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Abstract The number of computationally-based models of human social behavior is
growing rapidly. In fact, the current ease of programming is resulting in a plethora of
tools with impressive interfaces but little theoretical power under the hood. Further,
the overabundance of new toolkits for building models is facilitating the excessively
rapid growth of simple proof-of-concept, or intellective, models. The current state of
models range from the simplistic to the elaborate, from the conceptual to the empir-
ical, and from the purely notional to the validatable. This review briefly describes
the state of human social behavioral modeling. Key issues surrounding analysis and
validation are discussed.

Keywords Dynamic network analysis · Social networks · Agent based models ·
Multi-agent simulation · Network science

1 Introduction

Computational modeling is a growth area in the social and behavioral sciences (e.g.,
Harrison et al. 2007). In general this refers to any modeling effort in which a model
is described within a set of computer code. This includes a computer program, or
network of computers and programs, that attempt to operationalize an abstract model
of the system. Such models are also referred to as computer simulation, computer
models, and computational models (Law 2007). In a purely mathematical model, the
relations are expressed in mathematical terms and processing is done by solving the
equations. Computational modeling is a form of mathematical modeling, typically
used when a closed form solution is not possible (Ross 2006). In a computational
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model the relations are expressed in mathematical or symbolic terms and processing
is done by following an algorithm.

There are many types of computational models (Zacharias et al. 2008). Among the
most common forms are agent based models (ABM), system dynamic models, event
based models and statistical forecasting. Agent based models are also referred to as
multi-agent systems. Agent based and system dynamic models are also referred to as
complex system models. Reviews of computational models seek to characterize such
models along a wide number of dimensions. These include, but are not limited to:
intellective versus emulative, stochastic1 versus deterministic,2 steady state3 versus
dynamic,4 continuous5 versus discrete,6 rule-based versus equation, learning versus
static versus optimization, centralized multi-agent versus distributed multi-agent, lo-
cal versus distributed,7 system dynamic versus multi-agent versus multi-agent net-
work. While modeling frameworks typically fall in to one of these categories, models
developed to address real world problems that are not built in a framework are typi-
cally hybrid models crisscrossing these boundaries at will.

In comparison to traditional formal (i.e., mathematical) models, computational
models have the following characteristics. They tend to be larger scale; e.g., they in-
clude more events, more actors, more entities, more time periods, etc. They tend to
focus on the process and intermediate solutions and not equilibrium solutions (which
are the key result of mathematical models). They tend to utilize a mix of simulated
and real data as opposed to being completely algorithmic; e.g., many computational
models use simulated actors using real equipment, or in real social networks. Com-
putational models tend to handle more complexity such as a greater number of inter-
acting parts, higher levels of non-linearity in relationships, and very non-continuous
response surfaces. As such, these models are often referred to as “complex system
models.” Finally, due to the typically stochastic nature of the results, impossibility
of calculating a complete response surface, and the attention to intermediate results
statistical analysis is typically used to provide an interpretation of model outcomes
for computational models.

There are a number of reasons to use computational models. These include:

• Ethical: You cannot test policies on real populations but can on simulated popula-
tions.

• Preparatory: You can use these models to create hypothetical situations with more
potency than existing ones. As a result you can use the models to examine a wide
range of scenarios. This enables a more systematic imaginative thinking and facil-
itates training.

1Stochastic models typically have at least one random number generation component.
2A special case of deterministic models are the chaotic models.
3Steady state models typically use a set of equations to define fixed relations.
4In a dynamic system, relations among variables change in response to signals.
5In a continuous system, periodically all equations are solved and state updated.
6In a discrete system, a queue of events is maintained and only items related to the queue are solved.
7In this case, local versus distributed refers to the hardware needed to run the computational model—a
single machine (local) versus multiple machines (distributed).



Computational modeling for reasoning about the social behavior 49

• Cost effective: Creating new technologies, procedures and legislation for data col-
lection is expensive. But using computational modeling you can pre-test these
things for efficacy.

• Faster: Real time evaluation of existing systems is too time consuming; however,
the in a simulation you can “speed up time” enabling rapid development and testing
of alternatives.

• Appropriate: The world and the simulation are both complex non-linear dynamic
systems. Hence the tool matches the requisite complexity and does not overly sim-
plify the state thus affording more accurate predictions and assessments.

• Flexible: Response to novel situations requires rapid evaluation of previously un-
examined alternatives. This can be done best in a computational framework.

