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Abstract
A small number of individuals infected within a community can lead to the rapid 
spread of the disease throughout that community, leading to an epidemic outbreak. 
This is even more true for highly contagious diseases such as COVID-19, known 
to be caused by the new coronavirus SARS-CoV-2. Mathematical models of epi-
demics allow estimating several impacts on the population and, therefore, are of 
great use for the definition of public health policies. Some of these measures include 
the isolation of the infected (also known as quarantine), and the vaccination of the 
susceptible. In a possible scenario in which a vaccine is available, but with limited 
access, it is necessary to quantify the levels of vaccination to be applied, taking into 
account the continued application of preventive measures. This work concerns the 
simulation of the spread of the COVID-19 disease in a community by applying the 
Monte Carlo method to a Susceptible-Exposed-Infective-Recovered (SEIR) stochas-
tic epidemic model. To handle the computational effort involved, a simple paralleli-
zation approach was adopted and deployed in a small HPC cluster. The developed 
computational method allows to realistically simulate the spread of COVID-19 in 
a medium-sized community and to study the effect of preventive measures such as 
quarantine and vaccination. The results show that an effective combination of vac-
cination with quarantine can prevent the appearance of major epidemic outbreaks, 
even if the critical vaccination coverage is not reached.
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1  Introduction

An epidemic is the rapid spread of an infectious disease within a population, pro-
ducing many infected individuals in a short period of time. These may ultimately 
die or become permanently incapacitated. Infectious diseases that can trigger an epi-
demic outbreak include, among other well-known diseases, HIV (May and Ander-
son 1987), Smallpox (Dasaklis et al. 2017), Varicella (Zha et al. 2020), SARS (Mey-
ers et al. 2005), (H1N1) influenza (Mao and Bian 2010) and the recent COVID-19, 
that is responsible for the actual pandemic situation (He et al. 2020).

The mathematical modeling of an epidemic allows to describe the spreading of 
an infectious disease and to predict its future course. This information is of vital 
importance to the definition of public policies to control the spread of an epidemic. 
For instance, mathematical models allow to estimate several effects of an epidemic, 
like the total number of infected people or the duration of the epidemic, as well as 
the effects of possible prevention measures such as social distance, immunization or 
isolation, just to name the most common.

Epidemic mathematical models fall in two main broad classes: deterministic and 
stochastic. Typically, deterministic models are suitable to model epidemics within 
large communities. The “epidemic process” in these models is governed by a system 
of differential equations and the evolution of the process is deterministic in the sense 
that no randomness is allowed. The community is considered homogeneous and it is 
assumed that individuals mix uniformly with each other. Hence, these models do not 
incorporate any arbitrariness (Hethcote 2000).

Stochastic models, in turn, have been successfully applied to closed homogene-
ous communities. Since the spread of an infectious disease is a random process (that 
occurs locally through the close contact with infectious individuals), stochastic mod-
els are more realistic (Britton 2010). These models can be simulated by using Monte 
Carlo based methods. Essentially, this consists in the repetition of a random behav-
iour of the population, a large number of times. This procedure may have a high 
computational cost, even for small-size populations.

The Susceptible-Exposed-Infectious-Removed (SEIR) mathematical epidemic 
model is the most suited to describe the spread of an infectious disease with latency 
period, like COVID-19. In the generic SEIR model, the population is divided into 
four compartments that represent susceptible, exposed, infectious and recovered 
individuals. It is known that the SARS-CoV-2, the causative agent of COVID-
19, has an incubation period [time between infection and onset of symptoms (He 
et al. 2020)]. Models without the exposed compartment cannot adequately address 
the time delay between the build-up of exposed and infectious individuals. This 
SEIR model also assumes that an individual is contagious only when in the infec-
tious period. This compartmentalization does not correspond exactly to the reality 
of COVID-19, because the duration of periods of latency and contagion vary from 
person to person (He et al. 2020). Nevertheless, the SEIR model is currently the one 
that most closely reproduces the characteristics of the propagation of the COVID-19 
disease.
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The SEIR model has been largely used to model and predict the spread of 
COVID-19 in different regions of the globe, like China (Li et al. 2020), India (Chat-
terjee et al. 2020), South Africa (Mukandavire et al. 2020), Italy/Lombardia (Car-
cione et al. 2020) and Germany (Engbert et al. 2020). Many of these works calibrate 
the mathematical model with empirical data in order to have a realistic estimation 
of the different model parameters. However, there are certain difficulties related to 
the availability of representative data. For instance, most of the available informa-
tion does not include undocumented infections (asymptomatic undetected) (Li et al. 
2020), making it difficult to estimate realistic parameters.

