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Abstract A major challenge in agent-based modelling is the management of the pro-
cess to generate executable simulations from the initial conceptual models. This pro-
cess is complex and usually involves several roles, which may raise communication
problems due to the diverse backgrounds and perspectives of participants and the
use of non-explicit knowledge. This situation demands a clear separation and precise
definition of the multiple aspects of the process, in order to facilitate their understand-
ing, grasp their relationships and develop them. This paper addresses this goal with
a fine-step refinement process for information based on the use of domain-specific
languages. It considers analysis contexts that include a particular theoretical frame-
work, domain, type of problem and target platform. For a given context, the process
formally defines modelling languages conceptually close to the different aspects rele-
vant to it. It also defines mappings between concepts in those languages. Researchers
develop simulations by specifying models with the languages, and share and refine
information by using mappings between these models. This infrastructure provides
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guidance throughout the process and makes the information involved explicit. A case
study of continuous double auctions illustrates the approach.

Keywords Agent-based modelling · Metamodelling · Domain specific language ·
Transformation · Social simulation · Double auction · Auction

1 Introduction

Agent-Based Modelling (ABM) has become a mainstream technique in many scien-
tific fields, especially in Social Sciences (Gilbert and Troitzsch 2005). When com-
pared with other approaches (Edmonds 2001), it has two key advantages. Firstly,
ABM deals simultaneously with group and individual aspects. This is useful when
modelling non-linear complex systems. Secondly, it facilitates complementing con-
ceptual models with computational information. Agent abstractions can be used to
model people and also software, following the agent paradigm (Fuentes-Fernández et
al. 2009; Weiss 1999). This feature enables gradually adding implementation details
to agent models, providing a more seamless transition to simulation models (or code)
than other approaches.

Despite its powerful capabilities, the application of ABM is not problem-free. This
study is particularly concerned with the proper specification and communication of
information in the modelling processes. There are at least three problems here. In
the first place, previous studies only share a shallow agreement on the conceptual-
isation of agents as intentional and social abstractions. See for instance the differ-
ences between the already cited papers (Edmonds 2001; Gilbert and Troitzsch 2005).
Secondly, the development of large complex models usually requires experts with
diverse backgrounds and competences in ABM and other paradigms. According to
Galán et al. (2009), while social researchers (i.e. domain experts or thematicians,
and modellers) are closer to the domain, computational experts (i.e. computer sci-
entists and programmers) are closer to the target platform. One person can hardly
combine all the required expertise and, if several experts play these roles, difficulties
in communication and misunderstandings are more likely to arise. Thirdly, processes
to articulate ABM modelling offer limited support for this teamwork, as they include
hardly any guidance on specific tasks (Drogoul et al. 2003). Moreover, simulation
platforms (North et al. 2006) are useful for computational experts, but they do not
provide advice on how to model different conceptual abstractions. All these issues
frequently make it hard to guarantee that the final models really correspond to the
initial requirements (Axtell and Epstein 1994).

To address these problems, our research considers that ABM processes need to
make all the information involved in modelling explicit. For this purpose, it dis-
tinguishes simulation contexts characterised by their domain, the type of problem
addressed, applied theory and target platform, among other aspects. Each context
has a related infrastructure of modelling languages, automated mappings between
their concepts, and frequently specific software support tools. The elements of an
infrastructure are grouped in bundles to support the work of each role and the in-
teractions between roles. This creates an overall process organized around roles (i.e.
role-driven).
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The infrastructure is developed using techniques from Domain-Specific Lan-
guages (DSLs) (Mernik et al. 2005) and Model-Driven Engineering (MDE) (France
and Rumpe 2007). It also takes advantage of the similarities between abstract agents
in ABM and computational agents in Agent-Oriented Software Engineering (AOSE)
(Henderson-Sellers and Giorgini 2005) to reuse part of the infrastructures available
in that field.

The development and use of this infrastructure are interleaved processes. When
several experts work on a simulation, they specify models conforming to certain lan-
guages of the context. They communicate that information to other experts apply-
ing mappings that change other models. This process is iterative and incremental, as
changes in one stage can call for more information, either closer to the conceptual
level or to the simulation. The infrastructure describes explicitly most of the details
and assumptions of the modelling process. This allows experts their examination and
discussion, and facilitates them to provide feedback that is used to create and adapt
the infrastructure. Moreover, though developing this infrastructure requires a great
deal of effort, it can be reused for different projects in the context and even partially
for different contexts, e.g. when they have the same theoretical background or target
simulation platform.

A case study on Continuous Double Auctions (CDAs) illustrates this process.
CDAs are often used for real trading and for this reason they have been thoroughly
analysed from the experimental and computational point of view (Posada and López-
Paredes 2008). They are also complex enough to exemplify the capabilities of our
approach.

The rest of the paper further examines the issues introduced here. Section 2 dis-
cusses the problems in ABM that our work tries to address and the requirements they
impose on the proposed solution. Then, Sects. 3 and 4 give some background on
our technological basis, Sect. 3 dealing with metamodels and transformations, and
Sect. 4 with AOSE. Section 5 describes the proposed process and Sect. 6 applies it
to the case study. This approach is compared with related work in Sect. 7. Finally,
Sect. 8 discusses some conclusions and future work.

2 Requirements analysis

This section offers an overview of the ABM process envisioned from our approach. It
analyses the requirements of the software support tools, which Table 1 summarises.

We consider simulation contexts defined by a theoretical framework, domain, type
of problem and target platform. In one of these contexts, experts work with a certain
modelling vocabulary and there are some repetitive refinements of information, e.g.
adding certain features to a concept or some coding details. This knowledge is cap-
tured by the infrastructure for a context in the form of modelling languages (R1) and
mappings (R3) respectively.