• Control: When developing new analysis methods for social systems, computational
models can provide a controlled environment for experimentation. Outside of these
models, factors of interest often have high multi-co-linearity and are difficult to
evaluate.

Computational models can be used for a number of purposes. Among the uses are
the following:

• Test bed for new ideas
• Predict impact of technology or policy
• Develop theory
• Determine necessity of a posited mechanism
• Decision making aids
• Forecast future directions
• What if training tools
• Suggest critical experiments
• Suggest critical items for surveys
• Suggest relative impact of different variables (factors)
• Suggest limits to statistical tests for non-linear systems
• Substitute for person, group, tool, etc. in an experiment
• Hypotheses generators.

2 Veridicality and model type

One of the key issues that drive the design, assessment and validation of compu-
tational models is their level of veridicality (Carley 1996). On the one hand, many
researchers would argue that Occam’s razor should apply and all models should fol-
low the KISS principle (keep it simple stupid). Examples of models that take this
“proof of concept” approach are Epstein and Axtell’s (1997) Sugarscape, many of
the Santa-Fe institute models, many of the original “thought based” computational
models such as the Cohen et al.’s (1972) garbage can model, the Schelling (1969,
1971) and later, Sakoda’s (1971) segregation model, and Kauffman and Weinberger’s
(1989) NK model. While others argue that to have strong policy relevance and to
be able to use the model to make validatable claims, a higher level of veridicality is
called for. Examples of such models include Carley et al. (2004, 2006) BioWar and
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Silverman et al. (2005) Athena’s Prism. In general, higher levels of veridicality al-
low the model to be used for more types of problems. With a larger amount of code,
the code is less likely to be made available. Furthermore, models with high levels of
veridicality are more likely able to have aspects of the model validated, but are less
likely able to have the model validated in full, since it is less likely that the entire
response surface can be generated (Carley 1996). In addition, computational models
with a higher level of veridicality are less likely to be built in one of the modeling
frameworks available for system dynamic, agent-based, or event-based modeling as
the developers will need finer control over the development environment, order or
processing, and memory management.

From a human behavioral standpoint, one key issue is how sophisticated or veridi-
cal is the Model Human Agent in these computational models. In general, the higher
the level of veridicality in the Model Human Agent the fewer agents are typically
being modeled. Thus, multi-agent systems that have millions of agents typically have
very rudimentary agents formed from only a few rules or equations that reflect very
simple cognitive or social activities on the part of the agent. Models with thousands of
agents tend to have fairly sophisticated and accurate models of human socio-cultural
behavior. Models with less than a dozen agents are more likely to have very so-
phisticated cognitive and/or task models within the agents. In general, the higher the
level of veridicality the fewer the agents and the longer the model processing time
for determining the actions of a single agent and the greater the storage needs for
a single agent. You can achieve comparable storage and speed constraints as you
increase the level of agent veridicality if you reduce the number of agents. In gen-
eral, the tradeoff that is made is that detailed cognitive processing and task based
behavior is often less present in models with thousands of agents where as social
and cultural activity and learning by being told is less present in models with a
small number of agents. Epstein and Axtell’s Sugarscape uses millions of simple
agents, Carley’s Construct (Carley 1991; Schreiber and Carley 2004) uses thousands
of moderately veridical agents, and (Anderson 1993, 1996) and Soar (Newell 1990;
Laird et al. 1987) models typically use a handful of highly cognitively sophisticated
agents.

Carley and Newell (1994) define three dimensions along which the Model Social
Agent varies: cognitive limitations, type of socio-cultural context knowledge, and
amount of knowledge about the context. The amount of knowledge that the agent has
might impact the speed of the computational model and the quality of the results but
not the type of behaviors possible. In contrast, the other two dimensions impact the
type of agent behaviors that it should be possible to generate from the computational
model. The basic argument is that by placing appropriate limitations on agent cogni-
tive activity and by placing the agents in, and giving them capability to recognize and
respond to all classes of knowledge associated with a complete socio-cultural context
the agent model becomes the model social agent—a highly veridical avatar of human
behavior in all situations. In general, most computational models use agents in less
comprehensive environments or without appropriate cognitive limitations and as a
result the agents cannot truly generate all human behaviors.

