
K-STEP BETWEENNESS CENTRALITY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MELDA KEVSER AKGÜN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

AUGUST 2019

Approval of the thesis:

K-STEP BETWEENNESS CENTRALITY

submitted by MELDA KEVSER AKGÜN in partial fulfillment of the requirements
for the degree of Master of Science in Industrial Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yasemin Serin
Head of Department, Industrial Engineering

Assist. Prof. Dr. Mustafa Kemal Tural
Supervisor, Industrial Engineering, METU

Examining Committee Members:

Prof. Dr. Meral Azizoğlu
Industrial Engineering, METU

Assist. Prof. Dr. Mustafa Kemal Tural
Industrial Engineering, METU

Assoc. Prof. Dr. İsmail S. Bakal
Industrial Engineering, METU

Assist. Prof. Dr. Özgen Karaer
Industrial Engineering, METU

Assoc. Prof. Dr. Babek Erdebilli
Industrial Engineering, Ankara Yıldırım Beyazıt University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Melda Kevser Akgün

Signature :

iv

ABSTRACT

K-STEP BETWEENNESS CENTRALITY

Akgün, Melda Kevser

M.S., Department of Industrial Engineering

Supervisor: Assist. Prof. Dr. Mustafa Kemal Tural

August 2019, 90 pages

The notions of betweenness centrality (BC) and its extension group betweenness cen-

trality (GBC) are widely used in social network analyses. We introduce variants of

them; namely, the k-step BC and k-step GBC. The k-step GBC of a group of vertices

in a network is a measure of the likelihood that at least one group member will get

the information communicated between a randomly chosen pair of vertices through

a randomly chosen shortest path within the first k steps of the start of the commu-

nication. The k-step GBC of a single vertex is the k-step BC of that vertex. The

introduced centrality measures may find uses in applications where it is important

or critical to obtain the information within a fixed time of the start of the commu-

nication. For the introduced centrality measures, we propose an algorithm that can

compute successively the k-step GBC of several groups of vertices. Moreover, we

propose a mixed integer programming formulation to compute the group that has the

highest k-step GBC value and a heuristic approach to compute a group of vertices

whose k-step GBC value is high. The performances of the proposed algorithms are

evaluated through computational experiments on real and randomly generated net-

works.

v

Keywords: Betweenness centrality, Group betweenness, Network analysis, Social

networks, k-step betweenness

vi

ÖZ

K-ADIM ARASINDALIK MERKEZİLİĞİ

Akgün, Melda Kevser

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Mustafa Kemal Tural

Ağustos 2019 , 90 sayfa

Arasındalık merkeziliği ve onun bir türevi olan grup arasındalık merkeziliği sosyal

ağların analizinde yaygın olarak kullanılmaktadır. Bu çalışmada, onların türevleri

olan k-adım arasındalık merkeziliği ve k-adım grup arasındalık merkeziliği tanıtıl-

maktadır. Bir ağdaki bir grup düğümün k-adım grup arasındalık merkeziliği, rastgele

seçilen bir çift düğüm arasında rastgele seçilen bir en kısa yol üzerinden iletilen bilgi-

nin, grup üyelerinden en az bir tanesine iletişim başladıktan sonra ilk k adımda ulaş-

ması olasılığının ölçütüdür. Tek bir düğümün k-adım grup arasındalık merkeziliği, o

düğümün k-adım arasındalık merkeziliğidir. Tanıtılan merkezilik ölçütü, iletişim baş-

langıcından itibaren belirli bir sürede bilgiye ulaşılmasının kritik ya da önemli olduğu

durumlarda faydalı olabilir. Tanıtılan merkezilik ölçütleri için, alt kümelerin k-adım

grup arasındalık merkeziliğini art arda hesaplayan bir algoritma öneriyoruz. Ayrıca

k-adım grup arasındalık merkeziliği en yüksek grubu bulmak için bir tam sayılı prog-

ramlama modeli ve k-adım grup arasındalık merkeziliği yüksek olan bir grup bulmak

için bir sezgisel yaklaşım öneriyoruz. Önerilen algoritmaların performansları, gerçek

ve rastgele üretilen ağlar üzerinde değerlendirilmiştir.

vii

Anahtar Kelimeler: Arasındalık merkeziliği, Grup arasındalık merkeziliği, Ağ analizi,

Sosyal ağlar, k-adım arasındalık merkeziliği

viii

To my family..

ix

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Assist. Prof. Dr. Mustafa

Kemal Tural for his endless support, and excellent guidance during my MS study. I

am really grateful for his time and patience. I learned a lot from him about how to

conduct research, and it was a big honor for me to work with him.

I would like to thank the examining committee members of my thesis Prof. Dr. Meral

Azizoğlu, Assoc. Prof. Dr. İsmail S. Bakal, Assist. Prof. Dr. Özgen Karaer, and

Assoc. Prof. Dr. Babek Erdebilli for their valuable feedback.

I wish to thank my parents for their support. I feel very lucky for being an MS

student at Middle East Technical University, Industrial Engineering Department. It

was a great experience for me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xviii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 5

2.1 Social Network Analysis . 5

2.2 Centrality Concepts . 6

2.2.1 Some Variants of Centrality 7

2.2.2 Betweenness Centrality . 9

2.2.3 Group Betweenness Centrality 12

3 NOTATION AND PROBLEM DESCRIPTION 15

4 SOLUTION METHOD . 21

4.1 An Algorithm to Compute the k-step Group Betweenness Centrality . 21

xi

5 ILLUSTRATIVE EXAMPLE . 27

6 COMPUTATIONAL EXPERIMENTS . 31

6.1 The Will57 Network . 31

6.2 Cheminformatics Networks . 38

6.3 Random Networks . 42

6.3.1 Erdös-Renyi Networks . 42

6.3.2 Scale-free Networks . 48

6.4 Large Scale Networks . 54

7 ALTERNATIVE SOLUTION METHODS 57

7.1 Modeling by Mixed Integer Programs 58

7.2 An Approximation Algorithm to Compute the k-step Group Between-
ness Centrality . 60

7.3 Computational Experiments . 62

7.3.1 Real-life Networks . 62

7.3.2 Random Networks . 65

7.3.3 Large-Scale Networks . 68

8 CONCLUSION AND FUTURE STUDY DIRECTIONS 71

REFERENCES . 73

APPENDICES

A APPENDIX . 81

A.1 Single-source Shortest-paths Problem 81

A.2 Path List Creating Algorithm . 82

A.3 Absolute and Relative Differences on Erdös Renyi Graphs 83

xii

A.4 Distribution of the NGBk(C) Values of All Subsets C of V on
Randomly Generated Graphs . 89

xiii

LIST OF TABLES

TABLES

Table 4.1 The preprocessing and the total computational time (in seconds) to

find a group of size g with the highest GBC using the algorithms proposed

by Brandes and Puzis et al. on the Hi-tech network 22

Table 6.1 NGBk∗
g (G) for different k and g values 33

Table 6.2 NGBk(C∗g) for different k and g values 33

Table 6.3 Average, median, and maximum NGBk(C) of all subsets C of V

of size 3 on the Will57 network . 36

Table 6.4 The preprocessing and the total computational time (in s) to com-

pute NGBk(C) values for all possible groups C of size g on the Will57

network . 37

Table 6.5 Some properties of the considered 10 cheminformatics networks. . . 38

Table 6.6 NGBk∗
g (G) and NGBk(C∗g) for different k and g values on the

considered 10 cheminformatics networks 40

Table 6.7 Some properties of the randomly generated Erdös-Renyi graphs . . . 42

Table 6.8 Average NGBk∗
g (G) for different k and g values on 50 randomly

generated Erdös-Renyi graphs of order 20 44

Table 6.9 Average NGBk∗
g (G) for different k and g values on 50 randomly

generated Erdös-Renyi graphs of order 40 45

xiv

Table 6.10 Average NGBk∗
g (G) for different k and g values on 50 randomly

generated Erdös-Renyi graphs of order 60 46

Table 6.11 The preprocessing and total computational time (in s) to compute

NGBk(C) values for all possible groups C of size g on Erdös-Renyi

graphs (ERn,p) . 48

Table 6.12 Some properties of the randomly generated preferential attachment

graphs . 49

Table 6.13 Average NGBk∗
g (G) for different k and g values on 50 randomly

generated scale-free networks of order 20 and 40 50

Table 6.14 Average NGBk∗
g (G) for different k and g values on 50 randomly

generated scale-free networks of order 60 51

Table 6.15 The preprocessing and total computational time (in s) to compute

NGBk(C) values for all possible groups C of size g on preferential at-

tachment graphs (PAn,e) . 53

Table 6.16 The preprocessing and total computational time (in s) to compute

NGBk(C) values for randomly selected 10000 groups C of size g on the

Facebook network . 55

Table 6.17 The preprocessing and total computational time (in s) to compute

NGBk(C) values for all possible subsets C of the 20 preselected vertices

of size g on the Facebook network . 56

Table 7.1 Some properties of the considered real-life networks. 62

Table 7.2 Total time (in s) to compute the group of size g having the largest

k-step GBC value and total time (in s) to find a group whose k-step GBC

value is high for a given group of size g on real-life networks 63

Table 7.3 Optimum k-step GBC value (NGBk∗
g (G)), k-step GBC value of the

group of verticesM returned by Algorithm 2 (NGBk
g (M)) and Optimality

GAP for different k and g values on real-life networks 64

xv

Table 7.4 Some properties the randomly generated Erdös-Renyi graphs 65

Table 7.5 Total time (in s) to compute the group of size g having the largest

k-step GBC value and total time (in s) to find a group whose k-step GBC

value is high for a given group of size g on randomly generated Erdös-

Renyi graphs . 66

Table 7.6 Optimum k-step GBC value (NGBk∗
g (G)), k-step GBC value of the

group of verticesM returned by Algorithm 2 (NGBk
g (M)) and Optimality

GAP for different k and g values on Erdös-Renyi graphs. 67

Table 7.7 The preprocessing and total computational time (in s) to find a group

with high NGBk(M) value of size g on the Facebook network 68

Table 7.8 The preprocessing and total computational time (in s) to find a group

with high NGBk(M) value of size g on the soc-anybeat network 69

Table A.1 The maximum absolute differences betweenNGBk∗
g (G) andNGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs

of order 20 . 83

Table A.2 The maximum relative differences betweenNGBk∗
g (G) andNGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs

of order 20 . 84

Table A.3 The maximum absolute differences betweenNGBk∗
g (G) andNGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs

of order 40 . 85

Table A.4 The maximum relative differences betweenNGBk∗
g (G) andNGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs

of order 40 . 86

Table A.5 The maximum absolute differences betweenNGBk∗
g (G) andNGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs

of order 60 . 87

xvi

Table A.6 The maximum relative differences betweenNGBk∗
g (G) andNGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs

of order 60 . 88

xvii

LIST OF FIGURES

FIGURES

Figure 2.1 A graph of order n = 19 . 11

Figure 5.1 A graph of order n = 6 . 27

Figure 6.1 The Will57 network . 32

Figure 6.2 Groups of size 2 maximizing the k-step normalized GBC for

different k values on the Will57 network 35

Figure 6.3 Distribution of the NGBk(C) values of all subsets C of V of

size 3 on the Will57 network . 36

Figure 6.4 Change in NGBk∗
g (G) and NGBk(C∗g) for different k and g

values for the network g104 . 41

Figure A.1 Distribution of the NGBk(C) values of all subsets C of V for

different k and g values on the graph ER40,01 89

Figure A.2 Distribution of the NGBk(C) values of all subsets C of V for

different k and g values on the graph PA40,2 90

xviii

LIST OF ABBREVIATIONS

BC Betweenness centrality

GBC Group betweenness centrality

NB Normalized betweenness centrality

NGB Normalized group betweenness centrality

CC Closeness centrality

DC Degree centrality

EC Eigenvector centrality

MIP Mixed integer programming

LP Linear programming

SSSP Single source shortest path

SNA Social network analysis

xix

xx

CHAPTER 1

INTRODUCTION

A social network consists of a set of vertices representing actors and a set of edges

representing relations between them. The concept of centrality plays a crucial role in

the analyses of social networks. Several centrality measures have been proposed in

the literature to determine important actors in a social network. See [1] for a review

of different centrality measures and their application areas.

Some of the centrality measures evaluate the importance of an actor as a function

of the number of times s/he acts as a bridge along the shortest paths connecting dif-

ferent vertices of the network, e.g., the stress and betweenness centralities [1]. The

betweenness centrality (BC), one of the most commonly used centrality measures, is

formally defined for the first time by Freeman [2]. The BC of a vertex or an actor v, is

defined as the total fraction of the shortest paths between vertex pairs that use or pass

through v. The normalized version of the BC of an actor (see Chapter 2 for a formal

definition) can be interpreted as the probability that the actor gets the information that

is communicated between a pair of vertices chosen uniformly at random through one

of the shortest paths connecting them. According to Freeman [3], an actor having a

high betweenness centrality value has the potential to control the communication tak-

ing place through the network by withholding, distorting, or maintaining information

in transition.

Until the study of Brandes [4], algorithms computing the BC of all vertices of a

network had a running time of O(n3). Brandes introduces the notion of dependency

which allows him to design an algorithm that can compute the same in O(nm) time.

The notion of the BC of a vertex has also been generalized to measure the centrality

1

of groups of vertices. Given a group of vertices C, the co-betweenness centrality of C

introduced in [5], measures the likelihood that the information that is communicated

between two randomly chosen vertices through a shortest path will pass through all

the vertices in C. The group betweenness centrality (GBC), introduced in [6], on the

other hand measures the likelihood that the information will pass through at least one

vertex in C.

The problem of finding a group of vertices of a given size g in a network that has the

highest GBC is in general an NP-hard problem [7]. Brandes in [4] and Puzis et al. in

[8] propose algorithms to compute the GBC of any given group of vertices. The latter

algorithm can compute the GBC of a given group of vertices within reasonable times

even for large scale networks. More details about these algorithms can be found in

Chapter 4. Recently, Veremyev et al. [9] propose a mixed integer linear programming

formulation for the problem of finding a group of g vertices in a network that has

the highest GBC. This formulation, however, is not suited for large scale networks.

Moreover, Puzis et al. [10] propose a 1 − 1/e approximation algorithm for the same

problem.

In several applications, it is important or critical to obtain the information within a

fixed time of the start of the communication in the network. For example, consider

a criminal network that is going to be kept under surveillance via some listening de-

vices that are to be placed at certain vertices of the network. Where should these

devices be located to maximize the probability that the information that is going to

be communicated between pairs of vertices of this network will be listened by the de-

vices within the first k steps of the start of the communication? Similarly, in detecting

and blocking the spread of malware in computer communication networks, rumors in

social networks, or viruses in contact networks, it may be desirable to find the optimal

locations of monitoring devices to get the information in transition (malware, rumors,

or viruses) within a given time limit.

In this thesis, we introduce and study the k-step betweenness and group betweenness

centralities which are variants of the classical betweenness and group betweenness

centralities, respectively. The normalized version of the k-step BC of a vertex mea-

sures the probability that the vertex will get the information communicated between

2

a random pair of vertices through one of the shortest paths within the first k steps of

the start of the communication. The k-step GBC of a group of vertices, on the other

hand, measures how likely it is that at least one vertex in the group will get the infor-

mation within the first k steps. Even though time constrained influence maximization

problems have been studied in the literature, see e.g., [11, 12], no time constrained

version of the BC has been proposed or studied to the knowledge of the authors.

Consider, for example, a computer, transportation, or a social network where short-

est path routing is employed. The BC of a vertex in such a network measures the

likelihood that the vertex will act as a bridge along the shortest path between two

vertices in this network. In other words, BC quantifies the extent of the control the

vertex has on communications in the network. The BC of a vertex, on the other hand,

does not tell us when the vertex will get what is being communicated. The measure

proposed in this study, namely the k-step BC, quantifies the likelihood that the vertex

will get what is being communicated within at most k steps (hops) of the start of the

communication. Put it differently, the k-step BC of a vertex is a measure assessing

the possibility that the vertex will act as a bridge along the shortest paths controlling

communication/propagation early after (within at most k hops) the start of communi-

cation/propagation. When the value of k is large enough, the classical BC of a vertex

agrees with the k-step BC of the vertex. The k-step BC and its extension to a group of

vertices, namely the k-step GBC, can be applied to any setting where the classical be-

tweenness centrality can be applied and where it is important or critical to obtain what

is being communicated in the network early after the start of the communication. As

examples, the proposed measures can be applied in transportation networks for early

warning of severe weather conditions (through road side equipment), in criminal net-

works for early detection/prevention of a terrorist attack, in computer networks for

early control of information, viruses, or malware.

The organization of the next chapters is as follows. In Chapter 2, a literature review

is presented, and the concepts of the BC and GBC are explained. In Chapter 3, the

notation used throughout the thesis is given, and the k-step BC and k-step GBC are

introduced. In Chapter 4, proposed algorithm to compute the k-step GBC value for

a given group size g is provided. An illustrative example detailing the steps to com-

pute the k-step group betweenness centrality of a single group is provided in Chapter

3

5. In Chapter 6, the results of the computational experiments performed on randomly

generated and real-life networks are provided. In Chapter 7, alternative solution meth-

ods; namely, a mixed integer programming formulation and a heuristic approach are

provided. Finally, conclusion and future research directions are given in Chapter 8.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Social Network Analysis

A social network consists of a set of vertices representing actors and a set of edges

representing relations between them. Actors can be people, organizations, teams etc.,

and the relationship could be any kind of interaction, such as friendship, co-working

relation, liking, trust, and kinship.

Recently, with the increase of mobile applications and sites like Facebook, LinkedIn,

and Instagram social networks have become an important part of daily life for lots of

people. This increasing interest resulted in the curiosity to investigate, evaluate, and

identify social networks. Social network analysis (SNA) is an approach to investigate

and visualize network structure within a social context. SNA helps to understand

connections and behavior of actors, such as who is connected to whom, and to what

extent, how information moves, and which actors control the information flow [13–

15].

SNA is firstly introduced to investigate sociology and anthropology, but later it is used

to analyze networks in several fields. Levin and Cross [16] use SNA to investigate

how the strength of the ties affects knowledge transmission. They observe that strong

ties have a higher capability to transfer important knowledge, and weak ties tend to

transfer non-redundant knowledge and act as brokers between strong ties. Meltzer et

al. [17] use the SNA measures to define principles for constituting a clinical improve-

ment team of high quality. Lie et al. [18] investigate the effect of the cooperation in

a virtual learning group, and propose SNA as an approach to define problems in an

interactive education system, and improve efficiency. Korkmaz and Singh [19] inves-

5

tigate designing an effective team in the architecture, engineering, and construction

industry. They use SNA to evaluate team integrity. Di Marco et al. use SNA in [20]

to investigate the role of the team member who acts as a bridge by comparing two

design project teams in India. Both of the teams consist of Indian and Americans, but

in one of them, there is an Indian member who lived in the United States.

