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Abstract 

This article proposes a three-step procedure to estimate portfolio return 

distributions under the multivariate Gram-Charlier (MGC) distribution. The 

method combines quasi maximum likelihood (QML) estimation for conditional 

means and variances and the method of moments (MM) estimation for the rest of 

the density parameters, including the correlation coefficients. The procedure 

involves consistent estimates even under density misspecification and solves the 

so-called ‘curse of dimensionality’ of multivariate modelling. Furthermore, the 

use of a MGC distribution represents a flexible and general approximation to the 

true distribution of portfolio returns and accounts for all its empirical regularities. 

An application of such procedure is performed for a portfolio composed of three 

European indices as an illustration. The MM estimation of the MGC (MGC-MM) 

is compared with the traditional maximum likelihood of both the MGC and 

multivariate Student’s t (benchmark) densities. A simulation on Value-at-Risk 

(VaR) performance for an equally weighted portfolio at 1% and 5% confidence 

indicates that the MGC-MM method provides reasonable approximations to the 

true empirical VaR. Therefore, the procedure seems to be a useful tool for risk 

managers and practitioners.  

Keywords: European stock indices; Gram-Charlier expansion; Method of mo-

ments; Portfolio returns. 

                                                           
+ Corresponding author. This author acknowledges

 
financial support from the Spanish Ministry of Economics and Competitiveness 

through the project ECO2013-44483-P. 

mailto:a.mora262@uniandes.edu.co
mailto:T.M.Niguez@westminster.ac.uk
mailto:perote@usal.es


2  

1. Introduction 

During the last decades, the literature related to the search of statistical models 

to explain and forecast financial risk has undergone huge developments. The in-

terest derives from the needs of risk managers of financial institutions who must 

decide on the most appropriate model for portfolio and risk management. For 

these purposes many perspectives have been proposed mainly concerning either 

the modelling of the conditional moment structure under normality or the underly-

ing distribution of the asset returns. 

 

Among the latter approach one of the most interesting and fruitful alternative 

has been the semi-nonparametric (SNP hereafter) methodology developed by au-

thors such as, Sargan (1975), Jarrow and Rudd (1982), Gallant and Nychka 

(1987), Gallant and Tauchen (1989), Corrado and Su (1997), Mauleón and Perote 

(2000), Nishiyama and Robinson (2000), Jondeau and Rockinger (2001), Velasco 

and Robinson (2001), Jurczenko et al. (2002), Verhoeven and McAleer (2004), 

Tanaka et al. (2005), León et al. (2005), Bao et al. (2006), Rompolis and Tzavalis 

(2006), León et al. (2009), Polanski and Stoja (2010), Ñíguez and Perote (2012) 

and Ñíguez et al. (2012). All these articles proposed the use of polynomial expan-

sions of the Gaussian distribution to define density functions capable of capturing 

the stylized features of financial asset returns, besides of providing applications to 

the resulting densities to different contexts, e.g. hypotheses testing, density fore-

casting, Value-at-Risk (VaR hereafter), asset pricing or option valuation. The 

higher goodness-of-fit of this family of densities and the more accurate risk 

measures obtained, as shown in these papers, is a consequence of its more general 

and flexible representation, which admits as many parameters as necessary to cap-

ture the sharply-peaked, thick-tailed or skewed shapes of the underlying asset re-

turns density. 

 

These empirical findings emerge from the validity of the Gram-Charlier (GC 

hereafter) and Edgeworth series as asymptotic approximations – Charlier (1905) 

and Edgeworth (1907). As a matter of fact, under regular conditions, any frequen-

cy function can be expressed in terms of an infinite weighted sum of the deriva-

tives of the standard Gaussian distribution or their corresponding Hermite poly-

nomials (HP hereafter). The main shortcoming of these expansions is the fact that 

the positivity of the finite (truncated) expansions does not hold in the entire do-

main of the parameter set – Barton and Dennis (1952).  This problem, has been 

tackled in the literature by means of parametric restrictions (Jondeau and Rock-

inger, 2001), or through density reformulations based on the methodology of Gal-

lant and Nychka (1987). These solutions are not always the best option since im-

posing positivity constraints may lead to sub-optimization and positivity regions 

are not easy to be defined beyond the simpler cases (i.e. for expansions defined in 

terms of a couple of moments, usually skewness and kurtosis). Furthermore, posi-

tive transformations induce non-linearities among the distribution moments and 

the density parameters, and in some cases lead to symmetric distributions. The 
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former problem affects the straightforward interpretation of the parameters of the 

raw GC density and thus seriously restricts the implementation of the method of 

moments (MM hereafter). Alternatively, Maximum Likelihood (ML hereafter) 

techniques are usually employed despite the fact that optimization algorithms usu-

ally fail to converge or do it to local optima. In addition, ML estimation only pro-

vides consistent estimates either under the normal or under the true density. 