Figure 1 illustrates where many current models fall on these dimensions. This fig-
ure is based on Carley and Newell’s model (1994) but leaves out real-time interaction
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Fig. 1 Illustrative classification of activities and models

as that seems to be a separable dimension, and it adds in models mentioned herein.
In Fig. 1, each computational model (in italics) is placed in the cell furthest to the
right and bottom that appears possible for the model. This means that a model in a
particular cell, with its current architecture by simply adding mode knowledge should
be able to be used to do any and all of the behavior above and to the left of the cell. It
is important to note that this breakdown of behaviors is illustrative not definitive. The
key point that should be drawn from Fig. 1 is that there is NO computational model
today that has a highly veridical Model Social Agent.

In addition to there not being a good candidate for a model social agent, there are a
number of limitations faced by computational models in the human social behavioral
area at this point in time. One key limitation is that there is no single unifying theory
of human social behavior. Rather, there are a panoply of theories some of which
lead to contradictory conclusions and all of which have received a limited amount of
validation though often only in a specific context. Another key limitation is that there
is no single data set of sufficient detail, longitudinal nature, cross-cultural and large
enough size to support validation of all aspects of any of the existing models, let alone
models that might be developed in the future. The higher the level of veridicality in
a computational model, the more “theories” of social behavior are often embedded,
at least implicitly, in the model. A third critical limitation is that these models in
general are “one-off” models and take substantial work to be “re-initialized” for new
scenarios, datasets, or questions.

The methodology of computational modeling is reasonably well understood. Pro-
cedures for assessment and validation exist (Yahja 2006). And, there exist specific
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social behavioral models that have proven to be useful in corporate and policy set-
tings and within those settings have been validated. There are many underlying theo-
ries that again are well understood, in isolation; however, the implications for human
behavior when sets of these theories are combined in to a single model are not well
understood. A key focus for the future is how to make these models easily re-usable.

3 Models, metrics and social networks

Social networks, and more generally dynamic social networks are an area of compu-
tational modeling of increasing importance for assessing and understanding human
social behavior. The study of social networks is a mature area. As a consequence, so-
cial network examples can be used to explore the issue of simplicity and veridicality.
To begin this exploration, it is clear that in the area of social networks there is some
confusion in the way the term model is used.

In general, the term model typical refers to an abstraction of reality at the system
level. In other words, within a model there are numerous variables that can take on
a range of values and these variables are linked together in some form of pattern
of influence. The term metric typically refers to a measure with key mathematical
properties such a having a true 0 point and values having the transitivity property.
A variable in a model can be a metric.

In the area of social networks, or network science, these terms are sometimes
used interchangeably. For example, some analysts refer to the metric, betweenness,
as a social network model of power. From a computational perspective, for large
networks i.e., thousands of nodes, many metrics cannot be calculated exactly in a
reasonable amount of time and heuristic based computational approaches are used.
In this case, the metric is being estimated by a network model. Other analysts refer
to the network itself, or the graphic visualization of the empirical data on who talks
to whom as a network model of the group; e.g., a network where each link is who
interacts with whom among members of a small company might be referred to as
the network model of that company. In this case, inherent in the “model” are a set
of network properties of the nodes, i.e., their value on a set of metrics. In still other
cases, an agent based model in which the agents learn from others to whom they are
connected or who alter their connections to others, or a system dynamics or event-
based model that uses network metrics as variables are referred to as network models.
Statistical estimates of change in linkages or of the likelihood of certain patterns of
linkages are also referred to as network models. Hence, when the term network model
is used, it behooves the reader or listener to understand how the term model is being
used.

From a social behavioral modeling perspective, the area of social networks is
of critical importance. There are many reasons for this. First, of all the computa-
tional modeling areas, the area of network science is the most developed; i.e., a set of
well understood, validated, documented, and meaningful metrics, toolkits, well un-
derstood procedures for data collection and analysis, easily linkable to other types
of models. Network tools, and so “network models” as the metrics, are very mature
technologies. Many metrics have existed since the 1950’s and high speed, large scale
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versions exist for the most common, usable, and meaningful metrics. Many of the
tools such as UCINET, Pajek, *ORA (Carley et al. 2008) have existed in some form
for over ten years. Second, networks constrain and enable behavior to the extent that
understanding the network in a group is critical to identifying key actors and sup-
ports course of action analysis. Third, network metrics and models have been used
with demonstrable success to support real world decisions in areas such as corpo-
rate re-organization, counter-terrorism, law-enforcement, and social policy. Fourth,
for each organization or group it is a matter of minutes to create a “network model”
in the following sense: any set of nodes for which the links are known can be im-
ported to a network analysis tool and the metrics calculated, the system visualized
and assessments of the impact of node or link removal or addition rapidly assessed.
Fifth, there is a recognizable curriculum that individuals need to know to be com-
petent in the social network area (Tindall and Malinick 2008). In general, the most
successful cases have been when a meta-network approach was taken (see below).
Unfortunately, the currently popularity of network science has lead to a swell in the
number of people claiming to do work in this area with most of the “practitioners”
having little background. As a result, recently, there has been a tremendous amount
of re-invention and re-discovery.

