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Abstract

Analysis of social networks to identify communities and model their evolution has been an active area of recent
research. This paper analyzes the Enron email data set to discover structures within the organization. The analysis is
based on constructing an email graph and studying its properties with both graph theoretical and spectral analysis
techniques. The graph theoretical analysis includes the computation of several graph metrics such as degree
distribution, average distance ratio, clustering coefficient and compactness over the email graph. The spectral
analysis shows that the email adjacency matrix has a rank-2 approximation. It is shown that preprocessing of data
has significant impact on the results, thus a standard form is needed for establishing a benchmark data.
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1. Introduction

There has been an increasing research focus on identifying communities within social
networks and modeling their evolution over time. Real data for social network analysis can
be obtained from email communications, chat-friendship (i.e., buddy list) lists, or from a
non-electronic medium such as membership of clubs or board of directors of Fortune-500
companies.

In this paper, we consider the Enron email data set; this is the only substantial collection of
real email data set that is public (http://www.chron.com/content/chronicle/special/01/enron/
index.html). We provide both graph-theoretic and spectral analysis of the data set to iden-
tify and quantify its structural information. Our approach is based on constructing an adja-
cency matrix representing the email communication graph. We compute interesting graph
properties, such as diameter, clustering coefficient and betweenness of the Enron email
graph. We compute the graph properties of Enron email graph and also perform spec-
tral analysis of the email data (as a matrix). We show that this matrix has a low rank-2
approximation.

There has been prior work on Enron data. In Corrada-Emmanuel et al. (2004) the au-
thors automate classification of email messages into user-specific folders and extract from
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chronologically ordered email streams using SVM (Support Vector Machines). In Han
and Kamber (2001) the authors construct a database and provide a brief statistical re-
port. In http://www-2.cs.cmu.edu/∼enron/ language usage in a social network is studied.
In Adibi and Shetty (http://www.isi.edu/ adibi/Enron/Enron Dataset Report.pdf) email re-
sponse times are predicted from email logs. In Diesner and Carley (2005) authors investigate
the Enron email data set from a social network analytic perspective; various network ana-
lytic techniques are applied. In Priebe et al. (2005) the authors introduce a theory of scan
statistics on graphs and apply the ideas to the problem of anomaly detection in a time series
of Enron email graphs. In McCallum et al. (2005) the authors apply the Author-Recipeint-
Topic (ART) model for social network analysis on Enron email data set. In Browne and
Berry (2005) the authors apply a non-negative matrix factorization approach for the extrac-
tion and detection of concepts or topics on Enron email data set. And in Keila and Skillicorn
(2005) authors investigate the structures present in the Enron email data set using singular
value decomposition and semidiscrete decomposition.

This paper is organized as follows. In Section 2 we explain how to process email data set
to construct a directed simple graph (i.e., without self loops), present the spectral analysis
and show that rank-2 approximation is possible, and apply different filters to reduce noise.
In Section 3 introduce graph metrics and comute their values. Section 4 we present the
comparison of Enron directed and undirected graph, and the impact of SVD-based filtering
and graph-based filtering. In Section 5 we display the email graph using a novel visualization
tool. Section 6 concludes the work.

2. Data Processing

Enron email data are stored in text file format (http://www-2.cs.cmu.edu/∼enron/). There
were 150 employees from Enron with email logs recorded for 3.5 years (from October
1998 to June 2002). Each log file contains email headers e.g. Message-ID, Date, From,
To, Subject and email content. The attachments, although specified by X-Filename, are not
included in the log.

2.1. Resolving Multiple Email Address

We extracted the From and To fields of email headers to build sender- and receiver-email
list. However, there could be several email addresses for an employee, thus we first identify
all the email addresses of the same person. For example the following email addresses
belong to the same person: vince.kaminski@enron.com, vince.j.kaminski@enron.com,
vince j kaminski@enron.com, j..kaminski@enron.com, kaminski@enron.com, vincent.j.
kaminski@enron.com, j’.’kaminski@enron.com, j.kaminski@enron.com.

While some of these email addresses could be identified automatically, manual inspection
is necessary to handle the employees with the same last name or unexpected characters in
the emails.
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2.2. Construction of the Email Graphs

Using the emails sent between Enron employees we construct a directed simple graph G0,
in which vertices represent employees and a directed edge is established from a node with
from address to another node with to address.1 G0 has 152 nodes 1895 edges. We note that
G0 may contain some noise since it considers every email sent; thus, we derived two graphs
from it using two noise reduction techinques.

