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Abstract. In this paper, we approximately solve the multiple-choice multi-dimensional knapsack prob-
lem. We propose an algorithm which is based upon reactive local search and where an explicit check for
the repetition of configurations is added to the local search. The algorithm starts by an initial solution and
improved by using a fast iterative procedure. Later, both deblocking and degrading procedures are intro-
duced in order (i) to escape to local optima and, (ii) to introduce diversification in the search space. Fi-
nally, a memory list is applied in order to forbid the repetition of configurations. The performance of the
proposed approaches has been evaluated on several problem instances. Encouraging results have been ob-
tained.

Keywords: combinatorial optimization, heuristics, knapsacks, reactive local search

1. Introduction

In this paper, we deal with a particular 0–1 Knapsack Problem (KP) known as
Multiple-Choice Multi-Dimensional Knapsack Problem (MMKP). MMKP concerns
many practical problems in the real life as the service level agreement, the model
of allocation resources and, the dynamic adaptation of system of resources for mul-
timedia multi-sessions (for more details, one can refer to Khan et al. [8] and
Khan [7]).

In the MMKP, we have a multi-constrained knapsack of a capacity vector or available
resources, namely C = (C1, C2, . . . , Cm), and a set J = (J1, . . . , Ji, . . . , Jn) of items divided
into n disjoint classes, where each class Ji, i = 1, . . . , n, has ri = | Ji| items. Each item
j, j = 1, . . . , ri, of class Ji has a nonnegative profit value vi j , and requires resources given by
the weight vector Wi j = (w1

i j , w2
i j , . . . ,wm

i j ). Each weight component wk
i j (with 1 ≤ k ≤ m,

1 ≤ i ≤ n, 1 ≤ j ≤ ri) also has a nonnegative value. The problem is to fill the knapsacks with
exactly one item from each class in order to maximize the total profit value of the choice,
such that the capacity constraints are satisfied. By the total profit value of the choice, we
mean the sum of the profits of items fixed in the multi-constrained knapsack. The MMKP
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can be formulated as follows:

(MMKP)






maximize Z =
n∑

i=1

ri∑

j=1

vi j xi j

subject to
n∑

i=1

ri∑

j=1

wk
i j xi j ≤ Ck, k ∈ {1, . . . , m}

ri∑

j=1

xi j = 1, i ∈ {1, . . . , n}

xi j ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . , ri }

where xi j is either 0, implying item j of the i-th class Ji is not picked, or 1 implying item j
of the i-th class is picked.

In this paper, we propose an algorithm for MMKP, where an explicit check for the
repetition of configurations is combined with a fast local search. In the proposed approach,
the appropriate size of the list is learned by reacting to the occurrence of cycles. In addition,
if the search repeats an excessive number of solutions excessively often, then the search is
diversified by making a number of degrading operations with respect to the cycle length.
The reactive mechanism is compared to a “simple” Tabu Search (TS), as a storage list is
introduced, that forbids the repetition of configurations.

The proposed approach can be summarized as follows: (i) starting with an initial so-
lution for the MMKP, obtained by applying a fast constructive procedure, (ii) improv-
ing the current solution by running a complementary constructive procedure which ap-
plies a swapping criterion and, (iii) using the reactive strategy composed by deblock-
ing and degrading procedures. Finally, a tabu list is introduced in a modified version
of the algorithm. The last list is used in order to avoid some cycling during the search
process.

The remainder of the paper is organized as follows. In Section 2, we present a brief
reference of some sequential exact and approximate algorithms for knapsack problem
variants. The concept of the local search and the proposed algorithm are presented in
Section 4. In Sections 4.1 and 4.2, we describe the solution representation and how we
obtain the starting solution. The main steps of the two versions of the algorithm are detailed
in Sections 4.3 and 4.4. Finally, in Section 5, the performance of both versions is tested on
a set of problem instances extracted from the literature and other large randomly generated
instances.