Networks constrain and enable behavior. In social networks, people to people, who
interacts with whom impacts what information is learned and transmitted, the flow of
diseases and the flow of money. However, networks impact more than just people.
In many situations, it is important to think about the dynamics of meta-networks
that connect the who (e.g., people and organizations), what (e.g., tasks, activities and
events), where (locations either at the general level—a building or a specific latitude
and longitude), why (e.g., attitudes, beliefs, norms, goals) and how (e.g., resources
and expertise needed to accomplish the what and held by the who). However, most
network analysis tools operate only on single networks and/or utilize standard social
network metrics without re-validating or seeing if the metrics make sense for the
specific type of network being examined. A key exception to this limitation is the
*ORA tool which is designed to handle multi-mode multi-link dynamic networks;
i.e., meta-networks, and thus intelligently contains a superset of the minimal features
in the traditional software.

The importance of the meta-network should not be underestimated. If only a sin-
gle social network is used to measure and inform social behavior the results are often
incomplete. For example, innovators may be those on the fringe and not connected
to many others, or they may be those directly and strongly connected to two or more
disparate groups. For example, if the 911 hijacker network had been put together
prior to 911 and the individuals detained who had the highest centrality (degree, be-
tweenness, eigenvector or closeness) that may not have been sufficient to stop the
activity; e.g., they could have been replaced, it wouldn’t have stopped the financing,
and so on. Whereas, combining the information contained in a social network with
the information contained in relevant other networks enables: (a) better understand-
ing and prediction of future behavior, (b) ability to predict change in or evolve the
social network, (c) ability to infer missing links and possibly missing nodes in the so-
cial network, and (d) ability to design and evaluate organizational structures. Future
work should concentrate on meta-network applications such as geo-temporal network
analysis, or linking social and belief networks.
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Network models are often touted as “data greedy” because when the model is of
a group and the nodes are people the most accurate results for the metrics require
knowing for each pair of individuals whether or not they are connected. However, a
network science approach can be used at any level, individual, group, state, and inter-
state. The nodes can be practically anything and the links can represent any number
of types of relations between the nodes. The links can vary in strength, directionality,
and confidence. The data can even be completely hypothetical. This being said, most
traditional network tools can only handle one to two types of nodes at a time, one to
two types of relations, and most metrics only operate on binary data where the links
have been reduced to present or not; whereas, *ORA is the only software tool that
can handle dynamic multi-mode, multi-link data.

The robustness of network metrics to missing or incorrect data is only just begin-
ning to be understood. Some studies show that, if the underlying network is random
then with even 15% missing data the rank order of the nodes on different metrics can
change significantly and the user should focus on the likelihood of the nodes being
in the top/bottom 10% on that metric. For other network topologies, such as cellular
or scale free, the metrics may be more or less robust. However, there is no compre-
hensive list of topologies and models of the impact of missing data on the confidence
interval around the metric are not worked out. The statistical underpinning of network
analysis is an area that is getting increased attention.

Due to the maturity of network modeling, models that evolve, predict, reason about
actor behavior, beliefs, and so on as a function of the network position of the actors,
or the network constrained activity and communication among the actors have strong
utility for decision making. Moreover, if network ties are viewed as probabilistic then
change detection techniques (McCulloh and Carley 2008a) can be linked with the net-
work models to asses when the multi-agent network models are generating true shifts
in social behavior. Further, multi-agent network simulations that employ and evolu-
tion of the link probabilities for the networks provide a principled and systematic
approach for examining social change (McCulloh and Carley 2008b).

