
A Distributed B+Tree Indexing Method for
Processing Range Queries over Streaming Data
Shahab Safaee

Islamic Azad University
Meghdad Mirabi (meghdad.mirabi@cs.tu-darmstadt.de)

Technical University of Darmstadt
Amir Masoud Rahmani

National Yunlin University of Science and Technology
Aliasghar Safaei

Tarbiat Modares University

Research Article

Keywords: B+Tree Index, Distributed Query Processing, Map-Reduce Model, Range Query, Streaming Data

Posted Date: August 18th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1941097/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1941097/v1
mailto:meghdad.mirabi@cs.tu-darmstadt.de
https://doi.org/10.21203/rs.3.rs-1941097/v1
https://creativecommons.org/licenses/by/4.0/

1

A Distributed B+Tree Indexing Method for Processing Range Queries over Streaming Data
Shahab Safaee1, Meghdad Mirabi2, Amir Masoud Rahmani3, Aliasghar Safaei4

1 Department of Computer Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
2 Faculty of Computer Science, Technical University of Darmstadt, Germany

3 Future Technology Research Center, National Yunlin University of Science and Technology, Taiwan
4 Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

safaee.shx@gmail.com, meghdad.mirabi@cs.tu-darmstadt.de, rahmania@yuntech.edu.tw, aa.safaei@modares.ac.ir

Abstract: A data stream exhibits as a massive unbounded sequence of data elements continuously generated at a high rate. Stream

databases raise new challenges for query processing due to both the streaming nature of data which constantly changes over time

and the wider range of queries submitted by the user when compared with the traditional databases. In this paper, we propose a

system architecture which includes components for both distributed indexing of streaming data and distributed processing of range

queries over streaming data. By exploiting the proposed system architecture, the process of indexing of streaming data and the

process of querying over streaming data can be done in a distributed fashion. We also design a distributed B+Tree indexing method

using the map-reduce programming model of the Apache Spark framework which creates small B+Tree indexes on the machines

of a Spark cluster instead of using a large and centralized B+Tree index structure. Moreover, we propose a distributed range search

algorithm to process range queries in distributed and parallel form using the set of small B+Tree indexes. By performing several

experiments, we demonstrate that our proposed distributed B+Tree indexing method is scalable and efficient compared to the

existing indexing methods and therefore, it can be used for applications involving data streams with a large volume of data elements

and a large number of range queries.

Keywords: B+Tree Index, Distributed Query Processing, Map-Reduce Model, Range Query, Streaming Data

1. Introduction

 Today, the use of streaming data in applications such as sensor networks, internet of things, stock market data

analysis, etc., has turned significant. In these applications, data is generated in transient, at a high rate, from various

sources and must be processed in the shortest possible time and even in some applications within a deadline. The

generation rate of streaming data may change dynamically; also, they may be infinite in many applications such as the

data of sensors [1-3].

 Streaming data can be defined as an order of data elements in a continuous, infinite, transient, unpredictable and

time-variant [1, 4, 5]. The paradigm and processing structure that governs this type of data is different from those of

common systems. Usually, the processing of this type of data is done in real time [1, 6]. Due to the importance of

streaming data in various fields and applications, there is a need for systems that store, retrieve and process this type

of data based on the characteristics of streaming data [7-9].

 One of the important issues in streaming data is the query processing time. The most common solution to improve

the access time during query processing is to use an indexing structure to facilitate the process of data retrieval over

streaming data [10-12]. Generally, different structures can be used to implement the index depending on the type of

data, the type of query, and the type of application. As common examples of basic indexing structure, the structures

of Bit-Map [13], B-Tree [14], and Hash [12] can be mentioned. Due to the use of a data structure to maintain the

information of index, the process of indexing is expensive in terms of memory cost and therefore it has memory

overhead [11, 15-17].

 Unlike batch processing systems, streaming data must be stored in the main memory and processed in real time.

Therefore, common indexing methods that are based on batch processing may not be efficient for this type of data.

On the other hand, in non-streaming data management systems, such as traditional database management systems,

data is stored permanently on storage devices, and the index structures are used to index data permanently. As a result,

the rate of data changes in the index is not high and the cost of maintaining the index is low. In contrast, streaming

data are transient in nature and it must be processed within the specified deadline. Therefore, the structure of the index

for streaming data cannot be permanent. In such systems, the rate of data changes is high. To avoid increasing the size

mailto:safaee.shx@gmail.com
mailto:meghdad.mirabi@cs.tu-darmstadt.de
mailto:rahmania@yuntech.edu.tw
mailto:aa.safaei@modares.ac.ir

2

of index from the data whose time stamp has expired, the index should be updated or pruned; this will impose overhead

on the efficiency of data stream indexing [16, 18, 19].

 One of the most common queries on streaming data is range queries. A range query retrieves the data between a

lower bound and an upper bound from the existing streaming data [20-22]. One of the suitable index structures to

facilitate the process of range queries is the use of tree-based structures, especially the B+Tree [16, 20, 23]. Most of

the proposed tree-based indexing methods have challenges of single point-of-failure, scalability and efficiency [18-

20, 24] due to having a centralized structure and not being designed for a large volume of streaming data. Therefore,

there is a strong need to propose a scalable and reliable indexing method with high performance to process range

queries over streaming data.

 Among the most common distributed processing platforms that work based on the map-reduce programming

model, the two most common platforms are the Apache Hadoop [26, 27] and the Apache Spark [28-30]. The Apache

Hadoop platform uses the disk to store data, which may not be very efficient for applications involving streaming data,

but the Apache Spark platform uses the main memory instead of using the disk for storing data and intermediate results

and therefore, it has higher performance [28, 31, 32]. In the Apache Spark platform, a distributed memory structure

called Resilient Distributed Datasets (RDD) is used to store data. Such a structure is fault tolerant [28] and when the

data is placed in the RDD, this platform will transform the data to another RDD and during this transformation, the

desired operations will be done on the data in a distributed manner and then, the result will be stored in another RDD.

Another feature of the Apache Spark platform is that it provides a library for processing streaming data called Spark

Streaming [33] on the Spark processing core. In this library, it is possible that streaming data can be inserted into an

RDD-like structure, called DStream, in a short discrete time interval and then distributed processing can be done using

transformation functions such as map(), partitionby(), groupbyKey() and reducebyKey().

 In this paper, triggered by its importance, we study the problem of processing range queries over data stream in an

efficient and scalable manner. We propose a distributed B+tree index structure to facilitate the process of range queries

over data stream. The proposed index structure is designed based on the map-reduce programming model [25] in the

Apache Spark framework to benefit from the existence of a distributed and reliable data processing platform. Hence,

our main contributions in this paper are summarized as follows:

 We propose a system architecture for both distributed indexing of streaming data and distributed processing

of range queries over streaming data. It consists of 2 components called “Distributed Indexing” component
and “Distributed Query Processor” component. The “Distributed Indexing” component is responsible to
create a set of small B+Tree indexes on the machines of a Spark cluster while the "Distributed Query

Processor” component is responsible for processing range queries in a distributed fashion using B+Tree

indexes available on the machines of a Spark cluster.

 We design a distributed B+Tree indexing structure using the map-reduce programming model of the Apache

Spark to create a set of small B+Tree indexes instead of using a large and centralized B+Tree index. The

proposed distributed index structure is scalable and it can be used where the volume of streaming data is

large and there are a large number of range queries.

 We propose a distributed range query algorithm called “Distributed Range Search” using the map-reduce

programming model of the Apache Spark platform, which can be executed in parallel and distributed manner

on the machines on which the B+Tree indexes are placed on.

 We evaluate the performance of our proposed distributed B+Tree indexing method for processing range

queries over data stream by performing several experiments.

 The rest of the paper is organized as follows: the related works are reviewed in Section 2. Our proposed system

architecture and our proposed indexing method are explained in Section 3. In Section 4, our proposed distributed

B+Tree indexing method for processing range queries over data stream is evaluated by performing several

experiments. Finally, this paper is conducted by a conclusion and discussion of future works in Section 5.