The focus of this paper is the stochastic SEIR epidemic model and its compu-
tational simulation regarding the spreading of the COVID-19 infectious disease in 
a small-size community (20,000 individuals), using model parameters published 
recently. Different scenarios are explored, corresponding to hypothetical control 
measures based on quarantine and vaccination. Specifically, we look for the critical 
vaccination coverage needed to control the disease for different quarantine scenarios. 
In fact, in a possible scenario where a vaccine is available, but in a conditioned way 
(both in terms of effectiveness and in terms of quantity), the prevention of major 
epidemiological outbreaks can only be possible with the isolation (quarantine) of a 
fraction of the infectious ones.

To minimize the duration of simulations, a strategy similar to the one used in 
a previous work (Balsa et al. 2020) was adopted: each execution of the stochastic 
SEIR model, with specific parameters, accommodates randomness by running a cer-
tain number of independent simulations; these are executed in parallel in an HPC 
cluster; at the end of the model execution, results from individual simulations are 
joined; additionally, in this work, the cluster batch service was used to submit and 
dispatch different executions of the model, each one with different model param-
eters, allowing for a thorough parametric study.

The rest of this paper is structured as follows: Sect. 2 introduces a SEIR deter-
ministic epidemic model and defines its stochastic version; Sect. 3 provides details 
on the computational strategy used to conduct the simulations with the stochastic 
SEIR model; section 4 presents and discusses the results of the computational simu-
lations; Sect. 5 provides some final considerations.

2 � SEIR epidemic model

A typical approach when modeling the spread of an infectious disease in a com-
munity is to formulate a compartmental model. The Susceptible-Exposed-Infective-
Recovered (SEIR) compartmental model considers that, at each point in time, each 
and any individual of the population belongs to one (and only one), of the following 
compartments: S—an individual is Susceptible to catch the disease; E—an individ-
ual is Exposed if he is infected but does not transmit the disease, because the disease 
is in the incubation period; I—an individual is Infective, meaning he has got the 
disease and is able to infect others; R—an individual has Recovered from infection 
and can no longer be infected again. Thus, in the generic SEIR model, an individual 
can only move from compartment S to E, from compartment E to I, and then from 



510	 C. Balsa et al.

1 3

compartment I to R. As their name suggests, the compartments of the SEIR model 
are closely related to the four different stages/states of the disease: susceptible state, 
incubation period, infectious period, and recovered state (immunized).

In this work, the generic SEIR model is slightly modified to reflect two important 
containment measures: quarantine and vaccination. A new Q compartment corresponds 
to infected individuals, placed in isolation (quarantine), who cannot infect others. Vac-
cinated individuals are included in compartment R, as they cannot be infected again. 
Another new compartment, D, is for individuals who died as a result of the infectious 
disease. The model assumes that births and natural deaths are balanced, and that the 
population members only decrease due to COVID-19, as dictated by the fatality rate of 
this disease.

Figure 1 shows a representation of the different compartments of the modified SEIR 
model, as well as the flow (by unit of time) of individuals between them. The meaning 
of the various parameters that define the flows between the compartments is presented 
in the following section.

2.1 � Deterministic SEIR model

Let us consider a population or community of size n ∈ ℕ. Let s(t), e(t) i(t), q(t), r(t) and 
d(t) denote, respectively, the fraction of the community that belongs to the compart-
ments S, E, I, Q, R and D, illustrated in Fig. 1, at a given instant t ≥ 0 in time. Assuming 
that the population is closed, meaning that there are no births, deaths and immigration 
or emigration during the study period, then s(t) + e(t) + i(t) + q(t) + r(t) + d(t) = 1, 
for any t.

Assuming that the population is homogeneous, individuals mix uniformly, and s(t), 
i(t), q(t), d(t) and r(t) are differentiable functions, then the variation of the fraction of 
the population in compartments S, E, I, Q, R and D, along the time t (in days), is given 
by the system of differential equations

S E I R

Q D

Fig. 1   SEIR model with quarantine and dead compartment
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with initial conditions s(0) = s0, i(0) = i0, q(0) = q0, r(0) = r0 and d(0) = d0.

