Hyper-sparsity in the revised simplex
method and how to exploit it

J.A.J. Hall K.I.M. McKinnon

August 2000

MS 00-015

Presented at 18th Biennial Conference on Numerical Analysis
Dundee, 1st July 1999

Department of Mathematics and Statistics
University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ

Tel. (33) 131 650 5075 E-Mail : jajhall@maths.ed.ac.uk, ken@maths.ed.ac.uk

Hyper-sparsity in the revised simplex
method and how to exploit it

J. A. J. Hall K. I. M. McKinnon

10" August 2000

Abstract

The revised simplex method is often the method of choice when
solving large scale sparse linear programming problems, particularly when
a family of closely-related problems is to be solved. Each iteration of
the revised simplex method requires the solution of two linear systems
and a matrix vector product. For many problems, even those for
which the constraint matrix is sparse, the results of these operations
are usually dense. However it is shown in this paper that there is a
significant number of practical problems where the results of one or more
of these operations is usually sparse, a property we call hyper-sparsity.
Analysis of the commonly-used techniques for implementing each step
of the revised simplex method shows them to be inefficient when hyper-
sparsity is present. Techniques to exploit hyper-sparsity are developed
and their performance is compared with the standard techniques. For
the subset of our test problems that exhibits hyper-sparsity, the average
speedup in solution time is 5.61 when these techniques are used. For
this problem set our implementation of the revised simplex method which
exploits hyper-sparsity is shown to be many times faster that a commercial
implementation of both the simplex and barrier method. When applied
to network problems, our implementation is shown to approach the speed
of an efficient implementation of the network simplex method.

1 Introduction

Linear programming (LP) is a widely applicable technique both in its own right
and as a sub-problem in the solution of other optimization problems. The
revised simplex method and the barrier method are the two efficient methods
for solving general large sparse LP problems. In a context where families of
related LP problems have to be solved, such as in integer programming and
decomposition methods, the revised simplex method is usually the more efficient
method.

The constraint matrices for most practical LP problems are sparse: on
average there are only about six non-zeros per column and this number does
not increase with problem size. For an implementation of the revised simplex
method to be efficient, it is crucial that only non-zeros in the coefficient matrix
are stored and operated on. Each iteration of the revised simplex method
requires the solution of two linear systems (called FTRAN and BTRAN) and a
matrix vector product (called PRICE). The matrices involved in these operations

are submatrices of the coefficient matrix so are normally sparse. However, for
many problems these three operations yield dense vectors, in which case there
is limited scope for improving the performance by fully exploiting any zeros in
the vectors. However it is shown in this paper that there is a significant number
of practical problems where the results of one or more of these operations
are usually sparse, a property we call hyper-sparsity, and for these problems
significant performance improvements are possible.

The computational components of the revised simplex method and standard
techniques for FTRAN, and BTRAN are introduced in Section 2 of this paper.
Section 3 describes hyper-sparsity and gives statistics on its occurrence in a test
set of LPs drawn from the standard Netlib set [8] and larger problems from the
Kennington test set [3] and the authors’ personal collection. Analysis given in
Section 4 shows the commonly-used techniques for each of the computational
components of the revised simplex method to be inefficient when hyper-sparsity
is present and techniques to exploit hyper-sparsity are described. Section 5
presents a computational comparison of the authors’ revised simplex solver,
EMSOL, with and without the techniques for exploiting hyper-sparsity. For
those problems which exhibit hyper-sparsity, a comparison is also made between
EMSOL and the barrier and simplex solvers in Version 2 of IBM’s Optimization
Subroutine Library, OSL [11]. For network problems, EMSOL is compared
with NETFLO, Kennington’s efficient implementation of the network simplex
method [12]. Conclusions are offered in Section 6.

2 The revised simplex method

The revised simplex method and its computational requirements are most
conveniently discussed in the context of LP problems in standard form

T

minimize c'x
subject to Az =10 (1)
x <0,

where € IR" and b € IR™. The matrix A may be assumed to contain the
negation of the identity matrix. However, when operations corresponding to
the matrix entries of these ‘logical’ (as opposed to ‘structural’) variables are
encountered computationally, an efficient solver should exploit their structure
properly. An efficient solver should also be able to handle problems with more
general bounds on the variables and constraints without the duplication of
constraint rows and columns required to put such problems into the form (1).
In the simplex method, the variables are partitioned into index sets B of
m basic variables and N of n — m nonbasic variables such that the basis
matrix B formed from the columns of A corresponding to the basic variables
is nonsingular. The set B itself is conventionally referred to as the basis. The
columns of A corresponding to the nonbasic variables form the matrix N and the
components of ¢ corresponding to the basic and nonbasic variables are referred to
as, respectively, the basic costs ¢z and non-basic costs ¢y. When the nonbasic
variables are set to zero the values b = B~'b of the basic variables, if non-
negative, correspond to a vertex of the feasible region. An account of the details
of the revised simplex method is given by Chvétal in [4] and the computational
components of each iteration are summarised in Figure 1. Note that although

the reduced costs may be computed directly using the following BTRAN and
PRICE operations

nl=clBp1

T _ T T
¢y =c,—7 N

it is more efficient computationally to update them by calculating the pivotal
row dg as indicated in Figure 1. The pivotal row is also required in order to
update the weights used in Harris’ Dever strategy [10] which is commonly used
to select the entering variable in efficient implementations of the revised simplex
method. The only significant computational requirement which is not indicated
in Figure 1 occurs when, in ‘phase I’, the step results in one or more non-pivotal
basic cost changes so the corresponding linear combination of tableau rows must
be computed in order to update the reduced costs. This composite row is formed
by the following BTRAN and PRICE operations

5" =6TB!

—§'N,

>N

a

where the nonzeros in § are the changes in the basic costs. Note that when using
Devex the original ‘unit’ BTRAN and PRICE are still required so the ‘composite’
BTRAN and PRICE constitute additional computation.

CHUZC: Use ¢, and the Devex weights to find good candidate ¢ to enter basis.

CHUZC: Scan ¢, for a good candidate ¢ to enter the basis.

FTRAN: Form a, = B~ 'a,, where a, is column ¢ of A.

CHUZR.: Scan the ratios Bi/diq for the row p of a good candidate to leave the
basis. Let o = by, /éipg.
Update b := b — ad,.

BTRAN: Form n”=el B!

PRICE: Form pivotal row dg =7xTN.

Update reduced costs &, = &% — éng and Devex weights.
If {growth in factors} then
INVERT: Form a factored representation of B!,
else
UPDATE: Update the factored representation of B~! corresponding to the
basis change.
end if

Figure 1: Operations in an iteration of the revised simplex method with Devex
pricing

2.1 The representation of B!

In each iteration of the simplex method it is necessary to solve two systems, one
involving the current basis matrix B and the other its transpose. This is achieved
by passing forwards and backwards through the data structure corresponding to
a factored representation of B~!. There are a number of procedures for updating

the factored representation of B~!, the original and simplest of which is the
product form update of Dantzig and Orchard-Hays [5]. This approach is used
by the authors’ solver EMSOL and the techniques in this paper are developed
with the product form update in mind. Their application to alternative update
procedures is discussed in Section 4.

If By ! is used to denote the factored representation obtained by INVERT,
and E,, represents the subsequent basis changes such that B = By FE,, it follows
that B~! may be expressed as

B™'=FE;'B;".
Thus FTRAN may be performed as
a, = By'a, (I-FTRAN)
followed by
a, = FE;'a,. (U-FTRAN)

Conversely, BTRAN is performed as
~T T -1
' =e,F, (U-BTRAN)

followed by
nl=#TpB;t. (I-BTRAN)

In a typical implementation of the revised simplex method for large sparse LP
problems, By ! is represented as a product of elementary matrices derived from
the nontrivial columns of the matrices L and U which form an LU decomposition
of (a row and column permutation of) By. This invertible representation allows
By ! to be expressed algebraically as By = [1.—, Ex, where

1

N
1

E, = Nk — TOW Pk (2)

N

1

has its non-unit entries in column p;. The value 7y is referred to as the pivot
and operations with £, U or its transpose may be performed using just 7, the
eta vector 7, and knowledge of the index pi. Such an operation is conveniently
referred to as ‘applying the eta’. Within an implementation, the nonzeros in the
vector 7, are stored as value-index pairs and the data structure {pg, 9, M } o
is known as an eta file.