3

2. Related Works

Several research works have been done to index streaming data, each of which has its own advantages and

disadvantages and can be used in a specific application. From the point of view the type of data on which such indexing

methods supports, they can be divided into two categories of one-dimensional indexing methods [16, 20, 24, 38, 39],

and multi-dimensional indexing methods [18, 34-36]. One-dimensional indexing methods are used for relational data

with a tabular structure where streaming data includes a set of tuples of that relation, while multi-dimensional indexing

methods are suitable for spatial data that streaming data includes a set of spatial coordinates such as the location of a

moving object. Basically, the overhead of maintaining the index in the case of multi-dimensional data is higher than

one-dimensional data [15, 18]. In one-dimensional indexing methods, a tree-based structure (e.g., B-Tree and B+Tree)

is used to index the data. In [24, 37], a tree-based cache-aware indexing method called CSB+Tree is proposed to index

streaming data in main memory. By exploiting the CPU cache, the CSB+Tree indexing method improves the search

time by consuming more memory, but the processes of insertion and modification of index are performed a little

slower than typical B+Tree indexing method. In ACBBI (Adaptive Clustering and Block-Based Indexing) indexing

method proposed by [20], streaming data is first clustered and then, the generated clusters are inserted into B+Tree.

Since this indexing method clusters a set of tuples based on similarity and stores them as a block, it has less storage

overhead compared to the other tree-based indexing methods [16, 24, 38, 39]. The most important problem of this

indexing method is that it only creates a B+Tree index to process queries over streaming data and therefore, it is not

scalable and reliable.

 A Trie is a multi-way tree structure in which each node is an array of pointers. For example, to index alphabetical

words, the size of each array is equal to the number of letters in the alphabet, and each level in a Trie is used to index

a letter in a word. The main advantage of Tries based indexing methods is that the access time and insertion time are

constant if the key length is constant. Thus, Tries should be very well suited for indexing data stream windows with

very high insert rates. The most important drawback of Tries based indexing method is memory wastage, when keys

are uniformly scattered due to the many null pointers in the sparse pointer arrays representing Trie nodes. Burst Trie

[38], Judy [39, 40] and Extended Judy [16] are the most important research works which use Trie as a tree structure

to index the streaming data. In Judy [39] and Extended Judy [16], it has been tried to improve the problem of high

memory consumption by utilizing various mechanisms such as compression. In terms of the performance of range

searches on these indexes, Burst Trie [38] and Judy [39] do not have good performance, but the Extended Judy [16]

has improved the performance of range search operation compared to the other two indexing methods, but this

indexing method has become more complex.

 In general, indexing methods to process range queries on multi-dimensional spatial data stream can be divided into

three categories: tree-based, cell-based, and hybrid indexing methods. The main drawback of tree-based indexing

methods such as R*-Tree [34], KDB-Tree [35] is that they have high maintenance cost due to the nature of index tree

and may have overlap problems. In cell-based indexing methods like VCR (Virtual Construct Rectangles) [36], a grid

structure is generated to partition the indexing space into equal-sized cells. Cell-based indexing methods have better

update and query performance than the tree-based indexing methods [41], but the storage cost and the time to

construct/reconstruct the index is high. There are also research works that use combination of tree and cell structures

together in the index structure like CKDB-Tree and G-CKDB-Tree in [18]. The advantage of this indexing method

compared to the tree-based and cell-based indexing methods is that it has less storage cost and better efficiency in

search operation. Even in G-CKDB-Tree indexing method, parallel processing is employed using GPU in order to

further improve performance. However, all of these proposed indexing methods are centralized and therefore, they

have the problem of single point-of-failure and the lack of scalability.

 In the literature, a number of distributed indexing methods have been proposed such as those proposed in [19, 23,

42]. In [19], a fault-tolerant and scalable distributed B-tree as an index structure is proposed which provides some

important practical features: transactions for atomically executing several operations in one or more B-trees, online

migration of B-tree nodes between servers for load-balancing, and dynamic addition and removal of servers for

4

supporting incremental growth of the system. The proposed index method in [19] is implemented on an underlying

distributed data sharing service, called Sinfonia [43], which provides fault tolerance and a light-weight distributed

atomic primitive. However, this indexing method is only used for transactional queries and does not support streaming

data. In [23], a new distributed R-Tree index structure for trajectory search called DTR-Tree (Distributed Trajectory

R-Tree) is proposed using the Spark Apache framework based on the map-reduce programming model. Such an

indexing method is scalable and reliable and it is able to optimize the trajectory search operation. In [42], a distributed

B-Tree indexing method using map-reduce programming model is proposed to improve the efficiency of random

reads. This indexing method is implemented using a chained map-reduce process that reduces intermediate data access

time between successive map and reduce functions, and improves efficiency of random reads.

 There are several factors to be considered in order to compare the existing indexing methods for streaming data

which are listed as follows:

 Index Structure: What structure is used in the proposed indexing method?

 Index Type: Can the proposed indexing method be used only in a centralized form or can it be used in a

distributed fashion?

 Data Type: Does the proposed indexing method only support one-dimensional data or is it able to support

multi-dimensional data as well?

 Type of Query Supported by the Indexing Method: Is the proposed indexing method able to process range

queries over data stream or not?

 Cost of Indexing Method: Is the cost of the proposed indexing method is high in terms of storage cost and

maintenance cost?

 Type of Improvement: Does the proposed indexing method improve the query processing performance over

data stream? We can consider several metrics in this regard such as efficiency, scalability, and reliability.

 Table 1 summarizes the characteristics of existing indexing methods and highlights the differences between the

proposed indexing method in this paper and the existing indexing methods. As shown in Table 1, all existing tree-

based data stream indexing methods need to update the index tree to prevent the growing of index tree and therefore,

the index maintenance cost in these indexing methods is high. In this paper, we propose a distributed B+Tree indexing

method which creates a set of small index trees on several machines (or nodes) of a Spark cluster instead of creating

a large B+Tree index tree. These B+Tree index trees are created in parallel from in certain time intervals using the

map-reduce programming model on the Spark Apache platform. Our proposed distributed B+Tree indexing method

completely eliminates the process of maintaining a large B+Tree index in main memory. It is developed to be used in

a Spark cluster and therefore, it is reliable. The experimental results in Section 5 demonstrate that it is efficient and

scalable for processing range queries over streaming data. However, it has a high storage cost compared to other tree-

based indexing methods since it creates a set of small B+Tree index trees in the main memory of machines in a Spark

cluster.

Table 1 Comparison of streaming data indexing methods

5

3. Our Proposed System Architecture and Indexing Method

In this section, we explain about our proposed system architecture and our proposed indexing method for

processing range queries over data stream in more detail.

3.1 Architecture of the proposed method

Our proposed system architecture is shown in Fig. 1. As shown in Fig. 1, our proposed system architecture

contains the following components: “Distributed Indexing” component and “Distributed Query Processor”
component. “Distributed Indexing” component is responsible for data stream distribution, partitioning, and indexing.

It consists of three modules:

 Data Distributing Module: This module gets streaming data from the input and stores it in the form of a

distributed memory structure on the machines inside a Spark cluster.

 Data Partitioning Module: This module partitions the distributed data based on the indexing key. Partitioning

is in the form of horizontal and we use the range partitioning method in this module.

 Data Indexing Module: This module creates a B+Tree index in each partition of data.

 The Distributed Query Processor component is responsible for processing range queries over streaming data and

generating query results. It consists of two modules:

 Query Executor Module: This module gets a range query from the input and processes it in a distributed

manner using the B+Tree index of each partition.