The proposed process has two levels. The simulation level deals with the devel-
opment of the models and simulations for the problem in hand. It requires software
support tools (R1, R3, R5 and R6) that help experts to save time on these tasks.
Ideally, these tools should be close to the domain of the experts to boost their pro-
ductivity (R5 and R6). The infrastructure level develops these tools for modelling
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Table 1 Requirements of technological components of the ABM process. Type can be Functional (F) or
Non-Functional (NF), and priority can be Must-Have (MH), Should-Have (SH) or Nice-to-Have (NH)

Id. Type Description Prior. Measurement
indicators

R1 F Modelling languages have a formal definition that can be
automatically processed.

MH Available
functionality

R2 F Modelling languages can be defined incrementally. SH Available
functionality

R3 F Mappings have a formal definition that can be automatically
processed for models of the modelling languages considered

MH Available
functionality

R4 F Mappings can be defined incrementally. SH Available
functionality

R5 F Customised graphical editors for the modelling languages
defined can be developed. These editors support the creation,
visualisation and modification of models.

MH Available
functionality

R6 F Customised graphical editors for mappings can be developed.
These editors support the description of mappings from the
specification of the source and target models they should relate.

MH Available
functionality

R7 F The definition of modelling languages and mappings supports
several layers of modelling languages connected by mappings.

MH Available
functionality

R8 NF The development of the customised graphical editors for
modelling languages can be semi-automated to a large extent
from the definition of these languages.

SH Available
functionality

R9 NF The development of the customised graphical editors for
mappings can be semi-automated to a large extent from the
definition of these mappings.

SH Available
functionality

R10 NF The definition of modelling languages can largely reuse
existing definitions.

NH Available
functionality

R11 NF The technologies and frameworks used in development are
well-established and supported by large communities.

SH Online
community >

1000 users

and generation of simulations (R8 and R9), although it does not develop simulation
platforms.

When the infrastructures of different contexts are developed using the same tech-
nologies, it is possible to have customised meta-tools that help to develop the tools
used in specific simulation projects (R1, R3, R8 and R9). For instance, a meta-editor
could process the definition of a modelling language to generate parts of a customised
editor for it. Additionally, this enhances the possibilities of reusing fragments of avail-
able infrastructures that work on the same domain according to a given school of
thought (i.e. the conceptual models), or have the same target simulation platform (i.e.
the computational models), to build the new ones (R2, R4, R7 and R10).

Work in a context starts by developing its infrastructure. Then, different projects in
that context develop their simulations by using it. Each project consists of the spec-
ification of information with models conforming to the modelling languages (R1).
Experts use mappings for automated changes to these models and to propagate in-
formation, but also as documentation of the modifications allowed (R3). If required,
the process can reconsider previous models or add new ones, and develop new trans-
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formations (R2 and R4). A project can provide new insights into the use of the in-
frastructure in a given context (e.g. missing elements or mistakes). In that case, the
infrastructure is reviewed to address them (R2, R4, R7, R8, R9 and R10). To explic-
itly have all the knowledge used in the contexts facilitates this kind of reflection (R1
and R3).

This ABM process is an application of DSLs (Mernik et al. 2005) and MDE
(France and Rumpe 2007) to make all the information used in the modelling process
explicit and largely automate it. As such, it can benefit from available frameworks
in those fields that already address some of the required functions (R11). They com-
monly use metamodels to define the modelling languages and transformations for the
mappings, and provide some core functionalities to process them. In that way, our
research can focus on the particular aspects to be considered in ABM.

This choice saves a huge amount of development work but introduces the need
for additional roles with respect to Galán et al. (2009). There are also infrastructure
experts who work at the infrastructure level and know about these frameworks. For
instance, social researchers define hypotheses about traders’ behaviour in auctions,
computational experts describe them with simulation models for a target simulation
platform, and infrastructure experts develop the graphical editors used by the previ-
ous experts. An individual can play more than one of these roles, but this is less likely
the more demanding and specialised the roles and the bigger the teams.

3 Metamodels and transformations

MDE (France and Rumpe 2007) is based on formal definitions of modelling lan-
guages and mappings between their models, which engineers use with the support
of software tools. Engineers specify problems with models and modify and propa-
gate their information applying mappings. Some models and mappings, and less fre-
quently some languages, are developed for the project in hand, but others are reused
from previous projects. MDE considers that this approach reduces development work
and encourages reusability.

Metamodels constitute the main technique used to specify modelling languages in
MDE (García-Magariño et al. 2010). They are intended to define the abstract syntax
of graph-oriented modelling languages. These languages regard models as graphs of
nodes and relationships with attributes and constraints. Other less common uses in-
clude the definition of the notation of modelling languages (García-Magariño et al.
2010). Metamodels are defined using metamodelling languages. The ECore (Moore
et al. 2004) language of the Eclipse Modelling Framework (EMF) is probably the
most popular of these languages despite its limitations, as it has the fullest tool sup-
port.

Transformations automate mappings. They generate models from text (i.e. T2M
transformations), models from other models (i.e. M2M), or text from models (i.e.
M2T) (Czarnecki and Helsen 2003). Text can be, for instance, documentation or
code. The processed models are usually specified with modelling languages defined
by metamodels, while text is defined with grammars, templates or implicitly in trans-
formations. The transformations are implemented with tool modules (i.e. coding) or
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using specific languages. This latter option is becoming predominant, as it facilitates
understanding of the mapping between source and target elements, and prevents one
getting stuck in the low-level details of the processing. Nevertheless, the limitations
to the functions of the tools to write transformations are an important handicap for
their use. The ATLAS Transformation Language (ATL) (Eclipse M2M Project 2011),
for M2M transformations of ECore-based languages, and Xtext (Eclipse TMF Project
2011), for M2T and T2M transformations related to grammars, are popular examples
of these languages.