 

The extensions of GC densities to other continuous and differentiable non-

normal densities have also been investigated. Particularly, the Poisson, Gamma, 

and Beta have been proposed as basis: GC Type B (Aroian, 1937), Laguerre 

(Muckenhoupt, 1969) and Jacobi (Szegö, 1975) expansions, respectively. Never-

theless, the validity of these series as asymptotic expansions and their empirical 

applicability are still to be proved (see Wallace, 1958, for a discussion on the va-

lidity of asymptotic expansions using non-normal densities as generating distribu-

tions). Generalizations of GC densities to the multivariate framework have also 

been proposed as alternatives to copula methods. In particular, Perote (2004) in-

troduced a first definition and Del Brio et al. (2009; 2011) proposed more general 

formulations accounting for both the positivity and the ‘curse of the dimensionali-

ty’ problems, in the same spirit as the DCC model of Engle (2002). Recently, 

Ñíguez and Perote (2016) have applied these types of distributions to the DECO 

model by Engle and Kelly (2012). 

 

This article revises the aforementioned multivariate models focusing on the 

implementation of a straightforward MM estimation as an alternative to the tradi-

tionally used ML or Quasi ML (QML hereafter) techniques. This proposal en-

hances the estimation algorithms of GC densities since the even (odd) parameters 

are just linear combinations of the even (odd) density moments and the moment of 

order n depends only on the first n density parameters. Even more, the MM esti-

mation involves consistent estimates, which is only guaranteed for ML under the 

true density and for QML under density misspecification and provided that first 

and second moments are correctly specified (Bollerslev and Wooldridge, 1992). 

However, the current paper shows that all these techniques produce similar results 

and that a three-step estimation method can be straightforwardly implemented. 

The three-step method proceeds as follows: First, conditional variances under the 

normal distribution for every variable are estimated by QML; second, the rest of 

the GC density parameters for every variable are estimated by MM; third, the cor-

relation among the portfolio variables is estimated by MM. 

 

The remainder of the paper is structured as follows: Section 2 reviews the mul-

tivariate GC expansions and explains the MM estimation procedures. Section 3 

provides an application of the MM technique for the estimation and VaR computa-

tion of the multivariate GC density of a portfolio composed of three European 

stock indices. The last section (4) summarizes the main conclusions of the paper.  
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2. Approximations to portfolio return distribution 

     This section revises the main results supporting GC series as a general approx-

imation to a frequency function and some of the main statistical properties of the 

GC expansion that are the basis of the outstanding empirical performance of this 

approximation to account for portfolio return distributions. Section 2.1 presents 

the basic univariate (single asset) case and Section 2.2 generalises the results to a 

multivariate (portfolio) framework. In both cases the GC density is formulated 

with matrix notation to facilitate the comparison between both approaches. 

 

2.1. The univariate case 

 

     Let  2)( 2/2x

i ex   be the normal probability density function (pdf here-

after) and )( is xH  the Hermite polynomial based on its s-th order derivative, 

which can be defined as in equation (1). 
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    These Hermite polynomials (HP hereafter) form an orthonormal basis. Thus, if 

  q

iqiii xHxHxHx  )()()()'H( 21  is the vector containing the first 

q HP then 

 

    !,...,!2,!1S)()')H(H( qdiagdxxxx iiii  .    (2) 

 

    Furthermore, the vector of HP can be written as  

 

H(xi) =BZi+,      (3) 

 

where   qq

iiii xxx  
2

'Z ,   q

q   21'μ  is the vector 

containing the first q central moments of the normal distribution (i.e. 

)!2(2

!




s

s
s for s even, and zero otherwise),  is a qq diagonal matrix captur-

ing the sing of the intercepts for each HP, and B is the qq matrix containing the 

coefficients of the variables in Zi corresponding to every HP (without loss of gen-

erality  and B are defined considering q even). 