The concept of centrality plays a crucial role in SNA. For example, according to

Ruan et al. [21] position of the vertices are important representatives for networks,

and centrality is useful to guess the importance of vertices. If a network has high

centrality values, it doesn’t have distributed configurations, and a small proportion of

all vertices can control most of the flows in the network [22, 23]. In a social network

which has high centrality, a great majority of the vertices are connected with central

vertices [24]. Therefore, actors with high centrality value are more powerful to affect

others.

Several centrality measures have been proposed in the literature to determine impor-

tant actors and essential transactions in social networks. Now, we explain the concept

of centrality and its application areas.

2.2 Centrality Concepts

The term “centrality” is introduced by Bavelas in 1948 [25]. He uses it to investigate

communications in small groups and claims that structural centrality of a vertex is

correlated with the influence of that vertex on the other vertices in the group. Leavitt

at al. [26] report study of Bavelas in detail, and they reach the conclusion that high

centrality means high ability to problem-solving, leadership, and high job satisfaction.

Studies of Bavelas and Leavitt are pioneers of lots of experimental and theoretical

studies on centrality metrics.

Cohn and Marriott [27] use the term centrality to investigate political integration in the

diversity of Indian social life. They question how a multiracial country could be ad-

ministered, and they conclude that network centers hold important positions to inter-

connect Indian society. Pitts [28] analyzes the role of centrality on paths development

in medieval cities and reconstruction of the transportation system. Beauchamp [29]

6

discusses limitations of centrality measure proposed by Bavelas [25], and improves

centrality index. He claims that the association of sub-units based on centrality could

optimize the organization. The term has been used by Czepiel in [30] to investigate

convection of the technological innovation in the steel industry. Rogers [31] studies

on types of centrality in inter-organizational relations. Coles uses centrality in [32]

as a social network analysis technique to investigate the criminal network. Bruun

and Brewe [33] investigate the relationship between students’ communication and

performance by using centrality metric.

The term centrality is first proposed for social network analysis. However, it has been

used for so many applications such as anthropology, biology, traffic, facility loca-

tion problem, highway-node routing, web page ranking, or prediction of polls. Even

though there are different comments about its definition and method of measurement,

it is a general idea that centrality is an important measure to identify the structure of

networks [3].

2.2.1 Some Variants of Centrality

There are various centrality definitions in the literature to determine the most im-

portant and effective vertex in the network based on distance, feedback, path count,

and so on. Four main centrality measures which have been widely used are degree,

closeness, eigenvector, and betweenness centrality.

For the following definitions consider a connected graph G = (V,E) with |V | = n

vertices and |E| = m edges, and {s, t, v} ∈ V .

• Degree Centrality:

This centrality measure is firstly introduced by Shaw [34], and long after Niem-

inen [35] offers a formal definition. Freeman [2] formulates a mathematical

model to define degree centrality which is based on the links connected to a

vertex. Despite its simplicity, this centrality measure is still pretty useful in

applications. It is used for facility location problems. For directed networks

indegree or outdegree could be used according to the direction of the link be-

tween related vertices, but using the formulation by this way is rare in real-life

7

applications. The degree centrality of a vertex v, denoted by DC(v), is defined

as

DC(v) = deg(v), (2.1)

where deg(v) is the number of vertices adjacent to v.

Calculation of degree centrality has O(m) time complexity for all vertices [1].

• Closeness Centrality:

The term closeness centrality is firstly used by Bavelas [25], and is precisely

defined by Sabidussi [36]. The closeness centrality of a vertex is the recipro-

cal of the sum of the distances between the vertex and all other vertices. It

is used for service facility location problems. It takes into consideration the

indirect relationship between vertices, unlike the degree centrality. This cen-

trality measure is firstly defined for connected and unweighted networks, but

Newman [37] generalizes formulation for weighted networks. The closeness

centrality of a vertex v, denoted by CC(v), is defined as

CC(v) =
1∑

s∈V d(s, v)
, (2.2)

where d(s, v) is the distance between s and v.

Calculation of closeness centrality has O(nm) time complexity for all vertices

for unweighted networks [4].

• Eigenvector Centrality:

Eigenvector centrality is introduced by Bonacich in [38], he explains unique

properties of the eigenvector centrality in a followup paper [39]. Eigenvec-

tor centrality takes into consideration properties of neighborhoods, unlike the

degree centrality, so centrality of a vertex is evaluated according to the central-

ities of its adjacent vertices. So, connections with highly central vertices pro-

vide more contribution to the centrality of the vertex compared to connections

with less central ones. It can be applied for disconnected networks by con-

sidering every connected component as a separate graph. It is also applicable

8

on weighted graphs, but there is no consensus about its interpretation. PageR-

ank is the most familiar application of the eigenvector centrality. Google uses

PageRank to rank website pages according to importance, it gives each page a

score based on the count of received links from other pages. The eigenvector

centrality of a vertex v, denoted by EC(v), is defined as

EC(v) =
1

λ

∑
s∈N(v)

EC(s), (2.3)

where λ is a constant.

Calculation of eigenvector centrality has O(n2) time complexity for all vertices

[1].

• Betweenness Centrality:

One of the most featured centrality measures is betweenness centrality. In this

study, we focus on betweenness centrality, group betweenness centrality, and a

derivation that we introduce in this thesis, k-step BC and k-step GBC. Hence,

we explain the terms BC and GBC in more detail below and we give formal

definitions in Chapter 3.

2.2.2 Betweenness Centrality

Betweenness centrality, one of the most commonly used centrality measures, is for-

mally defined for the first time by Freeman [2]. The BC of a vertex v, is defined as the

total fraction of the shortest paths between vertex pairs that use or pass through v. The

normalized version of the BC of a vertex can be interpreted as the probability that the

vertex gets the information that is communicated between a pair of vertices chosen

uniformly at random through one of the shortest paths connecting them. According

to Freeman [3], an actor having a high betweenness centrality value has the poten-

tial to control the communication taking place through the network by withholding,

distorting, or maintaining information in transition. A formal definition and details

about the calculation of BC are presented in Chapter 3.

Yan et al. [40] use BC to define a new routing strategy to decrease traffic conges-

tion. Also, Jayaweera et al. use BC in [41] to define locations which mostly affect

9

traffic congestion in Sri Lanka. Newman and Girvan use BC [42] to identify a new

network clustering algorithm in social and biological networks. Liu et al. [43] use

degree, closeness, and betweenness centrality measures and ranking methods to eval-

uate co-authorship of JCDL research community, and they show that performance of

betweenness centrality is better than other centrality measures, and correlated with

ranking methods. Liu et al. use BC as a statistical tool to construct a weighted

network of research areas in [44]. Sparrow [45] uses degree, closeness, and between-

ness centrality to investigate the relationships and security holes in criminal networks.

Grunspan et al. [46] use BC to investigate the relationship between students and the

effect of the relationships on the learning outcomes. Magaia et al. [47] investigate

the usage of the BC to determine the appropriate vertex to forward messages in delay

tolerant networks.

Different variants of BC have been proposed in the literature [48]. The bounded-

distance BC proposed by Borgatti and Everett [49] only considers shortest paths

whose lengths are less than or equal to some positive integer K with the idea that

long paths are seldom used for communication of information. Distance-scaled BC

is another variant of the BC where the fraction of the shortest paths between a pair

of vertices passing through an actor is divided by the length of the shortest paths to

decrease the contribution of long paths to the BC of the actor [49]. Stress BC counts

all shortest paths controlled by the considered vertex [48, 50]. Proximal source/tar-

get BC is introduced based on the idea that next-to-last vertex in the shortest path

could be considered as representative of total control over the connection through this

path [49]. Other centrality measures related to and inspired by the BC include the

game-theoretic BC [51], the random walk BC [52], α-weight BC [53], Canonical-

path BC [54], and the evacuation BC [55]. Grassi et al. [56] test several variants of

BC in identifying leaders in criminal networks.

Most of the studies on BC in the literature, including this one, consider static net-

works. Some recent studies consider the problem of updating the BC in dynamic

networks, see e.g., [57–59].

Brandes [4] proposes an algorithm which hasO(nm) time complexity to compute BC

values of all vertices in the graph. This exact algorithm necessitates to solve single-

10

source shortest path problem for each vertex in the graph and is computationally

expensive for large scale networks. Therefore, some approximation algorithms are

proposed in the literature which consider random sampling, see e.g., [60], [54], [61],

adaptive sampling [62], and local techniques [63].

In this chapter, we present the mathematical definition of four classical centrality

measures; namely, degree centrality, closeness centrality, eigenvector centrality, and

betweenness centrality. Now, we investigate the optimum vertices for each of them

on a graph G = (V,E) of order 19 given in Figure 2.1.

Figure 2.1: A graph of order n = 19

In G, the vertex with the highest betweenness centrality value is 8, the vertex with the

highest closeness centrality value is 9, the vertex with the highest eigenvector cen-

trality is 4, and the vertices with the highest degree centrality are 4 and 10. Consider

vertices 4 and 10. Even though they have the same degree centrality values, vertex 4

has higher eigenvector centrality. This example clearly shows that different centrality

measures could identify different vertices as the most central one.

11

2.2.3 Group Betweenness Centrality

The notion of the BC of a vertex has also been generalized to measure the centrality

of groups of vertices. Given a group of vertices C, the co-betweenness centrality

of C introduced by Kolaczky et al. [5], measures the likelihood that the information

that is communicated between two randomly chosen vertices through a shortest path

will pass through all the vertices in C. The group betweenness centrality (GBC),

introduced by Everett and Borgatti in [6], on the other hand, measures the likelihood

that the information will pass through at least one vertex in C.

In some studies, additional cohesiveness properties are imposed on the group mem-

bers. For example, finding the most central (in terms of the GBC) group of vertices

that form a κ-club is considered in [9], where a group of vertices form a κ-club if

the distance between any two members of the group is less than or equal to κ. Simi-

larly, [9] and [64] study the problem of finding a clique with the highest GBC, where

a group of vertices form a clique if they form a 1-club.

GBC has been used in several applications. Ni et al. [65] use the GBC to investigate

the role of disciplines in journal co-citation networks. Kchiche and Kamoun [66]

use GBC to increase the performance of deployment strategies of roadside units in

vehicular ad hoc networks. Puzis et al. [67] investigate the problem of finding the

optimal locations for traffic monitoring units based on GBC. Tubi et al. [68] propose

a new technique to prevent or slow down the propagation of computer worms and

viruses in social networks by using the GBC. Moreover, Puzis et al. [69] propose a

decision support tool that identifies the locations of malware filtering devices using

the GBC to detect and block threat in large-scale communication networks. Guan et

al. [70] propose a GBC-based cache location selection algorithm in a content-centric

network to maximize cache delivery performance. One of the performance measures

used is related to the number of hops (i.e., number of steps) it takes a content to reach

its destination.

The problem of finding a group of vertices of a given size g in a network that has the

highest GBC is in general an NP-hard problem [7]. Brandes [4] and Puzis et al. [8]

propose algorithms to compute the GBC of any given group of vertices. The latter

12

algorithm can compute the GBC of a given group of vertices within reasonable times

even for large scale networks. Recently, Veremyev et al. [9] propose a mixed integer

linear programming formulation for the problem of finding a group of g vertices in

a network that has the highest GBC. This formulation, however, is not suited for

large scale networks. More details about these algorithms can be found in Chapter 4

Moreover, Dolev et al. [10] propose a 1− 1/e approximation algorithm for the same

problem.

13

14

CHAPTER 3

NOTATION AND PROBLEM DESCRIPTION

Let G = (V,E) be a simple, unweighted, undirected, and connected graph with

|V | = n vertices and |E| = m edges. Two vertices s and t in V are said to be

adjacent if {s, t} ∈ E. A sequence of distinct vertices s0, s1, . . . , s` is said to be a

path of length ` joining s0 to s` if the successive vertices in the sequence are adjacent.

For any two vertices s and t in V , the distance between them is denoted by d(s, t) and

is defined as the length of a shortest path joining s to t. We denote by σst the number

of shortest paths joining s to t. d(s, s) and σss are defined to be 0 and 1, respectively,

for any s ∈ V . Moreover, we have that d(s, t) = d(t, s) and σst = σts for any two

vertices s and t in V . We denote by d and σ the distance and sigma matrices defined as

d = [d(s, t)]s,t∈V and σ = [σst]s,t∈V . Note that both of these matrices are symmetric

and can be computed in O(nm) time [4].

For any graph G = (V,E), md(G) represents the maximum possible distance in G,

i.e., md(G) = maxs,t∈V d(s, t). For any three vertices s, t, v ∈ V , we denote by

σst(v) the number of shortest paths joining s to t that pass through v. σst(v) can be

calculated as in Equation 3.1.

σst(v) =

σsvσvt, if d(s, t) = d(s, v) + d(v, t)

0, otherwise
(3.1)

For any three vertices s, t, v ∈ V and any positive integer k, we denote by σkst(v) the

number of shortest paths joining s to t that pass through v within the first k steps of

15

the path. More formally we have that

σkst(v) =

σsvσvt, if d(s, t) = d(s, v) + d(v, t)& d(s, v) ≤ k

0, otherwise.
(3.2)

We denote by δs(v) the dependency of vertex s on vertex v which is defined as

δs(v) =
∑

t∈V |t6=s

σst(v)

σst
. (3.3)

This notion is introduced by Brandes [4]. In a similar manner, we introduce the k-step

dependency of s on v as

δks (v) =
∑

t∈V |t6=s

σkst(v)

σst
. (3.4)

Note that if d(s, v) is less than or equal to k, then it holds that δks (v) = δs(v). Oth-

erwise, we have that δks (v) = 0. We denote by δ and δk the dependency and k-step

dependency matrices defined as δ = [δs(v)]s,v∈V and δk = [δks (v)]s,v∈V . Note in this

case that these matrices need not be symmetric. Brandes [4] shows that δs(v) values

can be computed recursively in O(nm) time for all s, v ∈ V . Therefore the k-step

dependency matrix δk can also be computed in O(nm) time.

Now we explain betweenness and group betweenness centralities. We then introduce

the k-step BC. Given a graph G = (V,E) and a vertex v ∈ V , the BC of v represents

the total control v has on pairwise communications between every pair of distinct

vertices. It is assumed that the communication between a pair of vertices is realized

through one of the shortest paths connecting them (selected uniformly at random).

More formally, the BC of a vertex v, denoted by B(v), is defined as

B(v) =
∑

s,t∈V |s 6=t

σst(v)

σst
. (3.5)

A direct utilization of Equation 3.5 gives us an O(n3) time algorithm for the compu-

16

tation of B(v) for every v ∈ V . Using the dependencies, we can write B(v) as

B(v) =
∑
s∈V

δs(v). (3.6)

As shown by Brandes [4], computing the dependency matrix δ in O(nm) time fol-

lowed by the computation of all BCs according to Equation 3.6 in O(n2) time results

in an O(nm) time algorithm to compute all BC values.

Betweenness centrality also has a probabilistic interpretation. B(v)/
(
2
(|V |

2

))
rep-

resents the probability that the information sent from a vertex s chosen uniformly at

random from V to a different vertex t chosen uniformly at random from V \{s} passes

through v assuming that the information flows through one of the shortest paths join-

ing s to t selected uniformly at random. We denote this probability by NB(v) and

call it the normalized BC of v. In summary, NB(v) represents the probability that v

gets the information sent through a randomly chosen shortest path between randomly

chosen vertices.

Betweenness centrality can be extended to measure the control a group of vertices

has on information flows through shortest paths between pairs of vertices. Let C be a

subset of V . The GBC of C is defined as

GB(C) =
∑

s,t∈V |s6=t

σst(C)

σst
, (3.7)

where σst(C) is the number of shortest paths joining s to t that pass through at least

one vertex in C. Defining

δs(C) =
∑

t∈V |t6=s

σst(C)

σst
, (3.8)

GB(C) can be calculated as

GB(C) =
∑
s∈V

δs(C). (3.9)

In a similar manner, the normalized GBC of a group of vertices C, denoted by

17

NGB(C), is obtained by dividing GB(C) by 2
(|V |

2

)
and is interpreted as the proba-

bility that the information sent from a vertex s chosen uniformly at random from V to

a different vertex t chosen uniformly at random from V \ {s} passes through at least

one vertex in C assuming that the information flows through one of the shortest paths

joining s to t selected uniformly at random

In this thesis, we introduce a new BC measure called the k-step BC. BC measures how

much control a vertex has on communications over a network. In several applications,

it is not only important to get the information communicated but also the time when it

is obtained. The k-step BC measures how likely it is for a vertex to get the information

within the first k steps of the start of the communication. Similarly, the k-step GBC of

a group of vertices measures the probability (after normalization) that the information

is obtained by at least one group member within the first k steps of the start of the

communication. From now on, we focus on the k-step GBC of groups of vertices.

When the group size is one, this is translated into the k-step BC of a single vertex.

We denote by σkst(C) the total number of shortest paths joining s to t that pass through

at least one vertex in C within the first k steps of the path. The k-step dependency of

vertex s on group C, denoted by δks (C), is defined as

δks (C) =
∑

t∈V |t6=s

σkst(C)

σst
. (3.10)

After the relevant notation is introduced, we define GBk(C) mathematically as

GBk(C) =
∑

s,t∈V |s 6=t

σkst(C)

σst
(3.11)

which can also be computed using k-step dependencies as

GBk(C) =
∑
s∈V

δks (C). (3.12)

18

For any positive integer k, we have that

GBk(C) ≤ GBk+1(C) ≤ GBmd(G)(C) = GB(C). (3.13)

For any group C, the smallest positive integer k satisfying GBk(C) = GB(C) is

called as the saturation number of C and is denoted by s(C). Dividing GBk(C) by

2
(|V |

2

)
, we obtain the normalized k-step GBC ofC denoted byNGBk(C). NGBk(C)

represents the probability that at least one element of C gets the information, which

is sent through a randomly chosen shortest path between randomly chosen pair of

distinct vertices, within the first k steps of the start of the communication.

For a given graph G = (V,E), group size g, and positive integer k, we denote by

NGBk∗
g (G) the maximum possible normalized k-step GBC value of a subset of V of

size g. Mathematically, we have that

NGBk∗
g (G) = max

C⊆V :|C|=g
NGBk(C). (3.14)

For a given k and g, the group C of size g such that NGBk(C) = NGBk∗
g (G) is

denoted by Ck∗
g .

Similarly, we represent the maximum possible normalized GBC value of a subset of

V of size g as NGB∗g(G) which can be calculated as

NGB∗g(G) = max
C⊆V :|C|=g

NGB(C). (3.15)

For a given g, the group C of size g such that NGB(C) = NGB∗g(G) is denoted by

C∗g .

