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Abstract
We introduce the Urban Life agent-based simulation used by the Ground Truth pro-
gram to capture the innate needs of a human-like population and explore how such 
needs shape social constructs such as friendship and wealth. Urban Life is a spatially 
explicit model to explore how urban form impacts agents’ daily patterns of life. By 
meeting up at places agents form social networks, which in turn affect the places 
the agents visit. In our model, location and co-location affect all levels of decision 
making as agents prefer to visit nearby places. Co-location is necessary (but not suf-
ficient) to connect agents in the social network. The Urban Life model was used in 
the Ground Truth program as a virtual world testbed to produce data in a setting 
in which the underlying ground truth was explicitly known. Data was provided to 
research teams to test and validate Human Domain research methods to an extent 
previously impossible. This paper summarizes our Urban Life model’s design and 
simulation along with a description of how it was used to test the ability of Human 
Domain research teams to predict future states and to prescribe changes to the simu-
lation to achieve desired outcomes in our simulated world.

Keywords  Urban simulation · Patterns of life · Agent-based modeling · 
Geographical information systems · Social networks

1  Introduction

The purpose of the “Urban Life” agent-based model was to act as a sandbox envi-
ronment for Human Domain research teams to assess different methods and tools 
for analyzing complex social phenomena in a simulated world. It was designed by a 
team of geographers, computer scientists, and computational social scientists from 
George Mason University, Tulane University and the University at Buffalo. The 
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model simulates an stylized urban setting on an Earth-like planet. Similar to Earth 
in the early 21st century, agents live, work, eat, and carry out recreational activities. 
This introduction gives an overview of the main technical and intellectual contribu-
tions of this simulation and provides references to sections and publications where 
additional details can be found.

1.1 � Procedural city generation

Our procedurally generated world has buildings that are connected through a spa-
tially explicit road network (Kim et al. 2018). Agents move across this network to 
find places (i.e., locations) to eat, to work, to find shelter (i.e., homes), to follow rec-
reational activities, and to meet their friends. While agents are carrying out recrea-
tional activities, they can strengthen their friendship and make new friends. Details 
on how spatial road networks and places are generated to create a plausible urban 
environment for our agents to live in is described in Sect. 2.

1.2 � Simulation of patterns of life

In our Urban Life model, the set of needs for the agents are based on a Maslow-
like (Maslow 1943) model. Needs of agents include the need for shelter, food, sleep, 
financial safety, love, and esteem. Needs trigger behavior of agents to achieve goals 
that satisfy these needs, such as going to a restaurant for food or going home to 
sleep. This behavior leads to emerging patterns of daily human life (e.g., commuting 
to and from work, eating, sleeping, etc.) in a reflexive way. A brief description of our 
implemented needs that lead to emerging patterns of life can be found in Sect. 3.1. 
Additional details on how needs, triggers, actions, behavior, and goals of agents are 
implemented can be found in Kim et al. (2019a).

1.3 � Scalability

One challenge we face when developing the model was that generally speaking, 
urban life simulations are usually complex and well-known agent-based modeling 
toolkits such as Wilensky (1998) or MASON (Luke et  al. 2018) have scalability 
limitations, especially when the model and underlying spatial infrastructure is com-
plex (i.e., large numbers of agents, detailed geometric structures). Therefore, to sup-
port large-scale urban life simulations, we designed a framework by integrating the 
multi-agent systems toolkit JADE  (Bergenti et  al. 2014) with the MASON agent-
based modeling framework and its GIS extension, GeoMASON (Sullivan et  al. 
2010). Due to space limitations, we refer readers to Manzoor et al. (2021) for further 
details about this framework, but in essence, this framework allows us to simulate 
large areas with hundreds of thousands of agents for years of simulation time using 



22	 A. Züfle et al.

1 3

5-min simulation ticks without sacrificing the model generality. The model itself 
uses MASON and is written in Java

1.4 � Complex agents

The purpose of the Urban Life model was to provide a sandbox environment in 
which social scientists (in our specific case, Human Domain research teams of the 
DARPA Ground Truth program) can investigate research questions by obtaining 
related data from simulations. For example, social scientists may seek to under-
stand how agents decide which places to visit or how social connections are formed. 
Details on the ground truth model of the agents used in the Urban Life simulation 
are found in Sect. 3, including details on how agents choose places to visit (Sect. 3.2) 
and how agents tie and break social links (Sect. 3.3).

1.5 � Advanced concepts of human behavior

The Ground Truth program challenged research teams to infer the ground truth cau-
sality of our Urban Life model to understand how our world functioned, how its 
future can be predicted, and how changes can be prescribed to improve the future. 
In our model, urban life included basic ground truth concepts such as hunger lead-
ing to agents seeking restaurants to eat, or working to earn money. While such cau-
sality can be easily guessed by transferring understanding from the real world, we 
implemented advanced concepts that are socially plausible but that are not as easily 
guessed. Specifically, we introduced the concepts of “ascension” and “flashmobs” 
(which are described in Sects. 3.4 and 3.5, respectively) to test if social scientists 
could explain the model dynamics based on simulation outputs as will be described 
further below and in Sect.  4. Following the ascension concept, agents that are 
wealthy and socially connected make their best effort to ascend from the world. The 
ascension process involves a nomination and voting schema. Following the flash-
mob process, agents aim to expand their social network (to receive more votes for 
ascension) by collectively visiting a site and imposing their collective traits on the 
site. Such a collective behavior is only triggered when agents with the same interest 
experience limited social contacts over a longer period of time.

1.6 � Challenge design

For the simulation to be used as a sandbox for Human Domain research teams to test 
their understanding of the (unknown for them) causality, our model was instanti-
ated into a simulation for which observable data was generated and challenges were 
defined to predict future states of the simulation and to inject interventions into the 
simulation to achieve a desired outcome (further details about this is provided in 
Sect. 4). By only providing observable data (and hiding the underlying simulation 
code), this sandbox allowed us to evaluate methods and tools for analyzing complex 
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social phenomena. Using the Urban Life model, we defined two challenges: (1) A 
predict test to challenge Human Domain research teams to gain sufficient under-
standing of our world to predict future states, and (2) a prescribe test to challenge 
Human Domain research teams to inject a limited number of interventions (changes) 
into the simulation to achieve a desired future outcome (see Sect.  4 for further 
details).

1.7 � On‑the‑fly simulation interventions

As part of the DARPA Ground Truth program, human domain research teams 
were able to request additional information by submitting a wide range of research 
requests. Such research requests could include agent surveys, passive data collec-
tion mechanisms, additional journal data (i.e., locations visited, friends met), social 
network information, as well as experiments allowing to prescribe changes to the 
simulation and observe consequences. Changing simulation states on-the-fly is often 
conducted ad-hoc and entails manual code adjustments, which are time-consuming 
and error-prone. Therefore, to facilitate Human Domain research team simulation 
state change related requests, we developed an innovative injection mechanism to 
automatically inject prescribed changes into the simulation on-the-fly, for details see 
Kim et al. (2019b).