The first filter uses a threshold, based on the minimum number of emails between em-
ployees and the minimum number of emails sent by each of them, to produce an undirected
simple graph Gu with 152 nodes 152 edges.

The second filter is SVD-based which produces a directed graph Gd by removing edges
between nodes which are considered noise nodes by SVD method on the adjacency matrix
A of G0. The graph Gd has 152 nodes 1874 edges.

2.2.1. Threshold-Based Noise Filtering. The undirected email graph is constructed as
follows: in order for two employees to be connected by an edge in the graph two criterion
must be met:

T1: The employees must have exchanged at least 30 emails with each other.
T2: Each member of the pair has sent at least 6 emails (20%) to the other (to reduce the

number of one-way relationships).

We note that in Tyler et al. (2003) authors also used T 1 = 30 and T 2 = 5 emails as
threshold values. The thresholds are chosen to a) remove some edges in the email graph,
and b) to construct an undirected graph. By removing edges with small number of emails
we enhance the real connection between people; the edges with small number of emails
are considered as noise here. We are also interested in the interaction between people. The
threshold we use to construct the undirected graph emphasizes an interaction by considering
two-way communication. Clearly this techniques induces a sparse graph which has 57
connected components thus it aids the clustering approach to identify communities.

2.2.2. SVD-Based Noise Filtering. We perform a spectral analysis on Enron email data
similar to Drineas et al. (2004). We show that the Enron email matrix has also a low rank
(i.e., rank 2) approximation by computing Singular Value Decomposition (SVD) Golub and
Van Loan (1984) of the m × m adjacency matrix A of Enron email graph G0.

In matrix notation, SVD for the matrix A is defined as A = U�V T where U and V
are orthogonal (thus U T U = I and V T V = I ) matrices of dimensions m × r and m × r
respectively, containing the left and right singular vectors of A.� = diag(σ1(A), . . . , σr (A))
is an r × r diagonal matrix containing the singular values of A.

The plot of the singular values are shown in figure 1. The largest two singular values
of the Enron email matrix A are 1277 and 1550 and the rest of the singular values are
much smaller than these two values. Thus, we observe that Enron email matrix has a low
rank (2) approximation. In other words, all the entries in the Enron email matrix can be
approximately obtained using two principal components.
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Figure 1. The singular values of Enron email matrix A shows that largest two singular values will be sufficient
for noise reductions and extracting the structure.

We apply SVD-based filtering method by removing edges between nodes which are
considered noise edges by SVD method. The resulting graph is used to create clusters with
different metrics. We then compared these with clusters from graph method using undirected
graph in which noise is removed by applying the thresholds we have described.

3. Properties of Enron Email Graph

In this section we investigate the properties of Enron email graph with respect to some
graph metrics.

3.1. Degree Distribution of Enron Email Graph

We examine the power law property of the Enron graphs G0 and Gu . The degree distribution
for undirected graph Gu , in-degree distribution for directed graph and out-degree distribution
for directed graph G0 are plotted using exponential binning procedure described in Newman
(2003) as shown in figure 2 in log-log scale.

Unlike Tyler et al. (2003) the undirected email graph plot does not obey power law
distribution, moreover all of the Enron plots do not show a straight line thus not obeying
power law distribution.

3.2. Graph Metrics

The graph metrics we consider in this paper are degree distribution, diameter, average
distance, average distance ratio, compactness, clustering coefficient, betweenness, relative
interconnectivity and relative closeness.
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Figure 2. The log-log degree distribution plots for the Enron email graphs Gu and G0.

Degree distribution—Degree distribution is the histogram of the degree of vertices in the
graph. Degree distribution of an email graph reflects the power law property of the graph.
It is used to determine an appropriate threshold for constructing the email graph. The
degree distribution log graph for Enron email graphs is shown in figure 2.

Diameter—Diameter is the longest of the shortest paths between any pair of vertices in a
connected graph. It reflects how far apart two vertices are (from each other) in the graph.