The product form update leaves the factored form of B ! unaltered and
represents E;' as a product of elementary matrices of the form (2). The
representation of each UPDATE operation is obtained directly from the pivotal
column and is given by 1y, = @q—apeep and ny = —1/d,,. In solvers based on the
product form, the representation of the UPDATE operations can be appended to
the eta file following INVERT, resulting in a single homogeneous data structure.
However, in this paper and in EMSOL, the particular properties of the INVERT

and UPDATE etas and the nature of the operations with them are exploited, so
FTRAN is considered as the pair of operations .IFTRAN followed by U-FTRAN,
and BTRAN as U-BTRAN followed by I-BTRAN.

When the product form update is used, the I-FTRAN and U-FTRAN
operations transform a, into the pivotal column a, by first scattering a, from
its packed form in the constraint matrix into a zeroed workspace vector b and
then passing forwards though the INVERT and UPDATE eta files in turn, both
according to the algorithm represented as pseudo-code in Figure 2(a). Note that
b is referred to as the RHS throughout this transformation process, with the
cases b = a4 and b = a, distinguished by being referred to as the initial RHS
and solution respectively.

do k=1,r dok=nr1,-1
if (bp, #0) then by, = (bp, + b7) /i
by = bp, /M end do
b:=b— by
end if
end do
(a) FTRAN (b) BTRAN

Figure 2: Standard FTRAN and BTRAN

In general when solving LP problems, the initial RHS is sparse and so by,
may be expected to be zero. In this case the multiple by, /nx of n;, which is added
to b is zero. Eventually, some b,, is usually nonzero, resulting in ‘fill-in’ in the
b. However, since testing b,, for zero is cheap relative to the floating point
operations which would be otherwise performed, this is usually incorporated
into an implementation of the revised simplex method.

The U-BTRAN and I-BTRAN operations form the ‘unit’ 7 vector by first
setting to unity the appropriate component of a zeroed workspace vector b and
then transforming it into 7 by passing backwards through the UPDATE and
INVERT eta files, both according to the algorithm represented as pseudo-code
in Figure 2(b). Unlike the FTRAN algorithm, there is no simple way to exploit
sparsity in the RHS since testing for individual zeros to avoid the corresponding
multiplication is slower than doing the multiplication itself.

3 What is hyper-sparsity?

Each iteration of the revised simplex method performs FTRAN to obtain the
pivotal column a, = B~ 'a, as the solution of one linear system, BTRAN to
obtain the unit 7 vector 77 = egB ~1 as the solution of a second linear system,

and PRICE to form the pivotal row d;r = TN as the result of a matrix-vector
product. For many LP problems, even those for which the constraint matrix
is sparse, the results of these operations are usually dense and this is assumed
in many implementations of the revised simplex method. In this paper, an
LP problem is said to exhibit hyper-sparsity if, for at least one of these three
operations, a clear majority of the results is sparse. A vector is considered to

be sparse if no more than 10% of its entries are nonzero and a clear majority is
taken to be at least 60%.

The extent to which hyper-sparsity exists in LP problems was investigated
for a subset of the standard Netlib test set [8] and larger problems from the
Kennington test set [3] and the authors’ personal collection. Those problems
from the Netlib set whose solution requires less than one second of CPU were
excluded, as were FIT2D and the OSA problems from the Kennington set. For
the latter problems, the number of columns is particularly large relative to
the number of rows so the the solution techniques developed in this paper are
inappropriate. Note that a simple standard scaling algorithm is applied to each
of the problems for reasons of numerical stability.

When started from a basis of logical variables, the initial basis matrix is the
identity so all FTRAN, BTRAN and PRICE operations for early iterations yield
sparse results. As a result, techniques for exploiting hyper-sparsity would be
very effective at speeding up these early iterations. However it is still usually
faster to generate an initial ‘crash’ basis, so in the computational comparisons
in this paper, a crash has been used in all cases. The EMSOL crash basis is
obtained using a stabilisation of the algorithm described by Maros [14].

The density of each pivotal column a, following FTRAN, unit 7 following
BTRAN and pivotal row {1; following PRICE was determined, and the total
number of each which was found to be sparse throughout the solution procedure
was obtained. The problems for which at least one of these three operations
has a clear majority of the sparse results are listed in Table 1 and referred to
as test set H. The remaining problems, those which exhibit no hyper-sparsity
in FTRAN, BTRAN or PRICE are listed in Table 2 and referred to as test set
H'. For each of the three operations, Tables 1 and 2 give the percentage of the
results which were sparse. Note that these tables also include results for the
composite BTRAN and PRICE required to update the reduced costs in phase I.
Omitting them would exaggerate the extent of hyper-sparsity in problems for
which the number such operations is significant. The final column of Table 1
summarises the extent to which the problem exhibits hyper-sparsity by giving
the initial letter of the operation(s) for which a clear majority of the results is
sparse.

The first thing to note from the results in Table 1 is that all of the problems
that exhibit hyper-sparsity do so for BTRAN and most do so for all three
operations. It is interesting to consider why this is the case and why there
are exceptions.

Recall that the result of FTRAN is the pivotal column and the result of
PRICE is the pivotal row. Since these are a column and row from the same
matrix (the standard simplex tableau B~!N) one might expect that a problem
would exhibit hyper-sparsity in both FTRAN and PRICE or in neither. Also,
since the unit 7r is just a single row of B~!, and the pivotal column is usually a
linear combination of several columns of B~!, it might be expected that the 7
vector would be less dense than a,. These arguments would lead us to expect
all problems to have property B, and that problems would be either FBP or B.
The reasons for the exception are now explained.

There are two problems, DCP1 and DCP2, of type FB, in which the pivotal
columns are typically sparse but the pivotal rows are not. These problems are
decentralised planning problems for which a typical standard simplex tableau is

Dimensions Sparse results (%) Hyper-sparse
Problem Rows Columns Nonzeros | FTRAN BTRAN PRICE operations
S80BAU3B 2262 9799 21002 97 78 76 FBP
CYCLE 1903 2857 20720 49 92 55 B
CZPROB 929 3523 10669 100 66 62 FBP
FIT2P 3000 13525 50284 15 100 100 BP
GREENBEA 2392 5405 30877 12 64 62 BP
GREENBEB 2392 5405 30877 13 62 62 BP
MAROS 846 1443 9614 31 74 69 BP
MAROS-R7 3136 9408 144848 14 84 15 B
SHIP12L 1151 5427 16170 100 94 94 FBP
STOCFOR2 2157 2031 8343 23 97 63 BP
STOCHFOR 16675 15695 64875 53 100 100 BP
WOODW 1098 8405 37474 52 81 79 BP
DCP1 4950 3007 93853 97 75 53 FB
DCP2 32388 21087 559390 100 65 54 FB
DETEQS 20678 56227 128968 95 100 100 FBP
DETEQ27 68672 186928 429472 94 100 100 FBP
CRE-A 3516 4067 14987 100 84 80 FBP
CRE-C 3068 3678 13244 100 82 81 FBP
KEN-07 2426 3602 8404 100 100 100 FBP
KEN-11 14694 21349 49058 100 99 97 FBP
KEN-13 28632 42659 97246 100 91 90 FBP
KEN-18 105127 154699 358171 100 90 90 FBP
PDS-02 2953 7535 16390 100 99 99 FBP
PDS-06 9881 28655 62524 100 97 97 FBP
PDS-10 16558 48763 106436 100 97 97 FBP
PDS-20 33874 105728 230200 100 94 94 FBP

Table 1: Problems exhibiting hyper-sparsity (set H): dimensions, percentage of
the results of FTRAN, BTRAN and PRICE which are sparse and summary of
those operations for which more than 60% of the results are sparse.

very sparse with a few dense rows. Thus the pivotal columns are usually sparse.
However, the pivot is usually chosen from one of the dense rows.

