
Evolving Networks for Social Optima in the

“Weakest Link Game” �

Giovanni Rossi, Stefano Arteconi, and David Hales

The University of Bologna, Italy

{giorossi, arteconi}@cs.unibo.it, dave@davidhales.com

Abstract. Previous models have applied evolving networks based on

node-level “copy and rewire” rules to simple two player games (e.g. the

Prisoner’s Dilemma). It was found that such models tended to evolve

toward socially optimal behavior. Here we apply a similar technique to

a more tricky co-ordination game (the weakest link game) requiring in-

teractions from several players (nodes) that may play several strategies.

We define a variant of the game with several equilibria — each offering

increasing social benefit. We found that the evolving network functions

to select and spread more optimal equilibria while resisting invasion by

lower ones. Hence the network acts as a kind of “social ratchet” selecting

for increasing social benefit. Such networks have applications in peer-

to-peer computing and may have implications for understanding social

systems.

1 Introduction

Recent work introduced a simple “copy and rewire” algorithm (SLAC) that

structures networks of nodes towards socially optimal behaviors when they in-

teract with neighbors to generate utility [Hales(2005),Hales and Arteconi(2006)].

The algorithm demonstrates properties such as self-organisation, scalability, ro-

bustness to node turn-over and free-riding behavior without the need for central

control.

These properties are highly desirable for use in self-organising appli-

cations such as peer-to-peer (P2P) overlay networks where central con-

trol is problematical and free-riding and node failure are prevalent. Hence
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SLAC has been proposed as a P2P protocol for a number of scenarios

[Hales(2006),Hales and Edmonds(2005)].

In these previous works, the social optimum, by which we mean the maxi-

mum total sum of utility that can be generated over all nodes, required a non-

equilibirum strategy. We found that SLAC produced networks close to the social

optimum even though nodes behaved in a boundedly rational and myopic self-

ish way. The interactions between nodes were modeled as pairwise interactions

between network neighbors with a focus on the elimination of free-riding and

hence the one-shot, two-player Prisoner’s Dilemma (PD) game was used.

In this paper we apply the same algorithm to another game called the Weak-

est Link (WL) which, although having a well defined social optimum strategy,

has several different properties from the PD. Firstly, the WL requires simulta-

neous interactions between several node neighbors to produce utility, secondly,

the game has several possible equilibria each offering increasing social optimality

and thirdly, there is a larger space of pure strategies. This means that a higher

degree of coordination is required between nodes to reach a social optimum but

when the optimum is achieved it is an equilibrium (i.e. there is no incentive for

an individual to free-ride). We describe the WL game in detail in section 3.

We found that SLAC produced networks that evolved in stages toward the

social optimum equilibrium passing through each of the less optimal equilib-

ria. The network stayed in each equilibria for some time before jumping to the

next. This process was monotonic with the network always jumping to a higher

equilibrium but never to a lower one. This process was robust even when large

numbers of nodes were introduced with strategies that exploit these higher equi-

libria. Hence we describe SLAC as functioning rather like a “social ratchet”

always selecting strategies that move to higher social optimum.

The SLAC algorithm was adapted from a model developed

within computational sociology based on the “tag” concept in-

troduced by Holland [Holland(1993)] and developed by Riolo

[Riolo et al.(2001)Riolo, Cohen, and Axelrod]. The interpretation here is

of a cultural evolutionary process within a society of agents forming groups

based on observable markings or social cues. From a sociological perspective

SLAC can be seen as an adaptation of the algorithm in which agents interact

over, and construct, dynamic social networks based on social cues. We briefly

discuss in the conclusion the kinds of sociological insights we might draw.



In section 2 we describe the SLAC algorithm. In section 3 we describe the

Weakest Link (WL) game. In section 4 we describe how we integrated the two

within a computer simulation, then in section 5 we present and discuss the

results of our simulations. Finally we conclude with a discussion of what we

have learned with implications for P2P protocol design and some speculative

sociological interpretations.

2 Evolving Networks with SLAC

SLAC (Selfish Link-based Adaptation for Cooperation) is

an evolutionary algorithm based on previous tag models

[Riolo et al.(2001)Riolo, Cohen, and Axelrod,Hales(2001)]. Here the con-

cept of the tag (a method of locating suitable partners for social interaction) is

translated into nodes’ neighborhoods - nodes therefore interact (in this paper,

play a game) with other nodes they are directly connected to in the network.