1.8 � Roadmap

In the remainder of this paper, we provide the details of the aforementioned concepts. 
Section 2 explains how we generated the stylized urban environment using proce-
dural city generation. In Sect. 3, we provide details about agents and their behaviors. 
Specifically, Sect. 3.1 describes the daily patterns of life driven by Maslowian needs 
that our agents, while Sect. 3.2 describes how agents choose their home location, 
work location, restaurants, and recreational sites. Section 3.3 discusses social net-
work formation and Sect. 3.4 provides addresses the advanced concepts of ascen-
sion and flashmobs. In Sect. 4, we present two challenges: the Predict Test and the 
Prescribe Test. Both are used to test the capability of Human Domain research teams 
to predict future simulation states and to prescribe changes to the simulation towards 
a desired outcome. Section 4.4 provides simulation results showing that our simula-
tion yields low variability for a viable Predict Test and provides red-teaming1 results 
of the proposed Prescribe Test. We further added a disease model to our simulation 
described in Sect. 5, to create further challenges for Human Domain research teams 
to predict the spread of an infectious disease and to prescribe mitigation measures to 
stop the spread. Finally, Sect. 6 summarizes the contributions of this work.

1  Red teaming is the practice of challenging tasks developed by a (blue) team as an adversary to 
approach the tasks from a more objective perspective. In short, our red teaming results present the results 
of our own efforts of solving our own challenges.
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2 � Urban environment and procedural city generation

Similar to many agent-based models, the activities of the agents in our model are 
subject to their surrounding environment along with other agents in the system 
(Crooks et al. 2019). For instance, the distance between an agent’s home and work-
place determines the commute time. If the commute time is too long, it may reduce 
participation in other social activities due to limited remaining time. Another exam-
ple is social network formation. Agents are more likely to interact with their neigh-
bors rather than with others living further away (cf. Sect. 3.3). Thus, the makeup of 
the urban environment, i.e., the built environment including transportation networks, 
plays an important role in our simulation (Crooks et al. 2015).

One of our goals is to provide a sandbox environment for social science research 
by generating an artificial world. The realization of urban environments consists of 
two steps: map generation and instantiation of urban components. The first step is 
the generation of synthetic transportation networks. Alternatively, real world maps 
can be used in the simulation (an example of which is shown in Sect. 5). The second 
step is to load maps and instantiate places associated with a synthetic agent popula-
tion. In what follows, we explain each of these steps in more detail.

The urban environment used in this project involves generating both transporta-
tion networks and 2D building information to allow agents to have home and work 
locations and navigate the artificial world. The road networks are generated using 
procedural city generation based on L-systems (Lindenmayer 1968) along with con-
sidering different types of city morphologies. Unlike manual data generation that 
needs substantial human effort, procedural data generation is performed by a pro-
cedure to automatically generate content and data (Kim et al. 2018). Simply stated, 
an L-system is a string rewriting system that can be used to generate fractals with a 
dimension ranging from 1 to 2. Our rationale for this was that we wanted our gener-
ated networks to mimic those of actual cities (e.g., Batty and Longley 1994).

In terms of buildings, we consider residential, commercial, and educational 
types. We developed methods to distribute building types according to space syn-
tax (Hillier and Hanson 1989). Notions from space syntax are incorporated in the 
generation of places, in the sense that the space syntax method attempts to explain 
how urban form impacts the accessibility and attractiveness of areas. The meth-
ods estimate a Central Business District (CBD) by analyzing spatial networks. 
The main algorithm is to build hierarchical graphs from networks (Kim and Li 
2016). Different strategies for generating hierarchical graphs result in differently 
estimated CBDs. In the example of Fig. 1, yellow areas indicate low accessibility 
while red areas imply high accessibility [cf. results in Dubin and Sung (1987), 
Nelson (1973)]. We consider two types of metrics (i.e., control value2 (Kim et al. 
2012) and the degree of density3) in the hierarchical graph to determine building 

2 C(i) =
∑

k∈A

1

C
n
(K)

 (i, K,: node, A: a set of nodes connected i node, C
n
(k) : the number of k connected 

nodes connected K).
3  The degree of density is computed by aggregating degrees in a hierarchical graph. That is, the degree 
of density is the total number of edges connected from the parent nodes of one node in the hierarchical 
graph.
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types and properties (Dubin and Sung 1987). The degree of density impacts the 
determination of building types (e.g., commercial, residential, and educational), 
capacity, rent, etc. Further information about our procedural city generation and 
its role in agent-based modeling can be found in Kim et al. (2018). We provide 
several cities that differ in size for use by the research community such as those 
interested in exploring algorithms for location-based social networks (Kim et al. 
2020a; Kavak et al. 2019).

As noted above, in order for agents to have home, work, and recreational 
places to visit and to generate patterns of life, places with a 2D polygonal shape, 
which mimics building footprints, are also generated along with the spatial road 
network. For the sake of simplicity, the locations of sites within each polygon are 
evenly distributed. Also, this helps to analyze the distribution of agents visually. 
The number of sites is proportional to the area of the building to which the sites 
belong (which is a simulation parameter). Site locations are recursively gener-
ated up to the given number of sites. These flexible parameters can adjust the 
density of places given in by the static maps. In total, our initial environment has 
861 buildings and 4704 road network edges. From the degree distribution of the 
generated maps, we identified three aggregation levels: census tract, block group, 
and block. These three levels are a unit used to provide census data and they are 
color-coded in Fig. 2.

(a) Price based on space syntax methods

(b) Price based on network degree

Fig. 1   Rent price distribution. (Color figure online)
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3 � Agents

Agents in our model simulate the patterns of life for agents as demonstrated in 
Kim et al. (2020a). Agents have attributes that are listed in Table 1. As described 
in Sect. 3.1, agents follow a simple daily life cycle such as (1) go to work during 
the day to earn money for financial safety, (2) go to recreational sites to make/meet 
friends, (3) eat when hungry, (4) sleep when it is time to sleep (5) seek shelter at 
night, etc. Agents meet other agents at sites leading to friendship between agents 
and creating a social network, which is described in more detail in Sect. 3.3. Each 
agent has the ultimate goal of getting “ascended”, which is explained in Sect. 3.4. 
A screenshot of our graphical user interface (GUI) of the simulation is shown in 
Fig. 3. This figure shows the location of agents on the spatial network on the top 
left. In this figure, the spatial network is represented as black lines, which shows 
roads that are surrounded by yellow and pink colors which denote residential and 
commercial areas, respectively along with the location of the agents coded by the 
food status of hungry (red) and not hungry (blue). We show the distribution of the 
number of friends (Fig. 3 bottom middle) showing a realistic long-tail distribution 
of friends (Hill and Dunbar 2003). We also show the social network in the top mid-
dle of Fig. 3 where each node corresponds to an individual agent. The color of the 
node represents the agents’ interest attribute and edges between nodes correspond to 
friend relationships in the social network. Sine this simulation screenshot was only 
taken 1 day after simulation start, the social network is only starting to evolve. Fully 

Fig. 2   Our generated maps colored based on different aggregation levels. (Color figure online)
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evolved social networks after many simulation days are shown in Fig. 4. The simula-
tion also provides default parameters (Fig. 3 bottom left) and summary statics dur-
ing the tune-time of the simulation, which in this case shows the distribution of the 
number of friends (degree of the social network) at the current time. This window 
can also be used to provide time series, such as the average social network degree 
over time (Fig. 3 Bottom-middle). Finally, the GUI also provides profiles of recrea-
tional sites, including the Top-3 color-coded interests of visitors of these sites along 
with the average age, average income, and the total number of visitors of each site. It 
should also be noted that some recreational sites may not show these statistics due to 
not being visited yet (Fig. 3 Right).