Conversely there are seven problems of the opposite type, BP, in which the
pivotal rows are typically sparse but the the pivotal columns are not. The most
remarkable of these is FIT2P: almost all pivotal columns are essentially full and
all pivotal rows are sparse. For this problem, most columns of the constraint
matrix have only one nonzero entry, with the remainder being very dense. Thus
B! is largely diagonal with a small number of essentially full columns. Most
variables chosen to enter the basis have a single nonzero entry in a row whose
pivot is in one of these dense columus, so the pivotal column is (a multiple of)
one of these dense columns of B~!. Each unit 7 is a row of B~! and its resulting
sparsity is inherited by the pivotal row since most columns of N in the PRICE
operation have only one nonzero entry.

The partition of the test problems into sets H and H’ is not clear-cut: some
of the problems in set H' will still benefit from exploiting hyper-sparsity in the
minority of FTRAN, BTRAN and PRICE operations for which the result is sparse.

Dimensions Sparse results (%)
Problem Rows Columns Nonzeros | FTRAN BTRAN PRICE
25FV47 821 1571 10400 3 15 16
BNL2 2324 3489 13999 34 45 42
D2QO6C 2171 5167 32417 16 29 28
D6CUBE 415 6184 37704 2 12 13
DEGEN3 1503 1818 24646 14 58 56
DFLO001 6071 12230 35632 1 34 36
GROW22 440 946 8252 1 13 11
MODSZK1 687 1620 3168 14 34 33
NESM 662 2923 13288 26 23 17
PEROLD 625 1376 6018 6 27 28
PILOT 1441 3652 43167 7 13 10
PILOT.JA 940 1988 14698 4 20 21
PILOT.WE 722 2789 9126 13 34 32
PILOT4 410 1000 5141 4 25 23
PILOTS&7 2030 4883 73152 6 18 15
PILOTNOV 975 2172 13057 11 32 29
QAPS8 912 1632 7296 0 9 11
SCSDS8 397 2750 8584 8 55 50
TRUSS 1000 8806 27836 5 45 53
WOODI1P 244 2594 70215 0 51 53
WORLD 35664 31728 198250 38 53 51
CRE-B 9648 72447 256095 53 55 55
CRE-D 8926 69980 242646 48 53 53

Table 2: Problems not exhibiting hyper-sparsity (set H’'): dimensions and
percentage of the results of FTRAN, BTRAN and PRICE which are sparse.

In addition, for some of the problems in set H’, it is identified in Section 4 that
there is scope for exploiting hyper-sparsity during INVERT and U-BTRAN and
that, in the case of INVERT, this scope does not exist for most problems in set
H.

3.1 Hyper-sparsity and the optimal block triangular form
of the basis matrix

An important property of the matrix By when exploiting sparsity in INVERT,
and when discussing hyper-sparsity, is the nature of the optimal block triangular
ordering of the matrix which may be obtained by row and column permutations.
This reordered matrix is optimal in that each diagonal block is irreducible.
Such an ordering may be obtained by using the algorithm of Duff [6] to
determine a row permutation P such that PBy has a transversal, and then using
Tarjan’s algorithm [15], to identify a permutation @ such that QT PByQ is in
optimal block triangular form. Each diagonal block corresponds to a strong
component in the representation of PBy as a graph. This block triangular
form, or an approximation to it, is determined either explicitly or implicitly
by practical INVERT procedures. Elimination operations, and hence fill-in, are
then restricted to the factors of any non-unit diagonal blocks. For certain LP

problems, model characteristics mean that there is usually a strong component
of dimension comparable to that of By. Other problems have diagonal blocks of
very low dimension. In particular, the basis matrices for network LP problems
can be re-ordered into strictly triangular form and so a representation for B !
may be obtained structurally.

Note that if the optimal block triangular form has a large strong component
and if, as is likely, the initial RHS for FTRAN or BTRAN has a nonzero in a row
corresponding to that component, then this block will fill in entirely (if no zeros
are created as a result of cancellation), in which case the dimension of this block
is a lower bound on the number of nonzeros in the solution. A consequence of
this observation is that if the result of FTRAN or BTRAN is typically sparse
and cancellation is not occurring, then the diagonal blocks in the optimal block
triangular ordering of the matrix must be small.

4 Exploiting hyper-sparsity

Each computational component of the revised simplex method either forms,
or operates with, the result of FTRAN, BTRAN or PRICE. Each of these
components is considered below and it is shown that typical computational
techniques are inefficient in the presence of hyper-sparsity. In each case,
equivalent computational techniques are developed which exploit hyper-sparsity.

4.1 Relative cost of computational components

Before considering the consequences of hyper-sparsity and techniques by which it
can be exploited for each of the computational components of the revised simplex
method, it is interesting to consider the extent to which these components
contribute to the total solution time. Table 3 gives, for test set H, the
percentage of CPU time which can be attributed to each of the major
computational components in the revised simplex method. For the problems
in test set H’, only U-BTRAN, PRICE and INVERT benefit noticeably from the
techniques developed below. The percentages of the solution time for these
computational components are given as part of Table 5. Note that the decision
to perform INVERT is made optimally by EMSOL according to a pseudo-
clock. For some problems PRICE and CHUZC are dominant. However, the
even spread of cost across computational components for some problems and
variance in the dominant cost between other problems suggests that to obtain
general improvement in computational performance requires hyper-sparsity to
be exploited in all computational components of the revised simplex method.

4.2 Hyper-sparse FTRAN

For problems with sparse pivotal columns, since there is unlikely to be more
than a few hundred UPDATE etas, the dominant computational cost of FTRAN
is LFTRAN. This is seen in Table 3 and is particularly marked for the later,
larger problems.

When the pivotal column a, computed by FTRAN is sparse, unless there is
an extraordinary amount of cancellation, it is expected that only a very small
proportion of the INVERT (and UPDATE) eta vectors, needs to be applied.

0T

Problem Total | CHUZC I-FTRAN U-FTRAN CHUZR I-BTRAN U-BTRAN PRICE INVERT
80BAU3B 16.51 21.78 5.79 0.61 3.40 7.52 0.72 52.09 2.95
CYCLE 2.48 2.95 20.98 1.97 4.26 22.30 2.95 23.28 15.74
CZPROB 1.04 10.68 4.85 0.00 291 18.45 0.97 52.43 1.94
FIT2P 57.45 6.99 4.99 3.75 14.59 13.39 10.73 32.61 8.40
GREENBEA 39.57 5.77 7.75 3.71 5.83 16.93 4.35 32.29 19.44
GREENBEB 32.10 5.47 7.80 3.82 5.74 17.02 4.40 31.80 19.97
MAROS 1.54 5.34 6.87 3.82 6.87 15.27 3.82 35.11 13.74
MAROS-R7 107.70 1.57 14.84 9.04 3.46 17.79 5.12 25.89 20.77
SHIP12L 1.62 13.58 3.70 0.00 2.47 9.88 0.62 61.73 1.23
STOCFOR2 2.11 3.19 7.98 4.26 14.36 18.62 6.91 14.36 19.68
STOCHFOR 113.56 4.75 8.36 1.96 11.81 15.60 8.05 20.01 24.83
WOODW 5.90 10.55 3.12 0.59 2.54 8.40 0.98 66.60 3.71
DCP1 29.37 3.35 4.08 4.64 5.05 12.67 3.81 54.06 9.09
DCP2 1971.60 4.79 3.62 3.08 2.15 14.21 3.00 58.95 9.63
DETEQS 198.27 12.02 8.20 0.30 3.43 16.08 2.07 53.52 2.62
DETEQ27 2074.33 9.99 6.79 0.24 3.27 16.95 2.32 597.25 2.08
CRE-A 5.81 11.07 5.71 0.71 6.07 19.64 1.43 46.61 4.11
CRE-C 6.22 10.90 10.73 0.85 6.64 18.40 1.53 41.57 3.75
KEN-07 1.39 6.57 12.41 0.00 5.84 30.66 1.46 32.12 2.92
KEN-11 89.00 8.29 15.32 0.18 3.50 22.81 0.86 46.05 1.36
KEN-13 580.56 9.30 11.56 0.19 2.87 24.44 0.97 48.31 1.28
KEN-18 13311.43 8.68 11.04 0.07 2.45 23.04 0.53 53.08 0.71
PDS-02 3.48 14.24 8.90 0.30 4.15 18.40 1.19 44.81 2.08
PDS-06 136.37 11.53 9.76 0.20 2.77 13.93 1.69 56.42 2.03
PDS-10 513.23 15.38 8.04 0.17 2.77 14.51 1.54 54.26 2.06
PDS-20 6875.61 13.86 5.99 0.21 2.24 12.07 2.51 58.91 3.56
Average 9.25 7.35 1.49 4.42 14.71 2.49 49.93 6.68