19

20

CHAPTER 4

SOLUTION METHOD

In this chapter, we aim to develop an algorithm to compute the k-step GBC value

for a given subset C of size g. Our aim here is to be able to compute the k-step

GBC value of a large number of subsets of vertices. In real life social networks,

there are tens of thousands of vertices and exact solution methods to find the group

with the highest k-step GBC (or the classical GBC) value are not applicable, see

e.g., the limitations of the integer programming formulation proposed in Chapter 7.

The algorithm developed here can be used together with a sampling algorithm (e.g.,

[60], [54], [62]) that samples potentially good groups of vertices (in terms of the k-

step GBC value). As the distribution of the (k-step) GBC values is right-skewed for

several classes of graphs, one may need to sample several groups of vertices in order

to find a group with a high (k-step) GBC value.

4.1 An Algorithm to Compute the k-step Group Betweenness Centrality

Brandes [4] proposes a method that computes the GBC of a single group in O(nm)

time. In cases where one wants to compute the GBC of a large number of groups, this

method may not be very practical. Puzis et al. [8] propose another algorithm for the

computation of the GBC. Assuming that the group sizes are equal to g, the algorithm

has a preprocessing step that takesO(n3) time followed by GBC computations taking

O(g3) time for each group. The time complexities of the algorithms of Brandes and

Puzis et al. to compute the GBC of ` many groups each of size g is O(`nm) and

O(n3 + `g3), respectively. When there are a large number of GBC computations

and when g � n, the algorithm proposed by Puzis et al. performs better than that

21

proposed by Brandes. Moreover when m = O(n2), i.e., when the graph is dense, the

time complexity of the algorithm of Brandes cannot be better than that of Puzis et al.

for any ` and g values.

We compare the algorithms proposed by Brandes and Puzis et al. on a hi-tech com-

puter firm network G = (V,E) named as Hi-tech Network [71] which has 36 vertices

and 91 edges. The network contains the friendship ties among the employees and

it’s giant connected part has 33 vertices and 91 edges. For different group sizes g,

we enumerate all possible groups of size g and compute the GBC for each of them

using both methods to find the group with the highest GBC value. For each group

size g, the total computation time to compute the GBC of all groups of size g are

given in Table 4.1 for both algorithms. For the algorithm proposed by Puzis et al., the

preprocessing step takes less than 1 second and the group of size 6 with the highest

GBC is computed within 47.63 seconds. On the other hand, it takes about 26 hours

for the algorithm proposed by Brandes to evaluate the GBC of all groups of size 6.

As the algorithm proposed by Puzis et al. is much faster, we utilize it as a backbone

to develop an algorithm for the successive k-step GBC computations.

Table 4.1: The preprocessing and the total computational time (in seconds) to find a

group of size g with the highest GBC using the algorithms proposed by Brandes and

Puzis et al. on the Hi-tech network

Alg.

g
1 2 3 4 5 6 Prep. Total

Brandes 3.98 64.18 614.08 4477.44 30967.21 93564.43 0.00 129691.33

Puzis 0.00 0.01 0.07 0.74 6.20 47.63 0.14 54.79

* Prep.: Preprocessing time, Total: total computational time, Alg.: Algorithm

The algorithm proposed by Puzis et al. uses the notion of path betweenness centrality.

For an ordered list of vertices L = (x1, x2, . . . , x`), the path betweenness centrality of

L, denoted by PB(L), represents the total fraction of the shortest paths between pairs

of vertices that pass through all of x1, x2, . . . , x` in this order (some other vertices may

be visited in between these vertices). Defining σ̃st(L) as the number of shortest paths

22

joining s to t that pass through all of x1, x2, . . . , x` in this order, we have that

PB(L) =
∑

s,t∈V |s 6=t

σ̃st(L)

σst
. (4.1)

When L is a list of two vertices, say (x, y), we use the notation PB(x, y) for PB(L).

The algorithm proposed by Puzis et al. uses path betweenness centrality of pairs of

vertices only. For an ordered list of two vertices (x, y), we introduce k-step path

betweenness centrality of (x, y), denoted by PBk(x, y). PBk(x, y) represents the

total fraction of shortest paths that pass through x and y in this order both within k

steps and is mathematically defined in Equation 4.2.

PBk(x, y) =
∑

s,t∈V |s 6=t

σ̃kst(x, y)

σst
. (4.2)

Here σ̃kst(x, y) is the total number of shortest paths joining s to t that pass through

first vertex x and then y both within k steps. We can rewrite σ̃kst(x, y) as

σ̃kst(x, y) = σkst(y)
σsy(x)

σsy
. (4.3)

Here σkst(y) is the number of shortest paths joining s to t that pass through y within

the first k steps of the path. We multiply σkst(y) by the fraction of the shortest paths

joining s to y that pass through x to obtain σ̃kst(x, y). When we substitute σ̃kst(x, y) in

Equation 4.2, we get

PBk(x, y) =
∑
s∈V

∑
t∈V |t6=s

σkst(y)

σst

σsy(x)

σsy
, (4.4)

which is simplified to

PBk(x, y) =
∑
s∈V

δks (y)
σsy(x)

σsy
. (4.5)

We define the k-step path betweenness centrality matrix PBk as [PBk]x,y∈V . Using

Equation 4.5, this matrix can be computed in O(n3) time. Note that PBk(x, x) =

23

GBk(x) for any x ∈ V . For any M ⊆ V , PBk
M(x, y) represents the k-step path

betweenness centrality of (x, y) disregarding the shortest paths that pass through any

vertex in M within the first k steps of the path. Mathematically we have

PBk
M(x, y) =

∑
s,t∈V |s6=t

σ̃k,Mst (x, y)

σst
, (4.6)

where σ̃k,Mst (x, y) is the number of shortest paths joining s to t that pass through first

vertex x and then y both within k steps and that do not pass through any vertex in

M within the first k steps. Moreover, we define σMst as the number of shortest paths

joining s to t that do not pass through any vertex in M .

Now, we describe an algorithm that computes the k-step group betweenness centrality

of a group of vertices using path betweenness which is a modification of the algorithm

proposed by Puzis et al. [8] for the computation of the GBC of a group of vertices.

The steps of the algorithm are given in Algorithm 1. The inputs of the algorithm are

a graph G = (V,E), a group of vertices C = {c1, c2, . . . , cg}, and a positive integer k

and the output isGBk(C). Algorithm 1 has a preprocessing step where three matrices

σ, d, and PBk are computed. This step takes O(n3) time and does not depend on the

group size g. During the algorithm, the contributions of elements of C on GBk(C)

are considered one by one between lines 8 and 27. A set M is defined in line 4 which

is initially an empty set. Once their contributions to GBk(C) are considered, the

elements of C are added one by one to M during the algorithm.

We define two g × g matrices σM = [σMxy]x,y∈C and PBk
M = [PBk

M(x, y)]x,y∈C .

Initially in lines 5 and 6, we have that σMxy = σxy and PBk
M(x, y) = PBk(x, y),

∀x, y ∈ C as M is the empty set for now. Moreover GBk(C) is initialized to zero

in line 7 as the contributions of the elements of C are not yet considered. In each

iteration within the for loop between lines 8 and 27, an element of C \ M , say ci,

is taken and its contribution to GBk(C) is considered. This is done in line 9 by the

equation GBk(M ∪ {ci}) = GBk(M) + PBk
M(ci, ci). As M will be updated to

M ∪ {ci}, to be able to determine the contribution of the following elements of C

to GBk(C), the matrix PBk
M has to be updated. For this purpose, we first update

the matrix σM between lines 11 and 13. For any x, y ∈ C, σMxy is subject to change

when ci lies on at least one shortest path joining x to y. In this case, σM∪{ci}xy becomes

24

σMxy−σMxciσ
M
ciy

, where σMxciσ
M
ciy

is the number of shortest paths joining x to y that do not

pass through any element of M , but that pass through ci. Between lines 14 and 24,

the matrix PBk
M is updated. In lines 14 and 15, PBk

M∪{ci}(x, x) is computed for any

x 6= ci by the equation PBk
M∪{ci}(x, x) = PBk

M(x, x)− PBk
M(ci, x)− PBk

M(x, ci).

The case where x = y 6= ci is called as case 1. If we are not in case 1 and if x, y, and

ci all lie on at least one shortest path in the graph, then PBk
M∪{ci}(x, y) is computed

between lines 16 and 21. In case 2, we are not in case 1 and x lies on a shortest

path joining ci to y. In this case, PBk
M∪{ci}(x, y) is computed by subtracting from

PBk
M(x, y) the k-step path betweenness centrality of (ci, y) disregarding the shortest

paths that pass through any vertex in M within the first k steps of the path multiplied

with σMcixσ
M
xy/σ

M
ciy

which is the fraction of the shortest paths (not going through any

vertex of M) joining ci to y that pass through x. If ci lies on a shortest path joining

x to y (case 3), PBk
M∪{ci}(x, y) is computed in line 19. And if y lies on a shortest

path joining x to ci (case 4), PBk
M∪{ci}(x, y) is computed in line 21. If x, y, and ci do

not all lie on any shortest path in the graph, then PBk
M∪{ci}(x, y) will be the same as

PBk
M(x, y) as in line 23. Finally, in line 26, M is updated as M ∪ {ci}.

The preprocessing step of Algorithm 1 takes O(n3) time. For each i ∈ {1, 2, . . . g},
the algorithm spends O(g2) time within the for loop between lines 10 and 25. There-

fore O(g3) time is spent after the preprocessing step. Note that the preprocessing step

is to be performed only once when one wants to evaluate the k-step group between-

ness centrality for several subsets of vertices of a graph. Therefore the k-step GBC

for ` many groups each of size g can be evaluated in O(n3+ `g3) time. Note also that

the preprocessing step does not depend on the group size g. After the preprocessing

step is done, one can evaluate the k-step GBC for groups having different sizes as

well.

25

Algorithm 1 k-step GBC

1: Inputs: G = (V,E), C = {c1, c2, . . . , cg} ⊆ V, and a positive integer k

2: Output: GBk(C)

3: Preprocessing: Compute σ, d, and PBk.

4: M ← {}
5: σMxy ← σxy, ∀x, y ∈ C
6: PBk

M(x, y)← PBk(x, y),∀x, y ∈ C
7: GBk(C)← 0

8: for i = 1 to g do

9: GBk(C)← GBk(C) + PBk
M(ci, ci)

10: for ∀x, y ∈ C do

11: if d(x, y) = d(x, ci) + d(ci, y) then

12: σ
M∪{ci}
xy ← σMxy − σMxciσ

M
ciy

13: end if

14: if x = y 6= ci then

15: PBk
M∪{ci}(x, x)← PBk

M(x, x)− PBk
M(ci, x)− PBk

M(x, ci)

16: else if d(ci, y) = d(ci, x) + d(x, y) then

17: PBk
M∪{ci}(x, y)← PBk

M(x, y)− σM
cix

σM
xyPB

k
M (ci,y)

σM
ciy

18: else if d(x, y) = d(x, ci) + d(ci, y) then

19: PBk
M∪{ci}(x, y)← PBk

M(x, y)− σM
xci

σM
ciy
PBk

M (x,y)

σM
xy

20: else if d(x, ci) = d(x, y) + d(y, ci) then

21: PBk
M∪{ci}(x, y)← PBk

M(x, y)− σM
xyσ

M
yci
PBk

M (x,ci)

σM
xci

22: else

23: PBk
M∪{ci}(x, y)← PBk

M(x, y)

24: end if

25: end for

26: M ←M ∪ {ci}
27: end for

26

CHAPTER 5

ILLUSTRATIVE EXAMPLE

In this chapter, we illustrate k-step path betweenness and k-step GBC calculations on

a graph G = (V,E) of order 6 given in Figure 5.1.

Figure 5.1: A graph of order n = 6

For this graph, distance (d), sigma (σ), and dependency (δ) matrices are calculated as

d =

0 1 2 2 3 4

1 0 1 1 2 3

2 1 0 2 1 2

2 1 2 0 1 2

3 2 1 1 0 1

4 3 2 2 1 0

, σ =

1 1 1 1 2 2

1 1 1 1 2 2

1 1 1 2 1 1

1 1 2 1 1 1

2 2 1 1 1 1

2 2 1 1 1 1

, δ =

5 5 2 2 2 1

1 5 2 2 2 1

1 2.5 5 1 2.5 1

1 2.5 1 5 2.5 1

1 2 2 2 5 1

1 2 2 2 5 5

.

27

Note that using the matrices δ and d, the matrix δk can be computed. For any two

vertices s, v ∈ V and any positive integer k, we have that δks (v) = δs(v) if d(s, v) ≤ k

and δks (v) = 0 otherwise. Consider the subset C = {3, 6} of V . Utilizing Equation

4.5, we have that

PB1(3, 6) =
∑
s∈V

δ1s(6)
σs6(3)

σs6
= 0,

PB2(3, 6) =
∑
s∈V

δ2s(6)
σs6(3)

σs6
= δ23(6)

σ36(3)

σ36
= 1,

PB3(3, 6) =
∑
s∈V

δ3s(6)
σs6(3)

σs6
= δ33(6)

σ36(3)

σ36
+ δ32(6)

σ26(3)

σ26
= 1.5,

PB4(3, 6) =
∑
s∈V

δ4s(6)
σs6(3)

σs6
= δ43(6)

σ36(3)

σ36
+ δ42(6)

σ26(3)

σ26
+ δ41(6)

σ16(3)

σ16
= 2.

PB1(3, 6) = 0 means that there is no shortest path joining two distinct vertices in G

that passes through first vertex 3 and then vertex 6 both within 1 step. Computing the

k-step path betweenness centrality for every ordered pair of vertices (x, y), we obtain

the following k-step path betweenness centrality matrices PBk, k = 1, 2, 3, 4.

PB1 =

6 5 0 0 0 0

1 15 2 2 0 0

0 2.5 9 0 2.5 0

0 2.5 0 9 2.5 0

0 0 2 2 15 1

0 0 0 0 5 6

PB2 =

8 5 2 2 0 0

3 17 4.5 4.5 2 0

1 3.5 14 1 3.5 1

1 3.5 1 14 3.5 1

0 2 4.5 4.5 17 3

0 0 2 2 5 8

PB3 =

9 5 2 2 2 0

4 19 4.5 4.5 4 1

1.5 4.5 14 1 4.5 1.5

1.5 4.5 1 14 4.5 1.5

1 4 4.5 4.5 19 4

0 2 2 2 5 9

PB4 =

10 5 2 2 2 1

5 19 4.5 4.5 4 2

2 4.5 14 1 4.5 2

2 4.5 1 14 4.5 2

2 4 4.5 4.5 19 5

1 2 2 2 5 10

28

Note that PBk = PB4 for every positive integer k ≥ 4 as md(G) = 4 and PBmd(G)

is a symmetric matrix. For a vertex x ∈ V , the diagonal element P k(x, x) of the

k-step path betweenness centrality matrix P k is equal to GBk({x}) which is the k-

step betweenness centrality of x. When we investigate the saturation numbers of

groups consisting of a single vertex, we obtain that s({1}) = s({6}) = 4, s({3}) =
s({4}) = 2, and s({2}) = s({5}) = 3.

We now illustrate the calculation of the 2-step GBC of a subset C = {c1, c2, c3} of

vertices, where c1 = 1, c2 = 6, and c3 = 5, using Algorithm 1. The matrices d, σ,

and PB2 are already computed. The set M is initialized to ∅. σMxy and PBk
M(x, y) are

obtained using the equations in lines 5 and 6 of Algorithm 1 for every x, y ∈ C as

σ{} =

1 2 2

2 1 1

2 1 1

 , PB2
{} =

8 0 0

0 8 5

0 3 17

 .

We next initialize GB2(C) to zero. PB2
M(ci, ci) represents the contribution of vertex

ci to GB2(C) for any ci 6∈M . We first consider adding vertex 1 to M and obtain that

GB2(C) = PB2
M(1, 1) = 8. We next update the matrices σM and PB2

M following

the computations given between lines 11 and 13 and between lines 14 and 24 of

Algorithm 1, respectively. The updated matrices are given below.

σ{1} =

0 0 0

0 1 1

0 1 1

 PB2
{1} =

0 0 0

0 8 5

0 3 17

Secondly, vertex 6 is added toM . Therefore we get thatGB2(C) = 8+PB2

{1}(6, 6) =

16 and we update M to {1, 6}. Moreover the matrices σM and PB2
M are updated as

σ{1,6} =

0 0 0

0 0 0

0 0 1

 , PB2
{1,6} =

0 0 0

0 0 0

0 0 9

 .

Finally, vertex 5 is added to M and we obtain that GB2(C) = 16 + PB2
{1,6}(5, 5) =

29

25. Now, the contributions of all elements of C to GB2(C) have been accumu-

lated. When we finally update the matrices σM and PB2
M , both become the ma-

trix of all zeroes. When we compute the normalized 2-step GBC of C, we obtain

that NGB2(C) = GB2(C)/(2
(|V |

2

)
) = 25/30 = 0.833. This value represents the

probability that at least one element of C gets the information, which is sent through

a randomly chosen shortest path between randomly chosen pair of distinct vertices,

within the first 2 steps of the start of the communication.

30

CHAPTER 6

COMPUTATIONAL EXPERIMENTS

In this section, we perform several computational experiments on real and randomly

generated networks to

• understand how NGBk∗
g (G) change as k and g change,

• understand how NGBk∗
g (G) change as the density of the graphs change (in

random networks),

• understand the potential benefits of using k-step GBC instead of GBC as a

centrality measure to access more of the information communicated within k

steps,

• understand the limitations of Algorithm 1 in finding the group of size g with

the highest k-step GBC value,

• understand the change in running time of Algorithm 1 as k and g change.

All computational experiments are implemented in MATLAB and executed on a com-

puter with Intel(R) Core(TM) i7-6500U CPU with 2.5GHz speed and 8 GB RAM.

6.1 The Will57 Network

The first network we consider is a semiconductor device problem network called the

Will57 network [72] that has 57 nodes and 127 edges. Figure 6.1 graphically displays

this network.

31

Figure 6.1: The Will57 network

First, denoting the Will57 network by G, we find NGBk∗
g (G) values for different k

and g values. These values are shown in Table 6.1. For example, when k = 1 and

g = 1, there exists a vertex (vertex 57) in G that gets the information communicated

(between a random pair of distinct vertices through a random shortest path) within 1

step with probability 0.11. On the other hand, when k = 3 and g = 4, there exists

a group of 4 vertices (the vertices {30, 43, 44, 45}) in G that gets the information

communicated within 3 steps with probability 0.75. When we examine Table 6.1 row

by row, we see that for a fixed g,NGBk∗
g (G) values increase as k increases until some

k value and remain constant thereafter. This k value is called as the saturation number

of the graph G with respect to group size g and is denoted by sg(G). Mathematically,

we define sg(G) as the minimum k value such that NGBk∗
g (G) = NGB∗g(G). For

the Will57 network, we have that sg(G) = 6 for every g ∈ {1, 2, 3, 4, 5}. When we

examine Table 6.1 column by column, we see that for a fixed k, NGBk∗
g (G) values

increase as g increases as expected.