4 Analysis and validation

Analysis and validation of computational models in the area of human social behavior
is challenging. There is no simple text book approach that can be followed in all
situations. Indeed, the level and types of analysis and validation conducted depend
on the purpose of the model. That being said, there are a number of principles that
if followed lead to the long run success of a computational modeling effort in the
human social behavior area (Maxwell and Carley in press). These principles are:

• Understand the tradeoffs in the system you are modeling
• Clearly define the purpose of the simulation and the associated users

◦ If the purpose changes, revisit the assumptions
◦ Decide whether model validation is warranted given the purpose

• Use good modeling practices
◦ Make sure the research or analysis question is highly focused
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◦ If you are to validate the model, first identify the mapping between measurable
data and simulated variables

◦ Specify, in detail, the desired output measures
◦ Define how and where uncertainty plays a role in the model and the results
◦ Document all assumptions
◦ Document all modeling risks

• Clearly specify all input, output and control variables
◦ For human social behavioral models—agents and the environment are key

• Clearly specify all agent behaviors
◦ Identify the relations among agents
◦ Define how change occurs through agents and their connections

• Conduct calibration, verification and validation exercises as warranted by the
model’s purpose

• Assess model results by running well structured virtual experiments
◦ Use good experimental design
◦ Conduct rigorous statistical analysis

• Clearly present results and discuss limitations
◦ Consider the audience
◦ Consider the model’s purpose.

It is critical to note that training in the computational modeling area, particularly
for social behavioral models tends to be done using a series of case examples i.e.,
explorations of existing models, and then a series of programming tasks. Key issues
of experimental design, analysis and validation are often overlooked or treated using
a strictly engineering approach which is not appropriate for social behavioral models.
This being said, it difficult to teach analysis and validation for these models as the
type and level of analysis and validation must be sufficient unto the needs of the
model and the way it will be used. Purpose should guide not only the design of the
computational model, but the way its results are analyzed and whether or not, and if
so to what level, it is validated.

Proper and careful analysis is particularly vital when the model is stochastic. In
this case Monte Carlo techniques and virtual experiments are needed for assessment.
A Monte Carlo approach relies on replicating the “runs” of a computational model
with different values for those variables set by a random number generator. A virtual
experiment is an experiment run using a computational model; standard experimental
design procedures should be applied. The experiment is “virtual” as it is being done in
a virtual or simulated world. Unfortunately, all too often, those using computational
models to examine human social behavior just run the model a few times, generate
a few figures, do not lay out an experimental design for the virtual experiment and
discuss the results from a general perspective with little attention to sensitivity of the
results to parameter changes, or alternative explanations.

In contrast, those analyzing a model’s result should take a response surface analy-
sis approach (Meyers and Montgomery 2002), complete with the statistical assess-
ment of the relation of inputs to outputs of interest. It is critical to note that for hu-
man social behavioral models the models are sufficiently complex and the number of
variables sufficiently large that a complete response surface analysis is not feasible in
a reasonable amount of time with reasonable storage constraints. Hence, the analyst
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typically needs to focus in on a question to be answered and then design the virtual
experiment to collect data using the computational model to answer that question.
Then the virtual experiment is run and data collected. For each outcome measures of
interest (typically thought of as dependent variables), often the best fit lowest order
polynomial is an appropriate reduced form description of the model at that stage of
processing. Then this polynomial is used to define the hypotheses and conclusions
emerging from the computational model. Note, on empirical data there is a careful
tradeoff between model complexity and factor significance; however, for simulated
data, all factors should be significant if the model was run a sufficient number of
times.

It is important to note that the role of statistics in the assessment of computational
models is somewhat different than it is in the assessment of empirical data collected
in the field. With computational models, if there is an observable relation then it
will be significant statistically if enough simulations are run. Hence, significance is
generally only used to determine if sufficient replications have been completed. This
means that the focus in interpreting a statistical model derived from computational
model results is on the strength of the coefficients and not on their significance. It is
important to note that this is true of test statistics that are inversely proportional to the
sample size. There are methods that look at estimating the distribution of a measure
from two distributions and evaluating their overlap. The variance of the mean of a
process is affected by sample size, however, the distribution of process observations
themselves are not affected by sample size.

It is also important to note that the theory of analysis, and the types of robust
experimental designs that are commonly taught in engineering simulation classes, is
generally not sufficient for human social behavioral models. There are several reasons
including that human social behavioral models, as compared to the engineering mod-
els, typically have a much higher number of variables, have high covariance among
those variables, have discontinuities in many variables and so violate the continuity
assumption, have interaction effects among variables, and have temporal variations
in the relation of variables to each other due to learning and social change processes
thereby violating the consistency assumption. Thus, human social behavioral mod-
els do not meet the necessary mathematical assumptions for traditional engineering
analysis. Human social behavioral models mathematically present a much more chal-
lenging problem.

From a validation standpoint, the first issue is: should the model be validated? The
simpler intellective models are often developed for the express purpose of telling a
story or making a point. They are not meant for developing policy, guiding purchasing
decisions, and designing experiments. As such, they may not need to be validated.
Moreover, such models often use variables that are not unequivocally measurable
and so cannot be validated. The purpose of the model should drive validation (Burton
and Obel 1995).