The development of transformations itself is usually a manual task, but there are
some Model Transformation By-Example (MTBE) approaches (García-Magariño et
al. 2009). For M2M transformations, MTBE graphically defines the kind of change
with prototype pairs of source and target models, and a tool generates the correspond-
ing transformation in the target language. There are no mature MTBE approaches for
M2T and T2M. Different environments support their development using a mixture of
modules, templates and specific languages that require manual programming to some
extent. This is the case of Eclipse with languages such as Xtext (Eclipse TMF Project
2011) and the INGENIAS Development Kit (IDK) tool (Pavón et al. 2005).

The use of MDE in ABM offers several advantages. Firstly, experts can easily
extend metamodels: if their form is not suitable to model a given problem, new el-
ements can be introduced as extensions or specialisations of the existing ones. Such
reusability facilitates adapting languages through the modelling process, and intro-
ducing intermediate languages between the abstract conceptual ones and the simula-
tion if required to guide model development. Extension mechanisms such as chaining
and superimposition are also available for transformations. Secondly, there is a wide
range of support software tools that can be reused. In particular, ABM can bene-
fit from graphical tools to define metamodels and generate from them customised
model editors, and from reusable automated transformations to transfer information
between models.

4 AOSE methodologies and INGENIAS

AOSE methodologies (Henderson-Sellers and Giorgini 2005) are intended for the
development of Multi-Agent Systems (MASs). MASs (Weiss 1999) are composed of
agents and other computational artefacts. These agents are intentional components,
i.e. they are modelled as entities that pursue goals and choose to execute those actions
that will potentially help to achieve them. Their choices depend on information about
the environment, past experiences, and their capabilities and state. Agents are also
social because they interact with other agents to achieve goals. These interactions
are modelled in terms of knowledge and requests. Hence, as modelling abstractions,
AOSE and ABM agents share important features. Moreover, an increasing number
of AOSE methodologies are adopting MDE principles, so they use the same kind of
frameworks as our research. Using AOSE methodologies as the basis for our process
provides us with a basic infrastructure whose level of abstraction is closer to ABM
needs than general frameworks, which saves development and specification work.
Among these methodologies, we have chosen INGENIAS (Pavón et al. 2005), whose



Metamodels for role-driven agent-based modelling 97

modelling language and tools are well-suited to meet the requirements outlined in
Sect. 2.

INGENIAS defines its own modelling language with an ECore (Moore et al. 2004)
metamodel. It is a comprehensive language for most of the concepts used in AOSE. It
includes, among others, primitives for agents and their goals, knowledge, capabilities,
interactions and societies. Those referred to in this paper are discussed when first
used, but the reader can find their complete description in the paper (Pavón et al.
2005).

The INGENIAS Development Kit (IDK)1 is an open source software tool that al-
lows the graphical specification of models compliant with the INGENIAS metamodel
and the execution of transformations coded as modules. Researchers can also work
with INGENIAS models using any infrastructure compatible with ECore, e.g. EMF
(Moore et al. 2004), as its metamodel is defined with this language.

INGENIAS has already been used in ABM (Sansores and Pavón 2005), but with-
out specific adaptations. Given its focus on MAS development, its modelling lan-
guage and tools present a software bias that makes them unsuitable for social re-
searchers. The purpose of our work is to shift this focus to Social Sciences providing
tailored infrastructures that increase social researchers’ autonomy when modelling.
Infrastructure experts are only required when simulation projects demand low-level
software-oriented changes in the INGENIAS language and tools. Examples of such
changes could be new modules to analyse or generate reports on models, or to inte-
grate third-party libraries.

5 Modelling process

The modelling process proposed in Sect. 2 differs from common ABM approaches
in the use of infrastructures specific to simulation contexts. These infrastructures
include tailored modelling languages defined with metamodels, mappings for their
models described with transformations, and tools to manipulate them (e.g. editors,
verifiers and animators). When social researchers and computational experts work
with an infrastructure, they are guided by the knowledge explicit in the infrastructure
and their modelling is made more efficient by the use of tools. These benefits require
these experts to cooperate with infrastructure experts to develop the infrastructure.

Our adoption of INGENIAS (Pavón et al. 2005) as the basis for our work al-
ready provides a meta-editor to generate customised editors from metamodels. The
development of metamodels and transformations is still pending. It is considered in
Sects. 5.1 and 5.2 respectively and its processes appear in Fig. 1. The discussion of
the process for metamodels focuses on conceptual ones, as INGENIAS provides a
suitable metamodel for computational experts (Sansores and Pavón 2005). The sec-
tion finishes with some notes on modelling with the infrastructure in Sect. 5.3.

1Available at http://grasia.fdi.ucm.es/.

http://grasia.fdi.ucm.es/
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Fig. 1 Activity diagrams of the processes for the development of the infrastructure

5.1 Development of conceptual metamodels

The development of metamodels is a difficult task, which requires us to formalise a
conceptual framework that is usually imprecise and complex. This has been acknowl-
edged as one of the main limitations of DSL approaches (Mernik et al. 2005). The
current study offers a guideline to perform this task in ABM using the INGENIAS
(Pavón et al. 2005) language to define the new DSLs. The INGENIAS metamodel
is described with ECore (Moore et al. 2004), so experts can use ECore to modify it
and define their own language. However, this process considers it more effective to
extend the components of the INGENIAS metamodel, as they already provide part
of the semantics required in ABM. Thus, in the following discussion, names in ital-
ics correspond to primitives of the INGENIAS metamodel (i.e. metatypes), and the
terms sub-type and super-type refer to metatypes connected by inheritance relation-
ships (INGENIAS extensions of the ECore supertype property). The process is as
follows (see Fig. 1(a)):

1. Domain analysis. Thematicians consider the concepts required to express their hy-
potheses and the related information in the group or society to be studied. This task
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is related more to the conceptualisation of the problem than to the formalisation
of models, so specific support for it is beyond the scope of this study.