Average distance (AvgDist)—Average distance is the average length of shortest path between
each vertex in the graph. The vertices that do not have a shortest path between them will
be given the number of vertices in the graph as the length of their shortest path.

Average distance ratio—Average distance ratio is defined as NodeNo−AvgDist
NodeNo where NodeNo

is the total number of vertices in the graph. Average distance ratio can have value between
0 and 1. The graph with only isolated vertices will have the average distance ratio of 0
and the complete graph will have the average distance ratio of 1. Average distance ratio
reveals the spanning of edges in the graph; the more spanning the graph is the higher the
value of average distance ratio.

Compactness—Compactness is the ratio between the number of existing edges and the
number of all possible edges 2E

N 2−N where E is the total number of edges and N is the
total number of vertices in the graph. Compactness can have value between 0 and 1. The
graph with only isolated vertices will have the compactness of 0 and the complete graph
will have the compactness of 1. Compactness is the statistic that is not affected by the
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structure of the graph since only the number of edges is used to compute. We note that
the denominator has N 2, therefore the value of compactness is heavily affected by the
size of the graph.

Clustering coefficient—Clustering coefficient Ci is defined as the percentage of the con-
nections between the neighbors of vertex i , i.e. Ci = 2.Ei

k.(k−1) where k is the number of
neighbors of vertex i and Ei is the number of existing connections between its neigh-
bors. Clustering coefficient is the average value of Ci for all vertex i (Drineas et al.,
2004). Clustering coefficient reflects the connectivity information in the neighborhood
environment of a vertex. It provides the transitivity information since it controls whether
two different vertices are connected or not, assuming that they are connected to the same
vertex.

Betweenness—The betweenness of an edge is defined as the number of shortest paths that
traverse it (Tyler et al., 2003). The edge with high betweenness is said to be the inter-
community edge where the edge with low betweenness is said to be the intra-community
edge. By repeatedly removing an edge with high betweenness the resulting graph will
contain a group of clusters where each cluster represents a community of practice (Tyler
et al., 2003).

Relative interconnectivity—RI (Ci , C j ) between two clusters Ci and C j is defined as the
absolute interconnectivity between Ci and C j , normalized with respect to the internal
interconnectivity of the two clusters Ci and C j Karypis et al. (1998).

RI (Ci , C j ) =
∣
∣EC{Ci ,C j }

∣
∣

∣
∣ECCi

∣
∣ + ∣

∣ECC j

∣
∣

Where EC{Ci ,C j } is the edge-cut of the cluster containing both Ci and C j so that the
cluster is broken into Ci and C j , and ECCi (ECC j ) is the size of its min-cut bisector for
cluster Ci (C j ).

Relative closeness—RC(Ci , C j ) between a pair of clusters Ci and C j is the absolute close-
ness between Ci and C j , normalized with respect to the internal closeness of the two
clusters Ci and C j Karypis et al. (1998).

RC(Ci , C j ) =
S̄EC{Ci ,C j }

|Ci |
|Ci |+|C j | S̄ECCi

+ |C j |
|Ci |+|C j | S̄ECC j

Where S̄EC{Ci ,C j } is the average weight of the edges that connect vertices in Ci to vertices

in C j and S̄ECCi
(S̄ECC j

) is the average weight of the edges that belong to the min-cut
bisector of cluster Ci (C j ).

Relative interconnectivity and relative closeness are metrics used to determine the simi-
larity in graph structure between two clusters. In this paper we use the metrics to determine
the similarity of community of practice in the graph. By the definition of relative closeness,
our graph, an undirected simple graph with equal edge weights, will always have the value
of 1 for relative closeness of any clusters. The connectivity between clusters is also of
interest. It can be used to analyze the pattern or type of community of practice in the graph.
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4. Results and Interpretations