The basic SLAC algorithm specifies how nodes should update their strate-

gies and network neighborhood under the assumption that they are involved in

some on-going game interactions with neighbors. Each node generates a utility

measure (U) according to some interaction with its neighbors. The higher the

value of U the better the node is performing.

The algorithm is executed by each node and consists in it periodically com-

paring its own utility (say Ui) with another node (say Uj) randomly chosen from

the network. If Ui ≤ Uj then node i drops all of his current links and copies all

j’s links (adding a link to j itself) and j’s strategy - see figure 1.

i ← this node

do periodically:

j ← GetRandomNode()

if Ui ≤ Uj

i.links ← j.links ∪ j

with low probability mutate(i)

Fig. 1. SLAC algorithm’s pseudocode.

In SLAC all the rewiring operations are symmetric — if node i makes a link

to j then node j makes a link to i and on the other hand if i drops a link to j the



link from j to i has to be dropped as well. Each node can maintain a maximum

amount of links (called viewsize), if a new node has to be added in an already full

view, a randomly selected neighbor is dropped to make space for the new link.

The SLAC algorithm provides a rewiring mechanism analogous to tournament

selection within evolutionary computing. Nodes act in a highly boundedly ratio-

nal way hoping to selfishly improve their utility by copying better performing

ones. Occasionally with low probability a node applies a “mutation” function

after copying another node. This involves changing the strategy randomly and

changing the links randomly.

The utility measure is provided by the game that is being played between

node neighbors. In previous work, as we have discussed, we have applied SLAC

to the Prisoner’s Dilemma game, here we implement nodes playing the weakest

link game described in section 3.

3 The Weakest Link Game

In a strategic (or non-cooperative) game there are n ≥ 2 players each of which

takes some action, and everyone’s utility depends on the n-tuple of taken actions

(see [Colell et al.(1995)Colell, Whinston, and Green] and [Myerson(1997)]). For-

mally, a game consists of a triple Γ = (N,S, u) where N = {1, . . . , n} is a finite

player set, S is the n-fold product of action or strategy sets (one for each player),

and u : S → Rn represents players’ preferences: ui(s) is the utility attained by

i ∈ N when the strategy profile is s ∈ S. A (pure-strategy) Nash equilibrium

NE is any strategy profile s ∈ S with respect to which no player has an incentive

to (unilaterally) deviate. That is, a situation where each player is playing a best

response to the n − 1-tuple of others’ actions.

A main distinction is between common interest games on the one side,

and conflict games on the other. In the former case, players’ preferences are

aligned: there is at least one outcome s∗ ∈ S where each and every player’s

preferences are maximized, i.e., ui(s∗) ≥ ui(s) for every s ∈ S, i ∈ N (see

[Aumann and Sorin(1989)]). Clearly, if such a profile s∗ exists, then surely s∗ is

a NE. Additionally, in a pure common interest game players’ preferences all in-

duce a common ordering of strategy profiles. That is to say, for any pair s, s′ ∈ S
and every i ∈ N , if ui(s) ≥ ui(s′), then uj(s) ≥ uj(s′) for all j ∈ N (see

[Bowles(2003)]). On the other hand, a game displays some conflict if for any



strategy profile there is at least one player who strictly prefers another one (i.e.,

for any s ∈ S, there is at least one i ∈ N such that ui(s′) > ui(s) for some

s′ ∈ S, s′ �= s).

Common interest games admitting several equilibria are often called co-

ordination games. They are useful for understanding and formalizing distinct

aspects of interaction within organizations (see [Camerer and Marc(1997)],

[Van Huyck et al.(1992)Van Huyck, Gillette, and Battalio],

[Van Huyck et al.(1991)Van Huyck, Battalio, and Beil],

[Van Huyck et al.(1990)Van Huyck, Battalio, and Beil]). In particular, sim-

ulations based on coordination games are useful to organizational researchers

because, roughly speaking, fostering coordination seems a main goal of several

organizations. In fact, in coordination games the isssue is how to make players

choose a n-tuple of actions resulting in a social optimum (or Pareto-efficient

outcome).