Index

Name

Indexing

Structure

Indexing

Type
Data Type

Support

Range

Query

Data

Stream

Support

Storage

Cost

 Maintenance

Cost
Efficiency Scalable Reliable

ACBBI

[20]
B+Tree Centralized

One

Dimensional
Yes Yes Low Low High No No

CSB+Tree

[24]
B+Tree Centralized

One

Dimensional
Yes Yes High Medium High No No

Extended

Judy [16]
Trie Centralized

One

Dimensional
Yes Yes Low Low Medium No No

Judy [39] Trie Centralized
One

Dimensional
Yes Yes Low Medium Medium No No

Burst Tries

[38]
Trie Centralized

One

Dimensional
Yes Yes Medium Medium Low No No

R*-Tree

[34]

R-Tree

Based
Centralized

Multi-

Dimensional
Yes Yes Medium High Medium No No

KDB-Tree

[35]

B-Tree & K-

D-Tree
Centralized

Multi-

Dimensional
Yes Yes Medium Medium Medium No No

VCR [36] Cell Based Centralized
Multi-

Dimensional
Yes Yes Medium Medium Medium No No

CKDB-

Tree [18]

Cell & Tree

Based
Centralized

Multi-

Dimensional
Yes Yes Low Medium Medium No No

G-CKDB-

Tree [18]

Cell & Tree

Based
Centralized

Multi-

Dimensional
Yes Yes Low Medium High No No

DTR-Tree

[23]

R-Tree

Based
Distributed

Multi-

Dimensional
Yes No High Medium High Yes Yes

Distributed

BTree

[42]

B-Tree

Based
Distributed

One

Dimensional
Yes No Medium Medium Medium Yes Yes

Distributed

BTree [19]

B-Tree

Based
Distributed

One

Dimensional
No No Medium Medium Medium Yes Yes

Proposed

Indexing
B+Tree Distributed

One

Dimensional
Yes Yes High Low High Yes Yes

6

 Output Generating Module: This module prepares the query results based on the specified structure, such as

a tabular structure, and puts them as the output.

Fig. 1 Our Proposed System Architecture

3.2 Problem formulation

 Here, we formulate how to model the streaming data, our proposed indexing method, and range queries.

3.2.1 Data Model

 A streaming data is a sequence of data elements that is continuous, unbounded, unpredictable, fast and time-variant,

which is represented as 𝑠 =< 𝑠1, 𝑠2, … > [44].

Definition 1 (Streaming Data) [18]: Consider a data stream S consisting of an unbounded data set of (tuple,

timestamp) pairs: 𝑆 = {𝑠𝑖|𝑠𝑖 = (𝑡𝑖, 𝑡𝑠𝑖), 𝑖 ∈ [1, +∞]}. Given a set of attributes 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, let d(aj) denote the

data domain of an attribute aj where 1 ≤ 𝑗 ≤ 𝑛. Thus, each tuple consists of a set of (attribute, value) pairs: 𝑡𝑖 ={(𝑎𝑗 , 𝑣𝑗), 𝑗 ∈ [1, 𝑛] ˄ 𝑣𝑗 ∈ 𝑑(𝑎𝑗)}.

3.2.2 Indexing Model

 Our Proposed indexing method is based on a B+Tree index structure. A B+Tree index structure consists of a root

node, intermediate nodes and leaf nodes. The root node may be a leaf node or a node with two or more child nodes.

Definition 2 (DB+Tree): DB+Tree is a distributed B+Tree created by the map and reduce functions in the Apache

Spark framework. Let 𝑀 be the master node, and 𝑊 = {𝑊1, 𝑊2, … , 𝑊𝑛} be the set of worker nodes in the Spark cluster.

Node 𝑀 interconnects with all the worker nodes 𝑊𝑖 in 𝑊. On the Apache Spark cluster, each worker node can have

one or more partitions of streaming data. If the set of partitions are shown as 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}, each partition 𝑃𝑖
contains a 𝐵 + 𝑇𝑟𝑒𝑒𝑃𝑖. Therefore, DB+Tree contains the sum of B +Tree as shown in Equation 1.

𝐷𝐵 + 𝑇𝑟𝑒𝑒 = ∑ {𝐵 + 𝑇𝑟𝑒𝑒𝑃1 , 𝐵 + 𝑇𝑟𝑒𝑒𝑃2 , … , 𝐵 + 𝑇𝑟𝑒𝑒𝑃𝑁𝑃}𝑁𝑃𝑖=1 (1)

 where NP denotes the number of partitions in the Spark cluster.

 There are several properties in our proposed distributed B+Tree indexing method as follows:

Input Data Distributed Indexing Component

Distributed Query Processor Component

Query Executor Module

Output Generator Module

Range Query

Query Result

Data Distributing Module

Data Partitioning Module

Data Indexing Module

7

Property 1: The total number of partitions in the Spark cluster is equal to 𝑁𝑃 = ∑ 𝑛𝑚𝑖=1 (2)

 where 𝑚 is the number of worker nodes and 𝑛 is the maximum number of partitions per worker node in the Spark

cluster.

 By partitioning the streaming data, each tuple 𝑇 of streaming data 𝑆 is assigned to a partition based on the key of

each tuple. We use range partitioning to place all tuples which are in the same range based on the tuple key in a

partition. A distributed memory space is a set of ranges {[𝑆, 𝑟1], [𝑟1, 𝑟2], … , [𝑟𝑛 , 𝐸]}, where 𝑆 and 𝐸 are the start and

end of the range, respectively, and r1,r2,…,rn are the partition points.

Property 2: Based on Definition 2 and Equation 1, the number of index trees represented by 𝑁𝐵𝑇 is equal to the

number of partitions represented by 𝑁𝑝 in the Spark cluster. 𝑁𝐵𝑇 = 𝑁𝑃 (3)

Property 3: The total number of processing cores that are called Executors represented by 𝑁𝐸 is equal to the total of

the processing cores of all worker nodes in the Spark cluster. 𝑁𝐸 = ∑ 𝑁𝐶𝑚𝑖=1 = 𝑚 × 𝑁𝐶 (4)

 where 𝑚 is the number of worker nodes and 𝑁𝐶represents the number of processing cores in each worker node.

Lemma 1. The maximum number of B+Trees is equal to the number of Executors in the Spark cluster.

Proof. Since each partition is assigned at least one processing core or Executor, the total number of partitions will be

equal to the number of Executors, which is calculated in Equation 4. Therefore, it can be concluded that 𝑁𝑃 = 𝑁𝐸 and

from Equation 3 we can also conclude that 𝑁𝐵𝑇 = 𝑁𝐸. ⬜

3.2.3 Query Model

 In range queries, the search is performed on one of the attributes of data tuples in a range [L, R].

Definition 3 (Range Query) [18]: For a set of attributes 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, the form of a range query is defined as: q = (I(a1), I(a2), … , I(an)), where I(ai) represents the query range for attribute ai, i.e., I(a1). min ≥d(a1). min ˄ I(a1). max ≤ d(a1). max.

Definition 4 (Result Set) [18]: For a set of continuous range queries 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑘}, the result set 𝑅𝑆(𝑄) is

defined as: 𝑅𝑆(𝑄) = ⋃ 𝑉𝑞𝑖𝑚𝑖=1 , where 𝑉𝑞𝑖 represents the streaming data that are valid for a range query 𝑞𝑖.
3.3 Algorithmic Structure of Our Proposed Indexing Method

 Our proposed distributed B+Tree indexing method is designed to be used in the Apache Spark framework. In this

subsection, we explain how to create a set of small B+Tree indexes using map-reduce programming model in the

Apache Spark framework and how to employ them for distributed processing range queries over data stream.

3.3.1 Distributed Index Structure

 Fig. 2 shows how a distributed B+Tree index is created in our proposed indexing method. It can be explained as

follows: After Kafka receives the streaming data in short time slots and distributes it to worker nodes in the Spark

8

cluster, the distributed data is divided into a number of partitions. Then, a B+Tree is created as an index in each data

partition, and the data in each partition is inserted into the created B+Tree index of that partition. Then, the streaming

data is stored as tuples in the leaves of the B+Tree and the first column in each tuple is the indexing key. Algorithm 1

summarizes the steps of creating a distributed B+Tree index.

Fig.2 Process of Creating a Distributed B+Tree Index

 In Algorithm 1, first, the master node receives streaming data tuples and distributes them to the worker nodes in

the form of RDD structure (Line 1). Then, the data is partitioned by the master node using rangePartitioner() method

(Line 2). Finally, an index is created in each partition (Line 3). In our proposed indexing method, the process of index

creation is done based on the distributed programming model in the Apache Spark, which uses a transformation

function to transfer processing operations on the distributed data in an RDD and applies the desired operation on the

distributed data. Here, the process of index creation can be performed in parallel form using mapToPair() method

which results in the mapping of each partition to a B+Tree index.