4.1. Comparison of Enron Directed and Undirected Graphs

We compute several graph metrics on several email graph settings. We construct both
directed graphs and undirected graphs. Several directed graphs are constructed by chang-
ing value of threshold “minimum number of emails” (T1). Several undirected graphs are
constructed by changing value of threshold “minimum number of emails” (T1) and “min-
imum number of emails from one side” (T2). T2 is all set to be 20 minimum emails
more than 0, the original graph is used; however, there have to be edges from both direc-
tions for constructing an edge in undirected graph and when no. of minimum emails is 0,
new graph is constructed by adding only edges with the weight more than the threshold
value. The number of edges resulted from varying threshold is shown in the following
figure 3. As the threshold increases the number of edges in the graph decreases since less
number of edges will exceed the threshold value. The undirected graph also has smaller
number of edges than the directed graph with the same threshold because another thresh-
old “minimum number of sent emails for both nodes” is used to ensure that each edge
has bi-directional communication. We also compute average degree for each graph. The
average degree for directed graph is the number of out-degree per node and the aver-
age degree for undirected graph is the number of degree per node. Since the numbers of
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Figure 3. The Enron degree distribution plot for the directed and undirected graphs with different thresholds.



272 CHAPANOND, KRISHNAMOORTHY AND YENER

0 10 20 30 40 50
20

40

60

80

100

120

140

160
Giant component size

Threshold

G
ia

n
t 

co
m

p
o

n
e

n
t 

si
ze

0 10 20 30 40 50
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Diameter/giant component size

Threshold

D
ia

m
e

te
r/

g
ia

n
t 

co
m

p
o

n
e

n
t 

si
ze

Directed graph
Undirected graph

Directed graph
Undirected graph

Figure 4. The enron diameter, giant component size and diameter/giant component size plot for directed and
undirected graphs with different thresholds.

nodes are equal in all graphs the average degree graph looks similar to number of edges
graph.

Figure 4 shows different plots on diameter, giant component size and diameter per giant
component size. The threshold has different effect on diameter for different graphs. For
directed graph we calculate diameter from strongly connected component and the diameter
decreases when threshold increases and for undirected graph the diameter increases when
threshold increases. For undirected graph the shortest path can be found easily because
of its bi-directional property. With small threshold value there are many edges that act as
shortcuts hence reduce the length of the path between nodes. When increasing the threshold
value there are fewer shortcuts and the length of the path increases. For directed graph
the node is unreachable when edges are removed therefore when threshold increases the
diameter decreases. The giant component size decreases when the threshold increases as
shown in the following. The undirected graph has stricter threshold than the directed graph
and has the smaller size of giant component. The giant component size has a direct effect
to the diameter because the diameter is calculated from the giant component. The diameter
can be from one, in case of a complete graph, to the size of the giant component minus
one. The following plot 4 shows diameter divided by giant component size on different
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Figure 5. The enron compactness, average distance ratio, clustering coefficient plot for directed and undirected
graphs with different thresholds.

threshold. The giant component size decreases when the threshold increases therefore it
enhances the slope of both directed graph and undirected graph. Although the diameter
changes differently for directed graph and undirected graph we found that both have plots
for diameter per giant component size with about the same slope.

Three different metrics are used to compare the structure of the graphs. Figure 5 shows
these metrics. Compactness is the number of all edges divided by all possible edges. For a
directed graph the number of possible edges is twice of the same undirected graph. Therefore
the undirected graph will have two times larger compactness as the same directed graph.
However the following graph shows that when the threshold increases the compactness is
equal for both directed and undirected graph. This is because the number of edges in directed
graph is about twice of the number of edges in undirected graph. The average distance ratio
is the probability of reachability from any other node. The plot shows that undirected graph
is easier to reach than directed graph. Since the undirected graph has bi-directional property
the average distance ratio is much higher than the directed graph. The average distance ratio
also decreases when number of edges decreases. The clustering coefficient is the probability
of the neighbors of a node forming a clique. The clustering coefficients for both directed
graph and undirected graph are about the same when threshold increases. Therefore the
clustering coefficient does not depend on the directionality of the graph.
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Figure 6. Projection of entries in Rank-2.

4.2. Cluster Analysis

4.2.1. SVD Based Clustering. SVD has been used extensively in analyzing large data sets
(Han and Kamber, 2001). Once we obtained that the matrix has a low rank approximation,
we projected the matrix in each of the dimensions. Plotting the data in the first dimension,
we computed three clusters in the first dimension. Plotting the data in the second dimension,
we computed another three clusters. Finally, we show the actual distribution of the entries
of the matrix projected into the two dimension in the next figure 6.

