Uterus

PB-DE

vs PB-TADE

t-statistic 7.72 4.62 8.045 4.168 3.69

p-value 2.66 9 10–09 4.25 9 10–05 9.91 9 10–10 0.00017 0.00069

PB-DETA

vs PB-TADE

t-statistic 3.56 3.106 3.63 2.06 1.744

p-value 0.001 0.0035 0.0008 0.045 0.0891

PB-ADE vs

PB-TADE

t-statistic 7.21 3.648 5.22 3.54 6.084

p-value 1.25 9 10–09 0.0007 6.57 9 10–06 0.0010 4.36 9 10–07

P-DE-FSPM vs

PB-TADE

t-statistic 14.21 4.035 6.90 2.45 1.78

p-value 8.54 9 10–17 0.00025 3.32 9 10–08 0.0186 0.0818
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effectiveness on five high-dimensional datasets taken from

literature. The results indicate that the PB-TADE achieved

higher AUC with lesser cardinality when compared to the

PB-DETA, standing second, P-DE-FSPM, and PB-ADE,

giving the comparable performance than the PB-DE in the

majority of the datasets. The statistical analysis says that

the PB-TADE is significantly different compared to the rest

PB-DETA and PB-DE in both exploration and exploration.

Further, our proposed methods outperformed the state-of-

the-art results, wherever the results were reported.

The limitations of the current work are as follows:

• The current study is conducted in a single-objective

function environment where only AUC is considered as

an objective function. In future, the current investiga-

tion will be carried out on the same datasets but in bi-

objective and multi-objective environments.

• The proposed hybrid algorithms are non-adaptive in the

sense that we need to manually tweak their hyperpa-

rameters rather than tweaking them adaptively.

• Further, we observed that the specific way of paral-

lelizing the EAs in the current study consumes more

time when the population size increases. Hence, the

method of parallelizing EAs can further be improved.

• A valid alternative for the current proposed hybrid

approach could be the parallel particle swarm opti-

mization (PSO) and its hybrid variants with TA in

either a tightly or loosely coupled manner. Also, several

most recent meta-heuristics such as HGS, CPA, HHO

etc., can also be parallelized.

The above-discussed limitations motivate our future

work. The current investigation will be carried out on the

same problem but in bi-objective and multi-objective

environments. In the future, a novel optimization algorithm

based on machine learning presented in Hooten et al. [91]

can be employed for this problem.

Appendix

See Figs. 5, 6, 7, 8 and 9.
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