 

 2/)1(10101010 qdiag   .  (4) 
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    One of the main advantages of this sequence of HP is the fact that under certain 

regular conditions (Cramér, 1925) a frequency function, )( ixf , can be expanded 

formally in terms of GC Type A series, i.e.,  
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where the δs coefficients, 
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 measure the deviations of )( ixf  from )( ix  and can also be expressed in terms 

of the (non-central) moments of the random variable xi with pdf )( ixf . 

     Nevertheless, for empirical purposes the asymptotic expansion needs to be 

truncated at a degree q and then the univariate GC density is defined as follows, 

 

  )(d)'H(1)d,( iiiiiq xxxf  ,     (8) 

 

where   q

iqiii ddd  21'd  is a vector of parameters and, by conven-

tion, we consider H₀(xi)=1 and d₀=1. This distribution in equation (8) satisfies in-

teresting properties (see e.g. Mauleón and Perote, 2000). Among them, Proposi-

tion 1 enunciates the property in which the MM estimation method proposed in 

the present article is based. 

   

     Proposition 1: The first q moments of the GC distribution in equation (8) can 

be expressed as a linear function of the vector q

i d , 

 

  μ)(SdB 1  

iiZE ,      (9) 
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where  q

iiii xxx 
2

'Z  , and S,  and B are the matrices described in 

equations (2),  (4) and (5), respectively, and 
qμ  is the vector containing the 

first q central moments of the normal distribution. 
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     These relations among the density moments and parameters establish a 

straightforward way of estimating the density by the MM, given by 

 

    μ)ˆ(BSd̂ 1  

ii ZE ,                 (10) 

 

where  iZÊ  is the vector containing the first q sample moments of variable xi with 

pdf )d,( iiq xf . 

    The truncated function in (8), however, does not guarantee positivity for all val-

ues of 
id  and thus a positive (squared) transformation of the Gallant and Nychka’s 

(1987) type is usually implemented. Next we explain the family of multivariate 

GC densities including these positive transformations. 

 

2.2. The multivariate case 

 

     A random vector   n

nxxx  21'X  belongs to the multivariate GC 

(MGC hereafter) family of distributions if it is distributed according to the follow-

ing pdf, 
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is the multivariate normal pdf – with univarite marginals )( ix , Ai is a positive 

definite matrix of order (q+1),   1)(H1)(h  q

ii xx  and 

 iiiiii dxxxxc )()(hA)'(h   (i=1,2,…, n) are the constants that make the densi-

ty integrating up to one, see Del Brio et al. (2009). Without loss of generality, the 

same truncation order q for every dimension i is assumed. 

 

This MGC family encompasses many different distributions, such as the multi-

variate extensions of the GC density in León et al. (2009) or the Positive Edge-

worth-Sargan in Ñíguez and Perote (2012). These two types of distributions are 

obtained by considering Ai=DiDi´ and Ai=  22

1,...,,1 iqi dddiag , respectively, where 

  1

id1D  q

i
 (note that in both cases 




q

s

isi sdc
1

2 !1 ). However, in this pa-

per we implement a related family of densities proposed in Perote (2004) which 

does not formally impose positive definiteness but presents other interesting ad-

vantages from an empirical perspective. Hereafter, we will refer to the pdf defined 

in equation (12) below as the MGC density. 
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It is clear that, for the MGC, the marginal density of xi is that of equation (8) and 

thus the MM estimation can be trivially implemented through the relation in equa-

tion (10). Even more, Del Brio et al. (2011) proved that an equivalent MGC densi-

ty can be estimated by ML in two steps: In the first step, the conditional mean and 

variance of every variable are estimated by QML independently, and in the second 

step, the rest of the density parameters are jointly estimated in the standardised 

distribution. This paper proposes a similar three-step procedure based on the MM: 

First, QML estimates for conditional mean and variance of every variable are ob-

tained independently by assuming a normal distribution. Second, the parameters 

for the univariate GC density of every standardised variable are estimated inde-

pendently by the MM. Third, correlation parameters are approximated by the 

sample correlations.  