2. Related works

There exist several approaches for solving KP and its variants. For the (un)bounded single
constraint KP, a large variety of solution methods have been proposed (see Martello et al.
[10], Balas and Zemel [1], Fayard and Plateau [4] and Pisinger [1]). The problem has been
solved by dynamic programming, tree search procedures and hybrid approaches (for more
details on knapsack variants, one can refer to the monograph by Kellerer et al. [6]).
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The Multi-Dimensional Knapsack Problem (MDKP) (see Chu and Beasley [2]) is one
kind of KP where the constraints are multidimensional. The Multiple-Choice Knapsack
(MCKP) (see Pisinger [13]) is another variant of KP where the picking criterion of items
is more restrictive. For MDKP, Toyoda [16] used the aggregate resource consumption.
The solution of the MDKP needs iterative picking of items until the resource constraint is
violated. Other approaches have been used with great success, achieved via the application
of local search techniques and metaheuristics to MDKP. Among these approaches, we can
cite the tabu search, genetic algorithms, simulated annealing and hybrid algorithms.

To our knowledge, very few papers dealing directly with the MMKP are available. Moser
et al. [11] have designed an approach based upon the concept of graceful degradation from
the most valuable items based on Lagrange multipliers. Khan et al. [8] have tailored an
algorithm based on the aggregate resources already introduced by Toyoda [16] for solving
the MDKP. Finally, Hifi et al. [5] proposed a guided local search-based heuristic in which
the trajectories of the solutions were oriented by increasing the cost function with a penalty
term; it penalizes bad features of previously visited solutions.

3. A generic approach

In order to make the paper more clearer, we try to summarize the main principle of the
algorithm using a generic approach. Note that our algorithm uses some specific parameters
associated to the MMKP problem and so, it can be considered as a tailored algorithm using
the main lines of the generic approach which is composed by the following steps:

(i) Starting by an initial solution;
(ii) Constructing a neighborhood set in order to improve the current solution, applying a

neighborhood-strategy;
(iii) Perturb the search process and construct a new current solution;
(iv) Steps (ii)–(iii) are repeat until a satisfactory solution is reached.

In what follows, we develop a manner for simulating the process illustrated by steps
(i)–(iv).

3.1. A starting solution

Simulation of step (i): The algorithm starts with a partial solution using a greedy procedure.
The last procedure works by fixing, at each step, an item until a feasible solution of
the problem is obtained; that is a starting solution. The obtained solution is reached by
considering some choice criterions, for example, the average cost criterion, the marginal
cost criterion, etc. Of course, the procedure is a greedy one and the aim is to obtain a
feasible solution to the problem in a negligible computing time.

3.2. Defining a neighborhood set

Simulation of step (ii): Constructing a neighborhood-solution represents the core of the
proposed approach. The neighborhood-solution is used for improving the quality of the
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current solution. It consists in finding a good strategy for generating a final solution xf

(f ≥ 1) localized in the neighborhood-solution. The process applies a series of movements
for constructing a series of feasible solutions x1, x2, . . . , xn.

Let consider the following maximization problem:

max
x∈X

{ f (x)},

where X denotes the domain of x. Define an operator h(xt) which transforms a current solu-
tion xt into a neighbor solution xt+1; that is a new solution obtained at the t-th iteration using
the neighborhood-strategy (operator). The operator h(.) transforms the current solution xt

into the solution xt+1 such that f(xt) ≤ f(xt+1). The process is stopped if it is incapable to
produce a better solution.

The introduced operator can be defined as follows. Let xt∈ X be a feasible solution
obtained at the t-th iteration and, suppose that there exists a fixed number p of neighborhood
sets for xt, i.e., N1(xt), . . . , Nk(xt), . . . , Np(xt). Define the problem Pk corresponding to
Nk(xt), k = 1, . . . , p, as follows:

max
x∈N k (xt )

{ f (x)},

and consider the following two steps:

(a) Let xk
t , k = 1, . . . , p, denote the best solution localized in Pk with objective value f (xk

t );
(b) Set xt+1 = argmaxy∈{x1

t ,...,xk
t ,...x p

t }{ f (y)}.

3.3. Perturbing the search process

Simulation of step (iii): The aim of the procedure is to construct a new starting solution
by using a jump from the current space search to a new space search (a diversification is
introduced). Several strategies can be applied in order to simulate the jumping principle.
For example, (i) a first strategy can degrade the current solution and combines some
mechanisms in order to improve the solution at hand; (ii) a second strategy can degrade the
current solution and try to improve it using a storage list.