In the system of ordinary differential equations (1), � is the rate of contacts 
between susceptible and infectious individuals, 1∕� is the incubation period, 1∕� 
is the infectious period, � is the fraction of infectious individuals insulated (quar-
antined), � is the fraction of infectious individuals that died, and 1∕� is the quar-
antine period. The system (1), along with the initial values s(0) = 1 − i0, e(0) = 0, 
i(0) = i0, q(0) = 0, r(0) = 0 and d(0) = 0 (where i0 > 0 represents the initial frac-
tion of infective and is assumed small), fully define the dynamics of the determin-
istic SEIR model considered in this work.

The computational simulation of the deterministic SEIR epidemic model is 
relatively straightforward. The initial value problem  (1) can be rapidly solved 
by a numerical method like the four-order Runge–Kutta; also, the computational 
time does not depend on the dimension n of the population.

The parameters � and � are disease-specific for COVID-19, while the contact 
rate � is behaviour-specific and is different for each region, country or culture, 
and can vary in time to reflect societal and political actions (Linka et al. 2020). 
Many recent publications present values of these parameters, some obtained by 
fitting the SEIR model to the COVID-19 epidemiological data made available by 
public health entities in several countries, others from published clinical results. 
As shown in Table  1, there are authors who present various values for the rate 
of contact. This is due to the attempt to monitor the variation in the contact rate, 
which varies with the application of public health measures such as the use of 
mandatory masks, social distance or population lockdown.

The quarantine period 1∕� is set by the health care policies of each country. In 
most European countries this period is 14 days. The fraction � of infectious indi-
viduals that are insulated/quarantined includes documented infected and hospital-
ized individuals. Its value depends on the number of tests performed.

(1)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

ds

dt
= −�i(1 − �)s − �s

de

dt
= �i(1 − �)s − e

di

dt
= e − � i − �(1 − �)i − �(1 − �)i

dq

dt
= � i − �q − �(1 − �)q

dr

dt
= �(1 − �)i + �s + �(1 − �)q

dd

dt
= �q + �(1 − �)i

Table 1   Estimates of effective SEIR model parameters for the COVID-19 pandemic context

Authors/region � 1∕� 1∕�

Mukandavire et al. (2020)/South Africa 1.3 3.21 2.27
Chatterjee et al. (2020)/India – 5.1 7
Li et al. (2020)/China 0.35, 0.52, 1.12 3.42, 3.6, 3.69 3.14, 3.31, 3.47
Carcione et al. (2020)/Italy 0.2, 0.75 4.24 4.02
Linka et al. (2020)/Europe – 2.5 6.6
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The mortality rate � depends on the aggressiveness of the disease and the exist-
ence of susceptible people who are most vulnerable. COVID-19 is known to be 
more aggressive in older individuals, so this rate is higher in older communities. 
The mortality rate is related to the infection fatality rate (IFR). The IFR rate is 
based on all the population that has been infected along the outbreak, including 
the undocumented infected individuals. In terms of the global SEIR compartmen-
tal model, the IFR rate is given by

where ∞ refers to the end of the epidemic outbreak ( t → ∞ ), and so r∞ + d∞ cor-
responds to the total individuals that have been infected, as the sum of the the recov-
ered ( r∞ ) and the dead ones ( d∞ ). Furthermore, in the general SEIR model case, and 
assuming that 𝛿 ≪ 𝛾 , it is shown in Carcione et al. (2020) that

As a specific case, the IFR rate in Portugal is actually estimated around 4% (DGS 
2020). Then in agreement with  (3) and considering � ≈ 0.23, the corresponding 
death rate is � ≈ 0.0093.

The ratio

can be interpreted as the average number of new infections caused by an infectious 
individual when inserted in a community made up only of susceptible people (Car-
cione et al. 2020). This ratio is also referred to as the basic reproduction number of 
the general SEIR model. When an infectious disease has R0 > 1 and an infected is 
inserted in a susceptible community, then an epidemic outbreak takes place, infect-
ing a substantial part of the population. On the other hand, when R0 < 1, there is no 
risk of a major epidemic outbreak (for details see Hethcote 2000).

The value of the reproduction number varies with the evolution of the epi-
demic, due to the variation in the contact rate. The contact rate � (the rate at 
which an infectious individual comes into contact and affects others), is not con-
stant; instead, it is modulated by social behaviour and public health policies. The 
quantification of new infections during the pandemic, in a specific day t, is done 
through the effective reproduction number, Rt, which takes into account the con-
tact rate at time t, �(t). Consequently, the effective reproduction number enables to 
measure the effects of public health interventions.