For the more veridical models, and for models used in policy contexts validation,
or at least calibration, is more of an issue. In this case, the issue is what constitutes
validation and how much validation is needed. A typical approach is to build a model
based on some theory, instantiate it with data from a real situation, generate a series
of predictions about variable “y” and see if they are confirmed. If the model passes
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this test, then it is often “tested” further by conducting a new virtual experiment that
includes some feature of reality not previously examined or included in the model, to
see if the same results about variable “y” are produced. If the prior results hold, the
underlying theory is strengthened. If the results do not hold, a new theory is called
for. However, the model is still “valid” under the original conditions, as validity was
based on the match to the original data.

In other words, validation as practiced for engineering models may be inappro-
priate at worst and impossible at best (given the model complexity, large number
of variables and infeasibility of constructing a complete response surface). In gen-
eral, the data needed to completely validate highly veridical models often does not
exist in any clean single case scenario. Rather, the researcher doing the validation
needs to collect disparate data from a wide variety of sources, fuse the data together,
and then use it collectively validate the model. This may take as much time and
resources as it takes to build the model, run the virtual experiments, and analyze
the results. Validation to historic events, often leads to the model being over-fitted
to a specific situation and not flexible enough to enable understanding the space
of possibilities in alternative and future scenarios. Face-validation using external
subject matter experts may be sufficient in many cases. Other alternatives to tra-
ditional validation as practiced on engineering models are docking (Burton 1995;
Axtell et al. 1996) and validation in parts. A new science of validation for human
social behavioral models is needed.

5 Conclusion

Computational models have been, and will continue to be usefully applied to solve
real world issues, explore theoretical problems, and suggest possible futures. The area
of human social behavior presents special challenges to the computational modeling
world. Essentially, humans, particularly groups of humans, are more complex than
physical or engineered systems. Human social behavior is decidedly non-ergodic.
Technological and political change result in severe discontinuities. And, for any so-
cial behavioral outcome is the result of multiple causes none of which are necessary
or sufficient in isolation, but collectively lead to various activities. In essence, com-
putational models of human social behavior are operating in a quantum mechanics
world where the individual particles learn and the multiple conflicting sets of rules
of behavior evolve over time with large discontinuities. The level of complexity of,
the lack of ergodicity in, and the discontinuities in the phenomena being modeled is
unprecedented to the modeling community.

The high-complexity, non-ergodic, discontinuous, multi-causal nature of human
social behavior means that many traditional approaches to analyzing and validating
computational models will not work. It also means, that it is difficult and often in-
feasible, to capture sufficient real-world data for complete testing. Further, it means
that the complete response surface of the computational model typically cannot be
generated. And, it means that there is not a single unifying theory of human social
behavior but a panoply of theories.

How then can we tell that we are making progress and that the computational
model is providing value? First, the goal should be consistency with the real world,



58 K.M. Carley

not validation. Consistency can be achieve by engaging in validation by parts (in-
put is real, some output streams match, individual theories incorporated have been
validated under some conditions) and by conditional validation (in a certain range
of circumstances the values match the real world). Models built that rely on sep-
arately validated theories are more consistent with the real world. Second, employ
theoretical integration. Computational models need to be built by integrating multi-
ple theories, thus covering a wider range of human experience. By building a model
consistent with multiple theories, the overall strength of, and confidence in the overall
model is increased. Third, employ triangulation. For real world problems where pol-
icy decisions may be made on the basis of models, it is generally valuable to employ
multiple models built at different levels of granularity and using different modeling
approaches (such as agent based and system dynamic). When multiple models con-
verge on a similar result, those results are more robust and a better indicator of what
is likely to happen in the real world. Moreover, by using multiple models, you will
get a more comprehensive understanding of the various factors that can contribute to
the outcome, various stages that are likely to occur along the way, and more insight
in to unintended consequences of various interventions or courses of action.

Computational modeling provides the analyst with a new symbol system for un-
derstanding, predicting, reasoning, and explain human social behavior. While tremen-
dous strides have been made since the very first model, Cyert and March’s (1963)
A Behavioral Theory of the Firm; there is still a long way to go. Great advances
can be made, by comparing and contrasting multiple models, and allowing them to
inter-operate. The key is not to use the models to compete, but to use them in a more
interoperable synergistic holistic fashion.
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