32

Table 6.1: NGBk∗
g (G) for different k and g values

g

k
1 2 3 4 5 6 7 8 9 10 11

1 0.11 0.15 0.24 0.30 0.39 0.42 0.42 0.42 0.42 0.42 0.42

2 0.23 0.28 0.45 0.52 0.60 0.66 0.66 0.66 0.66 0.66 0.66

3 0.34 0.40 0.63 0.68 0.71 0.75 0.75 0.75 0.75 0.75 0.75

4 0.43 0.51 0.75 0.77 0.78 0.79 0.79 0.79 0.79 0.79 0.79

5 0.50 0.61 0.81 0.83 0.84 0.85 0.85 0.85 0.85 0.85 0.85

Table 6.2: NGBk(C∗g) for different k and g values

g

k
1 2 3 4 5 6 7 8 9 10 11

1 0.04 0.08 0.19 0.29 0.39 0.42 0.42 0.42 0.42 0.42 0.42

2 0.11 0.24 0.40 0.49 0.58 0.66 0.66 0.66 0.66 0.66 0.66

3 0.23 0.36 0.53 0.62 0.67 0.75 0.75 0.75 0.75 0.75 0.75

4 0.20 0.39 0.61 0.68 0.72 0.79 0.79 0.79 0.79 0.79 0.79

5 0.30 0.51 0.74 0.83 0.84 0.85 0.85 0.85 0.85 0.85 0.85

Second, for each group size g, we find the group C∗g that has the highest normalized

GBC value, i.e., the group C∗g satisfying NGB(C∗g) = NGB∗g(G). For the group

C∗g , we compute NGBk(C∗g) for different k values and report them in Table 6.2. For

example, NGB3(C∗4) = 0.61 which means that the group C∗4 gets the information

communicated within 3 steps with probability 0.61. Assume that it is critical for a

user to obtain the information communicated within 3 steps. If s/he chooses the group

(of size 4) according to the maximum GBC value, s/he would choose C∗4 which is

{43, 44, 45, 46} and can get the information within 3 steps with probability 0.61. On

the other hand, if the user chooses the group according to the maximum 3-step GBC

value, s/he would choose C3∗
4 which is {30, 43, 44, 45} and can get the information

within 3 steps with probability 0.75. In other words, replacing the vertex 46 with

30, the user gets a chance to obtain the information faster with a larger probability.

33

Therefore, if the user aims to obtain the information within 3 steps with a higher

probability, it is better to use the 3-step GBC measure instead of the classical GBC

measure.

Third, we fix the group size g to 2. In this case, we have that C∗2 = {43, 44} and

NGB(C∗2) = 0.66. We find Ck∗
2 for different k values and show them in Figure

6.2. Members of different optimum groups for different k values are remarked with

different symbols in Figure 6.2. We have that C1∗
2 = {29, 42} and elements of this

group are remarked with triangles. Moreover NGB1∗
2 = 0.23 which means that

within 1 step the information can be obtained with a maximum probability of 0.23

by the elements of the group C1∗
2 . When k becomes 2 or 3, the optimum groups

C2∗
2 and C3∗

2 are the same and are equal to {30, 44}. Furthermore, we have that

NGB2∗
2 = 0.28 and NGB3∗

2 = 0.45. In other words, the optimum group for k = 2

or 3 gets the information communicated within 2 steps with probability 0.28 and

within 3 steps with probability 0.45. When k becomes 4, the optimum group C4∗
2 is

{16, 45} and NGB4∗
2 is equal to 0.52. When k becomes 5, the optimum group C5∗

2 is

{30, 45} which has a 5-step normalized GBC of 0.60 and finally when k becomes 6,

the optimum group becomes the same as C∗2 which is {43, 44}. This example shows

that the optimum group maximizing the k-step GBC value may change from k to k.

For this example, the optimum group moves toward the middle of the graph starting

from outer vertices as k increases.

Forth, for the group size g = 3, we examine the distribution of the k-step normalized

GBC values of all subsets of V of size 3. For each k value, we compute NGBk(C)

for every subset C of V of size 3 and make a histogram of the NGBk(C) values (see

Figure 6.3). Moreover, for each k value, Table 6.3 reports the average, median, and

maximum NGBk(C) values on the Will57 network. It can be seen from Figure 6.3

and Table 6.3 that the distribution of theNGBk(C) values is right-skewed. Therefore,

one may need to sample several groups to obtain a group that has a normalized k-step

GBC value that is close to the optimum. The algorithm proposed by Puzis et al. and

Algorithm 1 serve this purpose as once the preprocessing step is performed, these

algorithms can evaluate the GBC and k-step GBC, respectively, of several groups

successively very fast.

34

Figure 6.2: Groups of size 2 maximizing the k-step normalized GBC for different k

values on the Will57 network

35

Figure 6.3: Distribution of the NGBk(C) values of all subsets C of V of size 3 on

the Will57 network

Table 6.3: Average, median, and maximum NGBk(C) of all subsets C of V of size

3 on the Will57 network

k MedianNGBk(C) AverageNGBk(C) MaximumNGBk(C)

1 0.09 0.10 0.34

2 0.14 0.15 0.40

3 0.18 0.19 0.63

4 0.19 0.22 0.68

5 0.21 0.24 0.71

6 0.22 0.26 0.75

7 0.24 0.27 0.75

8 0.25 0.28 0.75

9 0.26 0.28 0.75

36

Now, we report the computation time required for Algorithm 1 to computeNGBk(C)

values for all subsets C of V of size 1 to 5 in Table 6.4.

Table 6.4: The preprocessing and the total computational time (in s) to compute

NGBk(C) values for all possible groups C of size g on the Will57 network

Time (in s) to ComputeNGBk(C) Values

for All Possible Groups C of Size gPreprocessing

Time (in s) Group Size g

k to Compute PBk 1 2 3 4 5

1 0.009 0.00 0.02 0.36 6.62 127.99

2 0.009 0.00 0.02 0.49 9.75 140.31

3 0.009 0.00 0.03 0.53 9.74 149.65

4 0.009 0.00 0.04 0.50 9.71 156.45

5 0.010 0.00 0.04 0.69 10.98 141.07

6 0.010 0.00 0.02 0.45 10.28 151.10

7 0.011 0.00 0.05 0.52 10.20 159.39

8 0.012 0.00 0.04 0.56 11.10 170.97

9 0.012 0.00 0.04 0.62 11.29 170.49

10 0.012 0.00 0.04 0.53 11.54 172.64

In the preprocessing step of Algorithm 1, three matrices d, σ, and PBk are computed.

The first two of these matrices are independent of k and the group size g. In our

implementation, Algorithm 1 computes the matrices d and σ in 0.18 seconds. The

matrix PBk is computed once for each k value. The time to compute PBk for each

k value is given in Table 6.4 in the column titled as “Preprocessing Time (in s) to

compute PBk”. Note that the actual total preprocessing time to compute all the values

in the table is the sum of the values in the column titled “Preprocessing Time (in s)

to compute PBk” plus 0.18 seconds. Note that as k increases, the preprocessing time

to compute PBk slightly increases. The computation time (in s) of NGBk(C) values

for all possible groups C of size g is given in the following columns. For example,

when k = 7 and g = 5, the time to compute the NGBk(C) values for all
(|V |

5

)
many

possible groups C of size 5 is equal to 141.07 seconds. Observe that for a fixed g, as

37

k increases, the time to compute all NGBk(C) values increases as well. Moreover,

for a fixed k, as g increases, the time to compute all NGBk(C) values also increases.

Note, however, that this increase is partially attributed to the increase in the number

of possible groups. When we find the average time to compute one NGBk(C) value,

this value turns out to be between 1.25×10−5 and 4.12×10−5 for every pair of k and

g values for the Will57 network.

6.2 Cheminformatics Networks

We secondly consider 10 real-life cheminformatics (enzymes) networks [71]. These

networks are chosen starting from the top of a list of networks provided in https://

www.networkrepository.com/chem that have between 30 and 70 vertices.

Some properties of the chosen 10 networks are given in Table 6.5.

Table 6.5: Some properties of the considered 10 cheminformatics networks.

Network |V | |E| md ad dmax davg Density

g10 32 53 19 7.26 5 3.31 0.11

g104 32 64 11 4.64 5 4.00 0.13

g105 33 69 12 4.67 7 4.18 0.13

g1 37 84 12 4.98 7 4.54 0.13

g116 42 74 14 5.57 5 3.52 0.09

g13 42 75 23 8.56 5 3.57 0.09

g102 42 82 24 8.71 6 3.91 0.10

g101 45 88 15 5.84 7 3.91 0.09

g112 51 95 15 6.19 5 3.73 0.07

g103 59 115 13 4.92 9 3.90 0.07
* md: maximum distance, ad: average distance, dmax: maximum degree, davg: average degree.

Table 6.6 reports NGBk∗
g (G) and NGBk(C∗g) for different combinations of k and g

values for the considered cheminformatics networks. For any network G and group

size g, NGBk∗
g (G) and NGBk(C∗g) are non-decreasing in k. From Table 6.6, we

can see that NGBk∗
g (G) and NGBk(C∗g) values increase with decreasing marginal

38

https://www.networkrepository.com/chem
https://www.networkrepository.com/chem

changes until some k value and remain constant thereafter. Consider, for example,

the network g13. When the group size is 4, there is a 0.38 increase in the optimum k-

step GBC value as k increases from 1 to 3, i.e., NGB3∗
4 (g13)−NGB1∗

4 (g13) = 0.38.

As k increases from 3 to 5, the increase in the optimum k-step GBC value drops to

0.17. Furthermore, we have that the saturation number of g13 with respect to group

size 4 is equal to 5, i.e., s4(g13) = 5, implying that NGBk∗
4 (g13) = 0.85 for all

k ≥ 5 values.

For the network g104, Figure 6.4 shows how NGBk∗
g (g104) (line with circle symbol)

and NGBk(C∗g) (line with square symbol) values change as k increases for different

group sizes. Consider the group size g = 2. When k = 1,NGB1∗
2 (g104) is 0.021 big-

ger than NGB1(C∗2), i.e., the group C1∗
2 has a 0.021 larger probability of getting the

information within 1 step than the group C∗2 . The difference between NGBk∗
2 (g104)

and NGBk(C∗2) increases to 0.076 when k becomes 6. This example shows that,

even though NGBk∗
g (G) ≥ NGBk(C∗g) for every k and NGBk∗

g (G) = NGBk(C∗g)

for large enough k values, the difference NGBk∗
g (G)−NGBk(C∗g) is not necessarily

decreasing in k.

39

Table 6.6: NGBk∗
g (G) and NGBk(C∗g) for different k and g values on the considered

10 cheminformatics networks

NGBk∗
g (G) NGBk(C∗

g)

Network Group Size g k=1 k=3 k=5 k=7 k=1 k=3 k=5 k=7

g10 2 0.22 0.43 0.61 0.73 0.17 0.37 0.56 0.73

4 0.42 0.78 0.86 0.86 0.35 0.76 0.86 0.86

g104 2 0.21 0.46 0.52 0.58 0.19 0.41 0.47 0.54

4 0.36 0.73 0.78 0.78 0.32 0.73 0.78 0.78

g105 2 0.21 0.41 0.51 0.58 0.13 0.33 0.51 0.58

4 0.37 0.68 0.76 0.76 0.34 0.65 0.75 0.76

g1 2 0.25 0.62 0.68 0.68 0.23 0.62 0.68 0.68

4 0.41 0.75 0.80 0.80 0.34 0.75 0.80 0.80

g116 2 0.15 0.35 0.48 0.63 0.13 0.32 0.46 0.61

4 0.29 0.67 0.85 0.85 0.26 0.60 0.85 0.85

g13 2 0.15 0.36 0.48 0.63 0.14 0.32 0.48 0.63

4 0.30 0.68 0.85 0.85 0.28 0.68 0.85 0.85

g102 2 0.17 0.39 0.55 0.62 0.16 0.39 0.55 0.62

4 0.32 0.63 0.75 0.75 0.27 0.57 0.74 0.75

g101 2 0.18 0.38 0.60 0.62 0.14 0.37 0.56 0.62

4 0.32 0.61 0.76 0.77 0.27 0.59 0.72 0.77

g112 2 0.13 0.42 0.62 0.64 0.12 0.42 0.62 0.64

4 0.25 0.65 0.73 0.76 0.25 0.60 0.72 0.76

g103 2 0.17 0.30 0.39 0.44 0.15 0.30 0.39 0.43

4 0.28 0.52 0.63 0.67 0.25 0.45 0.61 0.67

40

1 2 3 4 5 6 7 8

k

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
G

B
k (C

)

 NGBk*
1

(g104)

 NGBk(C*
1
)

 NGB*
1
(g104)

(a) Group size g = 1

1 2 3 4 5 6 7 8

k

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

N
G

B
k (C

)

 NGBk*
2

(g104)

 NGBk(C*
2
)

 NGB*
2
(g104)

(b) Group size g = 2

1 2 3 4 5 6 7 8

k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
G

B
k (C

)

 NGBk*
3

(g104)

 NGBk(C*
3
)

 NGB*
3
(g104)

(c) Group size g = 3

1 2 3 4 5 6 7 8

k

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

N
G

B
k (C

)

 NGBk*
4

(g104)

 NGBk(C*
4
)

 NGB*
4
(g104)

(d) Group size g = 4

1 2 3 4 5 6 7 8

k

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

N
G

B
k (C

)

 NGBk*
5

(g104)

 NGBk(C*
5
)

 NGB*
5
(g104)

(e) Group size g = 5

Figure 6.4: Change in NGBk∗
g (G) and NGBk(C∗g) for different k and g values for

the network g104

41

6.3 Random Networks

In this section, we consider random graphs to see the effect of density on the optimum

k-step normalized GBC value, i.e., NGBk∗
g (G). For this purpose, we use the Erdös-

Renyi graph model and scale-free networks.

6.3.1 Erdös-Renyi Networks

Erdös-Renyi graph model has two inputs: the number of vertices (n) and probability

(p) of adding an edge between vertex i ∈ {1, ..., n} and vertex j ∈ {1, ..., n}, j 6= i.

As p increases, the graph becomes denser. An Erdös-Renyi graph generated using

the inputs n and p is denoted by ERn,p. We use different n and p values and for

each pair of n and p values, we generate 50 connected Erdös-Renyi graphs ERn,p

(if a generated graph is not connected, it is discarded out). Some properties of the

generated Erdös-Renyi graphs are given in Table 6.7.

Table 6.7: Some properties of the randomly generated Erdös-Renyi graphs

Graph

Maximum

of md

Average

of ad

Average

of md

Maximum

of dmax

Average

of davg

Average

density

ER20,0.15 8.00 2.59 5.38 9 3.17 0.17

ER20,0.20 6.00 2.22 4.50 10 4.00 0.21

ER20,0.25 5.00 1.99 3.74 11 4.79 0.25

ER20,0.30 5.00 1.86 3.36 12 5.54 0.29

ER40,0.06 16.00 3.75 8.54 8 2.81 0.07

ER40,0.08 9.00 3.12 6.78 10 3.73 0.09

ER40,0.10 8.00 2.73 5.56 12 4.07 0.10

ER60,0.06 10.00 3.27 6.82 12 3.64 0.06

ER60,0.08 7.00 2.75 5.40 13 4.80 0.08

ER60,0.10 6.00 2.47 4.72 14 5.93 0.10
* md: maximum distance, ad: average distance, dmax: maximum degree, davg: average degree.

Each value in the table is obtained by considering the values of the 50 graphs gen-

42

erated using the same inputs and taking the average or the maximum. Note that the

average density of the Erdös-Renyi graphsERn,p is expected to be p. As we have dis-

carded out the disconnected ones, we observe average density values that are slightly

bigger than the value of p for some cases in Table 6.7.

For each of the 50 Erdös-Renyi graphsERn,p generated using the same inputs (and for

each fixed k and g values), we compute the optimum k-step normalized GBC value,

i.e., NGBk∗
g (ERn,p), and report the average of the resulting 50 values in Tables 6.8,

6.9, and 6.10. From these tables, we can conclude that the average k-step normalized

GBC values are non-increasing as the density, i.e., p, increases. This can be explained

as follows. When the density of a graph is small, there are usually a small number of

central vertices in the graph and several shortest paths use these central vertices. On

the other hand, when the density of a graph is large, the distances between pairs of

vertices become very small and several shortest paths use a few number of intermedi-

ary vertices if not none. Therefore, in general, we expect a group of central vertices

in a dense graph to be on less number of shortest paths when compared to central

vertices in a sparse graph.

When we compare the average optimum k-step normalized GBC values for the Erdös-

Renyi graph classes ER40,p and ER60,p for the same p and group size g values, we

can make the following observations. First, as n increases from 40 to 60, the average

optimum k-step normalized GBC values tend to decrease for each k value. This

difference is mainly because g many vertices correspond to a higher percentage of

all the vertices in the graphs ER40,p than in ER60,p. Moreover, as n increases from

40 to 60, the difference between the average optimum k-step normalized GBC values

become more noticeable for larger k values (again for fixed p and g).

When we compare the average optimum k-step normalized GBC values for fixed k

values when the group size g = n/20, we can still see that these values tend to

decrease as n increases from 40 to 60.