Based on the SVD, we computed clusters from the first dimension. The first cluster
consisting of indices 20, 44, 57 and 126, which are Jeffrey Dasovich, Mary Hain, Steven
Kean, and James Steffes, the second consisting of indices 1, 8, 23, 43, 56, 61, 63, 73, 105,
109, 117 and 133, which are Philip Allen, Sally Beck, David Delainey, Mark Haedicke,
Wincente Kaminski, Louise Kitchen, John Lovorato, Kay Mann, Elizabeth Sager, Richard
Sanders, Richard Shapiro, and Mark Taylor, and the third cluster containing the rest of the
indices. We computed another three clusters from the second dimension. The first cluster
consists of indices 55, 115, 125, and 135, which are Tana Jones, Sara Shackleton, Carol St
Clair, Paul Thomas, the second cluster consisting of indices 8, 43, 47, 54, 73, 87, 90, 105,
and 109, which are Sally Beck, Mark Haedicke, Marie Heard, Kay Mann, Stephanie Panus,
Debra Perlingiere, Elizabeth Sager, Richard Sanders and the third cluster containing the
rest of the indices.
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4.2.2. Clustering with Graph Metrics. We constructed the communities of practice from
the Enron graph by the algorithm described in Tyler et al. (2003). The algorithm is a
clustering method that repeatedly removes an edge of the graph by betweenness metric until
the graph reaches stopping criteria. The edge with highest betweenness will be removed
until the component size is less than 6 or all edges in the component has betweenness
less than the number of vertices in the component minus one. We then calculated relative
interconnectivity between each cluster.

The Enron graph has 27 communities of practice excluding all communities with only one
vertex. There are 50 links (relative interconnectivity between two clusters more than zero)
between its communities. Enron graph has a sparser connectivity inside the communities
which results in a lower value of clustering coefficient but with a denser connectivity between
communities the Enron graph has a higher value of average distance ratio and compactness.
We also found that in the Enron graph some communities could have high number of links
where some communities have small number of links. Therefore we conclude that we can
analyze pattern or type of community using the metric relative interconnectivity.

Different metrics are used to create clusters. Betweenness is used by betweenness algo-
rithm (Tyler et al., 2003). Average Distance Ratio and Clustering Coefficient are used
by K-mean clustering algorithm. In figure 7 we show the cluster size plottings using
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Figure 7. The cluster size ploting using graph threshold and SVD filter.
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thresholding and SVD filtering methods. The largest values (omitted in the plotting) for
clustering coefficient is 126 and the value in the SVD filter plot for betweenness is 132.

The figure shows that values of metrics vary depending on the filtering methods to process
the email data. For example Betweenness metric with SVD filtering results in a big cluster
whereas graph filtering creates many small clusters. In contrast, Clustering Coefficient with
graph filter results in a big cluster where SVD filtering creates many small clusters. The
Average Distance ratio metric seems to create many small clusters for both filters.

Table 1 shows the result of applying different metrics and filters on the Enron email
graph. First we apply SVD method on the Enron email graph without filtering. We then
apply several metrics i.e. Betweenness, Clustering Coefficient, and Average Distance Ratio
on different filters i.e., threshold-based and SVD-based. The results are shown for the
clusters with higest value of the metric used (C1 (cluster 1) to C5 (cluster 5) for each
filtering method. Clearly, filtering of data has remarkable impact on the results since there
is no agreement on clustering of users to identify communities.

5. Visualization: Email Graph to Organization Hierarchy

The following image (figure 8) shows the visualization of the Enron graph. The layout
was done with GraphDraw, a graph tool in Java (Preston and Krishnamoorthy, 2004)

Figure 8. The visualization for enron email graph color-coded by the cluster of community of practice.
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Table 1. The clusters resulted from different metrics and filters.

Metric Filter Clusters

SVD on G0 N/A C1[20, 44, 57, 126]

C2[1, 8, 23, 43, 56, 61, 63,

73, 105, 109, 117, 115]

Cluster. Coeff (C.C.) Tresholding → Gu C1[1–18, 20, 21, 24–38,

40-54, 57-60, 62, 64-69,

71–82, 84–106, 108–113,

115, 117–131, 133–140]

C. C. SVD → Gd C1[123]

C2[95]

C3[10, 97]

C4[5]

C5[12, 22, 77, 68, 107]

Betweenness Tresholding → Gu C1[1, 19, 34]

C2[133, 35, 40, 29]

C3[84, 37, 135]