Table 1   Attributes of agents Need attributes Other

Shelter need (current shelter) Age
Food need (status, appetite) Has family
Sleep need (status, time to sleep) Socialness
Financial safety need (wealth, job, budgets, cow-

orkers)
Education level

Love need (social status, friends) Interest
Esteem need (ascension, nomination)

Fig. 4   Social networks generated with two different simulation settings. Each unique color represents an 
agent with different interest value. Left: Our default simulation settings after 40 simulation days. Right: 
A simulation with a decreased chance of focal closure (making friends with strangers that share no com-
mon friends). (Color figure online)



29

1 3

Urban life: a model of people and places﻿	

Initially, we generate the agent population and attribute values sampled from cer-
tain value ranges. Agent age is initially between 25 and 50. Although the agents 
are gender-less in our model, they have a family status attribute, which indicates 
they have a spouse or children, but this only impacts housing selection and educa-
tion cost. Education level is a static attribute and assigned one of the four values 
(Low, High School-College, Bachelor’s, Graduate) based on percentages which are 
provided as parameters to the simulation. The socialness of an agent indicates how 
much an agent desires to make friends or make money. Initially, in the first phase 
of the program, we made socialness a discrete value (i.e., social, non-social, bal-
anced) while in the later phases we made it a continuous variable. Interest is a static 
attribute representing the agent’s hobby. We generated ten interests and each agent 
is assigned with one initially. The number of agents in the simulation can vary, how-
ever, for Challenge 1, we simulated 10,000 agents. You can see a screenshot from 
our simulation highlighting the spatial placement and color-coded hunger status 
of agents, social network snapshot, and degree distribution along with recreational 
place profiles. Our patterns of life mechanism and the inner workings of the model 
are explained in the following subsection.

3.1 � Patterns of life

In our model, agents follow a pattern of life type of a daily cycle based on the aug-
mentation of Maslow’s hierarchy of needs (Maslow 1943). Each agent implements 
the first four levels of the hierarchy. In the first level, physiological needs contain 
several concepts including shelter, food, and sleep. In the second level, safety needs 
are captured in terms of financial security. In the third level, love need is expressed 
in the form of social status and friendship. And finally, esteem need is represented 
using the ascension mechanism. Agents prioritize these needs based on the need’s 
placement in the hierarchy and seek to fulfill them as the goal of their lives. While 
fulfilling their needs, agents travel on the spatial network with a constant walking 
speed of 1.4 m/s and visit places that allow them to fulfill their needs.

Physiological needs are essential to survive in our Urban Life model and cap-
tured in three basic forms. (1) Shelter need makes agents find and rent an affordable 
apartment in the environment so that they can fulfill this innate need. There are three 
possible forms of living within the bounds of this model. Agents can live alone, live 
with other agents (i.e., become roommates), or live with their family (if they have 
one). Agents with families must live by themselves while other agents can share an 
apartment as long as there is enough room. Once an agent rents an apartment, the 
first month’s rent is paid upfront. (2) Food need is another innate desire for agents to 
fulfill. We represented this status of food need as a variable with values ranging from 
0 (very hungry) to 100 (very full). Once it goes beyond a threshold, the agent imme-
diately goes to eat food (at home or a restaurant) and increases the fullness level. 
The increase and decrease in fullness are captured in the form of time-dependent 
functions which are informed by the agent’s appetite. If the appetite is high, it means 
the agent eats more often. (3) Sleep need makes an agent go home and become una-
vailable until wake up time. Typically, agents follow a 24-h circadian rhythm while 
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the length of an agent’s sleep is between 7 and 9 h. The start of the sleep time is 
dependent on the work start and commute times. Since physiological needs are the 
most basic needs, they must be first satisfied for agents in order to fulfill higher lev-
els of needs such as safety, love, and esteem.

Safety need is used in ensuring that the agent has financial stability. Initially, 
agents start with a non-zero initial wealth and find a job (i.e., position) in work-
places based on the required education level. For simplicity, we assume that jobs 
have an 8-h fixed daily work schedule five times a week. Workdays are fixed but 
can change from job to job. Once an agent’s daily work schedule is over, the agent 
gets paid based on the hourly rate of the job. This increases the wealth of agents. 
In terms of safety needs, agents aim to have a stable financial situation, meaning 
the agent’s wealth should cover 1 month of expenses such as shelter and food. If an 
agent’s finance is not stable, then, the agent moves to a cheaper place and reduce 
food spending.

Once the first two levels of needs (physiological and safety) are fulfilled, agents 
aim to expand upon the next two levels. Love need captures an agent’s belonging-
ness and social status. Recall that the socialness parameter of the agent makes the 
agent focus on maximization of happiness, which is related to making new friends, 
or maximization of the accumulation of wealth, which is related to job choice and 
expenditure. For some agents, socialness is the parameter that balances between 
maximizing happiness and maximizing wealth. Finally, esteem need captures 
agents’ desire for reputation within this artificial society. These two last levels are 
explained in more detail below. Social network formation is indeed the process that 
changes the fulfillment of the love need.

3.2 � Mobility

Each day at midnight, agents plan which places to visit on their next day. Places 
include their own home, their workplace, restaurants, and recreational sites. If the 
next day is a workday for the agent (each job has a work location and we assume 
a 5-day work week that is Monday to Friday for most agents but not all), the agent 
plans to work for 8 h. For any other time, depending on the social status of the agent, 
the agent plans to visit recreational sites (to increase social status) or work more 
(to improve financial safety). Visits to restaurants are not planned but occur during 
the day when the agent’s food status reaches zero (the speed of which depends on 
the agent’s appetite value). During the day, agents take activities prioritized by their 
needs as follows: Shelter and sleep need have the highest priority, causing agents 
to go home in the evening, around 10 pm to 1 am (depending on conflicting needs 
that may require them to work or recreate long hours). Once an agent’s food status 
reaches zero, they go to their nearest restaurant to eat. If this occurs while they are 
working, the time spent getting food does not count towards the required 8 h of work 
per day. Only once an agent returns to work, they resume working. Once agents fin-
ish working, both financial safety need and love need compete for an agent’s deci-
sion-making. Both are guided by the agent’s financial safety (which is a function of 
the agent’s current wealth, plus daily salary minus projected daily expenses), and the 
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agent’s social status (which is a function of the number of friends of an agent). An 
agent’s prioritization of financial safety versus love need is weighted by the agent’s 
socialness. Agents with a high socialness prioritize socializing at recreational sites 
(unless financial safety becomes too critical) and agents with a low socialness pri-
oritize making money (unless their social status becomes too critical). As social-
ness is a constant initialized uniformly in [0,1], all agents prioritize these two needs 
differently.