Table 3: Total solution time (CPU seconds) and percentage of solution time for computational components of the revised simplex method
for test set H.

Further, since the number of floating point operations required to perform these
few operations can be expected to be of the same order as the number of nonzeros
in a4, the cost of FTRAN when forming a, = B 1aq will be dominated by the
test for zero when using the standard algorithm illustrated in Figure 2(a). The
aim of this subsection is to develop a computational technique which identifies
the etas which (may) have to be applied without passing through the whole
INVERT eta file and testing each value of b,, for zero.

The algorithm is illustrated as pseudo-code in Figure 3. Corresponding to
the indices of the nonzeros in the initial RHS, there is a set K of indices k of etas
for which by, is nonzero. Also, since there is at most one L-eta and at most one
U-eta with a pivot in a given row, |K| is at most twice the number of nonzeros
in the initial RHS.

If £ is empty then no etas need to be applied so I-FTRAN is complete.
Otherwise, the least index kg € K identifies the skip through the eta file to the
first eta which needs to be applied. Once this has been done, there is a set K’
corresponding to the updated RHS. The set K’ differs from the initial set K in
that index ko is removed and, as a result of any fill-in, new indices (k > ko)
may have been introduced. These observations are formalised and generalised
as the pseudo-code illustrated in Figure 3, where & is used to denote the set of
indices of the nonzeros in n;,. The lists PM and P® record, for each row, the
index of the first and second eta which have a pivot in the particular row, with
a zero index being recorded if there are fewer than two such etas.

K = {k: by, # 0}
repeat

ko = mingex
bpko = bpko /Mo
for i € &, do
if (b; #0) then
bi 1= bi + by, [Nk, i
else
bi == by, [My, i
it (P > k) K:=KuPpY
if (P® > k) K:=KuP®?
R:=RUi
end if
end do
until K =0

Figure 3: Hyper-sparse FTRAN for INVERT etas

Since the set K must be searched to determine the next eta to be applied,
there is some scope for variation in the way that this is achieved and, if the
number of entries in K becomes large, there comes a point at which the cost
of the search exceeds the cost of the tests for zero which it seeks to avoid. In
EMSOL, K is maintained as an unordered list and the average skip through the
eta file which has been achieved during the current FTRAN is compared with
a multiple of || to determine the point at which it is preferable to complete
FTRAN using the standard algorithm.

11

Although the algorithm in Figure 3 does not require the list R of indices of
entries in the RHS which may be nonzero, the operations required to maintain it
are included. It is shown below that knowledge of this set can be advantageous
during CHUZR.

4.3 Hyper-sparse CHUZR

For problems when the pivotal column is typically sparse, the cost of performing
a test for zero for each of the m entries will dominate the small total number
of floating point operations which are performed for the few nonzeros in the
pivotal column. If a list of indices of entries in the pivotal column which may
be nonzero is known, then this overhead is avoided. The nonzero entries in the
pivotal column are also required both to update the values of the basic variables
following CHUZR and, as described below, to update the product form UPDATE
eta file. If the nonzero entries in the workspace vector used to compute the
pivotal column are zeroed after being packed onto the end of the UPDATE eta
file, this yields a contiguous list of real values to update the values of the basic
variables and makes the UPDATE operation near-trivial. A further consequence
is that, so long as pivotal columns remain sparse, the only complete pass through
the workspace vector used to compute the pivotal column is that required to
zero it before the first simplex iteration.

4.4 Hyper-sparse BTRAN

When performing BTRAN using the algorithm illustrated in Figure 2(b), most
of the work when applying an eta is the evaluation of the inner product ank,
the result of which will frequently be (structurally) zero when the RHS is
sparse. Then, only if b, is nonzero, is there any non-trivial floating point
operation. Unfortunately, there is no simple way of determining whether there
is a non-empty intersection of the sparsity pattern of b and m, without a
computational overhead which is comparable to evaluating the inner product
itself. However, worthwhile computational savings follow from the observation
that, when applying 1, during BTRAN, fill-in can only occur in component pj
in the RHS.

4.4.1 Maintaining a list of the indices of nonzeros in the RHS

During BTRAN, it is simple and cheap to maintain a list of the indices of the
nonzeros in the RHS: if b, is zero and ank is nonzero then the index py
is added to the end of a list. If by, is nonzero and b,, + b’ n, is zero then
cancellation occurs, in which case it is desirable, although not essential, for the
index py to be removed from the list. For problems when 7 is frequently sparse,
knowing the indices of all values in the RHS which are (or may be) nonzero
permits a valuable saving during the PRICE operation, as identified below.

4.4.2 Reducing trivial inner products and operations with zero

When using the product form update, it is valuable to consider U-BTRAN
separately from I-BTRAN. For the former, it is possible to eliminate the
structurally trivial inner products and significantly reduce the number of

12

operations with zero. For the latter, it is possible to eliminate a significant
number of trivial inner products.

UPDATE etas

Let K denote the number of UPDATE operations which have been performed
since INVERT and let P denote the set of indices of those rows which have been
pivotal. Note that the inequality |P| < K is strict if a particular row has been
pivotal more than once. Since fill-in during BTRAN can only occur in row pg,
it follows that the nonzeros in 7’ = egE; ! are restricted to the components
with indices in the set P. Thus, when applying n;,, only the nonzeros with
indices in the set P contribute to ank. Since |P| is very much smaller than
the dimension of B for large problems, it follows that unless this observation
is exploited, most of the floating point operations using the UPDATE etas are
still trivial. A significant degree of efficiency is thus achieved by maintaining a
rectangular array Ep of dimension [P| x K which holds the values of the entries
corresponding to set P in the UPDATE etas, allowing 7 to be formed as a
sequence of K short, dense, inner products.

When using this technique, even if Ep is full, half the floating point operations
are trivial since the initial RHS has only one nonzero, and at most one nonzero
is created as a result of applying an eta. If the update etas are sparse then Ep
will be largely zero and so will most of the inner products bTT/k. This may be
exploited by searching, for each nonzero in the RHS, for the eta which is the
first (from the end of the file) with a nonzero in that row. The earliest such eta
is then identified as the first which may result in a nonzero value of ank. The
overhead of maintaining the data structure and the extra work of performing
this search is usually much less than the computation which is avoided. Indeed,
the initial search frequently identifies that none of the update etas need be
applied.

If the number of updates is very large then it may be prohibitively expensive
to store Ep in a rectangular array. However, at the expense of the ability to
search it row-wise, it may be represented by ensuring that in the UPDATE eta
file the indices and values of nonzeros in n,, for rows in set P are stored before
any remaining indices and values.

Note that since 7 is sparse for any LP problem, the technique for exploiting
this is of benefit whether or not the update etas are sparse. However it is seen
in Table 5 that in the non-sparse case any saving is relatively small compared
to the overall cost of performing a simplex iteration.