In the generic approach, both strategies constitute a reactive local search using (a) the
neighborhood sets in order to search the best local solution and, (b) two different strategies
using the deblocking mechanism or a local storage list. First, the deblocking mechanism
tries to release the search process when the obtained solution seems to cycle. Second and
last, the local storage list is introduced in order to locate the non desirable solutions, and to
forbid any configuration having the same objective value.

4. An algorithm for MMKP

For a combinatorial optimization problem, local search algorithms can be described in terms
of several basic components. Among these components, we can (generally) distinguish: (i)
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Figure 1. Binary representation of the MMKP solution.

the combinatorial problem to solve, (ii) the representation of a cost function associated to
an instance of the problem and a neighborhood domain that defines the possible transitions
in the feasible search space and, (iii) the control strategy for local moves to perform. Many
strategies have been proposed that address the problem of how to overcome local optima.
In many cases, non-improving local moves are admitted based on a probabilistic decision
(noising) or based on the history of the search. The focus of the reactive search framework
is on wide spectrum heuristic algorithms for discrete optimization, in which local search is
complemented by feedback schemes (“reactive”), that use the past history of the search to
increase their efficiency and effectiveness.

4.1. Solution representation for MMKP

Before describing the main principle of the approach, we give a suitable representation
scheme and introduce some notations.

Generally, the scheme is a way to represent a solution of MMKP. The standard MMKP
binary representation is an obvious choice for MMKP since it represents the underlying
0–1 nonnegative variables (figure 1 shows the vector representation of this solution). A
feasible solution is such that ∀ k ∈ {1, . . . , m},

∑
i=1
n

∑
j=1
ri wk

i j xi j ≤ Ck and for each class
Ji, we pick one and only one item j, i.e., xi j = 1 if the j-th item of the i-th class has been
selected, xi j = 0 otherwise.

Generally, the binary representation can introduce the unfeasibility in the resulting solu-
tions. Therefore, there are two ways of dealing with unfeasible solutions:

1. to apply a penalty function to penalize the cost function of unfeasible solutions (see
Richardson et al. [15]),

2. to design heuristic operators in order to transform the unfeasible solutions into feasible
ones (see Beasley and Chu [2]), or to reduce the order of the unfeasibility amount of the
obtained solutions.

Penalty techniques allow constraints to be violated; as unfeasibility increases, the cost
function is degraded. The second technique consists in separating the cost function into
two terms: (i) a term which represents the objective function and (ii) a second one, denoted
mp, which measures the amount of unfeasibility in the solution. Of course, a solution with
mp = 0 represents a feasible one for the original problem.

In our study, we apply the second approach of using heuristic operators, because (for
the MMKP problem) (i) the objective function is easily computed and (ii) by using a
simple procedure, the measure of the unfeasibility of each constructed solution can easily
be reduced to zero. We have preferred this approach because an “appropriate” penalty
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function is often difficult to determine. In our study, we distinguish two states: the feasible
state (FS) and the unfeasible state (US); FS indicates that the current solution, namely
S, does not violate the amount of available constraints, and US if there exist at last one
constraint which has been violated for S. The aim is to try to improve FS (or transform US
into FS) by applying an improving greedy procedure.

In what follows, in order to make the paper self-contained and for increasing clarity of
both versions of the proposed algorithm, we recall briefly some parts having already been
developed in Hifi et al. [5], which are principally concerned with both the constructive and
the complementary procedures.

4.2. An initial solution for MMKP

A constructive procedure (CP) and a complementary one (CCP), proposed in Hifi et al.
[5], construct an initial solution by applying CP and improve it by applying CCP. The
first procedure CP operates in a greedy way in order to produce a feasible solution without
focalizing on the quality of the obtained solution. CPP, which is a complementary procedure,
is applied in order to improve the quality of the initial solution. Herein, we summarize the
main principle of both CP and CCP procedures.

4.2.1 CP procedure. CP is a greedy procedure with two phases. The first phase is applied
in order to produce a feasible solution of MMKP; the procedure stops if the obtained
solution is feasible. The second phase is used when the obtained partial solution is not
feasible. In this case, in a greedy way, the procedure considers the most violated constraint
and attempts to complete the current partial solution. The last phase is iterated until a
feasible solution is obtained (for more details, the reader can refer to Hifi et al. [5]).