When agents change locations, they use the spatial network to go from their cur-
rent location to a new one using the shortest path at a constant speed of 5 km

h
 . While 

traveling on the spatial network, agents do not interact with other agents. We com-
pute shortest paths using the A∗ algorithm for shortest path search (Hart et al. 1968). 
However, since our simulation requires a very large number of shortest path calcula-
tions each simulation day, we memorize all previously computed shortest paths in 
a look-up table to avoid re-computation of the same path. The different places an 
agent can visit are described in more detail in the following.

Home The home location of an agent is chosen randomly at initialization. Each 
home location has a rent price, depending on the in-betweenness of the network edge 
the home is located at. Edges having a higher in-betweenness have a higher price. 
Figure 1 shows an example distribution of rent prices for a generated road network. 
Each home also has a capacity of agents that can live together in the same home (as 
“roommates”, since our simulated society is genderless and there are no families). If 
multiple agents live in the same home, they share the rent equally. Each day, agents 
project their income (through their job) and expenses (rent, restaurants, recreational 
sites). If an agent projects having higher expenses than income, they change their 
home to reduce their rent. Agents also consider the commute time between their 
home and their job (weighted by their hourly rate at work), such that a higher rent 
having a closer distance to their job location may be advisable for the agent. If an 
agent runs out of money and is not able to find a new home that matches their budget 
in three consecutive days (during which agents have critically low financial safety 
compelling them to work more and earn more money) an agent is removed from the 
simulation. This case usually only occurs during the first few days of the simulation, 
the initialization phase. Agents who share the same home meet daily, thus increasing 
their social network strength. Thus, agents living in the same home are expected to 
have extremely social ties (indeed resembling a family-like relationship, which how-
ever can change when agents change their home).

Work The work location of an agent is chosen at initialization. Each work 
location has a required education level, with higher education jobs paying a 
higher salary. Agents are not able to take a job for which they do not meet the 
minimum education level. Once per week, agents search for open jobs to find 
an available job that has a higher income than the agent’s current job. Agents 
also consider the distance between home and work in the projected income of the 
job. Thus, changing home location may cause agents to later change their work 
location to converge to a lower salary. Changes in work location mainly occur 
in the initialization phase and converge to a stable state in which changes are 
rare, but may still occur, for example due, to jobs opening due to agents becom-
ing “ascended” (see Sect. 3.4). Agents are paid at work continuously each tick (5 
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min) while located at their workplace. Each job requires agents to work for 8 h a 
day, 5 days a week. Most jobs, but not all, have a Monday to Friday workweek. 
When at work, agents continue working until they have completed their 8 h per 
day. If an agent is no longer required to work (either having worked 8 h, or it is 
not a workday), agents may still go to work to earn more money.

Restaurants When agents are hungry (critical food status), agents travel to 
their nearest restaurant (using network distance) to eat. While eating, food sta-
tus is recovered (depending on the appetite of agents) and money is paid for the 
food. At restaurants, agents don’t talk to (make friends with) strangers. However, 
agents may meet (and thus, increase friendship) with existing friends and co-
workers. Whenever an agent enters a restaurant they scan the set of other agents 
at the same restaurant and pick a random friend or co-worker to meet. If no such 
other agent exists, agents do not meet anyone and eat in solitude.

Recreational Sites The majority of social activities happen at recreational 
sites. Each tick an agent spends at a recreational site, they attempt to start a meet-
ing. Until a meeting is started, an agent loops through all other agents present at 
the same recreational site and try to reinforce existing friendship relations or 
make new friends (details described below under Social Network Formation). 
Like in restaurants, the food status of agents increases while the agents stay at a 
recreational site (although, not as fast as at a restaurant) and an agent has to pay a 
fee to stay at the recreational site. Since most of the social activities happen at 
recreational sites, an important aspect of the simulation is the choice of recrea-
tional sites. To choose a recreational site, an agent chooses among the k-nearest 
(k is a parameter) recreational sites from the agent’s current location. Among 
these recreational sites, an agent considers the distance as well as compares the 
profile of the recreational site (which is obtained from the agent attributes of pre-
vious visitors of the recreational site) to the agent’s own attributes. In total, an 
agent considers (a) the normalized distance weighted exponentially, (b) age simi-
larity, i.e., normalized difference between agent age and the average age of visi-
tors of the recreational site, (c) income similarity, i.e., the normalized difference 
between agent income and the average income of visitors of the recreational site, 
and (d) interest similarity, which is defined as 1.0, 0.5, 0.25, if the agent’s interest 
is the first, second, third, respectively, most common interest among visitors of 
the recreational site, and zero otherwise. As an example of interest profiles, Fig. 3 
(right-most panel) shows the Top-3 color-coded interests of each recreational site. 
These four weights are added for each recreational site and the agent chooses a 
recreation site as their destination randomly with probabilities weighted accord-
ingly. For example, if k = 3 and the weights of the nearest three recreational sites 
of an agents are (3.0, 0.3, 1.7), then the probability of visiting these three sites are 

3.0

3.0+0.3+1.7
= 0.6 , 0.3

3.0+0.3+1.7
= 0.06 and 1.7

3.0+0.3+1.7
= 0.34 , respectively.

The following specifies parameters of our model used to define the mobility of 
agents in our simulation:

–	 Minimum number of visitor logs required for site profile calculation: 100
–	 Maximum number of latest visitor logs used for site profile calculation: 1000
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–	 Charge per hour (recreational): 6
–	 Charge per visit (restaurant): 3
–	 Number of nearest sites to consider visiting: 10
–	 Spatial Proximity Site Choice Exponential Decay Constant (factor multiplied to 

the spatial proximity coefficient per kilometer distance): 0.55 (example: a recrea-
tional site at a distance of 2.3km would have a weight of 0.551.3 = 0.46)

–	 Site choice coefficients 

1.	 proximity: 1.0
2.	 age: 1.0
3.	 income: 1.0
4.	 interest: 1.25

3.3 � Social network formation

Following Maslow’s Hierarchy, once agents satisfy their physiological and safety 
needs, they can look for higher levels of needs corresponding to belongingness and 
friendship. These needs are satisfied by making/maintaining friends through visit-
ing a recreational site for socialization. The choice of the recreational site depends 
on many factors including cost, proximity, and the profile of the people who visit 
that site. The site profiles are generated based on the logs of visitors involving age, 
income, and interest. As such, in the long term, recreational sites are generally 
expected to be visited by a dominant group of people based on age, income, or inter-
est. However, this can be disrupted with the flashmob concept explained in Sect. 3.5.