INVERT etas

By being able to identify the nonzeros in UPDATE etas for a given row, it
is shown above that there is a significant reduction in the cost of U-BTRAN.
Indeed, if there are no nonzeros in row p of the UPDATE etas, it follows
immediately that @# = e,. This technique may also be applied to the INVERT
etas if the list QM) of the indices of the last INVERT eta with a nonzero in
each row is known, with an index of zero used to indicate that there is no
such eta. The greatest index in Q") corresponding to the nonzeros in 7 then
indicates the first INVERT eta which must be applied. As with the UPDATE
etas, the technique may indicate that a significant number of the INVERT etas

13

need not be applied and, if the index is zero, it follows immediately that = = 7.
More generally, if the list Q) of the index of the k" last INVERT eta with a
nonzero in each row is recorded for k from 1 to some small limit then several
significant steps backwards through the INVERT eta file may be made. However,
to implement this technique requires an integer array of dimension equal to that
of By for each list so, in EMSOL, only Q) and Q) are recorded.

4.4.3 Row-wise INVERT eta file

The limitations and/or high storage requirements associated with exploiting
hyper-sparsity during BTRAN with the conventional column-wise (INVERT)
eta file motivate the formation, after INVERT of an equivalent representation
stored row-wise. This may be formed by passing twice through the complete
column-wise INVERT eta file and permits - BTRAN to be performed using the
algorithm given in Figure 3 for FTRAN. For problems in which 7 is typically
sparse, although the computational overhead in forming the row-wise eta file is
significant, it is far outweighed by the savings achieved when applying it.

4.5 Hyper-sparse PRICE

As is clear from Table 3, for the problems in test set H, PRICE accounts for
about half of the CPU time required to solve the problem in general, and is
significantly more than that for some problems. The matrix-vector product
7T N is commonly formed as a sequence of inner products between 7 and the
appropriate columns of the constraint matrix. In the case when 7 is full, there
will be no trivial floating-point operations so this simple technique is optimal.
However this is far from being true if 7 is sparse, in which case, by forming 77 N
as a linear combination of those rows of N which correspond to nonzero entries
in 7, all trivial floating point operations are avoided. Although the cost of
maintaining a row-wise representation of IV is non-trivial, this is far outweighed
by the efficiency with which 77 N may then be formed.

For problems when 7 is not sparse, performing PRICE with a row-wise
representation of N is advantageous. Even if 7 is typically half full, the overhead
of maintaining the row-wise representation of IV is sufficiently small that saving
half the work of PRICE is worthwhile.

For problems when 7 is particularly sparse, the cost of testing each entry
for zero dominates the small total number of floating point operations which
are performed for the few nonzeros in 7r. Thus, as with the pivotal column in
the case of CHUZR, when the indices of the entries in @ which may be nonzero
are known (as a result of this list being maintained during BTRAN) the cost of
searching for the nonzeros in 7 is avoided. As nonzero entries are encountered,
the corresponding workspace entry is zeroed, leaving the workspace zeroed in
preparation for the next BTRAN. Thus, as with the workspace vector used
to compute the pivotal column, so long as 7 vectors remain sparse, the only
complete pass through this workspace array when solving an LP problem is that
required to zero it before the first simplex iteration.

Since the the row-wise PRICE driven by the indices of nonzeros in 7r described
above avoids any trivial operations, this technique is optimal. However, it is
advantageous if the list of indices of nonzeros in the pivotal row is maintained
during PRICE, so long as the vector remains sparse. Knowledge of this list

14

eliminates the overhead of searching for the nonzeros in the pivotal row, which
would otherwise be the dominant cost when updating the reduced costs and
Devex weights. As with the workspace vectors used to compute 7w and the
pivotal column, so long as pivotal rows remain sparse, the list of indices of
nonzeros enables a zeroed workspace vector to be maintained with just a single
full pass required to zero it before the first simplex iteration.

4.6 Hyper-sparse CHUZC

Before discussing methods for CHUZC which exploit hyper-sparsity, it should
be observed that, since the vector ¢y of basic costs may be full, the vector of
reduced costs given by

ST _ T Tp-1
cy=cy—c;B "N,

may also be full. Further, for most of the solution time, a significant proportion
of the reduced costs are negative. Thus, even for LP problems exhibiting hyper-
sparsity, the attractive nonbasic variables do not form a small set whose size
could then be exploited. However, if the pivotal row is sparse, the number of
reduced costs and edge weights which change each iteration is small and it is
this which may be exploited to improve the efficiency of CHUZC.

The aim of the hyper-sparse CHUZC algorithm described below is to maintain
a list of the most attractive candidates to enter the basis. This is achieved by
first performing an initial complete CHUZC to determine a list Cy of the best s
candidates, the best of which is chosen to enter the basis. For the subsequent
pivotal row, a list Dy is formed of the best s candidates not in Cy whose reduced
cost has changed. The best s candidates from both of these lists is used to
determine a new list of candidates C7, the best of which is chosen to enter the
basis in the next iteration. Unless this scheme is reset periodically by performing
a complete CHUZC, the simplex method could terminate prematurely. For
example, candidates which are initially attractive, but not sufficiently so to
be included in Cj, and whose reduced cost does not change subsequently, could
never be chosen to enter the basis.

Even with this reset mechanism, it is possible that all the candidates in
some list C may be inferior to some which were not sufficiently attractive to
be included in lists C; or D; for j < k. Thus the variable to enter the basis
chosen from those in Cf is not as attractive as that which would be chosen by
a complete CHUZC. This deviation from equivalence with the revised simplex
method when using complete CHUZC is theoretically inelegant and, in practice,
leads to a significant increase in the number of iterations required to solve some
problems.

The following modification to this algorithm yields a hyper-sparse CHUZC
which determines as good a candidate as a complete CHUZC. This modification
is based on maintaining a lower bound on the reduced cost (weighted by Devex)
of the best candidate not in C%. Whenever a list Cy or Dy is formed, the
weighted reduced cost of its least attractive candidate provides a lower bound
on the corresponding value for the most attractive candidate rejected in forming
that list. The least such lower bound over all lists C; and D; (j < k) is thus a
lower bound on the weighted reduced cost of the best candidate not in Cj. If
this value exceeds the weighted reduced cost of the best candidate in C, then
it is possible that a complete CHUZC would determine a better candidate. This

15

event is used to trigger a reset of Cy ensuring that the hyper-sparse CHUZC
finds as good a candidate as a complete CHUZC.

4.7 Hyper-sparse (preordered) INVERT

The default INVERT in EMSOL is based on the procedure described by
Tomlin [16]. This procedure identifies, and uses as pivots for as long as
possible, rows and columns in the active submatrix which have only a single
nonzero. Following this triangularisation phase, any residual active submatrix
is then factorised using Gaussian elimination with the order of the columns
fixed according to a merit count. Since the pivot in each stage of Gaussian
elimination is selected from a predetermined pivotal column, only this column
of the active submatrix is required. Thus, rather than apply elimination
operations to maintain the up-to-date active submatrix, the up-to-date pivotal
column is formed each iteration. When compared with a Markowitz-based
procedure which maintains and selects the pivot from the whole up-to-date
active submatrix, the Tomlin procedure has a greatly simplified data structure
management and pivot search strategy. Thus, for problems where the diagonal
blocks in the optimal block triangular form are small, the Tomlin INVERT is
significantly faster and yields an INVERT eta file which is similar in size to that
obtained by a Markowitz INVERT.

The up-to-date pivotal column which is computed in each stage of Gaussian
elimination is formed by passing forwards through the file of L-etas computed
up to that stage. Even for problems where the pivotal column of the standard
simplex tableau is rarely sparse, the pivotal column of the active submatrix
during Gaussian elimination is very likely to be sparse. Thus this partial FTRAN
operation is particularly amenable to the exploitation of hyper-sparsity using the
algorithm illustrated in Figure 3. Since problems which exhibit hyper-sparsity
do not have a large residual diagonal block, there is usually less scope for speed-
up in INVERT than for problems which do not exhibit hyper-sparsity. Note that
the data structures required to exploit hyper-sparsity during FTRAN itself, are
generated at almost no cost during the course of INVERT.