Consider the following simple example. There are two players, 1 and 2, who

both choose between 1 (or high or cooperate) and 0 (or low or defeat). Let si ∈
{0, 1} denote the choice of player i = 1, 2. Payoffs for each pair s1, s2 ∈ {0, 1},
are shown in table 1.

s2 = 1 s2 = 0

s1 = 1 (2, 2) (β, α)

s1 = 0 (α, β) (1, 1)

Table 1. General 2-players coordination game payoff table. The first and second num-

ber in parentheses corresponds to player 1 and 2, respectively, and 0 ≤ β < 1 ≤ α.

For α ≥ 2 this is a prisoner dilemma PD game. For 1 ≤ α < 2 this is a

cordination game. In particular, if β = 0, α = 1, then this is known as a stag

hunt or assurance game. More generally, if 0 ≤ β < 1 = α, then this is a weakest

link WL game. In fact, if α ≥ 2, then 0 is a dominant strategy (i.e., it yields

a higher payoff for any choice of the other), and thus the only equilibrium is

s1 = s2 = 0. On the other hand, for α < 2 there are two equlibria, i.e., the low

one s1 = s2 = 0, and the high one, i.e., s1 = s2 = 1, where this latter is the

only social optimum. The issue of coordination concerns precisely how to make

players select high rather than low.



Games such as the PD, where each player has a dominant strategy, are un-

affected, in some respect, by strategic uncertainty. In fact, a dominant strategy

yields, for any choice of the opponents, a maximum payoff (or utility). Therefore,

players could not even form their own expectations about the others’ choices,

as a dominant strategy is a best response to any of such choices. Conversely, in

coordination games the main reason why coordination may fail (thus yielding

sub-optimal outcomes), is because players have strategic uncertainty, i.e., they

are not sure about how others will behave. In such cases, organizations may per-

form precisely the task of creating organizational (i.e., common) expectations

(see [Camerer and Marc(1997)] p. 172).

In a weakest link game each player i ∈ N chooses an effort level si from

some finite set {0, 1, . . . , K} (K = 1 above), and i’s payoff ui(s) = ui(s1, . . . sn)

depends only on the chosen effort level si and the minimum minj∈N sj across all

players. In particular, it is increasing in si if si = minj∈N sj , and decreasing in

si if si > minj∈N sj . In words, each player wants to select exactly the minimum

of the other players, and everyone wants the minimum to be as high as possible.

But selecting high actions is risky because other players may select low actions

(see [Camerer and Marc(1997)] p. 175).

In our setting K = 19 and the payoff is

ui(s) =
1 + minj∈N sj

1 + si − minj∈N sj
(1)

where si−minj∈N sj ≥ 0 (of course), and thus the payoff matrix is the one given

in table 2.

minj∈N sj = 0 minj∈N sj = 1 minj∈N sj = 2 · · · minj∈N sj = 19

si = 0 ui(s) = 1 \ \ · · · \
si = 1 ui(s) = 1

2
ui(s) = 2 \ · · · \

si = 2 ui(s) = 1
3

ui(s) = 1 ui(s) = 3 · · · \
...

...
...

...
. . . \

si = 19 ui(s) = 1
20

ui(s) = 2
19

ui(s) = 3
18

. . . ui(s) = 20

Table 2. Weakest link payoff table with 20 possible strategy and payoff function in

equation 1



It is easily seen that this game has precisely 20 equilibria, each of which

attains when si = k for every i ∈ N as k = 0, 1, . . . , 19. Furthermore, these

equilibria are Pareto-rankable; that is to say, si = 19 for every i ∈ N is the

unique social optimum, and for 0 ≤ h < k ≤ 19, each player prefers equilibrium

si = k for every i ∈ N rather than si = h for every i ∈ N .

A strategic game is a potential game if it admits a (ordinal) potential, i.e., a

function P : S → R such that for every player i ∈ N , for every pair of strategies

si, s
′
i for this player, and for every n− 1-tuple s−i = {sj : j ∈ N\i} of strategies

for other players, the following holds:

P (si, s−i) − P (s′i, s−i) > 0 ⇔ ui(si, s−i) − ui(s′i, s−i) > 0, i.e., (2)

for any unilateral deviation from a strategy profile, an improvement for

the deviator must occur iff an improvement in the potential occurs (see

[Monderer and Shapley(1996)]). Potential games admit at least one equilibrium,

i.e., a potential-maximizer strategy profile. Put it differently, if a potential func-

tion exists, then it surely attains a maximum (of course). In fact, if Γ = (N,S, u)

admits a potential P , then any equilibrium of ΓP = (N,S, uP ), where uP
i = P

for every i ∈ N , is also an equlibrium of potential game Γ . That is, the original

game and the game where each player’s utility is replaced with the potential it-

self have the same equilibria. Potential mazimizer strategies correspond to social

optima (see [Monderer and Shapley(1996)] section 5).