2. Determine intentional concepts. Thematicians focus their analysis on entities that
are (or are conceptualised as) decision makers who act on the environment. Their
answers/outputs follow a certain rationale and are linked both to external stimuli
and their internal states. They are also proactive, i.e. able to initiate interactions on
their own. These concepts are subtypes of the INGENIAS role or agent metatypes
in the new language. The former only specifies behaviour (i.e. what is done) while
the latter also describes implementation (i.e. how it is done).

3. Determine non-intentional concepts. Elements that do not make decisions are
regarded as part of the environment. They are modelled as subtypes of the IN-
GENIAS environment application. An environment application allows roles and
agents to act on the environment, and notifies them of events in the environment.

4. Establish relationships between concepts. Thematicians reflect on the associations
that, given a set of concepts, allow to find other concepts and their meaning. These
relationships are semantic and are refined later on as types of groups or societies
(see activity 6) and interactions (see activity 7).

5. Determine specialisation hierarchies between concepts. The concepts identified
usually share some features that are highlighted through inheritance hierarchies of
metatypes. A super-type contains all the attributes, has all the capabilities, and par-
ticipates in all the relationships common to its sub-types. Sub-types only modify
their own specific features, adding to or constraining the features of the super-type.

6. Determine groups and societies. If agents share goals, rules or environment ap-
plications, they are brought together in INGENIAS groups. If they also share an
organisational structure, they constitute a society. The metamodel specifies both
types as aggregations of their constituents.

7. Determine interactions. Agents act on environment applications, receive informa-
tion from them, and communicate with other agents, exchanging elements of the
system, such as physical artefacts or pieces of information. These interconnected
activities, aimed at meeting specific goals, constitute interaction metatypes.

8. Assign roles, objectives and capabilities to role/agent types. A role/agent defini-
tion is refined by assigning it goals it pursues and tasks it is able to carry out. The
elements related to the internal state of agents (e.g. goals and information) can
be grouped into mental states, and all the previous elements can be grouped and
assigned together as roles. Additionally, this activity establishes the relationships
between these types of element. Goals are linked to the tasks able to satisfy them.
These tasks produce artefacts (either physical or information). The presence or ab-
sence of artefacts and events (produced by environment applications) is evidence
of success or failure in the achievement of goals.

9. Refine interactions. The refinement of an interaction indicates the agents and en-
vironment applications that participate in it, the tasks agents execute, the goals
they pursue with that, and the elements produced and consumed throughout. The
interaction metatype brings together the metatypes allowed in these relationships.

10. Validate metamodel. The metamodel is a refinement of the thematicians’ non-
formal models for the domain and theory. It should represent them properly, while
providing additional details that facilitate the transition to the computational sys-
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tem. Thematicians and the other experts review it to ensure that it meets these
requirements to the best of their knowledge.

11. Is the metamodel appropriate for the conceptual model? According to the results
of activity 10, the metamodel is valid for the domain and the process finishes, or
it requires further modifications, in which case the process must continue.

Thematicians and modellers are the main roles involved in this process. Themati-
cians propose the abstract concepts and hypotheses on which modellers ground meta-
models. Infrastructure experts can advise them in metamodelling issues.

The process has been described as sequential, but experts do not need to follow this
order. For instance, activity 6 may require partially performing activity 7 to identify
the relationships of agents and roles with environment applications, and activity 8 to
identify their goals. Another example is the possibility of starting with activity 7, if
there is a precise idea of the existing interactions, and then using this information to
discover the agents of activity 2 and the environment applications of activity 3.

This process focuses on the conceptual metamodel, which is the closest to the-
maticians. There is at least one other metamodel for computational experts, that of
INGENIAS. Experts developing simulations should be able to translate information
between models conforming to these metamodels using transformations and addi-
tional models. If they need additional intermediate metamodels to guide this refine-
ment, the process of this section can be generalised and made recursive. That is, a
metamodel can represent the abstract conceptualisation of a domain in activity 1,
from which experts refine new and more platform-oriented metamodels.

Finally, we would remark that this process is a first approach to a guideline to
develop metamodels in ABM. A complete process needs to include more detailed
activities that provide further advice to experts.

5.2 Transformation development

Transformations automate repetitive tasks of modification and transfer of information
in models and text. As mentioned in Sect. 3, there are three types of transformation
(i.e. M2M, M2T and T2M), and their development in our work differs.

The development of M2M transformations follows an MTBE approach using
the MTGenerator tool2 (García-Magariño et al. 2009). The tool works with ECore
(Moore et al. 2004) modelling languages and the M2M transformation language ATL
(Eclipse M2M Project 2011). The process is as follows (see Fig. 1(b)):

1. Metamodel analysis. Modellers and computer scientists examine the modelling
languages involved in the transfer of information.

2. Is the transfer complete? Experts consider whether there is any remaining group
of concepts in the source language with a standard correspondence in the target
language but without a related transformation. If there is, the process continues.

3. Model prototype pairs. Experts define the transformation as prototype pairs of
source and target models. Source models are examples of the models that should

2Available at http://grasia.fdi.ucm.es/.

http://grasia.fdi.ucm.es/
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be accepted by the transformation. Target models represent the result of the ap-
plication of that transformation. The pair models can share elements to indicate
how the transfer of information is. For instance, the name of a person in the source
model and an agent in the target model can be the same to indicate that the concep-
tual person is represented by the computational agent in the simulation. Disjoint
sets of pairs are used in activities 4 (i.e. generation) and 6 (i.e. validation).