4.8 Hyper-sparse (product-form) UPDATE

The product-form UPDATE requires the nonzeros in the pivotal column to be
stored in packed form with the pivot stored as its reciprocal (so that the divisions
in FTRAN and BTRAN are effected by multiplication). As identified above, the
former is readily achieved during CHUZR and the latter is a scalar operation
performed afterwards.

4.9 Exploiting hyper-sparsity in other update procedures

The product form update is commonly criticised for its lack of numerical
stability and inefficiency with regard to sparsity. For this reason, some
implementations of the revised simplex method are based on the Forrest-
Tomlin [7] or Bartels-Golub [1] update procedures which modify the
representation of By 1 with respect to subsequent UPDATESs in order to gain
numerical stability and efficiency with regard to sparsity. If such a procedure
were used, the data structures which enable hyper-sparsity to be exploited

16

during BTRAN and FTRAN would have to be modified after each UPDATE
to correspond to the changes in the representation of B ! The overhead
of doing this may severely limit the value of exploiting hyper-sparsity. The
greater efficiency of the Forrest-Tomlin and Bartels-Golub update procedures
with respect to sparsity is not seen when solving problems which exhibit hyper-
sparsity in the product form UPDATE etas. If greater numerical stability is
required than is offered by the product form update, the Schur complement
update [2] may be used. Like the product form update, the representation
of By 1'is unaltered so the data structures for exploiting hyper-sparsity when
applying the INVERT etas remain static. Techniques analogous to those
described above for the product form update may be used to exploit hyper-
sparsity during U-BTRAN when using a Schur complement update.

4.10 Controlling the use of techniques to exploit hyper-
sparsity

The techniques described above are inefficient in the absence of hyper-sparsity
and so should not be applied universally. For problems which do not
exhibit hyper-sparsity at all, or for problems where a particular computational
component does not exhibit hyper-sparsity, this is easily recognised by
monitoring a running average of the density of the result over a number of
iterations and switching off the technique for all subsequent iterations if hyper-
sparsity is seen to be absent. For a computational component which typically
exhibits hyper-sparsity, it is important to identify the situation where the result
for a particular iteration is not going to be sparse, and switch to the standard
algorithm which will then be more efficient. This is achieved by monitoring
the density of the result during the operation and switching on some tolerance.
Practical experience has shown that performance is very insensitive to changes
in these tolerances around the optimal value.

5 Results

The efficacy of the techniques described in the previous section may be judged
from the results presented in this section. These were obtained on a Sun
UltraSPARC 10 with 256Mb of memory. The design of EMSOL allows the
user to set the value of control variables to indicate that the use of particular
computational techniques is either prohibited or forced. However, the default
is for the solver to determine dynamically when use of a particular technique is
appropriate. Although tuning of such control parameters is justified when many
problems of a particular nature are to be solved, the results in this paper were
obtained with EMSOL running in its default state, unless stated otherwise.
Note that the computational techniques which exploit hyper-sparsity result
in small differences in numerical rounding and changes in the order of (otherwise
arbitrary) tie-breaking in CHUZC and CHUZR. Whilst these minor differences
are of no theoretical consequence, they do result in the simplex method taking a
different path and number of iterations before reaching an optimal vertex. For
a given problem, since exploiting hyper-sparsity generally changes the balance
between the cost of INVERT and the work associated with operations dependent

17

on the number of UPDATE operations performed, EMSOL’s dynamic reinversion
strategy will result in a change in the typical frequency of INVERT.

5.1 Speedup of EMSOL when exploiting hyper-sparsity

For test set H, Table 4 gives the speedup in the CPU time attributable
to exploiting hyper-sparsity and Table 5 indicates the speedup in U-BTRAN,
INVERT, PRICE as well as solution time for the problems in test set H’. Note
that differences in performance due to the number of iterations required to solve
a problem and the reinversion frequency have been filtered out in the results for
individual computational components but not in the overall speedup of solution
time.

For test set H, exploiting hyper-sparsity has less effect on INVERT than on
operations associated with UPDATE so the dynamic reinversion strategy leads
to a decrease in the number of INVERT operations. As a consequence of filtering
out this effect, the high speedup of U-BTRAN in Table 4 has marginally less effect
on the overall performance than it might suggest. Despite variances caused by
differences in the number of iterations required to solve problems, the speed-up
in solution time for all of the problems is greater than unity and dramatically
so for some of the larger problems.

For many problems in test set H’, the scope for performance improvement
when exploiting hyper-sparsity in INVERT is significantly greater than for
U-BTRAN, despite the latter’s high speed-up. Thus the dynamic reinversion
strategy leads to an increase in the number of INVERT operations. As a
consequence of filtering out this effect, the speedup of U-BTRAN in Table 5 has
marginally more effect on the overall performance than it might suggest. For the
other computational components, there is an average speedup of between 0.94
and 1.12, indicating that the hyper-sparse techniques are generally not being
used. Despite the variances caused by differences in the number of iterations
required to solve problems, the overall solution time shows an average speedup
which is significantly greater than unity.

Despite the performance improvements for problems in test set H
demonstrated in Table 4, it is interesting to consider the scope for further
performance improvement. Table 6 gives the percentage of CPU time
attributable to the major computational components when exploiting hyper-
sparsity. The column headed ‘Hyper-sparsity’ is the percentage of the solution
time which is attributable to creating and maintaining the data structures
required to exploit hyper-sparsity in the computational components. Although
PRICE and CHUZC are still the major cost for some problems, they are by no
means dominant. Some form of partial/multiple pricing might reduce the time
per iteration attributable to PRICE and CHUZC but this may well be offset by
the likely increase in the number of iterations required to solve these problems.
The overhead associated with the current techniques suggests that significant
investment in more sophisticated techniques will result in little, if any, return.

5.2 Comparison with OSL simplex and barrier

Having established the efficacy of the techniques for exploiting hyper-sparsity by
comparing the relative performance improvement of EMSOL, it is interesting to
compare the performance of EMSOL with the revised simplex solver and barrier

18

61

Problem Total | CHUZC I-FTRAN U-FTRAN CHUZR I-BTRAN U-BTRAN PRICE INVERT
80BAU3B 1.69 1.42 291 0.49 1.27 2.55 291 3.53 1.31
CYCLE 2.34 0.92 2.85 0.62 0.84 5.38 7.49 4.21 2.66
CZPROB 1.96 1.63 5.92 — 1.78 4.50 2.17 3.55 1.29
FIT2P 2.16 19.91 1.08 1.43 0.97 10.74 125.97 15.50 0.52
GREENBEA | 2.00 1.12 1.10 1.02 1.13 3.12 21.18 2.33 3.33
GREENBEB 2.24 1.14 1.12 1.06 1.14 3.17 20.95 2.37 3.48
MAROS 2.23 1.28 0.94 1.17 1.10 2.92 4.69 3.74 1.46
MAROS-R7 1.04 1.13 1.05 0.92 1.05 0.58 36.57 2.40 0.71
SHIP12L 5.40 7.01 5.74 — 3.83 7.65 2.07 15.94 0.88
STOCFOR2 1.79 1.67 1.04 1.30 1.02 3.65 23.31 2.82 1.60
STOCHFOR 3.19 28.73 2.24 1.92 1.00 14.06 114.50 14.68 2.71
WOODW 2.72 1.48 1.16 0.98 1.20 3.97 8.20 5.02 1.33
DCP1 3.52 1.44 1.82 1.84 1.99 3.94 8.33 7.39 2.39
DCP2 3.93 2.09 2.25 0.97 3.85 4.50 9.09 5.15 9.75
DETEQS 12.50 27.81 8.87 1.82 3.67 29.67 27.55 59.17 1.00
DETEQ27 10.71 18.96 9.06 1.03 2.69 29.60 63.81 68.26 0.93
CRE-A 1.96 2.12 2.31 0.57 2.09 5.01 4.98 4.40 1.10
CRE-C 2.29 1.83 4.96 0.56 2.30 4.08 4.34 4.04 0.90
KEN-07 5.56 9.82 18.55 — 8.73 22.92 5.28 24.01 1.80
KEN-11 14.40 18.20 85.03 1.51 13.77 18.24 6.81 40.62 1.02
KEN-13 9.19 7.12 61.10 1.59 14.64 10.81 8.63 11.28 1.02
KEN-18 8.91 4.54 84.14 0.98 26.43 9.36 10.55 12.15 1.01
PDS-02 5.44 12.17 12.68 1.16 4.44 15.72 4.62 13.67 0.97
PDS-06 14.70 14.47 24.76 2.22 4.96 23.24 39.53 32.08 1.09
PDS-10 12.74 19.03 18.04 1.64 4.64 26.28 45.98 29.75 1.17
PDS-20 11.34 11.66 14.88 1.19 2.81 17.45 101.93 19.50 2.07
Average 5.61 8.41 14.45 1.08 4.36 10.89 27.36 15.67 1.83