There are two main methods of friends formation at recreational sites: cyclic 
closure and focal closure (Kumpula et  al. 2007). When agents visit a recreational 
site (e.g., bar), they first check if they have any friends from their existing network. 
When they find a friend, they meet and strengthen their ties. When an agent meets 
with a friend who is also meeting with other friends, the newly joining agent forms 
connections with these friends of the friend. This implements the cyclic closure. 
When an agent can not see any friends, there is also a low possibility that the agent 
forms a connection with another lone agent or a group of agents (if a limited number 
of people are meeting). This implements the focal closure concept. In this respect, 
co-location increases the chances for agents to make new friends and also helps to 
maintain existing friendships. On the other hand, the lack of co-location leads to 
the lack of social interaction, thus, decreases friendship strength. Once friendship 
strength becomes too weak it leads to the friendship disappearing (Murase et  al. 
2015).

Examples of resulting social networks can be found in Fig. 4 for different social 
parameters. Here agents are color-coded by the interest attribute. The left of Fig. 4 
shows the social network of 1000 agents for our default setting after 40 simulation 
days. This is a result of agents preferring to choose recreational sites that match their 
own interest attribute, thus causing agents of similar interest to be co-located more 
frequently. This represents agents having moderate focal closure probability (to meet 
strangers and turn them into friends) and twice as high cyclic closure probability (to 
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make friends with a stranger who has a common friend). It should also be noted that 
our agents exhibit no sense of homophily and are equally likely to become friends 
with any other agent, regardless of matching their interest. We also observe multiple 
clusters of each color, corresponding to groups of agents having the same interest 
and living/working spatially close thus allowing them to visit the same recreational 
sites. Many of the groups overlap and interconnect.

On the right of Fig. 4 we see the social network of a setting have a lower focal 
cluster probability (making friends with strangers that share no common friends) 
but having a higher cyclic closer probability (as a new friend is more likely to be a 
cyclic closer, i.e., closing a social triangle among existing friends) with much fewer 
social connections outside of these clusters (due to agents having a lower chance 
to befriend strangers). Both the increased inter-cluster connectivity and the result-
ing lack of cross-cluster connectivity causes clusters to be much denser and have 
fewer connections to agents outside their cluster. In this case, agents are more likely 
to become friends with those who already have common friends, and less likely to 
meet new people.

Parameters of our model related to social network formation and evolution 
together with their default parameters:

–	 Initial network edge weight (when agents become friends): 50
–	 Maximum network edge weight: 250
–	 Network edge decay factor (factor multiplied with edge weights every night at 

midnight): 0.6 (corresponds to a 40% reduction)
–	 Network edge deletion threshold (below which an existing edge is deleted): 1
–	 Network edge weight strengthening rate (factor by which an existing edge is 

increased when existing friends meet again): 2.08
–	 Cyclic closure probability (probability that strangers become friends if they have 

at least one friend in common): 0.01
–	 Focal closure probability (probability that strangers become friends if they have 

no friends in common): 0.0025

With the default parameters, Fig.  5 shows the changes of the average social net-
work degree over time for varying populations (1 K, 3 K, and 5 K). After a warm-up 
period of about 20,000 steps (approximately 70 days), we observe emerging weekly 
patterns of the degree bounded by 20 and 30. When population increases, agents are 
more likely to interact with others and build more friendships as shown in Fig. 5.

3.4 � Ascension

In addition to the first three levels of Maslow’s Hierarchy, our model considers an 
“ascension” scenario that represents the esteem need of agents, that is, a desire for 
reputation. Periodically, agents perform a democratic election in which each agent 
votes for their best friend among candidates. Agents can nominate themselves by 
paying a monetary nomination fee. One agent receiving the most votes is elected to 
leave the world and “ascends” to a better world. To achieve the goal of ascension, 
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agents aim to have as many friends as possible. In other words, agents follow strate-
gies like expanding their social network to receive more votes from their friends and 
saving money to self-nominate. Although the number of agents that are removed 
is comparatively small, i.e., a few agents weekly, the fact that they are well-liked 
removes also an important hub in the social network and somewhat breaks up the 
social fabric.

This concept of ascension is implemented as follows. Each day (at midnight, 
when agents plan for their day), agents nominate themselves for ascension if their 
“social status” attribute (which is a love need) reaches a threshold of 0.9. Social sta-
tus is an agent attribute that increases when an agent makes a new social tie (friend), 
decreases when a social tie is broken, and also decays over time. Intuitively, the 
social status of an agent is high if they were able to make many new friends recently. 
As most agents do not work on weekends and visit recreational sites instead, the 
social status generally spikes on weekends and decays during the workweek. When 
agents nominate themselves for ascension, they pay a nomination fee based on their 
financial safety, i.e., the amount of money that agents project they can spend. If the 
money an agent is willing to spend is below a minimum threshold, their nomina-
tion is declined and their money refunded. This minimum threshold is to ensure that 
agents don’t nominate themselves every day, and it also ensures that financial safety 
and high social status are required to reach ascension. Thus, agents with a high 
attribute value of socialness are likely to have sufficient social status (as their needs 
guide them to visit recreational sites to meet friends more often), and agents with 
low socialness are likely to have sufficient financial safety to afford the nomination 
(as such agents are more likely to spend their time working and earning money). Yet, 
a balance of socialness is required for agents to consistently nominate themselves. If 
the nomination fee exceeds the minimum threshold, it is accepted and the money 
is deducted from the agent’s balance and added to an ascension money pool. If the 
amount of money that the agent is willing to pay exceeds a maximum threshold, the 
agent is refunded any money above the minimum threshold. The latter is to ensure 
that agents with low socialness (who prioritize working versus socializing) do not 
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Fig. 5   Average Social Network Degree over Time for varying populations. (Color figure online)
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spend all their savings on a single nomination and can re-try multiple times. Once 
the total amount of money in the ascension money pool exceeds a threshold, nomi-
nations are stopped and agents vote for one nominated agent to ascend. For this pur-
pose, each agent votes for the candidate to which the agent has the strongest social 
tie. If an agent has no social ties to any of the nominees, the agent votes uniformly 
at random. The candidate having the largest number of votes is chosen for ascension 
(with ties broken arbitrarily at random). The chosen agent is removed from the sim-
ulation, with all their social ties broken immediately, their job becoming vacant, and 
their home shelter becoming available. As agents dynamically change their income 
and social ties, we change the price of self-nominations for ascension dynamically 
after each ascension based on the demand for ascensions and the supply of agent 
money. Whenever two ascensions happen on consecutive days (meaning the demand 
for ascension is high due to many agents having high social status and/or the price 
for ascension is very low), we multiply the minimum and maximum nomination fees 
and the ascension money threshold by a constant called Ascension nomination fee 
change rate. If no ascension happens for more than 7 days (due to insufficient agents 
nominating themselves), we divide the minimum and maximum nomination fees 
and the ascension money threshold by the same constant, to make the next ascension 
easier to afford.