4. Run the generating tool. The MTBE tool takes as input the metamodels of the
source and target modelling languages (see Sect. 5.1) and the prototype pairs (see
activity 3), and generates as result the transformation in the target language.

5. Make manual adjustments. Depending on the algorithm and tool used, the trans-
formation generated may need additional constraints.

6. Validate the transformation. Experts use the prototype pairs from activity 3 not
used in activity 4 to check that the transformation works as expected. If the trans-
formation is correct, it should be able to process correctly the test prototype pairs,
matching their sources against the models and generating the elements indicated
in their targets in the resulting models.

7. Is the transformation appropriate? Experts need to consider whether the results
generated by the transformation are suitable for their goals. For instance, if the
simulation model can be generated but does not contain all the expected details
for code generation, experts need to modify the prototype pairs from activity 3
and the constraints from activity 5.

Note that though the process focuses on translations between languages, the ap-
proach is also applicable to validation. In this case, experts develop transformations
whose source pattern corresponds to a test on models and there is no target.

This work adopts the IDK (Pavón et al. 2005) for M2T and T2M transformations.
Its application to a simulation platform just requires us to specify the code template
files that indicate the mappings between types of concepts in models and code.

Developing the transformations in this section requires the collaboration of differ-
ent experts. Social researchers and computational experts can deal with most of the
tasks, but activities like 5 or programming IDK modules also require infrastructure
experts.

5.3 Model project

The modelling process itself in our approach is quite similar to that in other ABM
studies (see for instance those in the paper, Drogoul et al. 2003). The main steps are:

1. Is code available and suitable for simulation? Experts analyse whether the sim-
ulation is useful to study the thematicians’ hypotheses and whether the results
seem to be appropriate. If the code needs modifications or it is not yet available,
the process continues.

2. Refine a model. Experts add new models or information to the existing ones. De-
pending on the level of abstraction, different experts perform this task.

3. Apply transformations. Transformations can be used to transfer information be-
tween models, validate them or produce code.

4. Back to decision 1.
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The two key differences with other ABM approaches are that specific languages
guide and constrain each expert when modelling in activity 2, and transformations
partly automate the processing of models in activity 3. Of course, this automation
does not prevent the appearance of conceptual mistakes: the hypotheses of the simu-
lation may be wrong, for instance. However, the guide provided by the infrastructure
largely reduces the potential mistakes that experts can make in the process. Moreover,
automation reduces development work.

This process mainly involves simulation experts. The collaboration of infrastruc-
ture experts is only required in two situations. Firstly, when mistakes or new needs
are detected regarding the tools to generate the infrastructure. Secondly, when mod-
elling requires the application of the processes in Sects. 5.1 and 5.2, and low-level
details appear there, for instance to manually modify generated transformations.

6 Case study: continuous double auction

This paper illustrates the approach with a case study on auctions, in particular CDAs
(Posada and López-Paredes 2008), applied to the negotiation of emission permits
(Posada 2008). Auctions and CDAs constitute the general framework that determines
the domain (thus the conceptual modelling languages and transformations) and emis-
sion permits are a particular case described with specific models. The presentation is
divided into five sections. Section 6.1 describes the original statement of the problem
from the thematicians and modellers’ point of view. The next three sections corre-
spond to the application of the stages of the process described in Sect. 5. In order
to make the differences between the metamodel and model levels clear, metamodel
diagrams enclose metatype names between guillemets (� and �). Finally, Sect. 6.5
offers additional discussion on the process and results in the case.

6.1 Case context

CDA is one of the institutions most often used for real trading (Posada 2008). It fixes
the Institution in the triplet IEA (Institution×Environment×Agent’s behaviour) that
defines any microeconomic system (Smith 1982). This study takes into account the
other two dimensions from the classical study of Gode and Sunder (1993a, 1993b),
where zero-intelligence agents interact using a single unit per trader. The main fea-
tures of this CDA, as conceptualised by thematicians and modellers, are described
below.

The CDA considers traders who can play the roles of buyers and sellers in it,
without these roles being mutually exclusive. In its basic form, all the sellers are
endowed with a unit of a good that is indistinguishable from any other; the buyers
want to obtain a unit of this good. The decisions of sellers and buyers depend on
certain private values that determine their costs and benefits.

The auction is as follows. Any buyer can send a bid for a single unit by stating
its identity and price. Any buyer can raise this bid. Correspondingly, any seller can
ask (offer) by stating her/his identity and a price. If asks and bids match or cross,
a transaction takes place and both buyer and seller leave the market, cancelling any
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unaccepted bids and asks. If a bid and ask do not match but cross, the transaction
price is equal to the earlier of the two. After this, the process begins again with the
remaining agents. The whole procedure is run for periods of specified duration.

The agents considered in this version are zero-intelligence traders subject to a
budget constraint (i.e. ZI_C agents) (Gode and Sunder 1993b). This implies that after
a certain amount of time, either a buyer or seller randomly submits a bid or an ask.
A seller sets an ask price between her/his cost and a maximum value (usually the
maximum redemption value). A buyer forms a bid price between the redemption
value and 0. These constraints eliminate the possibility of agents having losses.

6.2 Metamodel development

The development of the conceptual metamodel follows the process in Sect. 5.1. Ac-
tivity 1 is the domain analysis that thematicians and modellers carry out to extract the
key information from the description in Sect. 6.1.