Table 4: Speed-up in total solution time and computational components of the revised simplex method for test set H when exploiting
hyper-sparsity. Note that — indicates that the time required for U-FTRAN increased from a value less than the resolution of the timing
mechanism.

0¢

Percentage of solution CPU time Speedup
Problem U-BTRAN PRICE INVERT | U-BTRAN PRICE INVERT | Total
25FV47 4.22 22.36 24.89 7.87 1.42 1.64 | 1.07
BNL2 7.91 27.30 18.11 16.54 1.97 2.30 | 1.28
D2Q06C 4.99 27.67 26.64 34.32 1.62 2.74 | 1.39
D6CUBE 1.21 63.91 8.28 6.15 1.68 1.24 | 1.16
DEGEN3 5.54 18.43 21.45 13.36 2.16 1.83 | 1.72
DFL001 12.27 13.65 36.61 105.38 1.40 5.72 | 1.56
GROW22 3.74 12.15 31.78 6.21 0.99 1.27 | 1.24
MODSZK1 4.46 20.54 25.89 + 1.39 2.14 | 1.12
NESM 2.20 50.34 9.29 3.20 1.86 1.20 | 1.17
PEROLD 4.51 17.21 27.46 10.15 1.40 1.55 | 0.98
PILOT 4.98 15.52 28.19 14.28 1.22 1.21 1.05
PILOT.JA 4.62 16.27 30.31 12.93 1.20 1.43 | 0.96
PILOT.WE 4.05 26.08 26.58 11.86 1.48 1.86 | 1.05
PILOT4 4.00 18.00 24.00 4.25 1.58 1.17 | 1.06
PILOTS87 4.33 14.35 28.26 18.42 1.19 1.09 | 1.07
PILOTNOV 4.45 22.26 26.71 6.79 1.53 1.36 | 1.04
QAPS8 5.14 9.74 35.07 19.82 1.26 1.66 | 1.18
SCSD8 3.08 50.00 11.54 2.95 2.43 2.23 | 1.36
TRUSS 3.73 49.15 16.24 19.88 2.76 6.17 | 2.29
WOOD1P 1.73 61.27 7.51 5.18 1.48 1.20 | 1.19
WORLD 10.23 25.46 23.96 74.39 3.01 7.95 | 2.57
CRE-B 1.70 72.04 3.89 41.16 2.32 3.33 | 1.68
CRE-D 1.77 72.06 4.17 43.33 2.79 4.61 | 2.21
Average 4.37 33.98 20.72 20.84 1.71 2.41 1.34

Table 5: Percentage of solution time attributable to U-BTRAN, PRICE and INVERT when not exploiting hyper-sparsity, speedup for these
components and total solution time when exploiting hyper-sparsity for test set H’. Note that for MODSZK1, the improvement in the
time for U-BTRAN was to a value less than the resolution of the timing mechanism.

1¢

Problem CHUZC I-FTRAN U-FTRAN CHUZR I-BTRAN U-BTRAN PRICE INVERT | Hyper-sparsity
80BAU3B 31.36 4.07 3.48 5.46 6.04 0.70 30.20 3.37 3.69
CYCLE 7.29 16.67 8.33 11.46 9.38 1.04 12.50 11.46 6.60
CZPROB 15.09 1.89 1.89 3.77 9.43 1.89 33.96 1.89 7.55
FIT2P 0.80 10.54 15.04 34.39 2.85 0.49 4.80 14.68 4.70
GREENBEA 9.92 13.51 7.74 9.92 10.46 0.44 26.70 10.19 3.44
GREENBEB 9.39 13.71 7.80 9.92 10.53 0.45 26.36 10.23 3.49
MAROS 7.27 12.73 7.27 10.91 9.09 1.82 16.36 12.73 5.80
MAROS-R7 1.42 14.54 14.40 3.39 31.24 0.20 11.07 21.18 0.54
SHIP12L 10.71 3.57 3.57 3.57 7.14 3.57 21.43 3.57 6.67
STOCFOR2 2.97 11.88 10.89 21.78 7.92 0.99 7.92 8.91 6.78
STOCHFOR 0.53 12.03 10.05 38.02 3.58 0.69 4.40 9.70 6.13
WOODW 19.79 7.49 2.67 5.88 5.88 0.53 36.90 4.81 3.69
DCP1 7.91 7.63 9.50 8.63 10.94 1.73 24.89 11.65 6.47
DCP2 9.05 6.34 7.26 2.20 12.43 0.76 45.09 6.68 6.34
DETEQS 5.45 11.65 6.51 11.77 6.83 2.94 11.40 10.58 16.71
DETEQ27 6.89 9.81 9.34 15.89 7.49 1.47 10.97 9.48 15.27
CRE-A 12.68 5.99 4.58 7.04 9.51 1.06 25.70 5.99 10.81
CRE-C 14.16 5.15 5.58 6.87 10.73 1.29 24.46 6.44 9.19
KEN-07 3.70 3.70 3.70 3.70 7.41 3.70 7.41 3.70 16.00
KEN-11 6.53 2.58 4.41 3.65 17.93 4.71 16.26 7.29 14.72
KEN-13 11.72 1.70 2.75 1.76 20.28 2.64 38.41 4.27 7.63
KEN-18 17.89 1.23 1.71 0.87 23.04 1.13 40.89 2.74 4.92
PDS-02 7.14 4.29 2.86 5.71 7.14 2.86 20.00 7.14 18.75
PDS-06 10.50 5.20 3.43 7.38 7.90 1.66 23.18 8.32 16.81
PDS-10 10.87 6.00 4.05 8.03 7.43 1.31 24.54 8.16 15.71
PDS-20 13.05 4.42 4.93 8.75 7.59 0.67 33.17 7.57 10.96
Average 9.77 7.63 6.30 9.64 10.39 1.57 22.27 8.18 8.82

Table 6: Percentage of solution time for computational components of the revised simplex method and computational overhead attributable
to exploiting hyper-sparsity for test set H.

solver in OSL [11]. Each code was run for the problems in test set H with a
workspace limit of 64Mb. To eliminate differences due to the different crash
routines in the two simplex solvers, they were both started from the same basis.
To avoid accusations of favouritism, the type 1 OSL crash basis was chosen.
Other OSL crash types produced similar results. Note that the OSL barrier
code failed to solve FIT2P within the workspace limit.

The results given in Table 7 show that, with the exception of MAROS-
R7, EMSOL when exploiting hyper-sparsity is uniformly faster than the OSL
simplex solver, and by more than an order of magnitude for some problems. This
is despite the fact that OSL generally requires fewer iterations than EMSOL,
significantly so for some of the larger problems. We believe that it should be
possible to introduce algorithmic techniques into EMSOL to reduce the number
of iterations required to solve a problem without increasing the computational
cost per iteration. For example, OSL has a strategy for perturbing the problem
when solving highly degenerate problems which can significantly reduce the
number of iterations required to solve the problem.