The basic reproduction number is a measure of the potential that a disease 
has to trigger an epidemic outbreak, which is why it is essential to estimate its 
value. Since the appearance of COVID-19, many works have been published on 
this topic. In Liu et al. (2020) and Mukandavire et al. (2020) one can find a list 
of R0 values obtained by different researchers from all over the world, where the 

(2)IFR =
d∞

r∞ + d∞

(3)IFR ≈
�

�
.

(4)R0 =
�

� + �
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values collected vary widely between them, ranging from 1.95 to 6.49. Linka 
et al. (2020) estimated the Rt values for the 27 countries in Europe based on data 
provided by the published health entities in each country. The values found for 
the beginning of the outbreak range from 0.91 (Latvia) to 6.33 (Germany), with 
the general value obtained for Europe being 4.22.

As a major outbreak will not occur if R0 < 1, it is then possible to estimate the 
fraction of the population that needs to be immunized, in order for an epidemic to 
be prevented. If immunization is done through vaccination, this fraction is called 
the critical vaccination coverage and is given by

The critical vaccination coverage is a very important quantity: if more than this 
fraction of the population is vaccinated before an outbreak, then the whole com-
munity is protected from an epidemic, and not only the vaccinated, a situation 
called herd immunity (Britton and Pardoux 2019). For the basic reproduction num-
ber R0 = 4.22, found for Europe (Linka et  al. 2020), the herd immunity threshold 
would be 76%. If immunization is achieved only by contracting the disease, then 
herd immunity will only be achieved after at least 76% of the population has been 
infected. A country like Portugal, with a prevalence of 0.69% (Direcção 2020), is a 
long way from achieving herd immunity, even if unrecorded asymptomatic cases are 
included.

2.2 � Stochastic SEIR model

In a homogeneous community where individuals mix uniformly with each other, 
the size of an epidemic outbreak is determined by the basic reproduction number 
( R0 ) and by the incubation and infectious periods ( 1∕� and 1∕� ), and there is no 
incertitude or randomness in the final number of infected individuals. However, in 
some cases, this contradicts reality: for instance, the introduction of a small num-
ber of infected in a community may not necessarily have as a consequence a large 
outbreak (even if R0 > 1 ); such situation can happen, for example, if the infectious 
isolate themselves from the rest of the community or, by chance, if their contacts 
are restricted to immune individuals. This motivates the formulation of models of a 
stochastic nature.

A stochastic version of the SEIR model incorporates the randomness inherent 
in the spread of an infectious disease. To introduce this version, we assume again 
a closed homogeneous and uniformly mixing community of n individuals. How-
ever, the number of susceptible, exposed, infectious, quarantined, recovered and 
dead individuals at time t, is now S(t) = n × s(t), E(t) = n × e(t), I(t) = n × i(t), 
Q(t) = n × q(t), R(t) = n × r(t) and D(t) = n × d(t), respectively.

If at time t = 0 there is a number of m infectious, then S(0) = n − m, E(0) = 0, 
I(0) = m, Q(0) = 0, R(0) = 0 and D(0) = 0. The model assumes there are no infec-
tious contact during the latent state (E) and then, suddenly, when the latent period 

(5)�c = 1 −
1

R0

.
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ends, the rate of infectious contact becomes � until the infection period ends, when it 
suddenly drops down to 0 again.

Infectious individuals (I) have contact (adequate to the transmission of the dis-
ease) with other individuals randomly in time, according to a Poisson process with 
intensity �. Each contact is made with an individual randomly selected from the 
community. Any susceptible (S) that receives such contact immediately becomes 
exposed (E) for a random period that follows an exponential distribution with mean 
1∕�. The infectious periods are also independent and exponentially distributed with 
a mean 1∕� . The quarantine ( � ) and death ( � ) rates, as well as the quarantine period, 
are assumed to be constant.

Despite assuming a closed homogeneous community, the stochastic SEIR model 
is more realistic than its deterministic version. This is because the number of infec-
tious contacts, and the latency and infectious periods, are all random, varying among 
individuals. Surely, it would be possible to develop an even more realistic model, 
allowing individuals to die from natural causes and others to be born, and accommo-
dating more social structures (see Britton and Pardoux 2019, for instance), but this 
work does not yet consider these extensions.