Given the non-linearity in our specification (1) above of the WL game, this

latter might fail to admit a potential (see [Monderer and Shapley(1996)] section

5). Nevertheless, a very simple function, assigning to each strategy profile the

sum over all players of their utility (which also measures social welfare, in fact),

displays an important feature that seems related to the ”social ratchet” effect

(and to condition (2) above). In practice, P (s) =
∑

i∈N ui(s) is monotonically

increasing in unilateral deviations from lower to higher strategies that lead to

an improvement for the deviator. A proof of this is briefly provided in appendix

A.

4 Simulation Set-Up

To simulate nodes playing the WL game using SLAC, a peer-to-peer network

simulator software package called Peersim1 has been used. In our simulations
1 http://peersim.sf.net



time is divided into cycles, and in each cycle each node performs specific actions

described by SLAC algorithm and WL game. In a single simulation cycle every

node in the network is selected once in a randomized order. When selected

the node executes the SLAC algorithm with probability Prep (making a utility

comparison and possibly copying another node) or, if SLAC was not executed,

initiates a game round2.

The utility comparison step is performed by SLAC as described in section

2. To play the WL game a node executes the function shown in figure 2. In our

implementation WL rounds are initiated locally by single nodes and only the

payoff of the node which initiated the round is affected by each single game,

according to equation 1.

SLAC requires a utility value to be defined for each node. This is the av-

erage utility obtained from the game played since last reproduction. Mutating

the strategy consists in choosing with uniform probability a random strategy be-

tween the possible ones. Mutating the links involves removing all existing links

and replacing with a single link to a randomly chosen node from the population.

We mutated the strategy with probability ms and the links with probability ml.

i ← this node

for each j in i.Links

strats ← strats ∪ j.Strategy

i.Utility ← payoff for i.Strategy given neighbor node strategies (strats)

Fig. 2. Weakest Link single game round pseudocode.

Our aim in these experiments is to discover how well SLAC is able to lead the

network to a high social optimum. Hence we are interested in the equilibrium

reached by the system, the time needed to reach it and the robustness of high

social optimum equilibrium states.

2 This captures the notion that both SLAC and the WL game rounds are occurring

asynchronously and concurrently.



5 Simulation Results

Here we present simulation results and analysis. In all the following experiments

the network is initialized to a random topology 3 with each node neighborhood

(view size) limited to at most 20 nodes. We set reproduction probability Prep =

0.2 and the mutation rates ms = 0.005 and ml = 0.01. These values were

imported from previous work, which indicated the need for a higher mutation

rate applied to links than to strategies [Hales and Edmonds(2005)]. We found

that the same insight held in this new scenario. However, in further experiments

not shown here we observed that similar results were obtain when we varied the

mutation rates within an order of magnitude both higher and lower. In addition

we found that varying the replication rate did not significantly effect results

(although changed time required to reach higher equilibrium) up to around 0.5,

at which point optimal outcomes were not obtained. The possible strategies

for each player are in the set s = {0, 1, ..., 19} and at the beginning of the

simulation are uniformly distributed in the range sinit = {0, 1, ..., 9} (the lower

half of possible strategies) among network nodes.

To test SLAC scalability with the WL game different network sizes ranging

from 1000 to 16000 nodes have been evaluated. Given the stochastic nature of

the process (initialization, random comparison) for each parameter setting 10

runs with different random seeds have been done to have high confidence on the

obtained result.

5.1 A Typical Run

Figure 3 shows a single run performed on a 4000 node network showing the

average strategy value over all nodes at each cycle (in general the higher the

strategy the higher the social utility). The figure shows three different phases of

behaviour over time:

– Initial transient where strategies have a low dip (figure 3(b))).

– Stability phase with the whole network adopting the same strategy.

– Sudden increases in average played strategy (staircase pattern in figure 3(a)).