43

Table 6.8: AverageNGBk∗
g (G) for different k and g values on 50 randomly generated

Erdös-Renyi graphs of order 20

Graph
g

k
1 2 3 4 5 6

ER20,0.15 1 0.22 0.33 0.37 0.38 0.38 0.38

2 0.37 0.55 0.60 0.61 0.61 0.61

3 0.51 0.71 0.75 0.76 0.76 0.76

4 0.63 0.82 0.85 0.86 0.86 0.86

5 0.73 0.90 0.92 0.92 0.92 0.92

6 0.81 0.94 0.95 0.95 0.95 0.95

ER20,0.20 1 0.20 0.29 0.31 0.31 0.31 0.31

2 0.36 0.50 0.52 0.52 0.52 0.52

3 0.49 0.65 0.67 0.67 0.67 0.67

4 0.60 0.76 0.78 0.79 0.79 0.79

5 0.70 0.85 0.86 0.86 0.86 0.86

6 0.78 0.90 0.92 0.92 0.92 0.92

ER20,0.25 1 0.20 0.27 0.27 0.27 0.27 0.27

2 0.36 0.46 0.47 0.47 0.47 0.47

3 0.49 0.61 0.62 0.62 0.62 0.62

4 0.59 0.72 0.73 0.73 0.73 0.73

5 0.69 0.81 0.82 0.82 0.82 0.82

6 0.76 0.88 0.88 0.88 0.88 0.88

ER20,0.30 1 0.18 0.23 0.23 0.23 0.23 0.23

2 0.33 0.41 0.41 0.41 0.41 0.41

3 0.45 0.55 0.56 0.56 0.56 0.56

4 0.56 0.67 0.67 0.67 0.67 0.67

5 0.65 0.76 0.77 0.77 0.77 0.77

6 0.74 0.84 0.84 0.84 0.84 0.84

44

Table 6.9: AverageNGBk∗
g (G) for different k and g values on 50 randomly generated

Erdös-Renyi graphs of order 40

Graph
g

k
1 2 3 4 5 6

ER40,0.06 1 0.12 0.23 0.30 0.33 0.35 0.35

2 0.22 0.39 0.50 0.54 0.56 0.56

3 0.31 0.52 0.64 0.68 0.69 0.70

4 0.39 0.62 0.74 0.78 0.78 0.79

5 0.46 0.70 0.81 0.84 0.85 0.85

6 0.52 0.77 0.87 0.89 0.89 0.89

ER40,0.08 1 0.11 0.19 0.24 0.25 0.25 0.25

2 0.21 0.34 0.41 0.43 0.43 0.43

3 0.29 0.47 0.55 0.57 0.57 0.57

4 0.37 0.57 0.66 0.68 0.68 0.68

5 0.44 0.66 0.74 0.76 0.76 0.76

6 0.50 0.73 0.81 0.82 0.82 0.82

ER40,0.10 1 0.11 0.18 0.21 0.21 0.21 0.21

2 0.21 0.33 0.36 0.37 0.37 0.37

3 0.29 0.44 0.49 0.50 0.50 0.50

4 0.37 0.54 0.60 0.61 0.61 0.61

5 0.43 0.63 0.68 0.69 0.69 0.69

6 0.50 0.70 0.75 0.76 0.76 0.76

45

Table 6.10: Average NGBk∗
g (G) for different k and g values on 50 randomly gener-

ated Erdös-Renyi graphs of order 60

Graph
g

k
1 2 3 4 5 6

ER60,0.06 1 0.08 0.15 0.19 0.20 0.20 0.20

2 0.16 0.28 0.33 0.35 0.35 0.35

3 0.22 0.38 0.45 0.47 0.47 0.47

4 0.28 0.46 0.55 0.57 0.57 0.57

5 0.33 0.53 0.63 0.65 0.65 0.65

ER60,0.08 1 0.08 0.13 0.14 0.14 0.14 0.14

2 0.14 0.23 0.26 0.26 0.26 0.26

3 0.20 0.32 0.35 0.36 0.36 0.36

4 0.26 0.39 0.44 0.44 0.44 0.44

5 0.31 0.46 0.52 0.52 0.52 0.52

ER60,0.10 1 0.07 0.11 0.12 0.12 0.12 0.12

2 0.13 0.20 0.22 0.22 0.22 0.22

3 0.19 0.28 0.30 0.30 0.30 0.30

4 0.24 0.36 0.38 0.38 0.38 0.38

5 0.29 0.42 0.45 0.45 0.45 0.45

We also examine absolute and relative differences betweenNGBk∗
g (G) andNGBk(C∗g)

for different combinations of k and g values for the considered Erdös-Renyi graphs.

Results are reported in the Appendix A.2. For any network G and group size g,

the difference between NGBk∗
g (G) and NGBk(C∗g) are generally decreasing in k.

Moreover, we can say that as the density of graphs increases, differences decrease

in general. Consider the graph ER40,0.06. When g=1 and k=1 maximum absolute

difference is equal to 4.67 and maximum relative difference is equal to 57.72. Con-

sider the graph ER40,0.10. For the same k and g values maximum absolute difference

is equal to 1.63 and maximum relative difference is equal to 22.76. Moreover, for

the fixed g, as density increases saturation numbers tend to decrease. Consider the

graphs ER20,0.15, ER20,0.20, and ER20,0.25. When g = 3, maximum saturation num-

46

bers for the considered 50 sample are s3(ER20,0.15) = 5, s3(ER20,0.20) = 3, and

s3(ER20,0.25) = 2.

We next investigate how the running time of Algorithm 1 and the preprocessing step

change as n, k, g, and the density change for Erdös-Renyi graphs. For this purpose,

we take one graph at random from the 50 Erdös-Renyi graphs generated for each

pair of n ∈ {40, 60} and p ∈ {0.06, 0.08, 0.1} values. The matrices d and σ are

computed once for each graph and the time to compute them is given in Table 6.11

for each graph in the column titled “Preprocessing Time (in s) to Compute σ and d”.

Moreover, the matrix PBk is computed once for each k and each graph. The time to

compute PBk for each k value and each graph is given in Table 6.11 in the column

titled “Preprocessing Time (in s) to Compute PBk”. The total time (in s) to compute

all NGBk(C) values for all possible groups C of size g for each graph is given in the

following columns.

For group sizes 1 and 3, the computation times are very small. When the group

size is 5, Algorithm 1 can compute the optimum normalized GBC value in less than

3 minutes (including the preprocessing time) for each Erdös-Renyi graph and each

k value considered. Moreover, once the preprocessing is done, the average time to

compute one NGBk(C) value is between 1.11× 10−5 and 2.63× 10−5 for every pair

of k and g values for the graphs ER40,p and between 1.08× 10−5 and 2.64× 10−5 for

every pair of k and g values for the graphs ER60,p.

47

Table 6.11: The preprocessing and total computational time (in s) to compute

NGBk(C) values for all possible groups C of size g on Erdös-Renyi graphs (ERn,p)

Total Time (in s) to Compute

NGBk(C) Values for All

Possible Groups C of Size gPrep. time Prep. time

(in s) to (in s) to Group size g

Graph k Compute σ & d Compute PBk 1 3 5

ER40,0.06 2 0.11 0.00 0.00 0.12 15.30

4 0.00 0.00 0.12 16.81

6 0.01 0.00 0.12 18.34

ER40,0.08 2 0.09 0.00 0.00 0.12 15.30

4 0.00 0.00 0.12 17.11

6 0.00 0.00 0.13 17.28

ER40,0.10 2 0.08 0.00 0.00 0.11 15.32

4 0.00 0.00 0.11 17.12

6 0.00 0.00 0.11 17.11

ER60,0.06 2 0.23 0.01 0.00 0.37 117.33

4 0.01 0.00 0.38 128.31

6 0.01 0.00 0.39 130.87

ER60,0.08 2 0.18 0.01 0.00 0.37 119.60

4 0.01 0.00 0.38 134.87

6 0.02 0.00 0.38 132.94

ER60,0.10 2 0.18 0.01 0.00 0.46 133.66

4 0.01 0.00 0.41 144.03

6 0.01 0.00 0.40 140.47
* Prep.: Preprocessing

6.3.2 Scale-free Networks

Scale-free random networks are generated by implementing the preferential attach-

ment procedure [73] which has two parameters: n as the number of vertices and e as

the number of connections each new vertex will have with the existing vertices. The

procedure starts with two vertices connected to each other. In each following step a

new vertex is introduced and is attached to e many existing vertices. The probability

48

that the new vertex is attached to a given existing vertex is taken proportional to the

degree of the existing vertex. As e increases, the graph becomes denser. A preferen-

tial attachment graph generated using the inputs n and e is denoted by PAn,e.

We use different n and e values and for each pair of n and e values, we generate 50

preferential attachment graphs PAn,e. Some properties of the generated preferential

attachment graphs are given in Table 6.12.

Table 6.12: Some properties of the randomly generated preferential attachment

graphs

Graph

Maximum

of md

Average

of ad

Average

of md

Maximum

of dmax

Average

of davg

Average

density

PA20,1 8.00 3.11 6.24 13 1.90 0.10

PA20,2 5.00 2.14 3.90 14 3.70 0.19

PA20,3 4.00 1.84 3.04 15 5.40 0.28

PA40,1 11.00 3.75 7.92 26 1.95 0.05

PA40,2 5.00 2.55 4.72 23 3.85 0.10

PA40,3 4.00 2.18 3.96 26 5.70 0.15

PA60,1 13.00 4.18 9.26 26 1.97 0.03

PA60,2 6.00 2.76 5.02 28 3.90 0.07

PA60,3 4.00 2.36 4.00 30 5.80 0.10
* md: maximum distance, ad: average distance, dmax: maximum degree, davg: average degree.

Average of the optimum k-step normalized GBC values (NGBk∗
g (G)) for 50 ran-

domly generated preferential attachment graphs PAn,e are reported in Tables 6.13

and 6.14 for each pair of n and e values. From these tables, we can conclude that the

average optimum k-step normalized GBC values decrease as the density increases,

i.e., as e increases. When we compare the average NGBk∗
g (G) values for the network

classes PA20,e, PA40,e, and PA60,e for the same e and group size g values, we can see

that as n increases, the average optimum k-step normalized GBC values decrease for

each k value. This can be explained by the fact that for a fixed e, as n increases, the

graphs become sparser and as a result the optimum k-step normalized GBC values

tend to decrease.

49

Table 6.13: Average NGBk∗
g (G) for different k and g values on 50 randomly gener-

ated scale-free networks of order 20 and 40

Graph
g

k
1 2 3 Graph

g

k
1 2 3

PA20,1 1 0.41 0.67 0.78 PA40,1 1 0.31 0.58 0.73

2 0.62 0.87 0.93 2 0.47 0.78 0.89

3 0.76 0.95 0.97 3 0.59 0.89 0.95

4 0.85 0.98 0.98 4 0.67 0.94 0.97

5 0.92 0.99 0.99 5 0.74 0.97 0.98

6 0.96 1.00 1.00 6 0.79 0.98 0.99

PA20,2 1 0.33 0.43 0.43 PA40,2 1 0.24 0.36 0.38

2 0.53 0.67 0.68 2 0.40 0.58 0.60

3 0.67 0.81 0.82 3 0.51 0.71 0.73

4 0.77 0.89 0.90 4 0.60 0.80 0.82

5 0.84 0.94 0.94 5 0.66 0.86 0.87

6 0.90 0.97 0.97 6 0.72 0.89 0.91

PA20,3 1 0.25 0.29 0.29 PA40,3 1 0.20 0.26 0.26

2 0.44 0.50 0.50 2 0.35 0.44 0.44

3 0.58 0.66 0.66 3 0.46 0.57 0.58

4 0.69 0.77 0.77 4 0.54 0.67 0.67

5 0.77 0.85 0.85 5 0.61 0.74 0.75

6 0.84 0.91 0.91 6 0.67 0.80 0.80

Preferential attachment graphs contain a few vertices that are highly connected to

others [73]. Therefore, the distance between any two randomly chosen vertices tends

to be small. This makes the saturation numbers of the preferential attachment graphs

small as well. For example, the saturation number of each randomly generated graph

in the graph class PA20,3 is at most 3.

The average density of the graphs PA40,2 is the same as that of the graphs ER40,0.10.

When we investigate the average optimum k-step normalized GBC values for both

graph classes, we can see that the values are much larger for PA40,2. Moreover,

50

we take one random graph for ER40,0.10 and PA40,2 and examine the distribution of

the k-step normalized GBC values of all subsets of V for different k and g values.

For each k ∈ {1, 2, 3}, we compute NGBk(C) for every subset C of V of size

g ∈ {1, 2, 3, 4, 5} and make a histogram of the NGBk(C) values (see Figures A.1

and A.2). It can be seen that the distribution of the NGBk(C) values is right-skewed

in scale-free network. However, the distribution of the NGBk(C) values is right-

skewed for k = 1 and g ∈ {1, 2}, but normally distributed for k ∈ {2, 3} and g ∈
{4, 5}. This can be attributed to the existence of highly connected vertices in scale

free graphs. These central vertices can control a higher proportion of the information

flow in preferential attachment graphs.

Table 6.14: Average NGBk∗
g (G) for different k and g values on 50 randomly gener-

ated scale-free networks of order 60

Graph
g

k
1 2 3 4 5

PA60,1 1 0.25 0.52 0.69 0.77 0.80

2 0.39 0.71 0.86 0.90 0.91

3 0.49 0.82 0.93 0.95 0.95

4 0.56 0.88 0.96 0.97 0.97

5 0.63 0.92 0.97 0.98 0.98

PA60,2 1 0.20 0.33 0.35 0.35 0.35

2 0.34 0.53 0.56 0.56 0.56

3 0.44 0.65 0.68 0.68 0.68

4 0.51 0.74 0.77 0.77 0.77

5 0.58 0.80 0.83 0.83 0.83

PA60,3 1 0.16 0.23 0.23 0.23 0.23

2 0.28 0.39 0.39 0.39 0.39

3 0.38 0.51 0.52 0.52 0.52

4 0.46 0.61 0.62 0.62 0.62

5 0.53 0.68 0.69 0.69 0.69

We also investigate how the running time of Algorithm 1 and the preprocessing step

51

change as n, k, g, and the density change for preferential attachment graphs. For this

purpose, we take one graph at random from the 50 preferential attachment graphs

generated for each pair of n ∈ {40, 60} and e ∈ {1, 2, 3} values. The matrices d and

σ are computed once for each graph and the time to compute them is given in Table

6.15 for each graph in the column titled “Preprocessing Time (in s) to Compute σ and

d”. Moreover, the matrix PBk is computed once for each k and each graph. The time

to compute PBk for each k value and each graph is given in Table 6.15 in the column

titled “Preprocessing Time (in s) to Compute PBk”. The total time (in s) to compute

all NGBk(C) values for all possible groups C of size g for each graph is given in the

following columns.

52

Table 6.15: The preprocessing and total computational time (in s) to compute

NGBk(C) values for all possible groups C of size g on preferential attachment

graphs (PAn,e)

Total Time (in s) to Compute

NGBk(C) Values for All

Possible Groups C of Size gPrep. time Prep. time

(in s) to (in s) to Group size g

Graph k Compute σ & d Compute PBk 1 3 5

PA40,1 1 0.07 0.00 0.00 0.06 7.61

2 0.00 0.00 0.06 7.70

3 0.00 0.00 0.06 7.86

PA40,2 1 0.07 0.00 0.00 0.06 8.11

2 0.00 0.00 0.06 7.83

3 0.00 0.00 0.06 7.97

PA40,3 1 0.07 0.00 0.00 0.06 7.67

2 0.00 0.00 0.06 7.92

3 0.00 0.00 0.06 8.03

PA60,1 1 0.14 0.00 0.00 0.22 62.78

2 0.00 0.00 0.22 63.34

3 0.00 0.00 0.22 64.28

PA60,2 1 0.15 0.00 0.00 0.22 63.05

2 0.00 0.00 0.22 64.11

3 0.00 0.00 0.22 65.82

PA60,3 1 0.15 0.00 0.00 0.22 63.34

2 0.00 0.00 0.22 65.51

3 0.00 0.00 0.22 66.36
* Prep.: Preprocessing

For group sizes 1 and 3, the computation times are very small. When the group size is

5, Algorithm 1 can compute the optimum normalized GBC value in about 2 minutes

(including the preprocessing time) for each preferential attachment graph and each

k value considered. Moreover, once the preprocessing is done, the average time to

compute one NGBk(C) value is between 9.64× 10−8 and 1.3× 10−5 for every pair

of k and g values for the graphs PA40,e and between 9.58× 10−8 and 0.83× 10−5 for

53

every pair of k and g values for the graphs PA60,e.

6.4 Large Scale Networks

Up to this point, we have tested Algorithm 1 on small size networks and observed

that when the group size g is small, we can find the group of size g having the high-

est normalized k-step GBC value by enumerating all possible groups of size g and

computing the normalized k-step GBC for each one. When the size of the network

is large, it will be impractical if not impossible to enumerate all possible groups of a

given size. Still, Algorithm 1 can be useful in some cases for large size networks.

Consider, for instance, a real-life Facebook network [74] consisting 4,039 vertices and

88,234 edges. Here, the nodes represent Facebook users and the existence of an edge

between two nodes shows that the corresponding users are friends. Assume that a data

analyst is interested in finding the group of size 100 having the highest normalized 8-

step GBC value on this Facebook network among a predetermined 1 million candidate

groups. Then using Algorithm 1, these 1 million groups can be evaluated and the

group having the highest 8-step normalized GBC value can be returned to the data

analyst. We will talk more about cases where such candidate groups may appear

later. To see how Algorithm 1 performs on this large size Facebook network, we

generate 10,000 random subsets for different group sizes.

For this network, the sigma and distance matrices are computed in about 42 minutes.

The matrix PBk is computed once for each k value. The time to compute PBk for

each k value is given in Table 6.16 in the column titled “Prep. time (in s) to Com-

pute PBk”. The total time (in s) to compute all NGBk(C) values for the randomly

generated 10,000 groups C of size g is given in the following columns. We can see

from the table that as k and g increase, the computational times tend to increase as

well. Going back to evaluating the normalized 8-step GBC of the 1 million groups

provided by the data analyst, we can see that Algorithm 1 can do this evaluation in

about 22 hours (42× 60 + 4679.23 seconds preprocessing time + 715.88× 100 sec-

onds to compute the 8-step GBC values of the 1 million groups) assuming that the

time to evaluate each normalized 8-step GBC remains about the same.

54

Table 6.16: The preprocessing and total computational time (in s) to compute

NGBk(C) values for randomly selected 10000 groups C of size g on the Facebook

network

Total Time (in s) to ComputeNGBk(C)

Values for All Possible Groups C of Size gPrep. Time

(in s) to Group Size g

k Compute PBk 10 20 30 40 50 60 70 80 90 100

1 3278.94 1.11 4.79 13.98 31.67 59.50 100.92 157.96 235.03 329.93 453.30

2 3359.18 1.02 5.37 15.79 35.66 67.18 114.25 179.06 266.40 374.11 510.57

3 3657.87 1.11 6.00 17.99 40.88 77.40 131.49 206.45 306.76 432.04 593.07

4 4227.36 1.19 6.73 20.47 46.78 88.72 150.50 236.90 351.77 496.80 678.63

5 4569.89 1.21 6.97 21.28 48.68 91.98 175.10 253.28 367.41 514.96 703.44

6 4634.01 1.22 7.05 21.50 49.05 93.15 158.29 248.62 371.14 521.48 712.72

7 4670.12 1.22 7.06 21.58 49.34 93.68 159.16 249.78 371.49 523.30 715.73

8 4679.23 1.22 7.06 21.58 49.32 93.76 159.33 250.14 371.50 523.81 715.88
* Prep.: Preprocessing

In some applications, certain vertices of a network may be distinguished and one may

want to find a group of central vertices that are chosen among these distinguished

vertices. Consider, for example, a road network where one is allowed to place road

side equipments that can monitor the network at only a preselected subset of the

vertices of the network. In this case, one may be interested in finding a subset of

these preselected vertices having the highest normalized k-step GBC value. In such

a case, the number of candidate groups may substantially be smaller than the number

of all subsets of all the vertices of a given size.