3 � Computational simulations

The generic stochastic SEIR model introduced in the previous section has some the-
oretical properties that allow to estimate, without performing any simulations, some 
consequences of the epidemic (Britton and Pardoux 2019). However, the generic 
model does not include the effect of the quarantine and does not provision for the 
prediction of the outbreak duration, or the time at which the number of simultane-
ously infected reaches its peak, as well as other important results. To obtain this 
information, it is necessary to simulate the behavior of the population a large num-
ber of times, getting the probability distribution for each of these variables. Once a 
large number of simulation repetitions is necessary to stabilize the distribution of 
frequencies, the application of the Monte Carlo method may take a lot of time and 
demand considerable computational effort. Furthermore, these requirements will 
scale up as the size of the population grows, calling for increasingly efficient compu-
tational methods.

3.1 � Stochastic SEIR algorithm

Algorithm  1 is the pseudo-code of the stochastic SEIR model. Its inputs (line 1) 
are: the initial number m of infected; a parameter � for the Poisson distribution (rate 
of contact between susceptible and infectious); a parameter � for the exponential 
distribution of the individuals removal rate from compartment E (reciprocal of the 
incubation period); a parameter � for the exponential distribution of the individuals 
removal rate from compartment I (reciprocal of the infectious period); the quaran-
tine ( � ), vaccination � and death rates ( �).
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Algorithm 1: Stochastic SEIR model.
1. inputs: m, β, ε, γ, χ, ϑ and δ
2. for j ← 1 . . . Nsim
3. choose randomly m individuals and the corresponding infectious period
4. while 0 < pop(i) < 300 for some i
5. for i ← 1 . . . n
6. if pop(i) > 0 then
7. pop(i) ← pop(i)− 1
8. if pop(i)− 1 = 0 then pop(i) ← −1 endif
9. if pop(i)− 1 = 100 then pop(i) ← pI endif

10. if pop(i)− 1 = 200 then pop(i) ← −1 endif
11. endif
12. generate the number of close contacts of the individual i
13. if pop(i) = 0 and one of the contacted individuals is infectious then
14. pop(i) ← 100 + pE
15. endif
16. if pop(i) = 0 and random value < ϑ then pop(i) ← −2 endif
17. if 0 <pop(i) < 100 and random value < χ then pop(i) ← 200 + pQ endif
18. if (0 <pop(i) < 100 or 200 <pop(i) < 300) and random value < δ then
19. pop(i) ← −3
20. endif
21. end for
22. end while
23. end for

The algorithm repeats (line 2) the simulation Nsim times. In each simulation, 
the population is represented by a vector pop of n cells. Each cell pop(i) stores the 
current status of the i’th individual (with i = 1,… , n ): 0 for susceptible, > 100 
and < 200 for exposed, > 0 and < 100 for infected, > 200 for quarantined, −1 for 
recovered, −2 for vaccinated and −3 for dead.

In the first day ( t = 0 ) of a simulation (line 3), an initial number m of infected 
individuals are randomly selected; for each one of these individuals their specific 
cell in the population vector is set to pI , where pI is the infection period given by 
an exponential distribution with expected value 1∕� ; for the remaining individu-
als, that are susceptible, their cell value is set to 0.

In the next days ( t > 0 ) the model dynamics repeat (while loop in line 4). 
At each day, the vector cell of the exposed, infected and quarantined individu-
als decreases one unit (line 7); furthermore: in line 8, when it reaches 0 (again 
susceptible) is set to -1 (recovered); in line 9, when it reaches 100 (end of the 
exposed period) is set to PI (infectious), where pI is randomly generated by an 
exponential distribution with parameter � ; in line 10, when it reaches 200 (end of 
the quarantine period) is set to −1 (recovered).

Next, for every person still susceptible, the number of close contacts with oth-
ers is generated by a Poisson distribution with parameter � (line 12). The other 
persons are randomly selected. If they include an infected (line 13), the suscep-
tible become exposed and their cells are set to 100 + pE, where pE is randomly 
generated by an exponential distribution with parameter � (line 14).
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If an individual pop(i) is still susceptible, a random number between 0 and 1 is 
drawn; if this number is smaller than the vaccination rate �, the person becomes vac-
cinated; otherwise, the person stays susceptible (line 16).

If the person is or becomes infectious, a random number between 0 and 1 is 
drawn; if this number is smaller than the quarantine rate � , the person becomes 
quarantined; otherwise, the person stays infectious (line 17).