Algorithm 1: Distributed B+Tree

Input:
Stream Tuple ST<c1,c2,c3,…,cn >

Output:

DB+Tree Index

DistributedBPlusTree(ST){

1. Master node gets stream tuples and distributes them on worker nodes in the form

of Spark RDD Structure;

2. Master node partitions RDDs using rangePartitioner() method;

3. In each partition, a B+Tree is created in parallel using mapToPair() method;

4. }

9

 Algorithm 2 is proposed to insert data into B+Tree index in each partition. The parameters that must be set as input

to create a B+Tree index are: Branching Factor bF and Key Index keyIndex. The branching factor bF specifies how

many index keys can be placed at each level of the root and internal nodes in the index tree. In Section 4, the effect of

this parameter on the index creation time is investigated. Also, the key index keyIndex refers to the column number

of the streaming data tuple, which should be set as the indexing key and therefore, data stream’s tuples are placed in
the leaves of the B+Tree index based on the index key.

Algorithm 2: Insert Data in B+Tree Index

Input:
branchingFactor bF

keyIndex // A positive decimal number that points to index key;

Output:

Distributed B+Trees DBT

DistributedBPlusTreeDataInsert(bF,keyIndex){
1. RDD DDataSet kafka.datastream();

2. RDD Partitions DDataSet.partitionby(rangePartitioner);

3. RDD DBT Partitions.mapToPair(bF, keyIndex);

4. Return DBT;

5. }

mapToPair(bF, keyIndex){

1. Create BPlusTree with parameters (bF, keyIndex));

2. While (End of Partition) {

3. Insert Partitions.row in the appropriate leaf;

4. currentNode leaf;

5. While (currentNode overflow) {

6. split the currentNode into two nodes on the same level,

and promote median key up to the parent of currentNode;

7. currentNode parent of currentNode;

8. }//End While

9. Partitions.nextRow();

10. }//End While

11. }//End mapToPair() Method

 In Algorithm 2, first, streaming data is received by Kafka and distributed to worker nodes in an RDD called

DDataSet (Line 1). In the next step, the streaming data is partitioned by calling the partitionby() method on the worker

nodes, and the partitions are created in another RDD format called Partitions (Line 2). Each row of the partition

represents a streaming data tuple. By utilizing the mapToPair() method, B+Trees are created in parallel in another

RDD format called DBT for each partition (Line 3). The mapToPair() method is specified as an independent method.

In the first step of this method, an index tree is created based on the branching factor and index key (Line 1). Then,

each row of the partition is inserted into the tree corresponding to each partition (Lines 2-10). The process of insertion

of data into B+Tree is performed in Lines 3-8.

Lemma 2. The time complexity of the index creation algorithm in our indexing method is 𝑂(𝑛𝑙𝑜𝑔𝑛).

Proof. Assume 𝑛 be the number of streaming data tuples arrived in each time slot. Since the time complexity of the

insertion in the B+Tree is 𝑂(𝑙𝑜𝑔𝑛) and the data insertion in our proposed indexing method is performed in parallel

for each partition, the time complexity of the index creation in our proposed approach is 𝑂(𝑛𝑙𝑜𝑔𝑛). ⬜

3.3.2 Distributed Range Search Algorithm

10

 The process of finding the results of a range query over streaming data based on our proposed distributed B+Tree

indexing method consists of two phases. After receiving the range query, in the first phase, which is the map phase,

the search operation is performed in parallel on the B+Tree Index in each partition. In the second phase, which is the

reduce phase, the search results are aggregated in each partition and sent to the master node to prepare the query

results. Fig. 3 shows how this process can be done.

Fig. 3. Process of Finding the Results of a Range Query

 Algorithm 3 is designed to process a range query over streaming data using our proposed distributed B+Tree

indexing method. As shown in Algorithm 3, the range query 𝑄 and distributed B+Tree indexes 𝐷𝐵𝑇 are as the inputs

and the query result 𝑄𝑅 is the output of the algorithm. In this algorithm, the map() method with the input parameters

the lower bound and the upper bound of the search is called in parallel form over all B+Tree indexes (Line 1). After

applying the map() method, the search result in each B+Tree is placed in an RDD called 𝐷𝑄𝑅 (Line 1). Finally, the

results obtained in 𝐷𝑄𝑅, which are distributed on the worker nodes, must be aggregated and sent to the master node.

Therefore, the combineByKey() method as a transformation function is applied to the 𝑅𝐷𝐷 as the reduce function.

Then, the query results are returned to the master node as an integrated list (Line 3). The map method performs the

basic search operation in the B+Tree. This method gets the lower bound and upper bound of the search as inputs. First,

it selects the root node (Line 1). Then, in a loop, the upper and lower bounds of the search are compared to the root

keys (Lines 3-10) and the correct internal node is selected. The same process is repeated for the internal nodes to

identify the leaf nodes that contain the searched data. Finally, the data that matches the search range is retired and

placed in the leaf nodes of the index tree (Lines 11-14) and the retrieved data values are placed in the Result variable

(Line 12).

Algorithm 3: Distributed Range Search

Input:

11

Query Q

Distributed B+Trees DBT

Output:
Query Result QR

DistributedBPlusTreeRangeSerach(){

1. RDD DQRDBT.map(Q.lowerbound,Q.upperbound)

2. QR DQR.combinebykey();

3. Return QR;

4. }

map(QueryLowerBound,QueryUpperBound){

1. Node Root;

2. Result Null;

3. While (Node is not a leaf node) {

 //Let i be least number that Lower_Bound ≤ Ki

4. If (such a number i does not exist)

5. Node last non-null pointer in Node;

6. else if (Lower_Bound ≤ Node.Ki)

7. Node Pi+1;

8. else

9. Node Node.Pi;

10. }//End While;

11. For (i that Pi is not null) & (Lower_Bound ≤ Ki) & (Upper_Bound ≥ Ki){

12. Result Result + Node.Pi;

13. i i+1;

14. }//End For

15. }//End map() Method

Lemma 3. The time complexity of the Distributed Range Search algorithm is 𝑂(𝑙𝑜𝑔𝑛).

Proof. Considering that the time complexity of the search operation in B+Tree is 𝑂(𝑙𝑜𝑔𝑛) [45-47], and also the search

operation is performed in parallel on the B+Tree index of each partition in our proposed indexing method, therefore,

the time complexity of Algorithm 3 is O(logn). ⬜

 Fig. 4 shows the serial and parallel parts of the Distributed Range Search Algorithm. As shown in Fig. 4, range

queries are received serially through the master node. Then, they are distributed in parallel using the B+Tree of each

partition. Next, they are executed by the worker nodes. Finally, the query results obtained from the worker nodes are

aggregated and returned to the master node.

 Fig. 5 shows a more detailed form of query parallelism in this regard. In Fig. 5, Executor is a processing unit for

distributed query processing. The number of executors depends on the number of worker nodes as well as the number

of processor cores in each worker node as explained in Section 3.2. For example: If the number of worker nodes is 4

and each worker node has 4 processing cores, the number of executors will be 16, which indicates the degree of

parallelism. As shown in Fig. 5, an instance of each range query is distributed among Executors and each Executor

executes the range search operation using the B+Tree structure called Data Fragment in Fig. 5.

12

Fig 4 Serial and Parallel Parts in Distributed Range Search Algorithm

Fig 5 Parallelism Form of Range Search Algorithm

4 Performance Evaluation

 In this section, the performance of our proposed distributed B+Tree indexing method to process range queries over

streaming data is evaluated by performing several experiments.

4.1 Experimental settings

 We used a cluster including 9 nodes for evaluation of our proposed indexing method to process range queries over

streaming data. Each node had 4 processing cores with a speed of 2.20 GHz, a main memory with a capacity of 4 GB,

a hard disk of SSD type with a capacity of 120 GB and a network interface with a speed of 1 Gbps. The operating

system installed on each node was Linux Ubuntu 19.10 x64. The distributed processing platform used in our

experiments was Apache Spark 2.4.4 with the Spark Streaming library for streaming data processing. We used Kafka

2.6.13 to manage the streaming data and HDFS file system to store the required files. In our experiments, we used a

node from the cluster as the master node and the other 8 nodes as the worker nodes. Fig. 6 shows the structure of the

Spark cluster in our experiments.