3 We found that starting the network with any initial topology did not effect our

results significantly
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Fig. 3. A typical single run showing how the average strategy value changes in the

network by cycle. The network has a fixed size of 4000 nodes. (a) shows the entire run

to 10000 cycles, (b) shows the same run but over the first few cycles showing detail not

visible in (a).

The initial transient shown in figure 3(b) is due to the random initialization of

both topology and nodes’ strategy. In this phase nodes form clusters of homoge-

nous strategies through rewiring and strategy copying defined by SLAC. Once

the clusters are formed the network will eventually stabilize (system-wide) on a

given strategy value which is determined by the random initialization (different

runs stabilize on different strategies initially).

The network does not attain complete stability (small amounts of noise are

just visible in figure 3) due to node mutation and rewiring, yet we never observe

the network falling to a lower strategy (system-wide) after it has stabilized on a

higher one.

In neighborhoods where strategies have stabilized, i.e., where a NE attains, if

a node mutates to a lower strategy it will bring its neighborhood to a lower social

utility level, lowering both its own payoff and that of its neighbors. Because of

the underlying SLAC algorithm such nodes will eventually compare utility with

random nodes from groups where everybody plays the same (high) strategy and

copy them. Hence mutation to lower strategy does not bring the whole network

to a lower strategy.

On the other hand a node mutating to a high strategy value will lower its

own utility without affecting its neighbors’ ones. Similarly to the previous case a

high strategy node will then eventually compare with a node playing the actual

system-wide strategy and copy it.



More interesting things happen when an entire neighborhood mutates, rather

than a single node. When in a mutated neighborhood at least one node mutates

to a low strategy, the entire neighborhood will have a low utility and rewire to

other groups in the network in an analogous way to the single nodes case. On the

other hand if all the nodes mutate to strategies higher than the system-wide one,

at least one of them (the one with lowest strategy between the mutated nodes)

will have higher utility than the rest of the network and will be eventually copied

by others, bringing the network to a higher strategy value.

To sum up, through strategy mutation the system is able to eventually reach

a higher strategy than a lower system-wide one, but the system will never switch

back to a lower strategy even if occasionally nodes (or entire neighborhood) mu-

tate to low strategies. The system-wide strategy level is therefore monotonically

increasing over time.

These “ratchet” effects apply even further to those neighborhoods where no

NE attains, in which case if a node gains by mutating to a higher strategy, then

there is at least another node in that neighborhood who also gains (see section

3 and the appendix). This applies, of course, to all neighborhoods affected by

some noise (see above).

However, since for an increasing strategy to spread requires a whole neighbor-

hood to mutate to a higher strategy, the time needed to pass from one strategy to

a higher one is dependent on coincidental random mutations — they can assume

very different values in different runs with different random generator seeds.

In order to get a general picture we therefore ran a number of experiments and

considered their average values and variances. In addition we ran experiments

to test the scalability of the process by using networks of different sizes.

5.2 Different Network Sizes

To determine scalability of the SLAC approach in the WL game we performed 10

simulation experiments each for networks of size 1000, 2000, 4000, 8000, 16000.

Each experiment was started with a unique random generator seed and executed

for 5000 simulation cycles.

What we are interested in is the average time needed to pass from a stable

state to a higher stable state (a more socially optimal equilibrium) and the time

needed to get a high (possibly the highest) social utility.



Results are shown in figure 4. The average time between phase transitions is

shown in figure 4(a), while figure 4(b) shows the average strategy level reached

at the end of simulation (5000th cycle).
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Fig. 4. Average time needed to increase cooperation level in different network sizes and

cooperation level reached at 5000 cycles. 90% confidence intervals are shown. As can

be seen larger networks reach higher cooperation levels more quickly. Ten runs were

performed for each network size. The x-axis is on a log scale.

It is interesting to notice that from the cooperation level point of view the

system reverse-scales, in fact it seems to have better performance in bigger net-

works. In larger networks it takes less time between phase transitions. Moreover

the runs for large networks produce lower variance in results since the confidence

interval gets smaller and smaller with increasing network size.