If the person is or becomes infectious, or quarantined, a random number between 
0 and 1 is drawn; if this number is smaller than the death rate �, the person died; 
else, the person stays infectious or quarantined (lines 18 and 19).

The simulation stops when there are no more exposed, infectious and quarantined 
individuals (the condition in line 4 is false).

In order to get a probability distribution of the target variables, the number of 
simulations ( Nsim ) should be relatively large (more simulations lead to more accu-
rate probability distributions). The variables targeted by this work are: the total 
number of infected and dead individuals, the duration of the epidemic outbreak, the 
maximum number of simultaneous infected individuals, the day in which this maxi-
mum happens (that is, the day corresponding to the epidemic peak), and the total 
number of vaccinated individuals.

3.2 � Parallelization approach

Depending on the size of the population, the particular combination of the input 
parameters, and the number of simulations defined, the execution of Algorithm  1 
may take a lot of time. But other factors, like the vaccination rate ( � ), have also a 
decisive influence: the lower this rate, the higher will be the propagation of the dis-
ease, thus delaying the reaching of the stop condition.

Thus, to be able to simulate a wide range of scenarios, while generating accurate 
probability distributions, in a reasonable amount of time, a simple parallelization 
approach is applied to Algorithm  1: the initial range of simulations ( 1…Nsim ) is 
fully split into mutually exclusive subranges and these are assigned to independent 
processors; each processor will then execute the algorithm for the subrange it was 
assigned; this is possible because each simulation is completely independent of the 
others, allowing for a SPMD (single program, multiple data) approach. Depending 
on the relative computing power of the processors, the partition of the initial range 
may be homogeneous or heterogeneous; either way, after all processors exhaust their 
subrange, the results of all simulations are joined to produce the final consolidated 
results.

Moreover, each algorithm run (execution of the stochastic SEIR model) pertains 
to a specific combination of parameters (that are tested through Nsim simulations), 
and there is the need to be able to perform different runs to study the impact of 
changes on one or more of the algorithm parameters. In order to accomplish this, the 
parallelization approach described above is applied to each algorithm run, and dif-
ferent runs are enqueued in a batch management system, awaiting for the necessary 
computational resources to become assigned.
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3.3 � Implementation details

The computational environment used for this work consisted on 8 homogeneous 
nodes of a small Linux cluster, with 32 CPU-cores each (2 × AMD EPYC 7351 
16-core CPUs per node), for a total of 256 cores. A single MATLAB installation, 
network-shared by all nodes, was also used (no distributed computing facilities of 
MATLAB were used, due to the lack of the proper toolbox). The implementation 
of Algorithm 1, and of its parallelization strategy, were both made in order to take 
maximum advantage of such environment.

Algorithm 1 was implemented as a MATLAB (MathWorks 2012) program, but 
with the lower and upper limits of the simulations loop (line 2) as input parameters, 
thus restraining the loop to a subrange of simulations. The lower limit was used to 
seed the MATLAB random number generator, ensuring a different strain of random 
numbers per subrange. Each running instance of the program saves the results of 
its subrange of simulations in specific CSV files. These are later consolidated by 
a BASH script, which further explores MATLAB (through a secondary MATLAB 
program) to produce histograms and related graphics.

To generate jobs for the cluster batch management system, another BASH script 
was used. This script generates subranges of simulations, evenly dividing the total 
Nsim simulations by the 256 CPU-cores of the cluster; then, for each subrange, the 
script submits a specific job to the batch manager of the cluster; when assigned 
to one of the 256 CPU-cores, each job executes the MATLAB implementation of 
Algorithm 1, specifically parameterized.

Finally, to allow for thorough parametric studies, namely on the effect of vary-
ing vaccination and quarantine rates, the MATLAB implementation of the algorithm 
was changed to support those rates as user parameters. This is leveraged by two 
additional BASH scripts: one to automate the generation of different sets of 256 jobs 
(each set for a specific combination of input parameters); another to gather and pro-
cess all results produced in this way.

4 � Results and discussion

4.1 � Parameters of the simulations

This section presents the results obtained with the stochastic SEIR model, by apply-
ing Algorithm  1 for the spread of COVID-19 in a community with a dimension 
similar to a small city ( n = 20, 000 individuals), considering that a unique infec-
tious individual ( m = 1 ) is introduced initially in the community. The model param-
eters 1∕� and 1∕� that were used are the mean of the values presented in Table 1 
( 1∕� = 3.7 and 1∕� = 4.3 ). Concerning the infectious contact rate �, simulations 
assumed � = 0.5, that, according to Eq. (4), corresponds approximately to the basic 
reproduction number R0 ≈ 2.1. This value aims to represent a situation in which 
there is some care to prevent the transmission of the disease by the community, but 
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without mandatory measures of social distancing. Also, it was considered a constant 
death rate � = 0.0093, in agreement with the IFR verified in Portugal (DGS 2020).