13

Fig. 6 Structure of the Spark Cluster in Our Experiments

 We ran the Driver program on the master node and the Worker program on the worker nodes. The Driver program

was responsible for managing the Spark cluster and distributing the tasks to the worker nodes, as well as collecting

and aggregating the query results from the worker nodes. The Worker program was responsible for receiving tasks

from the Driver program and processing and returning the query results to the Driver program. In our experiments,

the maximum number of executors was 32, and the tasks were distributed among these executors by the Driver

program run on the master node.

 We used the dataset used in [48] in our experiments1. This dataset is about famous movies including the following

fields: movie name, year of production, and ratings by fans. This data set has more than 10 million records stored as

a CSV file.

 To measure the performance variation based on the types of data distribution, we used three data distributions

Uniform, Skew, and Hyper Skew in our experiments. We produced streaming data for each data distribution using the

Spark Streaming library. The time interval of each DStream for generating data was 30 seconds. In the uniform

distribution, the records were uniformly placed in the streaming data based on the key field with a probability of 1/𝑛,

where 𝑛 was the number of records. In the skew distribution, data distribution was normal with zero mean and

symmetrical skewness, and in the hyper skew distribution, data distribution was normal, but with non-zero mean and

asymmetrical skewness. In other words, the data distribution was either skewed to the right or skewed to the left in

this case.

 To measure the performance of our proposed indexing method to create index trees in the Spark cluster, we used

the index creation time as a metric in our experiments. This metric is dependent on independent parameters: the type

of data distribution, the number of records in the dataset, the number of nodes in the Spark cluster, the number of

processor cores in each worker node, the number of Executors in the Spark cluster, the number of partitions in the

Spark cluster, and the value of branching factor in index tree [18, 20, 23]. Table 2 shows these independent parameters

with the values in our experiments. Each experiment was repeated 3 times and the average value was calculated from

the obtained results as the final value.

1 https://grouplens.org/

https://grouplens.org/

14

Table 2 Independent Variable and their Values in Our Experiments

Parameter Values

Type of Data Distribution Uniform, Skew, Hyper Skew

Number of Dataset Records 1 M, 2 M, 4 M, 8 M (Records per Minutes)

Number of Partitions 1, 2, 4, 8,16, 32

Branching Factor 64, 128, 256, 512

Number of Nodes 1, 2, 4, 8

Number of Processor Cores per Node 4

Number of Executors 4, 8, 16, 32

 To measure the storage cost of our proposed indexing method, we used the total index size as a metric in our

experiments. It is defined as follows: 𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 𝑆𝑖𝑧𝑒 = 𝑆𝑖𝑧𝑒 (𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 𝐾𝑒𝑦𝑠 𝑝𝑒𝑟 𝐵 + 𝑇𝑟𝑒𝑒) + 𝑆𝑖𝑧𝑒 (𝑅𝑒𝑐𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐷𝑎𝑡𝑎 𝑆𝑡𝑟𝑒𝑎𝑚) (5)

where Total Index Keys per B+Tree is calculated by Equation 6 as follows: 𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 𝐾𝑒𝑦𝑠 𝑝𝑒𝑟 𝐵 + 𝑇𝑟𝑒𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑅𝑜𝑜𝑡 𝐾𝑒𝑦𝑠) + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑁𝑜𝑑𝑒𝑠 𝐾𝑒𝑦𝑠) + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝐿𝑒𝑎𝑓 𝑁𝑜𝑑𝑒𝑠 𝐾𝑒𝑦𝑠) (6)

 To measure the storage overhead in our proposed indexing method, we used the memory index overhead as a metric

in our experiments which is calculated using Equation 7.

𝑀𝑒𝑚𝑜𝑟𝑦 𝐼𝑛𝑑𝑒𝑥 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑆𝑖𝑧𝑒 𝑜𝑓 𝐷𝑎𝑡𝑎𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 𝑆𝑖𝑧𝑒 (7)

 To measure the performance improvement of our proposed indexing method to process range queries over data

stream, we used two metrics speed up and scale up in our experiments. They are defined as follows [49]:

𝑆𝑝𝑒𝑒𝑑 𝑈𝑝 = 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 𝑜𝑛 𝑆𝑖𝑛𝑔𝑙𝑒 𝑁𝑜𝑑𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 𝑜𝑛 𝑀𝑢𝑙𝑡𝑖 𝑁𝑜𝑑𝑒 (8)

𝑆𝑐𝑎𝑙𝑒 𝑈𝑝 = 𝑆𝑖𝑛𝑔𝑙𝑒 𝑁𝑜𝑑𝑒 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 𝑜𝑛 𝑆𝑚𝑎𝑙𝑙 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡𝑀𝑢𝑙𝑡𝑖 𝑁𝑜𝑑𝑒 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 𝑜𝑛 𝐿𝑎𝑟𝑔𝑒 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡 (9)

4.2 Experimental Results

 In our experiments, we first considered the impact of different parameters for creating index trees. Then, we

investigated the impact of different parameters for processing of range queries over streaming data using our proposed

distributed B+Tree indexing method. Finally, we compared our proposed indexing method with the ACBBI indexing

method [20].

4.2.1 The Impact of Different Parameters for Creating Index Trees

 Here, we explained the impact of different parameters in the creation of index tree.

15

4.2.1.1 The Effect of the Number of Partitions on the Index Creation Time

 Fig. 7 shows the effect of number of partitions on the index creation time for three different data distribution

scenarios when the number of records in the data stream was 8M records per minute, the branching factor was 64, and

the number of executors in the Spark cluster was 32. As shown in Fig. 7, increasing the number of partitions for the

uniform data distribution and the skew data distribution has a positive effect, and with the increasing the number of

partitions, the index creation time reduces. However, the results are different for the hyper skew data distribution and

the index creation time is significantly increased by increasing the number of partitions. In our proposed indexing

method, when the number of partitions is few, the number of index trees is also few, and as a result, the size of the

index tree becomes larger, and vice versa. In the hyper skew data distribution, we have a lot of skewness and therefore,

some partitions have a few numbers of data records while other partitions may have a large number of data records.

Therefore, the index creation time will be more for partitions including the large number of data records. As shown in

Fig. 7, in the case that the number of partitions is ¼ of the number of executors in the Spark cluster, the index creation

time is almost the same for all three data distributions. Therefore, we can set the number of partitions in the hyper

skew data distribution equals to ¼ the number of executors to have better index creation time.

Fig. 7 Effect of the Number of Partitions on Index Creation Time

4.2.1.2 The Effect of Branching Factor on the Index Creation Time

 Fig. 8 shows the effect of branching factor on the index creation time for three different data distribution scenarios

when the number of records in the data stream was 8M records per minute, the number of partitions was 8, and the

number of executors in the Spark cluster was 32. Generally, if the branching factor of the B+Tree is equal to 𝑛 and all

the nodes and keys of the index tree are used in the worst case, in the first level of the index tree, there is a root node

with 𝑛 keys and (𝑛 + 1) pointers, in the second level of the index tree, there are (𝑛 + 1) internal nodes containing 𝑛

keys and (𝑛 + 1) pointers to nodes in the third level, and in the third level (last level), (𝑛 + 1)(𝑛 + 1) leaf nodes

containing 𝑛 key-value pairs. Therefore, when the branching factor is set to 64, the maximum number of records that

can be inserted into the index tree is equal to 64 × 65 × 65 = 270,400 records, which is greater than 125,000. If the

branching factor is changed to 128, 256, and 512, only the number of records greater than 270,400 can be inserted

into the index tree and it will not affect the index creation time. However, the index creation time has increased in the

case of hyper skew data distribution compared to other data distributions. It is due to the high skewness of the data

and the existence of a large number of records in some partitions compared to other partitions.