3. Empirical application 

We illustrate the estimation procedure of the portfolio return distribution de-

scribed in the previous section for a portfolio composed of three European stock 

indices: EUROSTOXX50, Ibex35 and Dax30. The sample comprises almost 10 

years of daily data (T=2,861 observations) spanning from September 30th, 2002, to 

November 19th, 2013. We model continuously compounded returns, defined as 
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rit=100log(Pit/Pi,t-1). Table 1 displays descriptive statistics for the series. These da-

ta feature the main empirical regularities of high-frequency financial returns: a 

small predictable component in the conditional mean, volatility clustering, skew-

ness, leptokurtosis and, likely, multimodality (jumps) in the tails. 
 

Table 1. Descriptive statistics for EUROSTOXX50, Ibex35 and Dax30. 

 EUROSTOXX50 Ibex35 Dax30 

Mean 0. 01134 0.02025 0.04228 

Variance 2.21881 2.26692 2.26598 

Minimum -8.20788 -9.58586 -7.43346 

Maximum 10.43765 13.48364 10.79747 

Skewness 0.07902 0.13892   0.08702 

Kurtosis 5.45580 6.52309   5.38219 

 

We specify a multivariate AR(1)-GARCH(1,1) structure for modelling condi-

tional first and second moments and the MGC density in equation (13) for captur-

ing the rest of the salient empirical regularities of the data. Thus, the multivariate 

model for the portfolio returns   3

321t 'r  ttt rrr is: 

 

tur'r 1-t10t  ,                (14) 

))ρα,(,0(u 1t tt MGC  
,               (15) 

)α(D)ρ(R)α(D)ρα,( tttt  ,               (16) 

      2

121110

2 )α(Du'u)α(D   tittiit diagdiagdiag   ,     (17) 

 

where   3

3020100 '   and   3

3121111 '   are the vec-

tors containing the AR(1) models parameters;    3020100  diagdiag i  , 

   3121111  diagdiag i   and    3222122  diagdiag i   are 

33 diagonal matrices containing the parameters of the GARCH(1,1) processes 

(hereafter we refer to these parameters as  and , respectively) and 

  3

321t 'u  ttt uuu  is a vector of model disturbances, which is assumed to 

be distributed according to the MGC pdf in equation (12) . Therefore, the variance 

and covariance matrix is decomposed in the diagonal matrix of conditional devia-

tions, )α(Dt
, and the symmetric correlation matrix, )ρ(R t

, with general element 

{ij} (hereafter we refer to the parameters in )ρ(R t
as ). Finally,   is the Hada-

mard product of two identical sized matrices (computed by element-by-element 

multiplication). 

 

     The estimation of the model in equations (14)-(17) through our proposed three-

step MM is carried out in the following three stages: 
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Stage 1:  and  are estimated by QML as the values that maximise the 

log-likelihood of every variable under the Gaussian distribution, i.e., 
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Stage 2: The parameters (di) of the GC expansions are estimated inde-

pendently for every dimension i by using the following correspondences, 
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ˆ  is the l-th order 

sample moment of the standardised series (
ir  and Si denoting the average 

and standard deviation of rit, respectively), which is a consistent estimate 

of the l-th order moment of the true distribution.  

 

Stage 3: The Correlation matrix, R(), is estimated by computing the 

sample correlations among the portfolio variables: 

,))((
1
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ij rrrr
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This method features the following advantages with respect to the ML: (i) It 

provides consistent estimates, i.e., the first step gives consistent (QML) estimates 

for conditional mean and variance parameters and the second step is also con-

sistent since both log-likelihood function is separable (see Del Brio et al., 2011) 

and the MM always yields consistent estimates. (ii) It is much simpler than the 

ML method with regards to convergence problems that may arise in optimization. 

(iii) It solves the “curse of dimensionality” of multivariate modelling, since it is 
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not affected by the number of assets considered in the portfolio. (iv) Parameter es-

timates are the same regardless the expansion length and, as it is shown empirical-

ly, the procedure leads to very similar outcomes for the estimated density than 

those obtained by ML. 