4.2.2 CCP procedure. The complementary CP approach (CCP), uses an iterative improve-
ment of the starting solution. It applies (i) a swapping strategy of picked items (considered
as old items) and (ii) a replacement stage which consists of replacing the old item with a
new one selected from the same class. Note that each swap is authorized if the obtained
solution realizes a FS. By this way, first, the swap is generalized to the remaining items
of the same class in order to select the new item realizing the best local objective value of
the current class. Second, the two selected items, say ji and j′i, of the same class, say Ji,
are exchanged in the new solution, where the obtained objective value realizes the better
value over all classes. This process is iterated by using a stopping condition (a detailed
description of the CCP algorithm can be found in Hifi et al. [5]).

4.3. A reactive local search—RLS

In this section, we describe the first version of the algorithm, called RLS. RLS uses a
process in order to improve the solution applying CCP.

The used method is characterized by the “prohibition period” which is determined
through feedback (reactive) mechanism during the search. This principle permits us to
release the current solution and considers another better solution. The algorithm simulates
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this process (as indicated in the generic approach) by considering a two-stage solution
generation. The core of the algorithm is mainly based on two strategies: (a) the degrading
strategy which is applied after improving the current solution by performing some swapping
between several items and, (b) the deblocking strategy which allows some diversification
and permits to change the direction of the search in order to explore some different regions of
the search space. Both Degrade() and Deblock() procedures are summarized as follows.

4.3.1 The degrade procedure. The procedure involves the parameter S = (S1, . . .,
Si, . . . , Sn) denoting the current solution to degrade. The procedure operates as follows:

Step 1. Set Ji ← GetClass(), where GetClass() selects an arbitrary class.
Step 2. Set j′i ← Exchange(S, Ji, j) where (i) j and j′i are two elements of Ji and, (ii) the

exchange between j and j′i guaranties a feasible solution.
Step 3. Repeat steps 1–2 a certain number of times (corresponding to the degrading

strategy) and exit with the new solution S.

Note that the procedure at Step 2 uses a simple exchange between items of the same
class, i.e., two items are exchanged if the engendered solution is feasible.

4.3.2 The deblock procedure. The main idea of the procedure is based on a double
exchange between items of two selected classes. We recall that initially we have a feasible
solution S, where S(i) represents the i-th fixed item in the current class, with its objective
value best.

Now, let i1 and i2 be two different classes and, j1∈ Ji1 and j2∈ Ji2 be two items to be
exchanged with two other items of Ji1 and Ji2, respectively. Then, we define the following
configuration S′, where S′(i) (for i = 1, . . . , n) denotes the index of the fixed item in the
current class:

S′(i1, i2, j1, j2) =






S(i) if i �∈ {i1, i2}
j1 if i = i1

j2 if i = i2.

The main steps of the deblock procedure, which tries to improve the best current solution,
can be described as follows.

1. Set E = {(i1, i2) such that i1, i2 ∈ {1, . . . , n}, i1 < i2 ≤ n}.
2. Choose an element (i1,i2) (representing a couple two different classes) of E and update

the set E, i.e., E ← E \ {(i1, i2)}.
3. If there exist a couple of elements (j1, j2) such that S′(i1, i2, j1, j2) produces a feasible

solution and its objective value O(S′) is greater than Best, then set S ← S′, Best ← O(S′)
and, exit with both S and best.

4. Repeat Steps 2 and 3 until E �= ∅.

Figure 2 describes the main steps of the algorithm, denoted RLS. The algorithm starts
(line 1) by applying CP to obtain an initial solution and initializes (line 2) the number of
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Figure 2. A reactive local search using deblocking and degrading strategies: RLS.

times that some solutions can be degraded. Each solution is represented by a configuration
recorded in the vector S. S = (S1, . . . , Sn) with Si denotes the item selected in the i-th class.
The main loop (line 3) starts by performing a local swapping search strategy (CCPS -
line 4) in order to obtain a first improved solution. The best current solution is updated
(line 5) if the obtained solution realizes a better objective value compared to the initial
one. If the local swap search (CCPS) is unable to improve the solution (line 6), then
the degrading strategy (the procedure Degrade()) is introduced in order to consider
another solution. The aim is to change the trajectory of the search which enables a better
improvement process. This strategy is repeated for a fixed number of iterations. As described
by the line 8, if the obtained solution is captured by a local optima, then we try to avoid this
phenomenon by using the deblocking strategy (Deblock procedure). Finally, the local swap
search procedure is recalled for improving the current solution. This process is controlled
by a fixed number of iterations (StoppingCondition()).