For the Facebook network, we preselect 20 vertices uniformly at random and we

want to find a subset of these preselected vertices having the highest normalized

k-step GBC value for different k and g values. The matrices σ, d, and PBk, k ∈
{1, 2, . . . , 8} are already computed before, so we do not report the preprocessing

times once again here. The total time (in s) to compute all NGBk(C) values for

subsets C of the 20 preselected vertices of size g is given in Table 6.17 for different

k and g values. For example, once the preprocessing is done, a group of 10 vertices

chosen among the preselected ones having the highest normalized 8-step GBC can be

55

found in less than 21 seconds. The average time to compute each NGBk(C) value

ranges between 8.77× 10−6 and 1.10× 10−4 seconds for every pair of k and g values

considered in Table 6.17 for this network.

Table 6.17: The preprocessing and total computational time (in s) to compute

NGBk(C) values for all possible subsets C of the 20 preselected vertices of size

g on the Facebook network

Total Time (in s) to ComputeNGBk(C) Values for All

Possible Groups C of Size g Consisting of Preselected Vertices

Group Size g

k 1 2 3 4 5 6 7 8 9 10

1 0.00 0.00 0.01 0.08 0.34 1.14 3.05 6.36 10.87 14.90

2 0.00 0.00 0.01 0.08 0.36 1.19 3.20 6.82 11.68 16.14

3 0.00 0.00 0.01 0.08 0.37 1.29 3.52 7.90 13.28 18.44

4 0.00 0.00 0.01 0.09 0.39 1.37 3.75 8.04 14.16 19.95

5 0.00 0.00 0.01 0.09 0.40 1.37 3.79 8.24 14.38 20.26

6 0.00 0.00 0.02 0.09 0.40 1.38 3.79 8.15 14.36 20.27

7 0.00 0.00 0.01 0.09 0.40 1.38 3.79 8.18 14.49 20.26

8 0.00 0.00 0.01 0.09 0.40 1.46 4.00 8.25 14.49 20.23

56

CHAPTER 7

ALTERNATIVE SOLUTION METHODS

Once the preprocessing step is performed, the algorithm proposed by Puzis et al. and

Algorithm 1 can evaluate the GBC and k-step GBC, respectively, of several groups

of size g, successively very fast. Therefore, in this study we consider it as the basic

algorithm to compute k-step BC and k-step GBC. However, when g is not small, the

problem to compute the group with the highest GBC or k-step GBC from all possible

subsets becomes challenging to solve by the k-step GBC.

Given a ground setX , a weightw(x) for each x ∈ X , a collection S = {S1, S2, . . . , SN}
of subsets of X , and a positive integer g, the problem of selecting at most g subsets

from S to maximize the total weight of the elements covered by the selected subsets is

called as the weighted maximum coverage problem. This problem is NP-hard, and it

can be approximated using a greedy algorithm within a ratio of 1− 1/e = 0.63 [75].

In other words, the algorithm finds a set whose objective function value is at least

“(1−1/e)×optimal objective function value”. Our problem is also a maximum cov-

erage problem with X being the set of all shortest paths, each subset in S consisting

of the set of shortest paths passing through a specific node, g being the group size,

and the weight of a shortest path joining s to t being 1/σst. Inspired by maximum

coverage problem Dolev et al. [10] show that the problem of finding a set of vertices

of size g that maximizes the probability of detecting information sent through a ran-

domly chosen shortest path between randomly chosen vertices is NP-hard. In [8],

Puzis et al. propose a greedy heuristic to compute a set of vertices with high GBC

value. This algorithm is the same as the approximation algorithm proposed for the

weighted maximum coverage problem in the literature. In this chapter, we propose a

heuristic algorithm, which is the approximation algorithm proposed for the weighted

57

maximum coverage problem, to find a group of vertices of size g whose k-step GBC

value is high.

Moreover, recently, Veremyev et al. propose a mixed integer programming formu-

lation to find a group of vertices of size g that has the highest GBC value. In this

chapter, we also introduce a mixed integer programming model to compute the group

of size g having the largest k-step GBC value which is a modification of the model

proposed by Veremyev et al. in [9].

7.1 Modeling by Mixed Integer Programs

Now, we introduce a mixed integer programming (MIP) model to compute the group

of size g having the largest k-step GBC value. This formulation is a modification of

the one proposed by Veremyev et al. [9] for the computation of the optimum group of

vertices. We first introduce related parameters and decision variables, afterwards we

explain the MIP model.

The notation used for the mathematical model are as follows.

Parameters:

Pst : the set of all shortest paths joining s to t. The cardinalities of all mem-

bers of Pst are identical, e.g., |Pr1 | = |Pr2 | where r is a possible path

joining s to t with r ∈ {1, 2, . . . , σst}. Moreover, if s and t are adjacent,

the shortest path joining s to t is unique, so |Pst| = 1. The algorithm

that is used to compute all paths between any pair of vertices is available

in Appendix A.2

Pr ∈ Pst : represents an ordered list of vertices that lie on the rth shortest path

joining s to t, including starting and ending vertices (s, t).

σst : total number of shortest paths joining s to t.

d(s, t) : length of the shortest path joining s to t.

g : group size.

58

Decision variables:

yrst : y
r
st is a binary variable where {s, t} ∈ V and r ∈ {1, 2, . . . , σst}. yrst is equal

to 1 if the shortest path Pr ∈ Pst joining s to t passes through at least one

vertex in C in the first k steps. In other words, yrst is equal to 1 if and only if

there is a vertex q satisfying all conditions q ∈ C and q ∈ Pr and d(s, q) ≤ k.

xs : xs ∈ V is a binary variable, such that xs = 1 if vertex s is a member of

selected group C, and xs = 0 otherwise.

After the relevant notation is introduced, now we define mathematical model.

maximize
∑

s,t∈V ,s 6=t

∑
Pr∈Pst

yrst
σst

(7.1)

subject to yrst ≤
∑
q: q∈Pr

d(s,q)≤k

xq, ∀ s, t ∈ V, s 6= t, ∀Pr ∈ Pst, (7.2)

∑
s∈V

xs = g, (7.3)

xs ∈ {0, 1}, 0 ≤ yrst ≤ 1 ∀ s, t ∈ V, s 6= t, ∀Pr ∈ Pst. (7.4)

Objective function in Equation 7.1 aims to maximize the total fraction of shortest

paths that the information is obtained by at least one group member within the first

k steps of the start of the communication between all pairs of distinct vertices. Con-

straint 7.2 ensures that yrst is equal to 1 in an optimal solution if at least one vertex

of the related shortest path Pr is covered by C in the first k steps, and it is equal to 0

otherwise. Constraint 7.3 guarantees that cardinality of the selected group of vertices

doesn’t exceed defined group size g. Finally, constraint 7.4 defines bounding limita-

tions and binary restrictions for variables xs and yrst . Note that binary restrictions for

yrst are relaxed, as it is a maximization problem and existence of constraint 7.2.

Considered MIP model consist of n binary variables,
∑

s,t∈V,s 6=t σst many continuous

variables, and
∑

s,t∈V,s 6=t σst + 1 many constraints.

59

7.2 An Approximation Algorithm to Compute the k-step Group Betweenness

Centrality

Now, we describe an algorithm to find a group whose k-step GBC value is high for a

given group size g which is a modification of the algorithm proposed by Puzis et al.

in [7].

Algorithm 2 determine a group of vertices of size g iteratively. The algorithm starts

choosing the vertex v with the highest k-step BC value and at each iteration it adds

a new vertex v ∈ V \ {M} according to its contribution to k-step GBC value of

existing group members. This algorithm is a 1 − 1/e approximation algorithm [10]

for the problem of finding a gorup of vertices with size g with high k-step GBC value.

The steps of the Algorithm 2 are given in Algorithm 2.

The inputs of the algorithm are a graph G = (V,E), group size g, and a positive

integer k, and the outputs are the group M ⊆ V of size g and GBk(M) value. Algo-

rithm 2 starts with a preprocessing step just like Algorithm 1. During the algorithm,

the contributions of selected elements from V onGBk(M) are considered one by one

between lines 8 and 28. A setM is defined in line 4 which is initially an empty set, and

the algorithm ends whenM has g entry. Once their contributions toGBk(M) are con-

sidered, the elements of V are added one by one toM during the algorithm. We define

two n×nmatrices σM = [σMxy]x,y∈V and PBk
M = [PBk

M(x, y)]x,y∈V . Initially in lines

5 and 6, we have that σMxy = σxy and PBk
M(x, y) = PBk(x, y), ∀x, y ∈ V as M is the

empty set for now. Moreover GBk(M) is initialized to zero in line 7 as the contribu-

tion of any element of V is not yet considered. In each iteration within the for loop

between lines 8 and 28, the vertex which have highest PBk
M(v, v) value, say v∗, is

chosen from candidate vertices V \M and, its contribution toGBk(M) is considered.

This is done in line 10 by the equation GBk(M ∪{v∗}) = GBk(M)+PBk
M(v∗, v∗).

As M will be updated to M ∪ {v∗}, to be able to determine the contribution of the

following elements of V to GBk(M), the matrix PBk
M has to be updated. For this

purpose, we first update the matrix σM between lines 12 and 14. For any x, y ∈ V ,

σMxy is subject to change when v∗ lies on at least one shortest path joining x to y. Be-

tween lines 15 and 25, the matrix PBk
M is updated. The procedures to update σM and

PBk
M are just like in Algorithm 1. Finally, in line 27, M is updated as M ∪ {v∗}.

60

The preprocessing step of Algorithm 2 takes O(n3) time. Algorithm 2 spends O(n2)

time within the for loop between lines 11 and 26. This loop repeats g times iteratively,

so the total computational time is O(n3 + gn2).

Algorithm 2 k-step GBC - Heuristic

1: Inputs: G = (V,E), g, and a positive integer k

2: Outputs: M ⊆ V and GBk(M)

3: Preprocessing: Compute σ, d, and PBk.

4: M ← {}
5: σMxy ← σxy,∀x, y ∈ V
6: PBk

M(x, y)← PBk(x, y),∀x, y ∈ V
7: GBk(M)← 0

8: for i = 1 to g do

9: v∗ = argmaxvPB
k
M(v, v)

10: GBk(M)← GBk(M) + PBk
M(v∗, v∗)

11: for ∀x, y ∈ V do

12: if d(x, y) = d(x, v∗) + d(v∗, y) then

13: σ
M∪{v∗}
xy ← σMxy − σMxv∗σMv∗y

14: end if

15: if x = y 6= v∗ then

16: PBk
M∪{v∗}(x, x)← PBk

M(x, x)− PBk
M(v∗, x)− PBk

M(x, v∗)

17: else if d(v∗, y) = d(v∗, x) + d(x, y) then

18: PBk
M∪{v∗}(x, y)← PBk

M(x, y)− σM
v∗xσ

M
xyPB

k
M (v∗,y)

σM
v∗y

19: else if d(x, y) = d(x, v∗) + d(v∗, y) then

20: PBk
M∪{v∗}(x, y)← PBk

M(x, y)− σM
xv∗σ

M
v∗yPB

k
M (x,y)

σM
xy

21: else if d(x, v∗) = d(x, y) + d(y, v∗) then

22: PBk
M∪{v∗}(x, y)← PBk

M(x, y)− σM
xyσ

M
yv∗PB

k
M (x,v∗)

σM
xv∗

23: else

24: PBk
M∪{v∗}(x, y)← PBk

M(x, y)

25: end if

26: end for

27: M ←M ∪ {v∗}
28: end for

61

7.3 Computational Experiments

In this section, we perform several computational experiments on real and randomly

generated networks to

• understand the change in running time of Algorithm 2 and MIP model as k and

g change.

• understand success rate of Algorithm 2 as k, g, and the density change.

7.3.1 Real-life Networks

The first real network is rt-retweet network where vertices represent twitter users, and

edges represent hashtags about social and political issues. Secondly, we use jazz-

musicians network. Here, the vertices represent jazz musicians, and the existence of

an edge between two vertices shows that the corresponding users have recorded in the

same band. The third real-life network is ca-netscience where each vertex represents

a scientist, and edges show that there is co-authorship between scientists [71].

Some properties of the considered real-life networks are given in Table 7.1.

Table 7.1: Some properties of the considered real-life networks.

Network |V | |E| md ad dmax davg Density

rt-retweet 96 117 10 4.31 17 2.44 0.03

jazz-musicians 196 2742 6 2.24 100 27.70 0.14

ca-netscience 379 914 17 6.04 34 4.82 0.01
* md: maximum distance, ad: average distance, dmax: maximum degree, davg: average degree.

Now, we investigate how the running times of Algorithm 2 and MIP formulation

change as n, k, and g change for real-life networks. We report total time (in s) to

compute the group of size g having the largest k-step GBC value in the columns titled

“MIP Solution” in Table 7.2. Moreover, we report total time (in s) to find a group

62

whose k-step GBC value is high for a given group of size g in the columns titled

“Heuristic Solution” in Table 7.2

Table 7.2: Total time (in s) to compute the group of size g having the largest k-step

GBC value and total time (in s) to find a group whose k-step GBC value is high for a

given group of size g on real-life networks

MIP Solution Heuristic Solution

Network
k

g
5 10 15 20 5 10 15 20

rt-retweet 2 2.81 1.23 0.66 0.25 0.01 0.01 0.02 0.02

4 1.60 0.42 0.34 0.38 0.01 0.01 0.02 0.02

6 1.56 0.44 0.34 0.36 0.01 0.01 0.01 0.02

8 1.70 0.44 0.34 0.31 0.01 0.01 0.01 0.02

jazz-musicians 2 969.55 2566.59 2037.16 3286.91 0.03 0.05 0.08 0.10

4 1376.98 2124.00 2757.11 14855.00 0.03 0.06 0.09 0.12

6 1366.92 1976.16 3448.88 24626.89 0.03 0.06 0.08 0.11

8 1379.42 1854.92 3512.16 24649.32 0.03 0.07 0.08 0.11

ca-netscience 2 1672.77 1644.45 1407.30 1016.20 0.12 0.19 0.27 0.35

4 2203.55 768.23 656.47 319.47 0.11 0.19 0.28 0.34

6 1474.31 611.77 300.86 336.05 0.12 0.21 0.28 0.35

8 1709.11 612.50 330.20 302.56 0.12 0.22 0.31 0.38

For the rt-retweet network which has 96 vertices, computation times are very small

for both solution methods. MIP model can compute the optimum normalized k-step

GBC value in less than 3 seconds for each of the k and g values. Also, Algorithm 2

can compute the group whose k-step GBC value is high in less than 0.03 seconds for

each of the k and g values. As g and n increase, total time (in s) to compute heuristic

solution increases as expected. Also, as n and graph density increase running time of

MIP model increases dramatically. Consider the jazz-musicians network which has

196 vertices. When k = 6 and g = 20, exact solution is found in 24626.89 seconds,

but heuristic solution takes just 0.11 seconds. Moreover, even when n increases from

96 to 379, Algorithm 2 can do this evaluation in less than 0.4 seconds for all k and g

values.

Remember that Algorithm 2 returns a subset M whose k-step GBC value is high,

63

but it doesn’t guarantee optimum result. Therefore, it is possible to see an optimality

GAP between NGBk∗
g (G) value and NGBk

g (M) value where

Optimality GAP =
NGBk∗

g (G)−NGBk
g (M)

NGBk∗
g (G)

. (7.5)

Now, we investigate how optimality GAP changes as n, k, and g change for real-life

networks. We report NGBk∗
g (G), NGBk

g (M), and Optimality GAP values for dif-

ferent k and g values in Table 7.3. Observe that gaps are generally small for different

networks, and k and g combinations. Also as g increases gaps tend to be increase.

When g = 5 the maximum gap is equal to 0.03 and mean gap is equal to 0.01, and

when g = 20 the maximum gap is equal to 0.08 and mean gap is equal to 0.03.

Table 7.3: Optimum k-step GBC value (NGBk∗
g (G)), k-step GBC value of the group

of vertices M returned by Algorithm 2 (NGBk
g (M)) and Optimality GAP for differ-

ent k and g values on real-life networks

NGBk∗
g (G) NGBk

g (M) Optimality GAP

Network
k

g
5 10 15 20 5 10 15 20 5 10 15 20

rt-retweet 1 0.42 0.62 0.76 0.87 0.42 0.61 0.73 0.80 0.00 0.02 0.04 0.08

2 0.73 0.92 0.98 1.00 0.73 0.89 0.96 0.98 0.00 0.03 0.02 0.02

3 0.86 0.98 0.99 1.00 0.86 0.98 0.99 0.99 0.00 0.00 0.00 0.01

4 0.90 0.98 0.99 1.00 0.90 0.98 0.99 0.99 0.00 0.00 0.00 0.01

5 0.91 0.98 0.99 1.00 0.91 0.98 0.99 0.99 0.00 0.00 0.00 0.01

jazz-musicians 1 0.30 0.42 0.51 0.58 0.29 0.41 0.50 0.57 0.03 0.02 0.02 0.02

2 0.38 0.53 0.63 0.71 0.37 0.52 0.62 0.69 0.03 0.02 0.02 0.03

3 0.39 0.54 0.64 0.72 0.38 0.53 0.63 0.70 0.03 0.02 0.02 0.03

4 0.39 0.54 0.64 0.72 0.39 0.53 0.63 0.70 0.00 0.02 0.02 0.03

5 0.39 0.54 0.64 0.72 0.39 0.53 0.63 0.70 0.00 0.02 0.02 0.03

ca-netscience 1 0.24 0.37 0.48 0.56 0.24 0.37 0.46 0.53 0.00 0.00 0.04 0.05

2 0.52 0.72 0.84 0.90 0.52 0.72 0.83 0.87 0.00 0.00 0.01 0.03

3 0.69 0.87 0.94 0.96 0.69 0.87 0.94 0.96 0.00 0.00 0.00 0.00

4 0.78 0.92 0.96 0.97 0.76 0.90 0.94 0.95 0.03 0.02 0.02 0.02

5 0.82 0.93 0.96 0.97 0.81 0.92 0.94 0.95 0.01 0.01 0.02 0.02

64

7.3.2 Random Networks

Now, we investigate how the running times of Algorithm 2 and MIP formulation

change as n, k, g, and the density change on randomly generated Erdös-Renyi graphs.

For this purpose, we generate connected Erdös-Renyi graphs ERn,p for each pair of

n and p values, where n ∈ {100, 150, 200} and p ∈ {0.03, 0.1}. Some properties of

the generated Erdös-Renyi graphs are given in Table 7.4

Table 7.4: Some properties the randomly generated Erdös-Renyi graphs

Network |V | |E| md ad dmax davg

ER100,03 100 173 10 3.96 7 3.46

ER100,10 100 483 4 2.26 17 9.66

ER150,03 150 339 7 3.45 10 4.52

ER150,10 150 1070 4 2.14 25 14.27

ER200,03 200 585 6 3.19 13 5.85

ER200,10 200 2029 3 2.01 32 20.29
* md: maximum distance, ad: average distance, dmax: maximum degree, davg: average degree.

We report total time (in s) to compute the group of size g having the largest k-step

GBC value in the columns titled “MIP Solution” in Table 7.5. Moreover, we report

total time (in s) to find a group whose k-step GBC value is high for a given group of

size g in the columns titled “Heuristic Solution” in Table 7.5.