The reverse scaling property appears to be a direct consequence of the

stochastic nature by which transitions to higher equilibria occur. As discussed

above, it takes the coincidental mutation of neighboring nodes to a higher strat-

egy to produce a system-wide transition. A larger network increases the chance

of such a fortuitous coincidence. 4

We hypothesize that the network acts as a kind of “social ratchet” always

selecting the socially optimal strategies to spread yet resisting the spread of

less optimal strategies. We tested our hypothesis by performing further experi-

4 In addition this is related to the mutation rate used. We deductively derived an

approximate expression which captures this relationship for a similar “tag” model

in [Hales(2001)]



ments in which we turned off mutation in SLAC. We present those results in the

following section.

We also tested that the ratchet effect was due to the differential strategy and

link copying based on utility, rather than just random changes, by running sim-

ulations in which nodes only mutated their strategy and links when they found

another node with higher utility. In this case the results showed no dynamic

behavior but rather average strategy value oscillated around the mean (of 10)

with low variance.

5.3 Seed Injection

In order to test our “social ratchet” hypothesis we tuned off mutation completely

in SLAC5 and artificially created a pair of neighbor nodes with a higher strategy

and “injected it” into a running network. We found that this was sufficient to

cause a rapid transition of the entire network to this higher strategy. Hence for

any network, injecting two nodes linked together and playing the highest possible

strategy will suddenly bring the network to the highest strategy. Conversely when

nodes playing low strategies are injected into the population they are not copied,

rather they quickly adopt the existing higher strategy from other nodes.

This is consistent without our “social ratchet” hypothesis, as discussed above.

The network functions to select only those more socially optimal examples and

resists less socially optimal examples. This process operates when new strategy

variants are produced via random mutation or directly introduced.

It is interesting to notice how the network reacts when a very large number

of nodes playing low strategies are introduced. We found that even if 50% of

nodes are suddenly set to play a low strategy then the network does not fall to

the system-wide adoption of a lower equilibrium but rather the network quickly

recovered. This is illustrated in figure 5 where starting from a network with

lowest possible strategy different strategies are periodically injected.

5 In addition we changed the utility comparison stage of SLAC such that nodes only

copied others if utility was stricktly greater than their own. This increases stability

of the network.
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Fig. 5. Experiment with no mutation and node injection (4000 node network). Initially

all nodes are set to strategy 0 (minimum). Two nodes playing strategy 5 are injected

at cycle 200. Two nodes playing strategy 10 are injected at cycle 400. Two nodes

playing strategy 19 (maximum) are injected at cycle 600. To test robustness, 1000 nodes

playing strategy 0 (minimum) at injected at cycle 800. 2000 nodes playing strategy 0

are injected at 3000. The lower dashed line shows the number of node movements

(copying between nodes) made in each cycle.

6 Discussion and Conclusion

We applied the previously proposed SLAC network evolution algorithm to the

Weakest Link (WL) game. The WL game requires nodes to interact with sev-

eral neighbors simultaneously to obtain utility and has several equilibria which

produce increasingly levels of social optimality. The SLAC algorithm specifies

that each node myopically and greedily attempts to maximize its own utility by

copying other random nodes (strategy and neighbor links) if they have higher

utility. Nodes have no knowledge of the underlying game or of the other nodes

behavior.

We found that SLAC acts as a “social ratchet” always selecting a higher

equilibrium, when it appears in the population, while resisting invasion by nodes

following less socially desirable strategies. When strategy change is endogenous,

with nodes mutating strategies randomly, the network needs to wait for a chance

occurrence of a set of nodes following strategies with higher social benefit in order

to increase social benefit. When nodes do not apply mutation, and change is

exogenous, then the “injection” of a pair of nodes following strategies producing

higher social benefit is sufficient to flip the entire network to a more socially



optimal strategy. However, it requires over 50% of nodes to be set to a less

socially optimal strategy to push the network down to a lower equilibria.

The “social ratchet” effect is emergent rather than programmed into the

nodes. The nodes myopically act for own benefit. Yet the evolution of the network

selects behaviors that appear highly social. It is almost as if some “hidden hand”

turns the “social ratchet” towards ever more socially optimal behavior.