The complexity of this algorithm is given as follows. First, RLS starts by calling CP with
a complexity of O(m� + n), where � = max {r1, . . . , rn} (see Hifi et al. [5]). Second, the
procedure CCPS has a complexity of O(nm�) and both Degrade and Deblock procedures
have a complexity of O(m). So, the total operations taken by RLS is equal to MaxIter ×
((m� + n) + 2(nm�)) × m. Finally its worst-case complexity is evaluated to O(n� m2).

4.4. A modified RLS algorithm

In this section, we describe a modified version of RLS, called MRLS. The aim of MRLS
is to improve the quality of the solutions obtained by RLS. Of course, in our results, we
also consider the run time as a critical measure in the sense that we try to generate best
solutions without augmenting considerably the computing time. A manner to respect this
criteria is to introduce a memory list in order to prevent cycling. Indeed, search procedures
based upon local optimization usually require some type of techniques to overcome local
optimality.
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Figure 3. A modified reactive local search algorithm using a memory list: MRLS.

We can remark that after a move is executed, using RLS, one checks whether the current
configuration has already been found during the search process and reacts accordingly.
The later reactive mechanism is not sufficient to guarantee that the search trajectory is not
confined in a limited region of the search space, for instance, when the current solution
saturates relatively all constraints. For this reason, the robustness of the approach requires
other “escape” mechanism called herein the memory storage, applied when several configu-
rations realize the same objective value. In our study, we propose to replace the Deblock()
strategy by a memory list. Limited computational results showed that combining both
Deblock() and memory list produce, generally, equivalent solutions but the computa-
tional time becomes superior.

Figure 3 describes the main steps of the MRLS. It starts (lines 1 and 2) by applying
CP to obtain a starting solution denoted S∗:= S, with objective value O(S∗) and, initializing
the memory list to empty set. The algorithm (line 3) performs some local swapping search
(using CCP(S, List)) to improve the current solution which does not belong to tabu set in the
memory List. Next (line 4), the obtained solution S′ is compared to the recorded objective
value; the current obtained solution replaces the older solution, noted S∗, if its objective value
is better than O(S∗). The solution S′ (line 5) is introduced in the tabu list in order to limit
cycling phenomenon. Moreover, the algorithm applies the degrade procedure at line 6
in order to construct a new solution S. Note that the algorithm performs a maximum of
p degradations in order to construct the later solution. This process is repeated until a
maximum number of iterations is performed.

Note that MRLS has the same complexity than RLS in the sense that it uses the same
procedures except the fact that instead of the Deblock() procedure, it uses a memory list.

5. Computational results

The purpose of this section is twofold: (i) to show how to determine a good trade-off
between the quality of the obtained solution, the size of the used memory List, the accepted
cycling length and the number of times of degrading solutions and, (ii) to evaluate the
performance of both versions of the algorithm compared to the results obtained by Hifi
et al.’s [5] algorithm (referred to herein as HMS). The obtained results are also compared to
those obtained when running one hour the Cplex Solver v.9 on the same set of instances.
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Table 1 Test problem details.

#Inst. n ri m
∑n

i=1 ri #Inst. n ri m
∑n

i=1 ri #Inst. n ri ms
∑n

i=1 ri

I01 5 5 5 25 Ins01 50 10 10 500 Ins13 100 30 10 3000

I02 10 5 5 50 Ins02 50 10 10 500 Ins14 150 30 10 4500

I03 15 10 10 150 Ins03 60 10 10 600 Ins15 180 30 10 5400

I04 20 10 10 200 Ins04 70 10 10 700 Ins16 200 30 10 6000

I05 25 10 10 250 Ins05 75 10 10 750 Ins17 250 30 10 7500

I06 30 10 10 300 Ins06 75 10 10 750 Ins18 280 20 10 5600

I07 100 10 10 1000 Ins07 80 10 10 800 Ins19 300 20 10 6000

I08 150 10 10 1500 Ins08 80 10 10 800 Ins20 350 20 10 7000

I09 200 10 10 2000 Ins09 80 10 10 800

I10 250 10 10 2500 Ins10 90 10 10 900

I11 300 10 10 3000 Ins11 90 10 10 900

I12 350 10 10 3500 Ins12 100 10 10 1000

I13 400 10 10 4000

Our algorithms were coded in C++ and all algorithms are tested on an Ultra-Sparc10
(250 Mhz and with 128 Mb of RAM).