 

Table 2 provides two-step ML estimates (t-ratios are displayed in parentheses) 

for the parameters of the GC density of a portfolio composed of EUROSTOXX50, 

Ibex35 and Dax30 indices. We consider expansions up to the eighth term but di1 

and di2 are constrained to zero since conditional means and variances are captured 

by the AR(1) and the GARCH(1,1) models, respectively. The AR(1)-

GARCH(1,1) parameters are estimated in the first step by QML. These QML es-

timates confirm the presence of a small predictable component in the conditional 

mean, and persistence and clustering in volatility (αi₁+αi₂ is estimated close to 

one). In the second step, the rest of the parameters of the density are estimated by 

either MM or ML applied to the series standardised by the estimated mean and 

variance of the previous step. The estimates of the GC densities exhibit the tradi-

tional behaviour of stock returns: (i) (negative) skewness is captured by parameter 

di3 and the rest of the odd parameters are not significant; (ii) leptokurtosis is patent 

since di4 is positive and significant; and (iii) presence of extreme values as high 

order moments (parameters di6 and di8) are also significant. Note that the trunca-

tion order is chosen according to accuracy criteria (see the Akaike information cri-

teria, AIC, for the MGC model with 2 and 6 parameters), although the best model 

should eliminate the insignificant parameters that are still displayed in Table 2. 

Finally, the third stage presents the estimate for the correlation matrix, which ex-

hibits a positive correlation between EUROSTOXX50 and both Ibex35 and 

Dax30, but absence of correlation between the latter two indices. 
 

Table 2. MGC density of stock indices: EUROSTOXX50, Ibex35 and Dax30. 

 EUROSTOXX50 Ibex35 Dax30 

Stage 1 (QML) 

i1 0.06776 

(3.290) 

0.08020 

(3.865) 

0.09300 

(4.409) 

i2 -0.05768 

(-2.938) 

-0.00669 

(-0.323) 

-0.03015 

(-1.569) 

i0 0.02389 

(3.060) 

0.02018 

(2.825) 

0.02276 

(3.352) 

i1 0.09721 

(5.265) 

0.09982 

(5.078) 

0.08949 

(6.452) 

i2 0.89217 

(48.341) 

0.89359 

(48.676) 

0.89925 

(65.130) 

Stage 2 (MM) 
di3 -0.04495 -0.04790 -0.05916 

di4 0.05733 0.06572 0.04999 

di5 -0.02341 -0.02207 -0.02759 

di6 0.02333 0.02506 0.02251 
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di7 -0.01651 -0.01170 -0.01848 

di8 0.01181 0.00959 0.01316 

Stage 2 (ML) 
di3 -0.02260  

(-1.89038) 

-0.03181 

(-2.54818) 

-0.04127  

(-4.05200) 

di4 0.04212 

(5.27076) 

0.04937 

(5.66917) 

0.02997  

(3.76514) 

di5 0.00401 

(0.89059) 

-0.00176 

(-0.36192) 

-0.00188  

(-0.46320) 

di6 0.00531 

(2.39301) 

0.00808 

(3.25338) 

0.00065  

(0.24688) 

di7 0.00000 

(0.14397) 

-0.00011 

(-0.15316) 

-0.00080 

(-1.19259) 

di8 0.00101 

(4.02314) 

0.00102 

(3.79608) 

0.00068  

(2.35141) 

Loglikelihood -1676.898 -1677.097 -1667.209 

AIC 

(6 parameters) 
3365.796 3366.194 3346.418 

AIC 

(2 parameters) 
3380.726 3380.912 3363.116 

Stage 3 (MM) 

EUROSTOXX50 1 0.04727 0.03616 

Ibex35 0.04727 1 0.00000 

Dax30 0.03616 0.00000 1 

t-statistics in parentheses 

 

     Table 3 shows the joint estimation for the multivariate Student’s t distribution, 

the most common parametric alternative to account for non-normal portfolio re-

turns. For this distribution, departures from normality are only captured by the de-

grees of freedom parameter (ν) and thus it is a much restrictive estimation method. 
 

Table 3. Multivariate t density for EUROSTOXX50, Ibex35 and Dax30. 