In summary, the parameters of our simulation of “ascension” (with default 
parameter values) include:

–	 Initial Social Status of agents: 0.5
–	 Social Status Increase for new social tie: 0.07
–	 Social Status Decrease for broken social tie: 0.03
–	 Social Status Decay Factor at midnight: 0.8 (reduction of 20%)
–	 Ascension social status threshold: 0.9
–	 Initial ascension money threshold: 1000
–	 Initial min nomination fee: 50
–	 Initial max nomination fee: 100
–	 Ascension nomination fee change rate: 2.0

3.5 � Flashmobs

Another aspect driven by relationships is the flash mob. Here, agents aim to expand 
their social network (i.e., to receive more votes for ascension), “voice” their frustra-
tion by “raiding” a recreational site when they experience limited social contact over 
long periods of time. That is, agents that have nothing in common besides being iso-
lated come together at an arbitrary site and as such impose their collective traits on 
this site. Again, this allows for a re-shuffling of established relationships and social 
fabric.

Flashmobs are implemented as follows. Each night at midnight, an agent checks 
if their social status is below a given threshold. If this is the case for three consecu-
tive nights then the agent attempts to participate in a flashmob on the next day. For 
each interest of agents (as explained in Sect. 3, interest is a nominal agent constant 
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that is initialized at random and corresponds to the “hobby” of agents), the simula-
tion checks if there are at least a minimum number of agents that are attempting 
a flashmob having this attribute. If this is the case, the mean location of all these 
agents is computed and the nearest recreational site to it is computed as the flash-
mob destination. All agents that participate in the flashmob prioritize (as their love 
need) to visit this recreational site, if other needs allow time for it. (Agents that must 
work to feed themselves may not be able to join the flashmob). The idea of flash-
mobs is to cause socially unhappy agents to all get together in a potentially large 
congregation in which many new social ties can be established to increase the social 
status of these agents.

Parameters within our model for “flashmobs” with their default parameter values 
include:

–	 Number of interests: 10
–	 Social Status Threshold to participate in flashmobs: 0.1
–	 Minimum Flashmob Size: 3
–	 Social Status Days (number of consecutive days to have a social status below the 

threshold to qualify): 3

4 � Predict and prescribe challenges

We created two challenges for social scientist teams (Human Domain research teams 
of the DARPA Ground Truth program) to predict future states of our Urban Life 
simulation, and to implement changes to the simulation to improve future states. For 
each of these challenges, observable simulation data is described in Sect. 4.1. The 
Predict Test requires Human Domain research teams with predicting future states 
of the simulation, such as determining which recreational sites will be busy in the 
future or what the social network will look like. This challenge was repeated for two 
scenarios, the null scenario in which the simulation continues without changes, and 
a scenario in which a number of recreational sites close. The details of this Predict 
Test are given in Sect. 4.2. The Prescribe Test challenge requires Human Domain 
research teams to select a sub-population of 200 agents such that the average net-
work degree of the social network is maximized. This challenge requires an under-
standing of how friendship is formed and which agents are most likely to become 
friends. It is described in Sect. 4.3.

4.1 � Data collection

This section describes how the teams were able to interact with the simulation to 
obtain observable data in support of solving challenges. An overview of this data 
rollout plan is given in Fig.  6. First, not shown in this figure, is an initial period 
of 6 months of simulation time for “warm-up”. As the simulation initially starts 
with empty social networks, this warm-up period is to ensure that all observable 
data results from a simulation state and is not an artifact of initialization. The first 
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observable day starts after this initialization period and the simulation continues 
running for an additional six years of simulation time. As shown in Fig. 6, all data 
is stored in a relational database for efficient access. This is necessary as the simula-
tion creates terabytes of data that do not fit into conventional main memory. Once 
inserted, selected data of the first two simulation years was provided to teams in an 
initial data package. This initial data package included: 

1.	 Environment data including the complete road network and locations of buildings 
and sites.

2.	 High-detail data from ten recreational sites selected spatially stratified, including 
check-ins and check-outs (including agent IDs) of all agents having entered the 
site and time. This data also includes data on all meetings that have occurred at 
these recreational sites, as well as IDs of all individual agents that have attended 
a meeting.

3.	 Low-detail data from 50 recreational sites selected randomly, including the num-
ber of agents located at these sites at any time. No agent IDs or meeting informa-
tion is provided for these sites.

4.	 High-detail journal data for 100 agents selected randomly, including a detailed 
travel log (check-ins and check-outs at points of interest), financial transactions, 
and social interactions with other agents.

5.	 Census data reported each simulation year including population density, average 
income, and other statistics aggregated to small areal units encompassing 10–50 
agents each.

In addition to the initial data package, Human Domain research teams were able 
to request additional information from the simulation by submitting research 
requests. Such research requests could include agent surveys, passive data collection 

Fig. 6   Data roll out plan and explain test
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mechanisms, additional journal data, social network information, as well as experi-
ments allowing to prescribe changes into the simulation and observe consequences. 
Since Human Domain research teams did not have direct access to the simula-
tion database, research requests were submitted to us in natural language, and we 
implemented them as SQL queries and reported the resulting data. For all research 
requests, we enforced plausibly in a sense that only observable data was collected, 
and that the sampling strategies were not overly invasive. For example, survey 
requests were restricted to at most 20% of the population, whereas detailed jour-
nal requests were restricted to 100 agents only. Research requests were processed 
weekly for each Human Domain research team, and a weekly data roll-out was 
provided.

4.2 � Predict test

After six years of simulation, we define a specific simulation date, namely simula-
tion time 2022-07-15 at 0:00 am as P-Day, which denotes the starting point of time 
to predict. Teams were allowed to request data prior to and on P-Day, but any day 
after P-Day was strictly unavailable. The first challenge required to predict future 
simulation states 30 days after P-Day. This prediction included two scenarios:

–	 Test Scenario 1 (the Null Scenario) In the Null Scenario, nothing happens. The 
simulation is continued beyond P-Day without any exogenous events. The pur-
pose of Test Scenario 1 is to test the basic ground truth understanding of our 
simulation and our agents’ patterns of life.

–	 Test Scenario 2 (the “Close Recreational Sites” Scenario) In this scenario, one-
third of the recreational sites in our world are closed permanently (20 out of 60) 
on P-Day. Therefore, the selected 20 Recreational Sites are permanently flagged 
as closed and can no longer be visited by agents. The purpose of Test Scenario 2 
is to test the understanding of how agents react to a situation where their choices 
(of choosing sites) become limited.

For each of these scenarios, teams were challenged to predict the following aspects 
of the simulation on system-level, group level, and individual agent level:

–	 For five specified recreational sites predict the number of agents that will visit 
the site,

–	 For the same five specified sites predict the number of meetings taking place at 
the site each day,

–	 For a specified set of 100 agents (chosen randomly) predict the (unique) set of 
recreational sites that the agent will visit (at least once), and

–	 Predict the average number of recreational site visits per day.