We can see that running times of both algorithms tend to increase as n or g increase.

Observe that while running time of Algorithm 2 doesn’t depend on density p, running

time of MIP model increases as p increases. Consider the graph ER150,0.03. When

k = 2 and g = 10, total time to compute NGBk∗
g (G) takes 50.78 seconds, and for the

graphER150,0.10 total time to computeNGBk∗
g (G) takes 375.33 seconds for the same

k and g values. Moreover, when g and n increase, the difference is generally much

more pronounced. Consider the graph ER200,0.03. When k = 4 and g = 20, total time

to computeNGBk∗
g (G) takes 2191.55 seconds, and for the graphER200,0.10 total time

to compute NGBk∗
g (G) takes 107280.22 seconds for the same k and g values.

65

Table 7.5: Total time (in s) to compute the group of size g having the largest k-step

GBC value and total time (in s) to find a group whose k-step GBC value is high for a

given group of size g on randomly generated Erdös-Renyi graphs

MIP Solution Heuristic Solution

Graph
k

g
5 10 15 20 5 10 15 20

ER100,0.03 2 5.07 8.41 8.45 5.69 0.01 0.01 0.02 0.03

4 13.77 20.94 26.30 21.36 0.01 0.01 0.01 0.02

6 16.13 22.08 27.30 24.63 0.01 0.01 0.01 0.02

ER100,0.10 2 30.44 46.20 96.63 222.25 0.01 0.01 0.02 0.03

4 37.02 97.78 153.58 505.42 0.01 0.02 0.03 0.02

ER150,0.03 2 32.23 50.78 65.81 116.78 0.02 0.03 0.04 0.04

4 82.09 180.50 272.84 1530.13 0.02 0.03 0.05 0.05

6 74.50 154.19 324.11 1742.92 0.01 0.03 0.04 0.05

ER150,0.10 2 192.14 375.33 854.24 4381.28 0.02 0.04 0.05 0.05

4 459.77 614.03 13025.70 26846.08 0.01 0.03 0.05 0.05

ER200,0.03 2 163.52 187.80 258.48 289.42 0.02 0.03 0.05 0.07

4 358.70 555.49 671.00 2191.55 0.03 0.06 0.08 0.09

6 364.08 751.89 674.44 2828.78 0.03 0.06 0.08 0.09

ER200,0.10 2 1359.25 1730.58 3580.89 46734.77 0.02 0.04 0.05 0.07

4 1165.81 2816.48 6332.36 107280.22 0.02 0.04 0.05 0.07

Now, we investigate how optimality GAP changes as n, k, g, and the density change

on randomly generated Erdös-Renyi graphs. We report NGBk∗
g (G), NGBk

g (M), and

optimality GAP values in Table 7.6. We can see that gaps are smaller than real-life

networks. When g = 5, Algorithm 2 gives optimum result for all k and g combina-

tions. When g = 10, Algorithm 2 gives optimum result except of graph ER200,0.1.

When g = 15 and g = 20 maximum gaps are 0.04 and 0.02, respectively. Ob-

serve that as density (p) increases, gaps tend to decrease generally. Consider graphs

ER100,0.1 and ER150,0.1. Algorithm 2 gives optimum result for all k and g combina-

tions.

66

Table 7.6: Optimum k-step GBC value (NGBk∗
g (G)), k-step GBC value of the group

of vertices M returned by Algorithm 2 (NGBk
g (M)) and Optimality GAP for differ-

ent k and g values on Erdös-Renyi graphs.

NGBk∗
g (G) NGBk

g (M) Optimality GAP

Graph
k

g
5 10 15 20 5 10 15 20 5 10 15 20

ER100,0.03 1 0.20 0.36 0.50 0.62 0.20 0.36 0.50 0.62 0.00 0.00 0.00 0.00

2 0.36 0.58 0.74 0.86 0.36 0.58 0.73 0.85 0.00 0.00 0.01 0.01

3 0.47 0.71 0.84 0.93 0.47 0.71 0.84 0.91 0.00 0.00 0.00 0.02

4 0.51 0.76 0.88 0.95 0.51 0.76 0.87 0.93 0.00 0.00 0.01 0.02

5 0.52 0.77 0.89 0.95 0.52 0.77 0.88 0.94 0.00 0.00 0.01 0.01

ER100,0.10 1 0.17 0.30 0.43 0.53 0.17 0.30 0.43 0.53 0.00 0.00 0.00 0.00

2 0.24 0.42 0.57 0.69 0.24 0.42 0.57 0.69 0.00 0.00 0.00 0.00

3 0.25 0.44 0.60 0.71 0.25 0.44 0.60 0.71 0.00 0.00 0.00 0.00

ER150,0.03 1 0.13 0.24 0.34 0.43 0.13 0.24 0.34 0.43 0.00 0.00 0.00 0.00

2 0.22 0.39 0.53 0.64 0.22 0.39 0.53 0.64 0.00 0.00 0.00 0.00

3 0.28 0.48 0.64 0.75 0.28 0.48 0.63 0.74 0.00 0.00 0.02 0.01

4 0.29 0.51 0.67 0.77 0.29 0.51 0.66 0.77 0.00 0.00 0.01 0.00

5 0.29 0.51 0.67 0.78 0.29 0.51 0.66 0.77 0.00 0.00 0.01 0.01

ER150,0.10 1 0.12 0.22 0.30 0.38 0.12 0.22 0.30 0.38 0.00 0.00 0.00 0.00

2 0.16 0.30 0.40 0.49 0.16 0.30 0.40 0.49 0.00 0.00 0.00 0.00

3 0.16 0.30 0.41 0.50 0.16 0.30 0.41 0.50 0.00 0.00 0.00 0.00

ER200,0.03 1 0.10 0.19 0.27 0.34 0.10 0.19 0.27 0.34 0.00 0.00 0.00 0.00

2 0.18 0.32 0.44 0.55 0.18 0.32 0.44 0.54 0.00 0.00 0.00 0.02

3 0.22 0.39 0.52 0.63 0.22 0.38 0.51 0.63 0.00 0.03 0.02 0.00

4 0.22 0.40 0.53 0.64 0.22 0.39 0.53 0.64 0.00 0.03 0.00 0.00

5 0.22 0.40 0.53 0.64 0.22 0.39 0.53 0.64 0.00 0.03 0.00 0.00

ER200,0.10 1 0.08 0.14 0.21 0.26 0.08 0.14 0.21 0.26 0.00 0.00 0.00 0.00

2 0.10 0.19 0.27 0.35 0.10 0.19 0.27 0.35 0.00 0.00 0.00 0.00

3 0.10 0.19 0.28 0.35 0.10 0.19 0.27 0.35 0.00 0.00 0.04 0.00

67

7.3.3 Large-Scale Networks

Up to this point, we have tested performance of Algorithm 2 on small size networks

and observed that it is really timesaving even for small n values. Now we investigate

running time of the algorithm on some real networks when the size of the network is

large.

Firstly, we use Facebook network [74] consisting 4,039 vertices and 88,234 edges.

We have already reported preprocessing times for this network. Total computational

times (in s) to find a group with high NGBk(M) value is reported in Table 7.7 for

each g value. We can see that as g increases, computational time increases as well.

Table 7.7: The preprocessing and total computational time (in s) to find a group with

high NGBk(M) value of size g on the Facebook network

Total Time (in s) to Find a Group

With HighNGBk(M) Value of Size gPrep. Time

(in s) to Group Size g

k Compute PBk 10 20 30 40 50 60 70 80 90 100

1 3278.94 25.19 52.48 77.08 151.57 139.96 509.08 227.34 641.24 667.95 282.30

2 3359.18 82.07 139.66 178.79 243.31 323.52 381.36 461.24 538.17 480.67 571.51

3 3657.87 78.30 140.66 195.37 262.72 321.75 380.53 299.68 187.10 175.23 190.29

4 4227.36 35.20 50.38 75.29 118.82 204.30 380.20 182.70 498.83 379.20 515.39

5 4569.89 80.53 144.56 197.27 253.57 313.66 373.91 209.35 454.62 554.10 611.18

6 4634.01 78.94 139.60 197.91 259.76 317.56 381.07 434.81 476.74 400.30 511.55

7 4670.12 79.89 141.11 204.83 265.34 326.24 387.38 432.82 499.94 565.50 630.52

8 4679.23 81.29 137.73 198.94 84.71 90.76 106.12 121.26 137.43 153.37 168.61
* Prep.: Preprocessing

Second real-life network we consider is an online social network called the soc-

anybeat [71] network. This network consists of 12.6K vertices and 67.1K edges.

For this network, the σ and d matrices are computed in about 27 hours. The matrix

PBk is computed once for each k value, and the time to compute PBk for each

k value is given in Table 7.8 in the column titled “Prep. time (in s) to Compute

PBk”. Total computational times (in s) to find a group with high NGBk(M) value

is reported in the following columns. We obtain similar results with the Facebook

68

network. Also, we can see that once the preprocessing is done, Algorithm 2 has

reasonable running times even for such a large network.

Table 7.8: The preprocessing and total computational time (in s) to find a group with

high NGBk(M) value of size g on the soc-anybeat network

Total Time (in s) to Find a Group

With HighNGBk(M) Value of Size gPrep. Time

(in s) to Group Size g

k Compute PBk 10 20 30 40 50 60 70 80 90 100

1 56269.83 242.03 497.74 691.84 911.69 1164.70 1312.60 1706.46 1893.90 2170.47 2279.56

2 60082.31 241.53 482.21 686.31 970.54 1081.01 1348.12 1650.74 1812.17 1949.80 2300.35

3 64827.38 252.79 493.10 728.53 905.77 1138.05 1433.14 1652.48 1907.86 2104.35 2308.12

4 62537.79 264.75 500.34 755.16 951.68 1130.63 1481.37 1612.02 1945.06 2076.06 2378.45

5 61806.81 263.70 500.41 750.76 954.99 1217.70 1343.38 1675.71 1804.39 1944.78 2273.33

6 61657.36 269.01 521.08 755.85 933.26 1170.02 1459.74 1697.52 1898.57 2112.04 2151.10

7 61601.78 270.15 503.59 706.03 955.51 1243.33 1416.61 1615.55 1757.91 2131.18 2390.81

8 61567.22 267.18 505.87 737.30 1005.15 1237.29 1492.66 1726.75 1893.30 2117.30 2354.60

9 61577.45 265.88 503.18 712.87 988.18 1256.49 1412.90 1632.15 1958.30 2126.18 2405.51

10 61593.02 268.10 525.07 775.41 1006.51 1256.03 1382.37 1692.53 1959.77 2201.08 2364.59
* Prep.: Preprocessing

69

70

CHAPTER 8

CONCLUSION AND FUTURE STUDY DIRECTIONS

In this thesis, we propose variants of the classical betweenness and group betweenness

centralities; namely, the k-step BC and k-step GBC, respectively. The normalized

k-step BC of a vertex measures the likelihood that the vertex will get the informa-

tion communicated between a randomly chosen pair of vertices through a randomly

chosen shortest path within the first k steps of the start of the communication. The

normalized k-step GBC of a group of vertices, similarly, measures the likelihood that

information will be obtained by at least one member of the group within the first k

steps. The newly introduced centrality measures may find uses in applications where

it is important or critical to obtain the information within a fixed time of the start of

the communication.

For the newly introduced centrality measures, we propose an algorithm to compute

successively the k-step GBC of several groups of vertices. This algorithm is a mod-

ification of the one proposed by Puzis et al. [8] for the computation of the GBC of

groups of vertices. We have shown that the proposed algorithm can evaluate the k-

step GBC of several groups of vertices within reasonable times even for large scale

networks. We also propose a greedy heuristic algorithm to find a group of vertices

of size g whose k-step GBC value is high. We show that heuristic algorithm is really

time-saving and has small optimality gaps. Therefore, it could be a good alternative

for large scale networks or when group size g is too big to enumerate all possible

subsets for a given graph. Other than these we propose a mixed integer program-

ming formulation to compute the optimum k-step GBC value of size g which is a

modification of the model proposed by Veremyev et al. in [9]. We observe that MIP

formulation can compute the optimum k-step GBC value in reasonable times, espe-

71

cially for sparse graphs. Also, it allows to work on bigger group sizes. Note that

Algorithm 1 and the MIP model may find uses in different contexts, and therefore are

in a sense complementary algorithms for the k-step GBC computations.

We have made the following observations through our computational experiments.

• For a fixed g, NGBk∗
g (G) values increase with decreasing marginal changes

until some k value and remain constant thereafter.

• For a fixed k, NGBk∗
g (G) values increase as g increases as expected.

• The k-step normalized GBC values are non-increasing as the density increases.

• Given a group size g, the group maximizing the GBC may be different from the

one maximizing the k-step GBC. Moreover, the group maximizing the k-step

GBC value may change from k to k. Therefore, if the user aims to obtain the

information within k steps with a higher probability, it is better to use the k-step

GBC measure instead of the classical GBC measure.

• When we investigate the normalized k-step GBC values of all subsets of ver-

tices of a given size, we have seen that the distribution of the values is right-

skewed. Therefore, in order to estimate the maximum k-step GBC value, one

may need to sample several groups of vertices. The Algorithm 1 proposed in

this study may serve this purpose, as once the preprocessing step is done, it can

evaluate the k-step GBC of several groups of vertices very fast.

• For a fixed g, as k increases, the time to compute all NGBk(C) values in-

creases as well. Moreover, for a fixed k, as g increases, the time to compute all

NGBk(C) values also increases.

For further research, Algorithm 1 can be integrated with a sampling algorithm to esti-

mate the maximum k-step GBC value for large scale networks. Another important di-

rection for further research is to find a group of vertices minimizing the expected time

the information is obtained. No study has been conducted on this problem. Moreover,

in this study we assume that communication happens equally likely between every

pair of vertices. An algorithm to compute k-step GBC when communication is not

equally likely between every pair of vertices can be constructed.

72

REFERENCES

[1] K. Das, S. Samanta, and M. Pal, “Study on centrality measures in social net-

works: A survey,” Social Network Analysis and Mining, vol. 8, no. 1, p. 13,

2018.

[2] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociom-

etry, vol. 40, no. 1, pp. 35–41, 1977.

[3] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social

Networks, vol. 1, no. 3, pp. 215–239, 1978-1979.

[4] U. Brandes, “A faster algorithm for betweenness centrality,” The Journal of

Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[5] E. D. Kolaczyk, D. B. Chua, and M. Barthélemy, “Group betweenness and

co-betweenness: Inter-related notions of coalition centrality,” Social Networks,

vol. 31, no. 3, pp. 190–203, 2009.

[6] M. G. Everett and S. P. Borgatti, “The centrality of groups and classes,” The

Journal of Mathematical Sociology, vol. 23, no. 3, pp. 181–201, 1999.

[7] R. Puzis, Y. Elovici, and S. Dolev, “Finding the most prominent group in com-

plex networks,” AI Communications, vol. 20, no. 4, pp. 287–296, 2007.

[8] R. Puzis, Y. Elovici, and S. Dolev, “Fast algorithm for successive computation

of group betweenness centrality,” Physical Review E, vol. 76, no. 5, p. 056709,

2007.

[9] A. Veremyev, O. A. Prokopyev, and E. L. Pasiliao, “Finding groups with max-

imum betweenness centrality,” Optimization Methods and Software, vol. 32,

no. 2, pp. 369–399, 2017.

[10] S. Dolev, Y. Elovici, R. Puzis, and P. Zilberman, “Incremental deployment of

network monitors based on group betweenness centrality,” Information Process-

ing Letters, vol. 109, no. 20, pp. 1172–1176, 2009.

73

[11] W. Chen, W. Lu, and N. Zhang, “Time-critical influence maximization in social

networks with time-delayed diffusion process,” in Proceedings of the Twenty-

Sixth AAAI Conference on Artificial Intelligence, pp. 592–598, 2012.

[12] B. Liu, G. Cong, D. Xu, and Y. Zeng, “Time constrained influence maximiza-

tion in social networks,” in 2012 IEEE 12th International Conference on Data

Mining, pp. 439–448, 2012.

[13] E. Otte and R. Rousseau, “Social network analysis: a powerful strategy, also

for the information sciences,” Journal of information Science, vol. 28, no. 6,

pp. 441–453, 2002.

[14] C. Haythornthwaite, “Social network analysis: An approach and technique for

the study of information exchange,” Library & Information Science Research,

vol. 18, no. 4, pp. 323–342, 1996.

[15] L. Freeman, “The development of social network analysis,” A Study in the Soci-

ology of Science, vol. 1, 2004.

[16] D. Z. Levin and R. Cross, “The strength of weak ties you can trust: The mediat-

ing role of trust in effective knowledge transfer,” Management Science, vol. 50,

no. 11, pp. 1477–1490, 2004.

[17] D. Meltzer, J. Chung, P. Khalili, E. Marlow, V. Arora, G. Schumock, and R. Burt,

“Exploring the use of social network methods in designing healthcare quality

improvement teams,” Social Science & Medicine, vol. 71, no. 6, pp. 1119–1130,

2010.

[18] W. Li, X. Wang, and M. Yu, “A research on collaboration knowledge construc-

tion in the virtual learning community by social network analysis,” in 2010

International Conference on Educational and Information Technology, vol. 2,

pp. V2–323, IEEE, 2010.

[19] S. Korkmaz and A. Singh, “Impact of team characteristics in learning sustain-

able built environment practices,” Journal of professional issues in engineering

education and practice, vol. 138, no. 4, pp. 289–295, 2011.

74

[20] M. K. Di Marco, J. E. Taylor, and P. Alin, “Emergence and role of cultural

boundary spanners in global engineering project networks,” Journal of Man-

agement in Engineering, vol. 26, no. 3, pp. 123–132, 2010.

[21] X. Ruan, E. Ochieng, A. Price, and C. Egbu, “Knowledge integration process

in construction projects : A social network analysis approach to compare com-

petitive and collaborative working,” Construction Management and Economics,

vol. 30, no. 1, pp. 5–19, 2012.

[22] L. Zhang, J. He, and S. Zhou, “Sharing tacit knowledge for integrated project

team flexibility: Case study of integrated project delivery,” Journal of Construc-

tion Engineering and Management, vol. 139, no. 7, pp. 795–804, 2013.

[23] P. Chinowsky, J. Diekmann, and V. Galotti, “Social network model of construc-

tion,” Journal of Construction Engineering and Management, vol. 134, no. 10,

pp. 804–812, 2008.

[24] M. Akhavan Farshchi and M. Brown, “Social networks and knowledge cre-

ation in the built environment: A case study,” Structural Survey, vol. 29, no. 3,

pp. 221–243, 2011.

[25] A. Bavelas, “A mathematical model for group structures,” Human Organization,

vol. 7, no. 3, pp. 16–30, 1948.

[26] H. J. Leavitt, “Some effects of certain communication patterns on group perfor-

mance,” Journal of Abnormal Psychology, vol. 46, no. 1, pp. 38–50, 1951.