Activities 2 and 3 are carried out in parallel to identify concepts relevant to the do-
main. In this case, there are at least two active elements able to initiate interactions:
the traders and the organiser of an auction. Traders initiate interactions to sell or buy
goods; organisers represent the institution and perform interactions to set up the auc-
tion and rule it. All these elements are modelled as role metatypes, seller and buyer
for traders and ruler for organisers. The choice of roles instead of agents is because
they specify external behaviour, but not the internal logic or actual implementation.
To describe the logic, the model introduces two agent metatypes: ZI_C agents (Gode
and Sunder 1993b) play the first two roles; the CDA organiser plays the ruler role.

This part of the metamodel does not consider any environment application. The
organisers directly update and publish the information about the state of the auction.

Activity 4 identifies relationships between the previous elements. Following the
IEA triplet (Smith 1982), there are relationships between all the traders and organisers
in an auction. People can participate in different auctions, or other kinds of market,
and there is a need to indicate the specific scenario where they are acting.

Activity 6 identifies potential groups and societies. The traders constitute a group
as they share rules of behaviour in auctions. This group metatype is called agents.
Another group called auction house includes the organisers, who have common goals
for maximising interactions among traders and exclusive access to the resources used
to govern auctions. A society metatype called auction groups all these elements.

Modellers may specify inheritance hierarchies of metatypes in activity 5 to make
the features they share explicit. For instance, the CDA is a specific type of auction,
which in turn is a type of market, so specifications of these scenarios can be incremen-
tally built. Figure 2 shows this hierarchy. Following Smith (1982), the model includes
a society metatype market with three groups: institution, environment and agents. The
traders in a market can play the roles of seller or buyer. The diagram shows that an
auction is a particular case of market through the InheritRelationship between them.
This relationship is an INGENIAS extension of the ECore supertype property. The
institution of an auction is an auction house. The members of the auction house play
the role metatype ruler with power to govern the auction. The CDA in this case study
is an auction where participants are ZI_C agents and the CDA organiser playing the
role of ruler implements the rules of CDAs.
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Fig. 2 Partial metamodel for the structural components of the CDA

Fig. 3 Goals and tasks for the buyer role and their relationships

Activity 7 identifies the relevant interactions for the problem. These interactions
are refinements of those first identified in activities 2 and 3. Experts determine that
this domain contains at least three basic interaction metatypes: the set up of an auc-
tion; joining an auction; participating in an auction. Experts further specify them
later.

The refinement of roles and agents implies specifying their goals, roles and ca-
pabilities in activity 8. Figure 3 shows some results for the role metatype buyer. It
pursues the goal acquire good, which requires stating bids and accepting some of the
asks when they are suitable, according to its internal demand function. These goals
are achieved through two types of tasks: generate bid and accept ask respectively.

The other elements of the metamodel that need refinement are the interactions
from activity 7. This is done in activity 9, where experts indicate the tasks the previous
role and agent metatypes execute when communicating and the goals they pursue
with them. This part of the metamodel is omitted for the sake of brevity.

This part of the process provides the conceptual metamodel for the CDA study.
Thematicians and modellers will use the corresponding modelling language to build
the models to study different problems in this context.
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Fig. 4 Prototype pairs for the transformation of the management of goals

6.3 Transformation development

The development of transformations for a given domain automates repetitive tasks
that do not require complex human decisions. Section 5.2 indicates that this study
adopts an MTBE approach for M2M transformations.

An example of a possible transformation is for the management of the mental
state of agents. Agents are regarded as rational by default, i.e. an agent will try a
task if it helps to achieve a still unfulfilled goal. The metamodel of Sect. 6.2 includes
subtypes of agents, goals, and capabilities, but not this mental processing. However,
INGENIAS agents need to include it explicitly for code generation. This information
can be added with a transformation when refining the modellers’ models to produce
INGENIAS models.

Activity 1 is the analysis of the metamodels involved, both the conceptual one
from Sect. 6.2, and that of INGENIAS in Sect. 4 in this case. The answer to the
question in step 2 is negative, so experts need to develop a new transformation.

Experts choose in activity 3 the prototype model pairs for the transformation. Fig-
ure 4 shows them. The source of the pair contains the elements and relationships that
must exist in the INGENIAS model for the transformation being applied: an agent
has to pursue a goal and be responsible for a task to attain this goal. The target shows
the elements to create in the target model when the source model contains the pre-
vious configuration. In this case, the transformation adds a new mental state trigger
condition to the agent, which is true when the goal is not fulfilled and is the condition
for the agent to begin the execution of the task. If there are more constraints to trigger
the task, the pairs of the transformation can include them.

Names in the prototype models are variables used to transfer information from the
source to the target models. For instance, the goal in the source can match a goal of
type state bid in the actual models of a given problem (see Fig. 3), and this actual
goal will be connected to the instance of trigger condition in the target model.

Activity 4 generates the transformation from that pair using the MTGenerator tool
(García-Magariño et al. 2009). Infrastructure experts manually adjust the transforma-
tion in activity 5. As INGENIAS does not have graphical primitives to indicate that
the goal has not been fulfilled, experts add this condition as a textual constraint to the
mental state.



106 R. Fuentes-Fernández et al.

Activities 6 and 7 check the transformation. As it is a simple one, the check can
omit the use of additional prototype pairs for validation.

Note that these models and those in Sect. 6.2 are at different modelling levels.
The ones from the previous section are metamodels describing metatypes of compo-
nents and relationships. The ones in this section are models where elements represent
instances of the metatypes in the metamodels previously defined, i.e. they represent
types of elements. The types can be used to specify different problems in this context,
while metatypes establish the possible categories of these types.

All the resulting transformations can be applied whenever required for different
projects. This reduces the need for manual work and the number of potential errors.

6.4 Model project

The last step is the development of the models for a given problem. Both the meta-
model and the transformations are general for studies of CDAs that follow the hy-
potheses outlined in Sect. 6.1. This information is particularised for the specific prob-
lem in hand, in this case the analysis of emission permit auctions according to Posada
(2008).