5.1. Problem details

The problems we considered are summarized in Table 1. We tested a total of 33 instances
corresponding to two groups: (i) the first group contains existing instances (noted I01, . . . ,
I13) and (ii) the second group is composed of randomly generated problem instances
(noted Ins1, . . . , Ins20). The first group corresponds to the instances tested by Khan
et al. [8] containing six small and seven hard instances. The second group represents
a variant of random problem instances (varying from medium to large size instances)
which are generated following the scheme used in [8]. We have made these instances
publicly available from http://www.laria.u-picardie.fr/hifi/OR-Benchmark, hoping to aid
further development of exact and approximate algorithms for the MMKP.

5.2. Behavior analysis: The literature instances

Generally, when using approximate algorithms to solve optimization problems, it is well-
known that different parameter settings for the approach lead to results of variable quality.
Herein, both versions of the approach (RLS and MRLS) involve several decisions. For
RLS, we have the parameter p representing the number of times that the current solution
can be degraded and, the number of iterations MaxIter to do. For MRLS, we add to the
parameter p, the length of the used tabu list. Of course, a different adjustment of method’s
parameters would lead a hight percentage of good solutions. But this better adjustment
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Table 2 The behaviour of RLS when varying the number of iterations MaxIter and by fixing p to 5.

# Iterations AV. T # Exact/Best solutions (%)

5n 2.42 7 (0.54)

10n 6.14 7 (0.54)

15n 8.04 8 (0.61)

50n 21.95 12 (0.92)

would sometimes lead to heavier execution time requirements. The set of values chosen
in our experiment represents a satisfactory trade-off between solution quality and running
time.

First, in order to find the right value of the maximum number of iterations used by
the algorithm, we have introduced a variation of MaxIter in the discrete interval {5n,
15n, 20n, 50n}. Moreover, when the number of the maximum iterations is greater or
equal to 15n, the search process is stopped if the current solution is not improved after
n degradations. These tests are made by fixing the parameter p, representing the number
of times of degrading a current solution, to 5 (below, we shall discuss the choice of the
value associated to p). Limited computational results showed that a hight value of MaxIter
gives a better solution, but the computational times increase. As shown in Table 2, we can
observe that the percentage of optimal (best) solutions varies between 0.54% and 0.92%.
Note that the better solutions are obtained when fixing MaxIter to 50n with a largest average
computational time (Line 3, Column 3). In what follows, we maintain the last value for the
maximum number of iterations.

Second, we analyze the behavior of RLS when varying the parameter representing the
maximum number of degrading a current solution, denoted p. Table 3 reports the quality
of the obtained results when p is varied in the discrete interval {5, 15, 20}. The same table
shows that he algorithm produces better results for p = 5 and if the value of p is large, then
the used diversification is less important (in the sense that the approach is unable to provide
better solutions). However, we think that for the largest value the algorithm explores a large
space and so, the reactive search is not able to locate a good direction in order to improve
some visited solutions. From Table 3, we can conclude that an intermediate value for p
maintains the hight quality of the solutions.

Third and finally, we consider the tabu list used in the second version of the algorithm,
i.e. MRLS. We recall that the tabu list replaces the unblocking strategy. In our study, we
have considered that the length of the tabu list varies dynamically. Indeed, if n* denotes the

Table 3 The behaviour of RLS when varying p, the number of times a solution must be degraded.

Varying p AV. T # Exact/Best solutions (%)

5 21.95 12 (0.92)

15 27.77 10 (0.77)

20 33.65 7 (0.54)
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Table 4 The behaviour of MRLS when varying dynamically the length of the memory list.