0

5000

10000

15000

20000

25000

30000

35000

8 16 32

In
d

e
x

C
re

a
ti

o
n

 T
im

e
 (

m
il

i
S

e
co

n
d

)

Number of Partitions

Uniform Skew Hyper Skew

16

Fig. 8 Effect of Branching Factor on the Index Creation Time

4.2.1.3 Speed Up in the Process of Index Creation

 Fig. 9 shows the speed up during the process of index creation in our proposed indexing method for three different

data distribution scenarios when the number of records in the data stream was 8M records per minute, the number of

partitions was 8, the branching factor was 64, and the number of worker nodes was varied. We set the number of

executors to be four times the number of worker nodes in our experiments. As shown in Fig. 9, the pattern of speed

up diagram is almost the same for all data distributions since the data records in the same range are placed together in

each partition and therefore, the type of data distribution has no effect on the index creation time.

0

1000

2000

3000

4000

5000

6000

64 128 256 512

In
d

e
x

C
re

a
ti

o
n

 T
im

e
 (

m
il

i
S

e
co

n
d

)

Branching Factor

Uniform Skew Hyper Skew

17

Fig. 9 Speed Up in the Process of Index Creation

4.2.1.4 Scale up in the Process of Index Creation

 Fig. 10 shows the scale up during the process of index creation in our proposed indexing method for three different

data distribution scenarios when the number of partitions was 8, the branching factor was 64, and the number of

records were varied. We changed the number of records from 1M to 2M, 4M, and 8M records per minute in the data

stream and the number of executors from 4 to 8, 16 and 32 in our experiments, respectively. As shown in Fig. 10, the

pattern of scale up diagram is almost the same for all data distributions since the data records in the same range are

placed together in each partition and therefore, the type of data distribution has no effect on the index creation time.

4.2.1.5 The Effect of the Number of Records on the Index Size

 Fig. 11 shows the effect of number of records on index size of our proposed indexing method for three different

data distribution scenarios when the number of executors in the Spark cluster was 32, the number of partitions was 8,

the branching factor was 64, and the number of records per minute was varied. As shown in Fig 11, the growth rate

of index size has doubled with 2, 4, 8, and 16 times the data volume per minute since the size of the index tree is

dependent on the size of the data records in the data stream. By doubling the data volume, the size of the index has

also doubled.

1

2

4

1 2 4 8

S
p

e
e

d
 U

p

Number of Nodes

Uniform Skew Hyper Skew

18

Fig. 10. Scale Up in the Process of Index Creation

Fig. 11 Effect of Number of Records on Index Size

 Fig. 12 shows the memory overhead in our proposed indexing method when the number of executors in the Spark

cluster was 32, the number of partitions was 8, the branching factor was 64, and the number of records per minute in

the data stream was varied. As shown in Fig 12, it is clear that our proposed indexing method needs 50% of storage

space of data records in the stream to store the index data and obviously this amount of storage space does not increase

0

0.2

0.4

0.6

0.8

1

1 2 4 8

S
ca

le
 U

p

Workload

Uniform Skew Hyper Skew

0

50

100

150

200

250

300

350

400

450

500K Records 1M Records 2M Records 4M Records 8M Records

In
d

e
x

S
iz

e
 (

M
B

)

Number of Data Stream Records Per Minute

Uniform Skew Hyper Skew

19

as the number of records in the data stream increases since the structure of the B+Tree is fixed and the amount of data

does not change the structure of the index.

Fig. 12 Memory Overhead of Our Proposed Indexing Method

4.2.2 The Impact of Different Parameters on the Processing of Range Queries

 We investigate the impact of different parameters in our proposed indexing method for processing range queries

over streaming data.

4.2.2.1 The Effect of the Number of Partitions in the Cluster on Query Processing

 Figs. 13, 14, and 15 show the effect of number of partitions in our proposed indexing method to process range

queries over streaming data for three different data distribution scenarios to retrieve 10%, 50% and 100% of the data

records, respectively. In our experiments, the number of records in the data stream was 8M records per minute, the

branching factor was 64, and the number of executors in the Spark cluster was 32. As shown in Figs. 13, 14, and 15,

increasing the number of partitions, especially in the uniform data distribution, has a negative effect on the query

execution time in most cases. The reason is that the desired records may not exist in some index trees and therefore,

many partitions should be checked in this regard. Moreover, it is clear that the type of data distribution does not

significantly affect the query processing time. It is an advantage of our indexing methods as it can be used for datasets

with different data distributions.

0

0.25

0.5

0.75

1

500000 1000000 2000000 4000000

M
e

m
o

ry
 I

n
d

e
x

O
ve

rh
e

a
d

Number of Data Stream Records Per Minute

Uniform Skew Hyper Skew

20

Fig. 13 Effect of Number of Partitions on Query Execution Time to Retrieve 10% of Data

Fig. 14 Effect of Number of Partitions on Query Execution Time to Retrieve 50% of Data

0

50

100

150

8 16 32

Q
u

e
ry

 E
xe

cu
ti

o
n

T

im
e

 (
m

il
i

S
e

co
n

d
)

Number of Partitions

Uniform Skew Hyper Skew

0

50

100

150

200

250

300

350

400

8 16 32

Q
u

e
ry

 E
xe

cu
ti

o
n

T

im
e

 (
m

il
i

S
e

co
n

d
)

Number of Partitions

Uniform Skew Hyper Skew

21

Fig. 15 Effect of Number of Partitions on Query Execution Time to Retrieve 100% of Data

4.2.2.2 Speed Up in Processing the Range Queries

 Figs. 16, 17, and 18 show the speed up of our proposed indexing method in processing range queries for three

different data distribution scenarios to retrieve 10%, 50%, and 100% of data records in the data stream, respectively.

In our experiments, the number of records in the data stream was to 8M records per minute and the number of partitions

and the branching factor were to 8 and 64, respectively. We set the number of executors to be four times the number

of worker nodes in our experiments. As shown in Figs. 16, 17, and 18, the pattern of speed up diagram is almost the

same for all data distributions since the data records in the same range are placed together in each partition and

therefore, the type of data distribution has no effect on the index creation time. It is also clear that increasing the

number of worker nodes has a positive effect on the query execution time for all experiments since by increasing the

number of worker nodes, the number of executors also increases, and therefore, more executors are assigned to execute

the range search algorithm on each index tree in the Spark cluster. This feature of our proposed indexing method can

increase the degree of parallelism for processing the range queries over streaming data.

0

50

100

150

200

250

300

350

400

450

8 16 32

Q
u

e
ry

 E
xe

cu
ti

o
n

T

im
e

 (
m

il
i

S
e

co
n

d
)

Number of Partitions

Uniform Skew Hyper Skew

22

Fig. 16 Speed Up in Processing of Range Queries to Retrieve 10% of Data Records

Fig. 17 Speed Up in Processing of Range Queries to Retrieve 50% of Data Records

1

2

4

1 2 4 8

S
p

e
e

d
 U

p

Number of Nodes

Uniform Skew Hyper Skew

1

2

4

1 2 4 8

S
p

e
e

d
 U

p

Number of Nodes

Uniform Skew Hyper Skew

23

Fig. 18 Speed Up in Processing of Range Queries to Retrieve 100% of Data Records

4.2.2.3 Scale Up in Processing the Range Queries

 Figs. 19, 20, and 21 show the scale up of our proposed indexing method in processing range queries for three

different data distribution scenarios to retrieve 10%, 50%, and 100% of data records in the data stream, respectively.

In our experiments, the number of partitions and the branching factor were to 8 and 64, respectively, and the number

of records and the number of executors in the data stream were varied. We changed the number of records from 1M

to 2M, 4M, and 8M records per minute in the data stream and the number of executors from 4 to 8, 16 and 32 in our

experiments, respectively. We also set the number of executors to be four times the number of worker nodes in our

experiments. As shown in Figs. 19, 20, and 21, the pattern of scale up diagram is almost the same for all data

distributions in all experiments since the data records in the same range are placed together in each partition and

therefore, the type of data distribution has no effect on the index creation time. It is also clear that our proposed

indexing method for processing the range queries over the data stream is scalable since by increasing the number of

worker nodes, the number of executors increases and therefore, the search algorithm can be executed in parallel form

on the index tree of each partition with more executors.