[27] M. M. Cohn BS, “Networks and centres of integration in Indian civilization,”

Journal of Social Research, vol. 1, no. 1, pp. 1–9, 1958.

[28] F. R. Pitts, “A graph theoretic approach to historical geography,” The Profes-

sional Geographer, vol. 17, no. 5, pp. 15–20, 1965.

[29] M. A. Beauchamp, “An improved index of centrality,” Behavioral Science,

vol. 10, no. 2, pp. 161–163, 1965.

[30] J. A. Czepiel, “Word-of-mouth processes in the diffusion of a major technolog-

ical innovation,” Journal of Marketing Research, vol. 11, no. 2, pp. 172–180,

1974.

75

[31] D. L. Rogers, “Sociometric analysis of interorganizational relations: Applica-

tion of theory and measurement,” Rural Sociology, vol. 39, no. 4, pp. 487–503,

1974.

[32] N. Coles, “Analysing serious crime groups as social networks,” The British Jour-

nal of Criminology, vol. 41, no. 4, pp. 580–594, 2001.

[33] J. Bruun and E. Brewe, “Talking and learning physics: Predicting future grades

from network measures and force concept inventory pretest scores,” Physical

Review Physics Education Research, vol. 9, no. 2, p. 020109, 2013.

[34] M. E. Shaw, “Group structure and the behavior of individuals in small groups,”

The Journal of Psychology, vol. 38, no. 1, pp. 139–149, 1954.

[35] J. Nieminen, “On the centrality in a graph,” Scandinavian Journal of Psychol-

ogy, vol. 15, no. 1, pp. 332–336, 1974.

[36] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31, no. 4,

pp. 581–603, 1966.

[37] M. E. J. Newman, “Scientific collaboration networks. I. Network construction

and fundamental results,” Physical Review E, vol. 64, no. 1, p. 016131, 2001.

[38] P. Bonacich, “Factoring and weighting approaches to status scores and clique

identification,” The Journal of Mathematical Sociology, vol. 2, no. 1, pp. 113–

120, 1972.

[39] P. Bonacich, “Some unique properties of eigenvector centrality,” Social Net-

works, vol. 29, no. 4, pp. 555–564, 2007.

[40] G. Yan, T. Zhou, B. Hu, Z.-Q. Fu, and B. Wang, “Efficient routing on complex

networks,” Physical Review. E, vol. 73, no. 4, p. 046108, 2006.

[41] N. Jayaweera, K. Perera, and J. Munasinghe, “Centrality measures to identify

traffic congestion on road networks: A case study of Sri Lanka,” IOSR Joournal

of Mathematics, vol. 13, no. 2, pp. 13–19, 2017.

[42] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure

in networks,” Physical Review E, vol. 69, no. 2, p. 026113, 2004.

76

[43] X. Liu, J. Bollen, M. L. Nelson, and H. V. de Sompel, “Co-authorship networks

in the digital library research community,” Information Processing & Manage-

ment, vol. 41, no. 6, pp. 1462–1480, 2005.

[44] J.-G. Liu, Z.-G. Xuan, Y.-Z. Dang, Q. Guo, and Z.-T. Wang, “Weighted network

properties of Chinese nature science basic research,” Physica A: Statistical Me-

chanics and its Applications, vol. 377, no. 1, pp. 302–314, 2007.

[45] M. K. Sparrow, “The application of network analysis to criminal intelligence:

An assessment of the prospects,” Social Networks, vol. 13, no. 3, pp. 251–274,

1991.

[46] D. Z. Grunspan, B. L. Wiggins, and S. M. Goodreau, “Understanding class-

rooms through social network analysis: A primer for social network analysis in

education research,” CBE—Life Sciences Education, vol. 13, no. 2, pp. 167–178,

2014.

[47] N. Magaia, A. P. Francisco, P. Pereira, and M. Correia, “Betweenness centrality

in delay tolerant networks: A survey,” Ad Hoc Networks, vol. 33, pp. 284–305,

2015.

[48] U. Brandes, “On variants of shortest-path betweenness centrality and their

generic computation,” Social Networks, vol. 30, no. 2, pp. 136–145, 2008.

[49] S. Borgatti and M. Everett, “A graph-theoretic perspective on centrality,” Social

Networks, vol. 28, no. 4, pp. 466–484, 2006.

[50] A. Shimbel, “Structural parameters of communication networks,” The Bulletin

of Mathematical Biophysics, vol. 15, no. 4, pp. 501–507, 1953.

[51] P. L. Szczepański, T. P. Michalak, and T. Rahwan, “Efficient algorithms for

game-theoretic betweenness centrality,” Artificial Intelligence, vol. 231, pp. 39

– 63, 2016.

[52] M. J. Newman, “A measure of betweenness centrality based on random walks,”

Social Networks, vol. 27, pp. 39–54, 2003.

77

[53] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted net-

works: Generalizing degree and shortest paths,” Social Networks, vol. 32, no. 3,

pp. 245 – 251, 2010.

[54] R. Geisberger, P. Sanders, and D. Schultes, “Better approximation of between-

ness centrality,” in Proceedings of the Meeting on Algorithm Engineering &

Expermiments, pp. 90–100, Society for Industrial and Applied Mathematics,

2008.

[55] M. Lujak and S. Giordani, “Centrality measures for evacuation: Finding agile

evacuation routes,” Future Generation Computer Systems, vol. 83, pp. 401 –

412, 2018.

[56] R. Grassi, F. Calderoni, M. Bianchi, and A. Torriero, “Betweenness to assess

leaders in criminal networks: New evidence using the dual projection approach,”

Social Networks, vol. 56, pp. 23 – 32, 2019.

[57] T. Hayashi, T. Akiba, and Y. Yoshida, “Fully dynamic betweenness centrality

maintenance on massive networks,” The Proceedings of then Very Large Data

Bases Endowment, vol. 9, no. 2, pp. 48–59, 2015.

[58] M.-J. Lee, S. Choi, and C.-W. Chung, “Efficient algorithms for updating be-

tweenness centrality in fully dynamic graphs,” Information Sciences, vol. 326,

pp. 278 – 296, 2016.

[59] M. Nasre, M. Pontecorvi, and V. Ramachandran, “Betweenness centrality–

incremental and faster,” in International Symposium on Mathematical Founda-

tions of Computer Science, pp. 577–588, Springer, 2014.

[60] U. Brandes and C. Pich, “Centrality estimation in large networks,” International

Journal of Bifurcation and Chaos, vol. 17, no. 07, pp. 2303–2318, 2007.

[61] M. Riondato and E. M. Kornaropoulos, “Fast approximation of betweenness

centrality through sampling,” Data Mining and Knowledge Discovery, vol. 30,

no. 2, pp. 438–475, 2016.

[62] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating between-

ness centrality,” in Algorithms and Models for the Web-Graph (A. Bonato and

F. R. K. Chung, eds.), pp. 124–137, Springer Berlin Heidelberg, 2007.

78

[63] M. Hinne, “Local approximation of centrality measures,” Computing, 2011.

[64] M. Rysz, F. M. Pajouh, and E. L. Pasiliao, “Finding clique clusters with the

highest betweenness centrality,” European Journal of Operational Research,

vol. 271, no. 1, pp. 155 – 164, 2018.

[65] C. Ni, C. R. Sugimoto, and J. Jian, “Degree, Closeness, and Betweenness: Ap-

plication of group centrality measurements to explore macro-disciplinary evo-

lution diachronically,” in Proceedings of the 13th International Society of Sci-

entometrics and Informetrics Conference (ISSI), pp. 1–13, 2011.

[66] A. Kchiche and F. Kamoun, “Access-points deployment for vehicular networks

based on group centrality,” 2009 3rd International Conference on New Tech-

nologies, Mobility and Security, pp. 1–6, 2009.

[67] R. Puzis, Y. Altshuler, Y. Elovici, S. Bekhor, Y. Shiftan, and A. S. Pentland,

“Augmented betweenness centrality for environmentally aware traffic monitor-

ing in transportation networks,” Journal of Intelligent Transportation Systems,

vol. 17, no. 1, pp. 91–105, 2013.

[68] M. Tubi, R. Puzis, and Y. Elovici, “Deployment of DNIDS in social networks,”

in 2007 IEEE Intelligence and Security Informatics, pp. 59–65, 2007.

[69] R. Puzis, M. Tubi, Y. Elovici, C. Glezer, and S. Dolev, “A decision support sys-

tem for placement of intrusion detection and prevention devices in large-scale

networks,” ACM Transactions on Modeling and Computer Simulation, vol. 22,

no. 1, pp. 5:1–5:26, 2011.

[70] J. Guan, Z. Yan, S. Yao, C. Xu, and H. Zhang, “GBC-based caching function

group selection algorithm for SINET,” Journal of Network and Computer Ap-

plications, vol. 85, no. 1, pp. 56 – 63, 2017.

[71] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive

graph analytics and visualization.” http://networkrepository.com, 2015. Ac-

cessed 27 February 2019.

[72] R. Willoughby, “The university of Florida sparse matrix collection.”

https://sparse.tamu.edu, 1970. Accessed 27 February 2019.

79

[73] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Sci-

ence, vol. 286, no. 5439, pp. 509–512, 1999.

[74] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset col-

lection.” http://snap.stanford.edu/data, 2014. Accessed 27 February 2019.

[75] D. S. Hochbaum and A. Pathria, “Analysis of the greedy approach in problems

of maximum k-coverage,” Naval Research Logistics, vol. 45, no. 6, pp. 615–

627, 1998.

80

APPENDIX A

APPENDIX

A.1 Single-source Shortest-paths Problem

Algorithm 3 SSSP

1: Input: G = (V,E), s ∈ V
2: Output: σsv and d(s, v), v ∈ V
3: Q← empty queue.

4: S ← empty stack.

5: Pred[w]← {}, w ∈ V
6: σst ← 0, dst ←∞, t ∈ V
7: σss ← 1, dss ← 0

8: Add vertex s to the queue, s→ Q

9: while Q is not empty do

10: Take off v from the queue, v ← Q.

11: Add v to the stack, v → S.

12: for all vertex w such that {v, w} ∈ E do

13: if d(s, w) =∞ then

14: d(s, w)← d(s, v) + 1

15: Add vertex w to the queue, w → Q

16: else if d(s, w) = d(s, v) + 1 then

17: σsw ← σsw + σsv

18: Append v to the predecessor’s of w , v → Pred[w]

19: end if

20: end for

21: end while

81

A.2 Path List Creating Algorithm

Algorithm 4 Path List Creating Algorithm

1: Inputs: G = (V,E)

2: Output: Path(r, s, t, k) for any s, t ∈ V , r = 1, . . . , σst, k = 1, . . . , d(s, t)− 1

3: for v ∈ V do

4: L← max
t∈V

d(v, t)

5: for ` = 2 to L do

6: for s ∈ V`(v) do

7: pathindexvs ← 1

8: for t ∈ V1(s) ∩ V`−1(v) do

9: for pathindexvt = 1 to σvt do

10: for nodeindex = 1 to `− 2 do

11: Path(pathindexvs, v, s, nodeindex)←
12: Path(pathindexvt, v, t, nodeindex)

13: end for

14: Path(pathindexvs, v, s, `− 1)← t

15: pathindexvs ← pathindexvs + 1

16: end for

17: end for

18: end for

19: end for

20: end for

82

A.3 Absolute and Relative Differences on Erdös Renyi Graphs

Table A.1: The maximum absolute differences between NGBk∗
g (G) and NGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs of order

20

Graph
g

k
1 2 3 4 5

ER20,0.15 1 5.94 5.02 2.06 0.00 0.00

2 7.54 12.37 9.08 1.58 0.00

3 7.46 5.69 2.50 0.00 0.26

4 8.13 3.77 4.63 1.07 0.00

5 9.48 6.32 0.48 0.00 0.00

6 11.84 3.38 0.09 0.00 0.00

ER20,0.20 1 3.39 1.96 0.20

2 6.84 0.42 1.14

3 7.46 1.62 0.36

4 9.13 3.87 0.29

5 6.52 3.80 0.35

6 5.94 3.42 0.05

ER20,0.25 1 4.47 2.40 0.00

2 5.74 1.11 0.00

3 2.16 1.13 0.00

4 3.84 1.87 0.00

5 3.84 3.21 0.50

6 5.50 0.93 0.18

83

Table A.2: The maximum relative differences between NGBk∗
g (G) and NGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs of order

20

Graph
g

k
1 2 3 4 5

ER20,0.15 1 39.85 21.83 6.58 0.00 0.00

2 22.31 32.87 17.88 2.52 0.00

3 14.90 8.82 3.28 0.00 0.34

4 13.64 5.02 5.75 1.28 0.00

5 15.60 7.35 0.53 0.00 0.00

6 17.75 3.79 0.10 0.00 0.00

ER20,0.20 1 20.52 6.97 0.76

2 20.00 0.99 1.96

3 16.58 2.42 0.58

4 16.67 4.68 0.35

5 9.52 4.49 0.39

6 7.74 3.77 0.06

ER20,0.25 1 24.19 8.47 0.00

2 20.34 2.50 0.00

3 4.83 2.09 0.00

4 5.85 2.50 0.00

5 5.64 3.98 0.59

6 7.44 1.04 0.20

84

Table A.3: The maximum absolute differences between NGBk∗
g (G) and NGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs of order

40

Graph
g

k
1 2 3 4 5 6

ER40,0.06 1 4.67 4.48 3.46 0.77 0.00 0.00

2 6.70 2.75 2.90 1.30 2.95 0.00

3 10.13 5.26 4.23 3.25 2.95 0.00

4 5.56 6.19 5.33 5.15 4.10 2.18

5 9.01 9.36 4.24 1.99 0.51 0.07

6 7.77 8.32 5.98 0.98 0.34 0.01

ER40,0.08 1 2.06 1.61 0.50 0.00 0.00

2 4.20 1.36 0.72 0.04 0.00

3 5.25 2.21 1.88 0.90 0.03

4 4.31 2.06 1.64 0.67 0.00

5 5.47 3.85 3.35 0.59 0.02

6 6.21 2.04 1.22 0.23 0.00

ER40,0.1 1 1.63 2.50 0.66 0.00

2 2.46 0.94 0.10 0.00

3 4.25 1.74 0.73 0.08

4 4.34 0.88 0.64 0.00

5 4.34 3.05 1.56 0.00

6 4.26 1.65 0.32 0.00

85

Table A.4: The maximum relative differences between NGBk∗
g (G) and NGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs of order

40

Graph
g

k
1 2 3 4 5 6

ER40,0.06 1 57.72 29.72 13.81 2.69 0.00 0.00

2 38.62 8.62 5.09 2.02 4.17 0.00

3 43.76 12.61 6.49 4.41 3.79 0.00

4 17.42 11.36 7.19 6.48 5.01 2.60

5 22.35 14.77 5.15 2.47 0.60 0.09

6 17.79 11.69 6.94 1.12 0.41 0.01

ER40,0.08 1 20.31 12.03 2.96 0.00 0.00

2 22.42 4.66 1.77 0.09 0.00

3 19.59 3.97 3.93 1.78 0.04

4 12.96 3.31 2.70 1.04 0.00

5 14.83 6.22 4.55 0.75 0.02

6 14.53 2.60 1.57 0.28 0.00

ER40,0.1 1 22.76 17.17 3.15 0.00

2 13.97 3.37 0.37 0.00

3 18.28 4.29 1.41 0.16

4 12.21 1.59 1.01 0.00

5 10.52 5.33 2.36 0.00

6 8.68 2.38 0.41 0.00

86

Table A.5: The maximum absolute differences between NGBk∗
g (G) and NGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs of order

60

Graph
g

k
1 2 3 4 5 6

ER60,0.06 1 6.73 3.37 1.68 1.47 0.00 0.00

2 4.36 4.57 2.15 0.67 1.66 0.67

3 6.20 7.25 4.31 5.17 1.38 0.70

4 5.78 4.09 6.56 5.04 0.47 0.00

5 7.42 6.31 7.20 4.90 0.89 0.07

ER60,0.08 1 5.12 4.31 1.19 0.12 0.00 0.00

2 5.12 1.66 0.89 0.48 0.00 0.00

3 5.12 1.63 0.93 0.23 0.00 0.00

4 6.76 1.91 0.58 0.15 0.00 0.00

5 7.47 3.34 2.01 1.84 0.67 0.03

ER60,0.1 1 1.08 1.07 0.34

2 1.12 0.25 0.05

3 1.18 1.18 0.30

4 1.79 0.86 0.16

5 2.26 1.50 0.08

87

Table A.6: The maximum relative differences between NGBk∗
g (G) and NGBk(C∗g)

for different k and g values on 50 randomly generated Erdös-Renyi graphs of order

60

Graph
g

k
1 2 3 4 5 6

ER60,0.06 1 82.93 54.17 8.30 0.55 0.00 0.00

2 39.97 6.58 2.88 1.51 0.00 0.00

3 27.72 4.98 2.28 0.51 0.00 0.00

4 30.71 4.48 1.05 0.28 0.00 0.00

5 28.49 6.25 3.09 2.68 0.95 0.05

ER60,0.08 1 23.33 12.89 2.28

2 11.37 1.39 0.18

3 6.50 4.51 0.98

4 7.32 2.52 0.41

5 8.00 3.05 0.15

ER60,0.1 1 12.94 9.45 0.27

2 4.71 2.60 0.00

3 5.07 2.58 0.29

4 6.68 0.97 0.00

5 3.92 1.11 0.06

88

A.4 Distribution of theNGBk(C) Values of All SubsetsC of V on Randomly

Generated Graphs

Figure A.1: Distribution of the NGBk(C) values of all subsets C of V for different

k and g values on the graph ER40,01

89

Figure A.2: Distribution of the NGBk(C) values of all subsets C of V for different

k and g values on the graph PA40,2

90

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Literature Review
	Social Network Analysis
	Centrality Concepts
	Some Variants of Centrality
	Betweenness Centrality
	Group Betweenness Centrality

	Notation and Problem Description
	Solution Method
	An Algorithm to Compute the k-step Group Betweenness Centrality

	Illustrative Example
	Computational Experiments
	The Will57 Network
	Cheminformatics Networks
	Random Networks
	Erdös-Renyi Networks
	Scale-free Networks

	Large Scale Networks

	ALternative Solution Methods
	Modeling by Mixed Integer Programs
	An Approximation Algorithm to Compute the k-step Group Betweenness Centrality
	Computational Experiments
	Real-life Networks
	Random Networks
	Large-Scale Networks

	CONCLUSION AND FUTURE STUDY DIRECTIONS
	REFERENCES
	Appendix
	Single-source Shortest-paths Problem
	Path List Creating Algorithm
	Absolute and Relative Differences on Erdös Renyi Graphs
	Distribution of the NGBk(C) Values of All Subsets C of V on Randomly Generated Graphs