 EUROSTOXX50 Ibex35 Dax30 

 

i1 0.06776 0.08020 0.09300 

i2 -0.05768 -0.00669 -0.03015 

i0 0.02389 0.02018 0.02276 

i1 0.09721 0.09982 0.08949 

i2 0.89217 0.89359 0.89925 

ν 10.48116 

Loglikelihood -11941.49 

Correlation Matrix 

EUROSTOXX50 1 0.04284 0.04419 

Ibex35 0.04284 1 -0.00065 

Dax30 0.04419 -0.00065 1 
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     Figure 1 depicts the fitted GC marginal distributions of the returns of the 

EUROSTOXX50, Ibex35 and Dax30 indices compared to the histogram of the da-

ta (non-parametric estimation). Figures on the left column represent the distribu-

tions for the whole range and figures on the right column the left tails (extreme 

values) of the corresponding distribution. The plots illustrate that both MM and 

ML methods (GC-MM and GC-ML, respectively) lead to very similar outcomes 

and that they approximate very accurately the empirical distribution of the portfo-

lio. This evidence is even clearer in the tails of the distribution, which is the main 

focus of risk management. 

 

Figure 1. Fitted GC distributions compared to the data histogram 
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     Finally, we calculate VaR at 1% and 5% for an equally weighted portfolio 

formed with the three indices. For this purpose, 1,000 datasets of length 2,861 are 

simulated. Table 4 shows the average VaR and its standard error for the multivari-

ate t, MGC estimated by MM and ML and the corresponding empirical VaR. The 

results illustrate how the MGC-MM model adequately captures portfolio VaR and 

thus it represents a very straightforward and useful method for risk management. 

 

Table 4. Estimated VaR for an equally weighted portfolio of 

EUROSTOXX50, Ibex35 and Dax30. 

 Multivariate t MGC-MM MGC-ML 

Empirical VaR – 1% -1.54395 

Mean VaR – 1% -1.62432 -1.50203 -1.45894 

Standard error 0.06022 0.05312 0.04867 

Empirical VaR – 5%  -1.051891  

Mean VaR – 5% -1.06971 -1.00847 -0.99632 

Standard error 0.02996 0.02827 0.02711 

     The analyses performed in this section show not only that the GC densities 

result to be accurate approximations to portfolio distribution but also that the 

three-step MM procedure greatly simplifies their practical implementation. The 

former result was known from previous studies but the latter is a specific 

contribution of this paper. The main advantage of using the GC expansion to 

approximate the portfolio return distributions lies in its flexibility to improve data 

fits by adding more parameters. Nevertheless, it is noteworthy that the MM 

estimation is noisier the higher the order of the moments employed, what yields to 

efficiency losses compared to the traditional ML estimation. Notwithstanding, the 

three-step MM guarantees consistency even under misspecification and overcomes 

the curse of dimensionality, thus being specially recommended for large 

portfolios.  

4. Conclusions 

The GC density has emerged as a powerful tool to account for asset return dis-

tributions because it asymptotically captures the true distribution and thus repre-

sents a general and flexible approximation. Nevertheless, this distribution has 

scarcely been used for capturing the multivariate behaviour of portfolio distribu-

tions due to the so-called ‘curse of dimensionality’ that particularly affects this 

type of distributions that depend on a large number of parameters. Furthermore, 

the traditional ML estimation techniques usually fail to converge and, more im-
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portantly, do not guarantee consistency under possibly density misspecification. In 

order to solve these problems, this article proposes a three-step estimation method 

that combines QML estimation for conditional means and variances (Stage 1), 

MM estimation of the rest of the density parameters considering the univariate 

standardised marginal GC distributions and, finally, MM estimation of correlation 

coefficients.  

The validity of this proposal is based on three main properties of the MGC dis-

tribution: (i) Its marginals behave as univariate GC distributions; (ii) it admits an 

independent estimation of the first and second moments under the Gaussian hy-

pothesis (QML); and (iii) a direct linear relation exists among density moments 

and parameters, which simplifies the implementation of the MM techniques. Fur-

thermore, this method is always consistent and may be straightforwardly imple-

mented even for large portfolios. The main limitation of the MM technique is that 

the inclusion of high-order moments in large expansions might increase the esti-

mation noise and reduce the efficiency of the estimates compared to ML.  

An application of such procedure is performed for a portfolio composed of 

three European stock indices as an illustration of the method. The results are not 

very different from those obtained using QML estimation and thus it provides a 

straightforward method for estimating portfolio return distributions. The simplici-

ty of the method as well as the asymptotic properties of the GC expansion makes 

this approach a very good approximation to portfolio distributions and thus an ap-

pealing methodology for risk managers. The application of this method to large 

portfolios and its comparison to recent techniques to estimate GC distributions in 

this framework (e.g. Ñíguez and Perote, 2016) might be an interesting avenue for 

future research. 
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