1

2

4

1 2 4 8

S
p

e
e

d
 U

p

Number of Nodes

Uniform Skew Hyper Skew

24

Fig. 19 Scale Up in Processing of Range Queries to Retrieve 10% of Data Records

Fig. 20 Scale Up in Processing of Range Queries to Retrieve 50% of Data Records

0

0.2

0.4

0.6

0.8

1

1 2 4 8

S
ca

le
 U

p

Workload

Uniform Skew Hyper Skew

0

0.2

0.4

0.6

0.8

1

1 2 4 8

S
ca

le
 U

p

Workload

Uniform Skew Hyper Skew

25

Fig. 21 Scale Up in Processing of Range Queries to Retrieve 100% of Data Records

4.2.3 Compassion with Other Indexing Methods

 We compared our proposed indexing method with the ACBBI indexing method proposed in [20] because: 1) This

indexing method is a B+Tree indexing method for processing range queries over streaming data. 2) It is more efficient

than the indexing methods proposed in [16, 24, 38, 39], in terms of index maintenance cost and the query processing

time. In addition, it should be noted that the indexing methods proposed in [18, 19, 23, 34-36, 42] cannot be compared

with our proposed indexing method since they do not support streaming data or they are used for multi-dimensional

spatial data. We implemented the ACBBI indexing method and used similar experimental settings for this indexing

method to compare it with our proposed indexing method fairly.

4.2.3.1 Comparison in terms of Index Creation Time

 Fig. 22 shows the index creation time of different indexing methods for three different data distributions. In our

experiments, the number of records in the data stream was 2M records per minute, the number of partitions, the

branching factor, and the number of executors were 4, 64, and 4, respectively. We only used only 1 node with 4

processing cores in our experiments. As shown in Fig. 22, it is clear our proposed indexing method is more efficient

to create index trees compared to the ACBBI indexing method. This is due to the distributed structure of our proposed

indexing method which can be created in parallel and distributed form.

0

0.2

0.4

0.6

0.8

1

1 2 4 8

S
ca

le
 U

p

Workload

Uniform Skew Hyper Skew

26

Fig. 22 Index Creation Time in Different Indexing Methods

4.2.3.2 Comparison in terms of Query Processing Time

 To compare the query processing time of our proposed indexing method with the ACBBI indexing method to

process range queries over streaming data, a set of experiments were performed. In all experiments, the number of

records in the data stream was 2M records per minute, the number of partitions, the branching factor, and the number

of executors were to 4, 64, 4, respectively. We only used 1 node with 4 processing cores in our experiments to retrieve

a fraction of data records from 10% to 100% with an interval of 10%. Figs. 23, 24, and 25 show the time to process

range queries over data stream in different indexing methods when the data distribution is uniform, skew, and hyper

skew, respectively. As shown in Figs. 23, 24, and 25, it is clear that the time to process range queries for our proposed

index method in all data distributions is less than that in the ACBBI indexing method since the process of query

processing in our proposed indexing method can be done in parallel form even if there is a single node in the

experiment.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Uniform Skew Hyper Skew

In
d

e
x

C
re

a
ti

o
n

 T
im

e
 (

m
il

i
S

e
co

n
d

)

Type of Data Distibution

ACBBI Proposed Index

27

Fig. 23 Query Processing Time of Different Indexing Methods in the Uniform Data Distribution

Fig. 24 Query Processing Time of Different Indexing Methods in the Skew Data Distribution

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Q
u

e
ry

 E
xe

cu
ti

o
n

T

im
e

 (
m

il
i

S
e

co
n

d
)

Percent of Data Queries

ACBBI Proposed Index

0

20

40

60

80

100

120

140

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Q
u

e
ry

 E
xe

cu
ti

o
n

T

im
e

 (
m

il
i

S
e

co
n

d
)

Percent of Data Queries

ACBBI Proposed Index

28

Fig. 25 Query Processing Time of Different Indexing Methods in the Hyper Skew Data Distribution

4.2.3.3 Comparison in terms of Storage Cost

 To compare the storage cost of our proposed indexing method with the ACBBI indexing method, a set of

experiments were performed. In all experiments, the number of records in the data stream was 2M records per minute,

the number of partitions, the branching factor, and the number of executors were 4, 64, and 4, respectively. We only

used 1 node with 4 processing cores in our experiments. Fig. 26 shows the index size of different indexing methods

for three different data distributions. As shown in Fig. 26, it is clear that the index size in our proposed indexing

method is more than that in the ACBBI indexing method in all data distributions since more than one B+Tree index

is created in our proposed indexing method but in the ACBBI indexing method, only one B+Tree index tree is created.

0

20

40

60

80

100

120

140

160

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Q
u

e
ry

 E
xe

cu
ti

o
n

T

im
e

 (
m

il
i

S
e

co
n

d
)

Percent of Data Queries

ACBBI Proposed Index

29

Fig. 26 Index Size of Different Indexing Methods

5. Conclusion and Future Works

 In this paper, we proposed a system architecture including components for distributed indexing of streaming data

and distributed processing of range queries over streaming data. We also designed a distributed B+Tree indexing

method to process range queries over streaming data. The proposed indexing method used the map-reduce

programming model in the Apache Spark platform to create a set of small B+Tree indexes over streaming data. In

addition, we developed a range search algorithm based on the map-reduce programming model in the Apache Spark

platform to process range queries in a distributed fashion. By performing a set of experiments, we showed that our

proposed indexing method has acceptable scalability and with increasing data volume, it has a suitable efficiency for

processing range queries over streaming data. It was also more efficient than the ACBBI indexing method to process

range queries in terms of index creation time and query processing time. Unlike the ACBBI indexing method, it did

not require a pruning operation in order to prevent the growth of the index tree size and therefore, it was more efficient

than the ACBBI indexing method. In addition, it was developed to be used with the Apache Spark platform and

therefore, it was reliable compared to the ACBBI indexing method which has the problem of single pint-of-failure.

However, our proposed indexing method needed more storage space to store the index information compared to the

ACBBI indexing method due to the creation of a set of small B+Tree indexes in parallel. Although the proposed

indexing method required more storage space compared to the ACBBI indexing method, its scalability and high

efficiency in processing of range queries could cover this weakness.

 In the future, we plan to extend this paper in several directions as follows:

0

20

40

60

80

100

120

Uniform Skew Hyper Skew

In
d

e
x

S
iz

e
 (

M
B

)

Type of Data Distibution

ACBBI Proposed Index

30

1) The use of some compression techniques to reduce the storage space required to store the index information

in our proposed indexing method.

2) To extend our proposed indexing method to support logical operators in processing range queries over

streaming data by proposing efficient query processing algorithms.

Declarations

Ethical Approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose. The authors declare no conflict of interest.

Authors' Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by SS and

MM, then it is reviewed by AMR and AS. All authors commented on previous versions of the manuscript. All authors

read and approved the final manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Availability of data and materials

The source codes and datasets used in the paper are available from the first author on reasonable request.

References

[1] A. Margara and T. Rabl, “Definition of Data Streams,” Encycl. Big Data Technol., pp. 648–652, 2019.

[2] A. Bifet and J. Gama, “IoT data stream analytics,” Ann. des Telecommun. Telecommun., vol. 75, no. 9–10, pp.

491–492, Oct. 2020.

[3] S. Tiwari and S. Agarwal, “Data Stream Management for CPS-based Healthcare: A Contemporary Review,”
IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India), pp. 1–24, Jul. 2021.

[4] F. Mohamed, R. M. Ismail, N. L. Badr, and M. F. Tolba, “Data streams processing techniques,” Intell. Syst.

Ref. Libr., vol. 115, pp. 279–305, 2017.

[5] Y. N. Law, H. Wang, and C. Zaniolo, “Relational languages and data models for continuous queries on
sequences and data streams,” ACM Trans. Database Syst., vol. 36, no. 2, 2011.

[6] E. Panigati, F. A. Schreiber, and C. Zaniolo, “Data Streams and Data Stream Management Systems and
Languages,” in Data Management in Pervasive Systems, Data-Centric Systems and Applications, 2015, pp.

93–111.