For this scenario, it was analyzed the effect of quarantine and vaccination, by var-
ying � from 0.0 to 0.01 in steps of 0.001, combined with varying � from 0.0 to 0.2 
in steps of 0.02, for a total of 11 × 11 = 121 executions of the algorithm model. Each 
model execution incurred in N s im = 10,000 simulations, for a total of 1,210,000 
simulations and 56 hours of continuous compute time, fully using all the 256 CPU-
cores of the cluster in parallel.

4.2 � Results of the simulations

Figure 2 shows the empirical distribution of the (i) total number of infected indi-
viduals during the epidemic outbreak, (ii) maximum number of infected simultane-
ously, (iii) duration of the epidemic, and (iv) higher incidence day, for a vaccination 
rate � = 0 and a quarantine rate � = 0. Figure 3 shows the same results, but just for 
the simulations leading to a major epidemic outbreak.

The bimodal distribution, which is characteristic of the stochastic SIR method 
(Britton 2010), is also observed here for the case of the SEIR method. Moreover, 
the simulation data reveals that a large number of simulations resulted in a small 

Fig. 2   Empirical distribution of the main epidemic variables: total number of infected individuals, maxi-
mum number of infected simultaneously, duration of the epidemic, and day of maximum infected simul-
taneously (peak of the epidemic), for � = 0 and � = 0
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epidemic outbreak, and another portion of the simulations ended up in a major epi-
demic outbreak. The proportion of simulations that result in a small outbreak is 
approximately 0.34, corresponding to 3355 simulations (in this case, a very small 
number of individuals are infected); conversely the proportion of simulations that 
results in a major outbreak is 0.66, corresponding to 6645 simulations (in which 
case, a large number of individuals become infected).

Looking closely at the major epidemic outbreak, depicted in Fig.  3, it can be 
observed that the total number of infected people has a distribution approximately 
normal, with mean 18, 479. The maximum number of infected individuals simulta-
neously also follows a normal distribution with a mean equal to 2883. The distribu-
tion of the duration of the epidemic and of the maximum incidence day, have means 
equal to 296 and 75 days, respectively. In short and broadly speaking, without any 
preventive measures there is a 66% probability of a major epidemic outbreak lasting 
296 days, during which 92% of the population becomes infected, of which 14% is 
infected simultaneously on the 75rd day after the start of the pandemic. Considering 
an IFR ≈ 4%, this scenario corresponds to 736 deaths. 

Figure 4 shows the effect of the quarantine. The images shown from left to right, 
for � = 0, 0.05, 0.1, 0.15 and 0.20, indicate that, as the quarantine rate increases, 
there is a progressive reduction in the probability of a major outbreak. By increas-
ing the quarantine rate to � = 0.2, the probability of a major outbreak, which would 
affect an average of 5468 individuals, is just 0.1. 

Fig. 3   Empirical distribution of the main epidemic variables from 6645 simulation of the stochastic 
SEIR epidemic model that lead to a major outbreak, with � = 0 and � = 0
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Figures 5 and 6 show that combining vaccination and quarantine can prevent a 
large infectious outbreak. As can be observed in Fig. 5, the daily isolation of a frac-
tion of � = 0.2 from infectious individuals reduces the probability of a major out-
break to values near 0.2, which corresponds to a total number of infected individuals 
close to 5500 (see Fig. 6). However, if the same quarantine rate is applied with a 
vaccination rate equal to � = 0.003, the same probability is reduced to a value close 
to zero. For higher vaccination rates, this reduction is achieved for lower quarantine 
rates. For example, for � = 0.01 and � = 0.1 the probability of a major outbreak is 
almost nil.

Figure 7 represents the variation of the average of the total number of vaccinated 
individuals, for different values of the vaccination rate �. These values vary approxi-
mately linearly with �, from 1179 with � = 0.001, to 10,927 with � = 0.01. All of 
these values, except for the last one, are lower than the critical vaccination coverage, 
defined by Eq. (5), which for the case under study is close to 10,500 individuals.