C4[61, 41, 62, 137, 117, 107, 28]

C5[64, 6]

Betweenness SVD → Gd C1[0–15, 17, 19–30, 32,

33, 35, 35-41, 43-66, 68-80,

84–101, 103–106, 108, 109,

111–113, 115–119, 121,

123–131, 133–145,

147, 149, 150]

Av. Dist. Ratio Tresholding → Gu C1[61]

C2[1, 62, 60, 114,

40, 42, 85, 124]

C3[19, 135, 22, 55]

C4[0, 131, 111, 116, 54, 83]

C5[63, 107, 72, 103]

Av. Dis. Ratio SVD → Gd C1[63]

C2[8]

C3[64]

C4[1]

C5[20, 57, 61, 94, 119, 23, 56]
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Table 2. The payment and spanning tree level for each
Enron executives.

Employee Payment Level

Kenneth Lay $103,559,793.00 0

Philip Allen $4,484,442.00 1

David Delainey $4,749,979.00 2

Mark Haedicke $3,859,065.00 2

Louise Kitchen $3,471,141.00 2

Rick Buy $2,355,702.00 2

Wincenty Kaminski $1,085,821.00 2

Richard Shapiro $1,057,548.00 2

Mitchell Taylor $1,092,663.00 2

Sally Beck $969,068.00 2

John Lavorato $10,425,757.00 3

Jeffrey Shankman $3,038,702.00 4

Michael Mcconnell $2,101,364.00 4

Steven Kean $1,747,522.00 4

James Derrick $550,981.00 4

Roderick Hayslett $0.00 6

The visualization is automatically created by using a force-directed algorithm from email
graph.

Each vertex will try to push the other vertices away while each edge acts like a spring
that pulls the vertices together. The graph has been color-coded by cluster of community of
practice. The vertices with the same color are in the same community of practice. The giant
connected component of the Enron graph is shown but some isolated vertices are omitted.

Visual inspection of the graph reveals the organization leadership tends to end up in the
center. We did not know the hierarchy of the Enron organization however we looked at the
highly paid executives http://www.chron.com/content/chronicle/special/01/enron/index.
html. We found that the resulting email graph showed somewhat the hierarchy of the orga-
nization.

Using a BFS algorithm a spanning tree with the root of the tree being the vertex cor-
responding to Enron CEO (level 0). We found that the level of vertices corresponds to
the salary of the employee; i.e. the higher payment an employee receives, the lower level
(smaller number) the vertex is.

6. Summary and Conclusions

In this paper it is shown that the Enron email data has low rank approximation and pre-
processing of data, to filter out noise, has significant impact on the properties of the graph
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Figure 9. The metrics comparison for directed and undirected graphs.

representing email communications. In particular, identification of clusters representing
tightly coupled users is very sensitive to the filtering of data.

The graph metrics considered for analyzing the properties of email graphs are useful
to capture the social structure. For example based on the betweenness metric we observe
that the connectivity between communities of practice in the Enron email graph is dense.
Furthermore, in the Enron graph some communities have a high number of links while other
communities have a small number of links. Thus the metric relative interconnectivity can
be used to analyze the pattern or type of community.

The graph metrics for directed and undirected graphs (figure 9) both have the same trend
with average distance ratio the highest value, clustering coefficient second and compactness
the lowest value. From these three metrics we conclude that the graph is well distributed;
the edges connecting the nodes are dispersed over all nodes as we can see that the average
distance ratio is high. The graph is sparse since the compactness has small value, the graph
the clusters are not dense since the clustering coefficient also has small value.

The visualization of the email graph shows somewhat the hierarchy of the organization
with respect to the salary structure. We also investigate whether there is any significant link
between Enron employees and people from White House. We add a vertex that represents
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people from White house, e.g. president@whitehouse.gov, vice.president@whitehouse.gov.
Our preliminary investigation shows that there are emails being sent and received between
Enron employees and the White House during the logging period but after the filtering
process there is no link between this group of Enron employees and White House people.
We also examined the link between Enron employees and the six people who had been
prosecuted—Sheila Kahanek, Dan Boyle, Daniel Bayly, Robert Furst, William Fuhs, and
James Brown. By adding another vertex representing these people we found that there is
no link between them and this group of Enron employees.
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