To give more insights on this challenge, Sect. 4.4 provides an example evaluation 
of the challenge of predicting the average number of recreational site visits per day.
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4.3 � Prescribe test

The Prescribe Test challenge for Human Domain research teams required to com-
bine all of what they have learned about our world and our people. Our Challenge 
2 Prescribe Test represents that select a subset of 200 agents to keep in the world 
in order to maximize friendship and social interactions. Thus, 200 agents remain 
in the world and all other (4000+ individuals) are removed. The simulation con-
tinues running with only the 200 selected agents for one simulation month from 
P-day to 2022-08-14. On each day, we measure the average number of friends of 
our agents. The average over the last 7 days (08/08-08/14) determines the final 
score of a team. Teams are allowed up to four mock tests per team. A mock test 
allows teams to submit a test answer. For each mock test, we return the following 
data packages:

–	 Data Package 1: Detailed data from randomly selected recreational sites for 60 
days before, and 30 days after P-Day

–	 Data Package 2: Low-detail information for selected recreational sites for 60 
days before and 30 days after P-Day

–	 Data Package 3: High-detail journal data reported by 100 individuals for 60 
days before and 30 days after P-Day

–	 Data Package 4: Basic statistics of social networks for 30 days before and for 
60 days after P-Day

Mock tests are beneficial to help teams test their hypotheses. Teams have two 
opportunities to prescribe their changes to our simulation and observe the con-
sequences of their choices. Figure 7 illustrates the simulation time and challenge 
timeframe for mock tests.

(a)

(b)

Fig. 7   Mock tests for Prescribe test
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4.4 � Experimental results

This section shows initial results for challenges defined in Sect. 4. Specifically, for 
the Predict Test of Sect. 4.2 we show the resulting average number of recreational 
site visits per day after multiple simulation runs and provide confidence intervals of 
these results in Sect. 4.5. For the Prescribe test of Sect. 4.3, we show red-teaming 
results of using random prescriptions as well as simple heuristics to select agents 
that maximize their social network in Sect. 4.6.

4.5 � Predict test

To understand the variability of our simulation, and thus, the difficulty of accurately 
predicting the future of our simulation, we ran our simulation 11 times each for Test 
Scenario 1 and Test Scenario 2.

We computed the mean and standard deviation of the number of individuals in 
recreational site #2626 observed in the 11 simulation runs. As shown in Fig. 8, the 
resulting confidence bound use ±1 standard deviation intervals (68 % confidence 
intervals). The confidence values of this confidence interval assume that the num-
ber of visitors on a day follows a Gaussian distribution. We observe that the 68 % 
confidence intervals, denoted by the boxes are quite small (note: The last day has 
incomplete data and should be disregarded). In many cases, we also observe outli-
ers (denoted by the whiskers). Most of these whiskers point downwards. These are 
caused by flashmobs (Sect. 3.5). As flashmobs attract a large number of agents to 
another site, much fewer agents are available to come to this site. In summary, we 
see that the recreational site #2626 has a consistent number of visitors each day, 
subject to a reasonable amount of noise, which may increase due to our flashmob 
events. It is still possible to get good prediction results without predicting flashmobs. 
Readers might also notice that in Fig. 8 that there are periodic patterns, these are 
weekly patterns caused by the fact that agents are more likely (to have time) to go to 
recreational sites on Saturdays and Sundays. Thus, the number of visitors to recrea-
tional sites is higher during these days.

4.6 � Prescribe test

As described in Sect. 4.3, we are asking teams to select a set of 200 (out of 4000+) 
agents. Their goal is to select this set such that the average number of friends of the 
remaining agents, after 1 month of additional simulation, is maximized. In order to 
make sure that this Prescribe Challenge is both feasible and non-trivial, we have car-
ried out red teaming on this. Figure 9 shows the preliminary results from different 
methods used for red teaming. The x-axis and y-axis denote the number of days past 
after prescription and the average degree of the social network, respectively. For 30 
days after the 200 agents are selected, this figure shows the average social network 
degree (i.e., the average number of friends) of each prescription represented as a 
curve. A greater value of degree indicates better performance. As instructed in our 
Prescribe Test, the average over the last 7 days constitutes the Prescribe Test result. 
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To put these results into a quantitative context, we show the context of two baseline 
solutions that we implemented.

Red Teaming Baseline 1 (Random) Our red-teaming has shown that choosing ran-
dom agents is terrible (labelled as Rnd1, Rnd2, and Rnd3 in Fig. 9). The average 
number of friends drops from 20 to 1 and hardly recovers. The reason is that the 
remaining random 200 agents are dispersed through the whole city. They may go 
to recreational sites to meet friends, but the chance is high that their recreational 
site of choice may be empty. Furthermore, many of the selected agents may not be 

(a) Test Scenario 1

(b) Test Scenario 2

Fig. 8   Confidence intervals
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very social, and simply not care about making friends. We observe that the social 
network begins to regenerate over time, as agents make new friends with the other 
“survivors.” The first two settings (Rnd1 and Rnd2) are the settings provided in the 
initial data package. We note that the difference between different random choices is 
quite insignificant.

Red Teaming Baseline 2 (Socialness) As another baseline, we simply chose the 
200 most social agents (with prefix ’Social-’ in Fig.  9), without considering their 
location. This baseline makes sure that all selected agents want to make friends, 
but yet again, they are too dispersed to meet each other in large groups. Social-
ness defines how important it is for an agent to make friends. Agents with high 
socialness prefer to go to recreational sites to meet friends, while agents with low 
socialness prefer to work longer to make more money. For the socialness attrib-
ute, each agent has one of the following values: “high”, “medium”, “low”. This 
baseline chooses exclusively “High” socialness agents. We considered similar-
ity between agents including education levels (SocialSinglelWithDegree), salary 
(SocialSingleWithHighSalary), interest (SocialSingleWithInterestFGHI), neighbor-
hood (SocialSingleNeighborhood01, SocialSingleWithNeighborhood23), and age 
(SocialSingleWithSimilarYoungAge).

Figure 9 shows three groups: “bottom” (Rnd1, Rnd2, Rnd3), “middle” (Social-
SinglelWithDegree, SocialSingleWithHighSalary,SocialSingleWithInterestFGHI, 
SocialSingleWithSimilarYoungAge), and “top” (SocialSingleNeighborhood01, 
SocialSingleWithNeighborhood23) lines. The 3 worst lines, which are clearly sepa-
rated on the bottom, are the same random baselines. All of the other approaches 
choose exclusively high socialness agents. Since there are more than 200 high 
socialness agents, different solutions are used to break the ties. The 4 approaches 

Fig. 9   Comparison of Prescribe test results. (Color figure online)
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in the middle break these ties by the attributes of the agents. For example, one chart 
chooses only high socialness agents that have a Graduate Degree, one chart shows 
the result of selecting high socialness agents with high salary, another chart select 
high socialness agents of similar age, similar interests, and so on.

Using high socialness agents yields a clear improvement over choosing random 
agents. The reason is that high socialness agents simply gain more friends. However, 
these four solutions have the problem that the spatial location is ignored. That is, 
agents are selected all over the city, making it very unlikely to meet many friends 
in this “sparse world”. After all, the remaining 200 agents are distributed over the 
60 recreational sites. Since not everyone is at a recreational site at any time, it is 
quite possible that an agent may find themselves completely alone at a site, unable 
to make any friends. Understanding socialness is but one concept that needs to be 
understood for this Prescribe Challenge.