Fig. 4   Total infected individuals for different quarantine rates (without vaccination)
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4.3 � Discussion

Figure  5 shows that the reduction in the probability of a major outbreak depends 
mainly on the rate of vaccination. Vaccination acts directly on the compartment 
of the susceptibles, reducing its number. As a result, there will be fewer people 

Fig. 5   Effects of the quarantine and vaccination rates on the major outbreak probability

Fig. 6   Effects of the quarantine and vaccination rates on the total number of infected individuals
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infected. Quarantine acts only on infectious ones, isolating them and thus prevent-
ing them from infecting others. The higher the quarantine rate, the less likely it is 
that a susceptible person will come into contact with an infectious person and thus 
contracts the disease. In a real situation, quarantine includes hospitalized people and 
people with a positive test. However, as there are infected individuals who are not 
detected, it is not possible to raise the quarantine rate to levels that prevent a large 
epidemic outbreak. Evidently, the increase in the number of daily tests would con-
tribute to increase this rate.

However, the results presented in Fig. 6 show also that the combination of quaran-
tine with vaccination, even with modest rates, allows to significantly reduce the total 
number of infected. Therefore, in a scenario in which a vaccine (with an efficacy that 
is not complete), is made progressively available to the community, the isolation of the 
detected infectious can decisively contribute to a reduction in the risk of occurring a 
major epidemic outbreak.

The results also show that it is possible to prevent a major epidemic outbreak with 
less than critical vaccination coverage. According to Eq. (5), this rate is approximately 
52%, which corresponds to vaccinating about 10,500 individuals. As can be seen in 
Fig.  5, this is possible even for vaccination rates below 0.01, as long as there is an 
adequate quarantine rate. For example, with a vaccination rate of � = 0.003, which 
involves vaccinating approximately 3559 people (see Fig. 6), the probability of a major 
outbreak is reduced to around 0.02.

The results presented are valid for any community with 20,000 individuals, as long 
as the disease transmission rate is the same ( � = 0.5).

We did a parametric study of the joint effect of the two major containment measures 
(quarantine and vaccination) of an epidemic, based on a stochastic SEIR Model. As far 
as we know, this kind of empirical study is not common, which makes a comparison 

Fig. 7   Total number of vaccinated individuals for a vaccination rate from � = 0 to � = 0.01
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with other results difficult or impossible to achieve. We are planning to do the same 
study with other values of transmission rate and population size in order to determine 
the effects of these two variables.

5 � Conclusion

A stochastic SEIR epidemic model allows to realistically simulate the spread of 
COVID-19 in a given community. Through the usage of this model, it is possible to 
conclude that a single infected person can cause a major epidemic outbreak. For the 
reference case of a population with 20,000 individuals, there is a probability of 66% 
that a single infectious individual becomes responsible for an epidemic outbreak 
that will infect a total of 18,489 individuals on average. This risk can be reversed by 
the application of preventive measures that increase the number of immunized indi-
viduals (vaccination), or reduce the risk of contagious through insulating infectious 
individuals (quarantine). The combination of these two measures makes it possi-
ble to prevent the appearance of a major epidemic outbreak, by vaccinating only a 
small fraction of the population, well below the critical vaccination coverage.

Moreover, the efficacy of quarantine is highly dependent on the number of 
infectious cases detected. The more cases detected, the more individuals will be 
quarantined and thus prevented from transmitting the disease. Therefore, it is 
very important to have a high number of tests performed in a daily basis.

The study was carried out for a population of 20,000 people, considering a 
fixed rate of contagion. In future work, the same study will be conducted for pop-
ulations with other dimensions, taking into account other contagion rates.

The developed computational method allows to realistically simulate the 
spread of COVID-19 in a medium-size community and to study the effect of the 
level of preventive measures such as quarantine and vaccination.

Despite its realism, stochastic SEIR methods demand considerable computa-
tional resources to ensure that the empirical frequency distribution reflects all 
probabilities of occurrence of the various possible scenarios. This is highlighted 
by the computing time consumed by the parametric study conducted in this work, 
covering only 11 different values of the vaccination rate and of the quarantine 
rate. Increasing the number of parameter combinations, or the size of the popula-
tion, will further augment the simulation times, in some cases substantially. This 
kind of constraints, along with the need to further expand this research domain in 
the current pandemic situation, provide the necessary context and motivation to 
develop efficient simulation methodologies.
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