Previous applications of SLAC were to two player games in which only pairs

of nodes needed to coordinate to achieve the social optimum and the social opti-

mum was a non-equilbirium outcome (e.g. the singe round, two player Prisoner’s

Dilemma). The results present here from the WL game generalize further the

possible application of SLAC as a mechanism for robustly selecting socially op-

timal behaviors within evolving networks and have also given insights in to the

way SLAC works. We do not have a proof capturing the conditions under which

SLAC will select the social optimum - currently we only have simulation results

for specific games and payoffs. Our ideal future aim would be a proof such that

for a given game we could know a priori if SLAC would select the social opti-

mum or not. This would allow for a principled selection of SLAC to solve a given

specific application scenario (say in a peer-to-peer system).

Our primary motivation for this work is to developed self-organising and

robust yet light-weight P2P protocols which could be deployed in a variety of

specific scenarios. We are therefore interested in the general aggregate prop-

erties of essentially trivial behavioral algorithms (at the node level). What is

surprising is that such simple node behavior can produce high levels of social

cooperation and coordination at the network level. We have recently proposed

a variant of SLAC for automatic programming “by example” in always-on P2P

[Hales and Babaoglu(2006)]. We have also applied SLAC to a P2P file-sharing

scenario [Hales and Edmonds(2005)]. These results give us some optimism that

more trickily coordination problems could be tackled by SLAC6.

From the perspective of social science we might speculate that human social

systems could embody similar processes particularly where large populations

exist in a state of constant “social flux” and where individuals observe and copy

those achieving higher social benefits. In these situations, behavior that appears

highly beneficent and socially enlightened may in fact be no more than the result

6 Though as we have discussed elsewhere SLAC is still open to certain kinds of mali-

cious node behavior [Arteconi and Hales(2005)].



of a long history of greedy myopic individual behavior. If this sounds depressing,

take heart. An alternative interpretation is that although individuals may behave

selfishly, have little foresight and care not for others, the society as a whole can

guide them toward socially optimal behavior without the need for centralized

control, draconian punishments or recourse to the gods.
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A Proof: Potential Function Existence in Weakest Link

Game

Fix i ∈ N and s−i ∈ {0, 1, . . . , K}n−1. Also let si, s
′
i ∈ {0, 1, . . . , K}, si > s′i.

Given our specification (1) above, if ui(s) − ui(s−i, s
′
i) > 0, then it must be

s′i < minj∈N\i sj = min s−i, in which case uj(s)−uj(s−i, s
′
i) > 0 for all j ∈ N\i.



In turn, this implies

P (s) − P (s−i, s
′
i) = ui(s) − ui(s−i, s

′
i) +

∑

j∈N\i

(uj(s) − uj(s−i, s
′
i)) > 0,

as desired. Yet, such P is not a potential: consider that if ui(s−i, s
′
i)−ui(s) > 0,

then si > minj∈N\i sj = min s−i, in which case, as long as s′i < minj∈N\i sj , it

may well be uj(s−i, s
′
i) − uj(s) < 0 for several j.

In our simulations, at each cycle each node either reproduces (with probability

Prep) or plays (with probability 1 − Prep). In the former case, either mutates,

with, probability ε << Prep, choosing a random location in the network and a

random strategy, or else makes a random comparison with another player and

copies links and strategy whenever this latter is doing better. Hence, all those

who play at cycle t initiate theirn own WL game involving all their neighbors,

whether old or brand new. Yet, these games affect only the initators’ payoffs.

In order to reason about social optima, this whole situation may be ap-

proximated as follows: every node, at each cycle, plays a number of WL games

which equals the number of its neighbors plus 1. In particular, if N denotes the

whole population (or vertex set) and (N, Et) denotes the network at cycle t,

with Et ⊂ N (2) = {A ⊆ N : 2 = |A|}, then the set of i’s neighbors at cycle t

is Et(i) = {j ∈ N\i : {i, j} ∈ Et}. Furthermore, at each cycle t a total number

n of weakest link games is played, each with player set Et(i), 1 ≤ i ≤ n. Let Γ t
i

denote the weakest link game played by i and all its neighbors at cycle t. Then,

at each cycle t we have a whole game Γ t involving all players and consisting of

the sum or composition of the n games Γ t
i , i.e., with some abuse of notation,

Γ t =
∑

i∈N Γ t
i . This composite game does not seem to admit a potential. Still,

it is definitely a pure common interest game where the unique social optimum

attains when si = 19 for every i ∈ N , in which case ui(s) = 20 · (|Et(i)| + 1) for

every i ∈ N and every cycle t.
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