[7] L. Yue-Jie, “Data stream of wireless sensor networks based on deep learning,” Int. J. Online Eng., vol. 12, no.

11, pp. 22–27, 2016.

[8] S. Chakravarthy and Q. Jiang, “Dsms Challenges,” 2009, pp. 23–31.

[9] A. Behrend, D. Gawlick, and D. Nicklas, “DBMS meets DSMS: Towards a federated solution,” DATA 2012

- Proc. Int. Conf. Data Technol. Appl., no. February 2017, pp. 157–162, 2012.

[10] P. L. Lehman and S. B. Yao, “Efficient Locking for Concurrent Operations on B-trees,” ACM Trans. Database

Syst., vol. 6, no. 4, pp. 650–670, 1981.

31

[11] A. Gani, A. Siddiqa, S. Shamshirband, and F. Hanum, “A survey on indexing techniques for big data:
taxonomy and performance evaluation,” Knowl. Inf. Syst., vol. 46, no. 2, pp. 241–284, 2016.

[12] M. Kholghi and M. Keyvanpour, “Comparative Evaluation of Data Stream Indexing Models,” Int. J. Mach.

Learn. Comput., vol. 2, no. 3, pp. 257–260, 2012.

[13] N. Shivakumar and H. García-Molina, “Wave-Indices: Indexing Evolving Databases,” in SIGMOD Record

(ACM Special Interest Group on Management of Data), 1997, vol. 26, no. 2, pp. 381–392.

[14] T. Y. C. Leung and R. R. Muntz, “Generalized data stream indexing and temporal query processing,” in 2nd

International Workshop on Research Issues on Data Engineering: Transaction and Query Processing, 1992,

pp. 124–131.

[15] F. B. Adamu, A. Habbal, S. Hassan, R. Les Cottrell, B. White, and I. Abdullahi, “A Survey On Big Data
Indexing Strategies,” in NETAPPS2015, 2015.

[16] S. Badiozamany and T. Risch, “Scalable ordered indexing of streaming data,” Int. Work. Accel. Data Manag.

Syst. Using Mod. Process. Storage Archit., 2012.

[17] Z. Deng et al., “An Efficient Indexing Approach for Continuous Spatial Approximate Keyword Queries over
Geo-Textual Streaming Data,” ISPRS Int. J. Geo-Information, vol. 8, no. 2, p. 57, Jan. 2019.

[18] Z. Deng et al., “Parallel processing of dynamic continuous queries over streaming data flows,” in IEEE

Transactions on Parallel and Distributed Systems, 2015, vol. 26, no. 3, pp. 834–846.

[19] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable distributed B-tree,” Proc. VLDB Endow.,

vol. 1, no. 1, pp. 598–609, 2008.

[20] M. R. Sumalatha and M. Ananthi, “Efficient data retrieval using adaptive clustered indexing for continuous
queries over streaming data,” Cluster Comput., pp. 1–15, 2017.

[21] M. Ananthi, D. K. Sreedhevi, and M. R. Sumalatha, “Dynamic continuous query processing over streaming
Data,” in 2016 International Conference on Computation of Power, Energy, Information and Communication,

ICCPEIC 2016, 2016, pp. 183–187.

[22] D. Kalashnikov, S. Prabhakar, S. Hambrusch, and W. Aref, “Efficient evaluation of continuous range queries
on moving objects,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 2453, pp. 731–740, 2002.

[23] H. Wang and A. Belhassena, “Parallel trajectory search based on distributed index,” Inf. Sci. (Ny)., vol. 388–
389, pp. 62–83, 2017.

[24] J. Rao and K. A. Ross, “Making B + -Trees cache conscious in main memory,” in SIGMOD Record (ACM

Special Interest Group on Management of Data), 2000, vol. 29, no. 2, pp. 475–486.

[25] R. Li, H. Hu, H. Li, Y. Wu, and J. Yang, “MapReduce Parallel Programming Model: A State-of-the-Art

Survey,” Int. J. Parallel Program., vol. 44, no. 4, pp. 832–866, 2016.

[26] Ishwarappa and J. Anuradha, “A brief introduction on big data 5Vs characteristics and hadoop technology,”
Procedia Comput. Sci., vol. 48, no. C, pp. 319–324, 2015.

[27] S. R. M. Zeebaree, H. Shukur, L. Haji, and R. Zebari, “Characteristics and Analysis of Hadoop Distributed
Systems,” Technol. Reports Kansai Univ., vol. 62, no. 4, pp. 1555–1564, 2020.

[28] “Apache Spark.” [Online]. Available: http://spark.apache.org/.

[29] A. Bansal, R. Jain, and K. Modi, Big Data Streaming with Spark. Springer Singapore, 2019.

[30] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data analytics on Apache Spark,” Int. J.

Data Sci. Anal., vol. 1, no. 3–4, pp. 145–164, Nov. 2016.

[31] A. V. Hazarika, G. Jagadeesh Sai Raghu Ram, and E. Jain, “Performance comparision of Hadoop and spark

engine,” in Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud, I-

SMAC 2017, 2017, pp. 671–674.

[32] Y. Samadi, M. Zbakh, and C. Tadonki, “Comparative study between Hadoop and Spark based on Hibench

32

benchmarks,” in Proceedings of 2016 International Conference on Cloud Computing Technologies and

Applications, CloudTech 2016, 2017, pp. 267–275.

[33] X. Zhao, S. Garg, C. Queiroz, and R. Buyya, A Taxonomy and Survey of Stream Processing Systems, 1st ed.

Elsevier Inc., 2017.

[34] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing the positions of continuously moving
objects,” ACM SIGMOD Rec., vol. 29, no. 2, pp. 331–342, Jun. 2000.

[35] J. Park, B. Hong, and C. Ban, “A query index for continuous queries on RFID streaming data,” Sci. China,

Ser. F Inf. Sci., vol. 51, no. 12, pp. 2047–2061, 2008.

[36] K. L. Wu, S. K. Chen, and P. S. Yu, “Processing continual range queries over moving objects using VCR-

based query indexes,” in Proceedings of MOBIQUITOUS 2004 - 1st Annual International Conference on

Mobile and Ubiquitous Systems: Networking and Services, 2004, pp. 226–235.

[37] R. A. Hankins and J. M. Patel, “Effect of node size on the performance of cache-conscious B +-trees,” in
Performance Evaluation Review, 2003, vol. 31, no. 1, pp. 283–295.

[38] S. Heinz, J. Zobel, and H. E. Williams, “Burst tries: A fast, efficient data structure for string keys,” in ACM

Transactions on Information Systems, 2002, vol. 20, no. 2, pp. 192–223.

[39] A. Silverstein and D. Baskins, “Judy IV Shop Manual,” 2002.

[40] D. Baskins, “Judy home page,” 2003. [Online]. Available: http://judy.sourceforge.net.

[41] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor queries over moving objects,” in
Proceedings - International Conference on Data Engineering, 2005, pp. 631–642.

[42] H. Singh and S. Bawa, “A MapReduce-based scalable discovery and indexing of structured big data,” Futur.

Gener. Comput. Syst., vol. 73, pp. 32–43, 2017.

[43] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis, “Sinfonia: A new paradigm for
building scalable distributed systems,” in SOSP’07 - Proceedings of 21st ACM SIGOPS Symposium on

Operating Systems Principles, 2007, pp. 159–174.

[44] A. A. Safaei, “Real-time processing of streaming big data,” Real-Time Syst., vol. 53, no. 1, pp. 1–44, 2017.

[45] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts - 7th. ed., 7th ed., vol. 4. McGraw-

Hill, 2019.

[46] K. Pollari-malmi, “B + -trees.” [Online]. Available: https://www.cs.helsinki.fi/u/mluukkai/tirak2010/B-

tree.pdf.

[47] C. S. By Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to Algorithms, fourth

edition, 4th ed. The MIT Press, 2022.

[48] grouplens, “MovieLens Dataset.” [Online]. Available: https://grouplens.org/datasets/movielens/.

[49] D. Taniar, C. H. C. Leung, W. Rahayu, and S. Goel, High-Performance Parallel Database Processing and

Grid Databases. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008.