The top two lines (SocialSingleWithNeighborhood01 and SocialSingleWith-
Neighborhood23) also select agents with high socialness, but only within one spa-
tial region (called Neighborhoods). For these two lines, we again see a most signifi-
cant increase in result score. The reason is that agents are not only looking to make 
friends, but they are also more densely placed in the same area, and thus more likely 
to visit the same recreational sites, as spatial proximity is one of the ground truth 
reasons to choose a site. To summarize, understanding that agents must be at the 
same place to make friends, in addition to understanding the socialness of agents, 
yields an additional increase in score.

5 � Infectious disease simulation

We also included a disease model in our simulation to enable additional challenges 
of predicting the spread of a hypothetical disease and prescribing actions to mitigate 
the spread. We designed an SEIR compartmental disease representation (Kim et al. 
2020c). The SEIR acronym refers to a “Susceptible” individual who has the poten-
tial to be “Exposed” to a disease. Once exposed, people are potentially “Infected”. 
Finally, infected individuals transition to a “Recovered” state. For each unique dis-
ease, the entire population is initially assumed susceptible. To test different char-
acteristics of diseases, we not only vary exposure and infection times but also per-
son-to-person transmission rates. By doing this, it becomes possible to study many 
diseases ranging from those that quickly disappear to those that infect a large part of 
the population. We introduce restaurants as a place where new diseases are initiated 
and susceptible individuals are exposed based on an environmental spread probabil-
ity. This spread probability decays daily assuming that the disease pathogen weak-
ens and disappears over time. After being exposed, individuals do not immediately 
spread the disease but they have to become infectious first.

Figure  10 shows a screenshot of the simulation using the road network of the 
French Quarter, New Orleans, LA, USA on the left and the social network of agents 
on the right. In both networks, agents are color-coded by their current disease state. 
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The screenshot was taken shortly after the epidemic peak was reached. A full video 
of this simulation can be found at the project website4.

5.1 � Disease predict test

Using this disease model implemented on top of our simulation model, we further 
challenged Human Domain research teams to predict the future spread of a new 
infectious disease. For this purpose, we first generated four years of simulation data 
in which 58 diseases have been observed. As each disease has different parameters, 
this data allows teams to learn how different diseases progress in order to classify 
new diseases. We defined a new P-Day at a time when a new disease has just been 
observed (when about 10 of 6000 agents have entered the infectious state). We chal-
lenged teams to predict the disease spread 2 weeks into the future. What makes this 
task challenging is that teams were only given data on agents that were currently 
in the infectious state. However, data on agents that were in the exposed state (pre-
symptomatic) was not disclosed. This fact requires teams to trace contacts of the 

Fig. 11   Agents recovered (green), exposed (yellow) and infected (red) at P-Day. (Color figure online)

4  GeoSocial simulation website: https://​geoso​cial.​joons​eok.​org/p/​epide​mic.​html.

https://geosocial.joonseok.org/p/epidemic.html
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infected agents to identify agents having a high probability of having been exposed 
to the disease.

Figure 11 shows the locations of exposed and infected agents on P-Day. Teams 
can only observe infected agents (red dots), showing a hot spot in the North area of 
the simulated artificial urban area. As teams are not able to directly observe exposed 
cases (yellow dots) the challenge includes tracing and predicting the exposures and 
the corresponding disease hotspots they will cause.

5.2 � Disease prescribe test

To mitigate the spread of this disease, we challenge teams to prescribe actions to the 
simulation to minimize the number of infections. Such actions include5:

–	 Quarantine agents, which is equivalent to remove agents from the simulation. 
Only two agents can be quarantined per day.

–	 Vaccinate agents, which transitions currently susceptible agents to the recovered 
state. Vaccinations are ineffective if an agent is already exposed or infectious. 
Only ten agents can be vaccinated per day.

–	 Equip agents with masks. We assume that agents equipped with masks have a 
50% reduced chance of becoming infected. Only 20% of the population can be 
equipped with masks at any time.

–	 Force agents to work from home. Such agents continue to earn money but do so 
from home. Only 10% of the population can be forced to work from home on any 
day.

Participating Human Domain research teams provided us with a list of actions and 
corresponding agent IDs, which we injected into our simulation starting on P-Day. 
The goal of this prescribe test is to minimize the number of agents that will have 
become infectious within 14 days after P-Day. More details on this disease simu-
lation as well as the effect of different actions on disease curves can be found at 
https://​geoso​cial.​joons​eok.​org/p/​epide​mic.​html.

6 � Conclusions

Our Urban Life model has been used in the Ground Truth program as testbeds for 
social science research methods. It served as functional testbeds for data collection 
methods and provided abundant data and information on causal structures, poten-
tial future states, and the results of policy prescriptions and system manipulations. 
This abundance of data, produced under conditions of controlled complexity and 
known ground truth allowed for explicit validation of hypotheses of Human Domain 

5  We note that this is a hypothetical alternative world and the simulated disease is a hypothetical disease. 
Our ground truth of 50% reduced spread using masks is not meant to reflect the real world, and the simu-
lated contagion is not related to COVID-19 or other real world diseases.

https://geosocial.joonseok.org/p/epidemic.html


48	 A. Züfle et al.

1 3

research teams. To test the ability of Human Domain research teams to infer the 
ground truth of our simulation, we have designed challenges to predict behavior and 
social ties in our simulation. Our Predicts Tests challenged teams to predict future 
simulation states, both, in the case where a change was prescribed to the simula-
tion, as well as for the counterfactual cases with no prescribed changes. Human 
Domain research teams were challenged to predict the future mobility of agents and 
to predict the spread of infectious diseases. Our Prescribe Tests challenged Human 
Domain research teams to select a subset of agents that will produce the strongest 
social network 2 weeks after removing all other agents from the simulation and to 
implement policies to mitigate the spread of an infectious disease.

To create this testbed, our Urban Life model simulates an alternate world in which 
agents follow patterns of life such as going to work to earn an income, going home 
to sleep, going to restaurants to eat, and going to recreational sites to meet friends. 
Our simulation can use either synthetic cities generated through a procedural city 
generation algorithm or real world road transportation networks and infrastructure. 
Our simulated agents are connected by realistic social networks, which are causally 
grounded based on agents’ location and co-location patterns. As co-locations lead to 
friendship, a feedback loop is simulated by allowing existing friends to plan meet-
ings to further increase their social ties. Our simulation software is available at a 
public git repository6, and datasets of generated data can be found at https://​osf.​io/​
e24th/.

To create broader impacts beyond the DARPA Ground Truth program, the 
Urban Life team has organized international workshops on Geosimulation  (Kim 
et al. 2019c, 2020b, 2021), on modeling and Understanding the Spread of COVID-
19 (Anderson et al. 2021), and on Spatial Computing for Epidemiology (Züfle et al. 
2021). The workshops brought together scientists from computer science, epidemi-
ology, and social scientists to improve our understanding of geosimulation and how 
they can be used to fight emerging epidemics or even pandemics.

Acknowledgements  This project is sponsored by the Defense Advanced Research Projects Agency 
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