The models of this problem include the types of traders and authorities for this
market, and instances of them representing particular actors. Thematicians refine
these elements for the particular features of the problem. For instance, they include
types of ZI_C agent that include laws applied in this market, and link their instances
according to the geographical region and activity sector of the firms studied.

When the models are complete, thematicians execute the code generation tools to
produce the simulation. Then, they run it and study its results. To change the simula-
tion, thematicians just modify their own models and regenerate the simulation. This
process is applicable when initial data change, but also to try other hypotheses.

6.5 Discussion

The simple setting of the case study allows us to discuss some differences from the
original works of Posada (2008) and Posada and López-Paredes (2008).

The key advantage of the proposed approach is that it describes the common
knowledge and expertise about a domain and the migration to a target platform. The
use of the conceptual and INGENIAS metamodels obliges modellers to think about
the relevant reusable abstractions of the domain instead of the concepts of the spe-
cific problem at hand. Thus, it encourages the reuse of knowledge in a wider range of
problems. For instance, our conceptual metamodel explicitly represents the interac-
tions between agents in a way that can be extended with new features, such as inter-
mediate agents representing other players in the emission market, while the original
emission permits model (Posada 2008) gives only conceptual details, which makes
it hard to reuse its simulation beyond the original hypotheses. The use of transfor-
mations makes changes in models explicit (France and Rumpe 2007), facilitating the
detection of mistakes when compared to traditional codification methods (North et
al. 2006).

The use of the MDE infrastructure in this context also implies saving effort. Ex-
perts can easily modify models and transformations to match new requirements. For
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instance, new types of agents can be introduced to play the roles of traders. This just
implies modelling the new agent, as the rest of the simulation remains exactly the
same. Another situation is a change of simulation platform. This just requires that ex-
perts create the code templates for that platform if they are not available yet. Reusing
the infrastructure in different projects also shows up potential problems with it.

Adopting the INGENIAS metamodel facilitates the definition of the new DSL.
Its modelling primitives are suitable super-types for the concepts in the case study,
which only need to consider their own specific features. Moreover, as INGENIAS
models are used for code generation, they include primitives to model relevant parts
of the decision-making process of agents. These primitives reduce the need to rep-
resent the rationality of agents in ABM with formulae or code, using instead visual
representations.

Finally, some decisions on whether to put a concept at the metamodel or model
level can be the object of discussion. Only experiments can lead to the better choice,
and for this reason it is important to be able to change easily modelling languages.

7 Related work

The approach introduced in this paper is connected with research in modelling pro-
cesses and languages for ABM. The following subsections study works on these is-
sues.

7.1 Modelling processes

ABM is used to study a variety of phenomena with little in common. The features of
the domains, the relevant variables or the aspects of interest are so heterogeneous that
it is hard to give useful guidelines beyond a reduced set of problems. Moreover, most
available research focuses on introducing particular simulations or general principles,
which makes it difficult to talk about complete modelling processes.

Some studies consider the roles involved in ABM projects, their responsibilities,
the exchange of information between them, and general principles or advice for mod-
elling. For instance, the study of Drogoul et al. (2003) and its extension by Galán et
al. (2009) discuss the roles mentioned in Sect. 1, but do not provide details about
how they perform their tasks. Others consider the objectives that guide the tasks of
these roles, such as Tesfatsion (2006), or introduce criteria for their correct execu-
tion, such as Richiardi et al. (2006) and partially Lorscheid et al. (2011). The ODD
(Overview, Design concepts, and Details) protocol (Polhill et al. 2008) can also be
considered here. It is in fact a model documentation protocol, but the information it
requires provides hints about how social experts should model. Although these works
provide useful information to organise and carry out the modelling process, they are
not detailed about how to build and use the models.

Some extra support can be obtained for specific tasks in the literature. Again, it
usually takes the form of principles or guidelines. For instance, Brenner (2006) gives
guidelines for modelling the learning behaviour of agents in economics research.
Though the scope of these works is narrow, this kind of information could be incor-
porated in complete modelling processes to provide effective guidelines for experts.



108 R. Fuentes-Fernández et al.

Our approach helps to fill these gaps providing a process to establish information
exchange between roles and to bring together their knowledge. However, it does not
propose any particular modelling process, as long as it follows DSL and MDE princi-
ples. Other works, such as Lorscheid et al. (2011), can complement it by introducing
processes that advice experts on model conceptualisation.

Earlier work mainly considers the perspective of social researchers. In general,
the literature pays little attention to computational experts but to simulation platforms
such as GAMA (Amouroux et al. 2009), MASON (Luke et al. 2005) or Repast (North
et al. 2006). It is assumed that computer-oriented roles must be able to make correct
readings of conceptual models and translate them to suitable simulation models. This
way of working may cause problems, as it is very difficult to guarantee the correct-
ness of simulation models regarding the hypotheses of social researchers (Axtell and
Epstein 1994). A second problem is the replicability of experiments (Wilensky and
Rand 2007). Even if models faithfully reflect the initial requirements, the simula-
tion output is also the result of many additional factors. For instance, programmers
can make undocumented assumptions or the implementation can bias the choice of
equally applicable rules. When the simulation platform automatically generates part
of the code, the situation is even worse, because that process is a black box whose
detailed implementation is unknown. This is the case, for instance, of AnyLogic (XJ
Technologies 2010).

Our MDE approach improves the traceability between the conceptual and simula-
tion models. The models and transformations include all the information to generate
the simulations, and experts can examine them. Moreover, the metamodels and trans-
formations are reused in multiple projects, so they can be incrementally developed,
tested and fixed in different contexts.