Interval list AV. T # Exact/Best solutions (%)

[n, n + 10] 21.95 12 (0.92)

[2n, 2n + 10] 42.47 10 (0.77)

[3n, 3n+ 10] 46.74 8 (0.62)

number of the different classes, then the length is automatically taken in an integer interval.
The change of tabu list is performed after 50 iterations without improving the best current
solution. In order to find a right interval variation associated to the length of the tabu list,
we have compared several intervals. Table 4 displays the results obtained by MRLS when
varying the length of the tabu list (herein, we have reported three significant intervals).

We can remark that the better results are obtained for the interval [2n, 2n + 10]. In this
case, MRLS reaches all optimal/best solutions and consuming an average time equal to
14.52 seconds. The same table shows that if the length of the tabu list is small or large,
then the used storage is less efficient. Indeed, we observe that MRLS degrades the quality
of the results. We think that for the small interval, the tabu list is not sufficiently able to
detect the major cycling and, for the largest one, the list saves several configurations which
do not permit to well explore the space search (using the local swap procedure).

5.3. Performance of RLS and MRLS

In this section, we first compare the performance of RLS and MRLS to that of Hifi et al.’s
[5] algorithm, referred to herein as HMS and, we give the detailed results of both algorithms
for the first group of instances, i.e., the instances of the literature noted I01-I13. Second,
we perform a comparative study between the proposed algorithms and the Cplex solver
v.9 on both groups of instances (the second group contains the instances Ins01-Ins20
representing a variant of problems varying from medium to large ones).

5.3.1 The first group of instances. Table 5 evaluates the performance of the proposed
algorithms (RLS and MRLS) compared to HMS on the first group of instances. Column
2, labeled Opt/Best contains either the optimal solution, if it is known, or the best feasible
solution obtained up to now. (Whenever a best feasible solution is used, the instance is
marked with a ∗ sign). Columns 3 and 4 display the solutions obtained by HMS and its
run time while Columns 5 to 8 display the solutions yielded by the two versions of MRLS
(denoted MRLSa and MRLSb) and the used run times. Recall that the implementation of
MRLS involves the set up of several parameters and in particular the parameter relied to the
maximum number of iterations. For the first implementation of MRLS, denoted MRLSa,
we fixed the maximum number of iterations to 15n (favoring the run time) and to 50n for
the second version, denoted MRLSb (favoring the quality of the solutions). These strategies
seem, among the strategies we explored, to be a good compromise in terms of solution
quality and run time. It is clear that applying MRLS with a large number of iterations can
produce better solutions but it requires large computational time.
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Table 5 A summary results of HMS, RLS and MRLS algorithms. The symbol ∗ means that the optimal solution
is not known.

MRLS algorithm

Inst. Opt/Best HMS T RLS T MRLSa Ta MRLSb Tb

I01 173 173 0.04 173 0.05 173 0.56 173 0.59

I02 364 356 0.04 364 0.07 364 0.79 364 0.81

I03 1602 1553 0.08 1595◦ 0.20 1602 1.99 1602 2.01

I04 3597 3502 0.09 3564◦ 0.22 3569 2.28 3597 2.30

I05 3905.70 3868.22 0.15 3905.90◦ 0.19 3945.70 1.93 3905.70 1.94

I06 4799.30 4799.30 0.21 4799.30 0.23 4799.30 2.36 4799.30 2.37

I07 24587∗ 23983 1.50 24121◦ 1.20 24159 11.66 24587 36.58

I08 36877∗ 36007 2.17 36110 2.37 36401 14.93 36877 37.00

I09 49167∗ 48048 5.50 48291◦ 4.33 48367 20.03 49167 25.10

I10 61437∗ 60176 7.47 60291◦ 6.65 60475 25.45 61437 47.00

I11 73773∗ 72003 13.35 72283◦ 9.52 72558 30.27 73773 41.45

I12 86071∗ 84160 22.41 84446◦ 12.69 84707 36.32 86069 42.08

I13 98429∗ 96103 31.64 96580◦ 16.73 96834 41.20 98429 160.41

The study of Table 5 shows that RLS gives an acceptable improvement of results given
by HMS (Column 5 marked with the symbol ◦) within shortest average computational time.
We also remark that either implementation of MRLS reach better solutions than both HMS
and RLS. For this group of instances (compared to RLS results), MRLSa improves all
instances (both algorithms produce the optimal solution for three instances) while MRLSb

(compared to MRLSa) improves the solutions of all instances (for five instances, both
versions of MRLS give the optimal solutions). Evidently, these improvements occur at the
cost of a larger computational time. Moreover, MRLSb needs more average run time and
reaches better solutions. However, the improvement of the solution quality warrants the
additional (reasonable) run time.