7.2 Languages

ABM uses a variety of languages to document its models. The languages applied
largely depend on the roles and the level of abstraction where they are used.

For the conceptual models, mathematics and logic are the most widely used lan-
guages. Examples of these are (Brenner 2006; Polhill et al. 2008; Posada 2008;
Tesfatsion 2006). While this approach is consistent with the tradition of simula-
tion models (mainly analytical) in Social Sciences, it presents several disadvantages.
Firstly, it is hard to transform these equations to computational models. Equations
rule out certain aspects of initialisation, constraints in the representation of data types
or the discretisation of events and time. There are no simple ways to document the
assumptions required to consider these aspects in computational models. Secondly,
equations are useful to document simple agent-oriented models, with low levels of
heterogeneity and few features to consider. The management of complex models re-
quires the use of mechanisms to describe them at different levels and to encapsulate
the description of their parts. The experience of Software Engineering (France and
Rumpe 2007) shows that modelling languages are best suited for this purpose.

The literature includes few examples of the use of modelling languages for con-
ceptual models, for instance (Sansores and Pavón 2005; XJ Technologies 2010). Here
experts can choose between general-purpose languages and DSLs. The trade-offs
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between them are well-known (Mernik et al. 2005). General-purpose languages are
widely-known, used and supported, e.g. UML (OMG 2009). As a drawback, they lack
specialised primitives to represent domain-specific information, which can make rep-
resenting it complex or lead to us consider additional assumptions that are not part of
the language. Some studies extend UML to provide specialised primitives for mod-
elling, e.g. AnyLogic (XJ Technologies 2010). The problem of these approaches is
that they need to stay close to UML to benefit from its wide use, so the additions
they can introduce are minimal. On the other hand, DSLs facilitate modelling for a
given domain with specialised primitives, but they can be too constrained when new
needs appear. The combined use of DSLs and MDE, as proposed in our work, ad-
dresses these problems. Experts have standard software tools available that facilitate
language adaptation to emerging requirements.

Regarding computational models, the literature does not usually discuss their de-
velopment except when introducing simulation platforms, e.g. MASON (Luke et al.
2005) or Repast (North et al. 2006). Some of these platforms are currently incorporat-
ing limited graphical modelling languages to specify models from which to generate
code partially. Examples include AnyLogic (XJ Technologies 2010), which extends
UML (OMG 2009), and Repast Symphony (Repast 2008), which uses EMF (Moore
et al. 2004). They are oriented to computational abstractions, and not to social ex-
perts.

There are also studies focusing on computational models with a perspective closer
to ours: they try to provide modelling languages useful for social experts but with
a computational meaning, and adopt MDE approaches to generate code. Among
them are Sansores and Pavón (2005), based on INGENIAS (Pavón et al. 2005), and
ADELFE (Camps et al. 2005), which is another AOSE methodology with a particular
focus on emergent behaviours. Our work differs from these in proposing the use of
DSLs oriented to thematicians and modellers instead of just adopting AOSE mod-
elling languages. This is expected to improve the autonomy of social experts in the
development of their models. Besides, our work proposes the use of declarative trans-
formations and an MTBE approach for their generation. This dramatically decreases
the use of program modules for transformations as in Sansores and Pavón (2005), and
their manual development with specific languages, as in Camps et al. (2005). It also
aims to facilitate the greater involvement of social experts in the generation of the
simulation, as it reduces the need to master programming in a simulation platform.

8 Conclusions

This work aims to perform the ABM modelling process as a fine-step refinement of
models. This requires the support of linked layers of DSLs whose focus ranges from
the social domain to the target simulation platform. AOSE languages are proposed
for the intermediate stages in order to facilitate the definition of these DSLs and
the transition from them to computational models. This refinement is supported by
explicit mappings between groups of concepts in modelling languages. A refinement
step applies some of these mappings and manually adds information using models.

Following an MDE approach, the layers of modelling languages are specified
with metamodels and the correspondences between them with transformations. The
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feasibility of the approach is supported by available technologies, and it has been
attempted here with a specific MDE agent-oriented framework, INGENIAS, and
MTBE tools. It is illustrated with a case study on auctions, which shows how the
approach allows the specification and simulation of social systems with graphical
modelling languages.

This approach offers several advantages over standard ABM practices. First, pro-
viding languages tailored for specific needs will guide their users in the modelling and
reduce the appearance of unintended biases. Moreover, it aids experts in the identifi-
cation and analysis of social patterns at a macroscopic level, in terms of the atomic
elements of the social system’s specification. Second, it reduces the conceptual gap
between successive models and non-documented changes, which improves the trace-
ability of artefacts. Third, it makes simulation knowledge explicit through metamod-
els and transformations. This encourages the reusability of previous experience in
new projects, and offers the possibility of testing and improving that knowledge with
every new development. The INGENIAS metamodel has shown its suitability as the
basis for the definition of new ABM languages and its potential for reducing work
by reusing already available metamodels. Fourth, the automation of some transfor-
mations also reduces the workload of computational experts. It also facilitates the
replication of experiments in order to contrast results and strengthens the validity of
complex agent-based models.

The effort of learning a new modelling language has still to be evaluated. In prin-
ciple, a visual language should be easier to use than typical programming, mathemat-
ical or logical languages. However, the main issue is the effort required to develop
the metamodels for DSLs and their support. In our case study, both the INGENIAS
language and software tools easily allow extensions to introduce new concepts and
relationships, together with graphical icons for them, and the related transformations.

Despite these issues, we consider this approach to be a step forward in the search
for more reliable and transparent agent-based models. The increase in formalisation
associated with it, together with its suitability for replication, would answer the com-
mon criticism of complex models as obscure black boxes.
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