5.3.2 A comparative study on both groups of instances. In this part, we compare the
results produced by both MRLSb and the Cplex solver v.9 on both groups representing
33 problem instances. This comparison is performed by setting the run time limit of the
Cplex solver to one hour. Table 6 evaluates the performance of both algorithms on both
groups of instances. Column 3 shows the optimal solution (or the best solution; in this
case, the instance is marked with an ∗ sign) of the instance. Column 3 contains the best
integer feasible solution CplexIFS produced by the Cplex solver. Column 4 tallies the
solutions given by MRLSb while column 5 displays the computational time that needs
MRLSb for producing the final solutions. All entries in italic (Columns 3 and 4) indicate
which algorithm reaches the better solution for the considered instance.

For the first group of instances, we can remark that MRLSb produces five better solutions
out of seven (for the first six instances, both algorithms produce the optimal solutions). For
the second group of instances, MRLSb performs (on average) better than the Cplex solver,
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Table 6 Computational results of both Cplex Solver and MRLS algorithm. The symbol ∗ means that the
optimal solution is not known.

Inst. Opt/Best CplexIS MRLSb Tb

I01 173 173 173 0.59

I02 364 364 364 0.81

I03 1602 1602 1602 2.01

I04 3597 3597 3597 2.30

I05 3905.70 3905.70 3905.70 1.94

I06 4799.30 4799.30 4799.30 2.37

I07 24587∗ 24584 24587 36.58

I08 36877∗ 36869 36877 37.00

I09 49167∗ 49155 49167 25.10

I10 61446∗ 61446 61437 47.00

I11 73773∗ 73759 73773 41.45

I12 86071∗ 86071 86069 42.08

I13 98429∗ 98418 98429 160.41

Ins01 10714∗ 10709 10714 10.27

Ins02 13598∗ 13597 13598 76.00

Ins03 10943∗ 10934 10943 58.00

Ins04 14429∗ 14422 14429 7.69

Ins05 17053∗ 17041 17053 42.00

Ins06 16823∗ 16815 16823 50.00

Ins07 16423∗ 16407 16423 65.00

Ins08 17506∗ 17484 17506 26.78

Ins09 17754∗ 17747 17754 51.23

Ins10 19314∗ 19285 19314 32.16

Ins11 19431∗ 19424 19431 110.98

Ins12 21730∗ 21725 21730 23.39

Ins13 21569∗ 21569 21569 18.00

Ins14 32869∗ 32866 32869 72.00

Ins15 39154∗ 39154 39148 63.00

Ins16 43357∗ 43357 43354 194.00

Ins17 54349∗ 54349 54349 30.00

Ins18 60456∗ 60455 60456 201.00

Ins19 64921∗ 64919 64921 45.00

Ins20 75603∗ 75603 75603 47.00

since it produces 16 better solutions out of 17 (in three cases, both algorithms reach the
same feasible solution).

Finally, it is noteworthy that (i) if fast solutions are needed, RLS should be used, (ii)
if high quality solutions are preferred to speed, MRLSb should be chosen and, (iii) if
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intermediate solutions within reasonable computing time are needed, MRLSa can be used
or using MRLS by varying the maximum number of iterations.

6. Conclusion

We have solved the multiple-choice multi-dimensional knapsack problem using two ap-
proximate algorithms: a simple reactive local search and a modified one. The first approach
is mainly based upon a local search and combining degrading and deblocking procedures.
The degrading strategy is used in order to diversify the search and the deblocking one is
introduced for escaping to local optima and trying to improve the quality of the solutions.
The second approach introduces a memory list which replaces the deblocking strategy.
The aim is to record cycling solutions in order to forbid repetition of configurations in the
solutions. Computational results show that the first approach yields good solutions within
a very short computing time. The second approach yields high quality solutions, reaching
the optimal/best for several instances, within a reasonable run time.
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