Although the average speedup of EMSOL relative to OSL barrier is similar
to the average speedup relative to OSL simplex, it is not uniformly so. However,
for the larger problems, EMSOL is generally faster.

5.3 Comparison with OSL simplex and NETFLO for the
NETGEN test set

A class of LP problems which are well known to maintain sparsity are those with
a near or complete network structure. It is, therefore, of interest to see how the
performance of a general revised simplex solver with techniques to exploit hyper-
sparsity compares with the network simplex method. To this end, EMSOL is
compared with NETFLO, the efficient implementation of the network simplex
method due to Kennington [12]. This is done using the NETGEN test set [13]
of network problems which are now very modest in size, and a larger problem
generated by the authors using the NETGEN program. The OSL simplex solver
was also compared with NETFLO. Note that brief practical experience showed
the OSL network solver to be very much less efficient than its simplex solver!

In comparing EMSOL and OSL against NETFLO, it is worth observing that
all use some form of partial pricing and, in phase I, add a multiple of the phase
II objective to the Li-penalty function which penalises infeasibilities. At the
expense of a larger number of phase I iterations, this reciprocal ‘big-M’ method
aims to find a first feasible vertex which is much closer to an optimal solution
than would be achieved if the Li-penalty function were minimized regardless
of the phase II objective. The standard NETGEN problems, numbered
NETGN101-150, have between 1000 and 10000 rows, and between 12500 and
75000 columns. For the purposes of the results given below, these problems,
which are small by today’s standards, are supplemented by a larger problem
generated by the authors using the NETGEN program. This problem, named
NETGN201 has 25000 rows and 100000 columns.

As the results in Table 8 clearly show, for the smaller problems EMSOL is
faster than OSL by about the same factor that EMSOL is slower than NETFLO.
However, for NETGN201 the performance of EMSOL is somewhat closer to that
of NETFLO than OSL is to EMSOL.

22

Simplex Barrier
Total Iteration count | Iteration time | Total

Problem speedup decrease speedup | speedup
80BAU3B 2.40 1.25 1.92 3.24
CYCLE 1.60 0.55 2.92 3.37
CZPROB 2.56 1.31 1.96 3.25
FIT2P 1.04 0.57 1.84 —
GREENBEA 1.27 0.62 2.05 0.43
GREENBEB 1.29 0.60 2.18 0.60
MAROS 1.44 0.72 2.02 1.81
MAROS-R7 0.61 0.64 0.96 1.60
SHIP12L 3.40 0.86 3.96 10.08
STOCFOR2 2.24 0.82 2.75 1.09
STOCHFOR 3.40 0.86 3.97 0.23
WOODW 2.12 0.64 3.33 2.90
DCP1 3.39 1.05 3.23 1.56
DCP2 3.86 0.81 4.79 0.59
DETEQS 7.50 0.67 11.23 1.41
DETEQ27 7.75 0.61 12.68 1.58
CRE-A 3.09 0.65 4.73 1.33
CRE-C 2.38 0.63 3.80 1.80
KEN-07 7.08 1.00 7.09 7.12
KEN-11 26.65 0.99 26.88 3.07
KEN-13 11.33 0.95 11.89 0.58
KEN-18 19.51 0.98 19.98 0.45
PDS-02 3.67 0.81 4.53 26.04
PDS-06 4.29 0.61 7.04 14.82
PDS-10 4.94 0.58 8.45 16.23
PDS-20 1.74 0.28 6.29 9.39
Average 5.02 0.77 6.25 4.58

Table 7: Performance of EMSOL relative to OSL simplex and barrier.

Although it would be remarkable if the performance of EMSOL were similar
to that of a well-written network solver, it is worth considering why NETFLO
is faster than EMSOL. The main reason is that NETFLO exploits fully the fact
that the basis of a network problem corresponds to a spanning tree by combining
BTRAN with UPDATE, FTRAN with CHUZR, and INVERT is avoided since the
spanning tree triangularisation of the basis matrix is updated each iteration.
Finally, NETFLO solves problems with only integer-valued bounds and costs so
no floating-point operations are required, whereas EMSOL treats the positive
and negative unit entries in the constraint matrix as floating-point numbers.

6 Conclusions and extensions

This paper has identified hyper-sparsity as a property of a significant number
of LP problems when solved by the revised simplex method. Techniques for
exploiting this property in each of the computational components of the revised
simplex method have been described.

23

NETGN101-150 NETGN201
Minimum | Average | Maximum
NETFLO 1 1 1 1
EMSOL 2.9 6.1 14 24
OSL 13 30 79 24

Table 8: Solution time for EMSOL and OSL simplex relative to NETFLO.

Variants on the hyper-sparse FTRAN algorithm illustrated in Figure 3 may
improve its practical performance. By maintaining KC as a set of buckets, each
corresponding to some portion of the eta file, it may be sufficient to search the
local bucket to determine the next eta to be applied. The set K could also be
maintained as a heap. There may also be some value in using the algorithm
of Gilbert and Peierls [9] which determines the etas to be applied in a time
proportional to the number of arithmetic operations which must be performed.
This is better than the worst case performance of our algorithm without the
mechanism for giving up exploiting hyper-sparsity when |X| becomes too large.
However, since the Gilbert and Peierls algorithm must be run to completion for it
to be of any use, it may approach its worst case behaviour if it is not abandoned
when the solution of the system is not sparse. Experiments with these variants
of our algorithm and a practical comparison of it with the Gilbert and Peierls
algorithm will be the subject of future research.

For the subset of our test problems that do not exhibit significant hyper-
sparsity in FTRAN, BTRAN or PRICE, the average speedup due to exploiting
hyper-sparsity in other components is 1.34, and for those problems which
do exhibit hyper-sparsity the average speedup is 5.61. For this latter
subset of problems our implementation of the revised simplex which exploits
hyper-sparsity has been shown to be many times faster that a commercial
implementation of both the simplex and barrier method. When applied to
network problems our implementation has been shown to approach the speed
of an efficient implementation of the network simplex method. Although this
performance gain may only be achieved for a subset of LP problems, the
amenable problems in this paper are large (albeit not particularly so) and/or of
genuine practical value.

The authors would like to thank John Reid who brought the Gilbert-Peierls
algorithm to their attention and made valuable comments on an earlier version
of this paper.

References

[1] R. H. Bartels. A stabilization of the simplex method. Numer. Math.,
16:414-434, 1971.

[2] J. Bisschop and A. J. Meeraus. Matrix augmentation and partitioning in
the updating of the basis inverse. Mathematical Programming, 13:241-254,
1977.

24

3]

W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann.
An empirical evaluation of the KORBX algorithms for military airlift
applications. Operations Research, 38(2):240-248, 1990.

V. Chvatal. Linear Programming. Freeman, 1983.

G. B. Dantzig and W. Orchard-Hays. The product form for the inverse in
the simplex method. Math. Comp., 8:64—67, 1954.

I. S. Duff. On algorithms for obtaining a maximum transversal. ACM
Trans. Math. Softw., 7:315-330, 1981.

J. J. H. Forrest and J. A. Tomlin. Updated triangular factors of the basis
to maintain sparsity in the product form simplex method. Mathematical
Programming, 2:263-278, 1972.

D. M. Gay. Electronic mail distribution of linear programming test
problems. Mathematical Programming Society COAL Newsletter, 13:10-
12, 1985.

J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional
to arithmetic operations. STAM J. Sci. Stat. Comput., 9(5):862-874, 1988.

P. M. J. Harris. Pivot selection methods of the Devex LP code.
Mathematical Programming, 5:1-28, 1973.

IBM. Optimization Subroutine Library, guide and reference, release 2, 1993.

L. J. Kennington and R. V. Helgason. Algorithms for Network
Programming, pages 244-256. John Wiley and Sons, New York, 1980.

D. Klingman, A. Napier, and J. Stutz. NETGEN - a program for generating
large scale (un) capacitated assignment, transportation, and minimum cost
network flow problems. Management Science, 20:814-822, 1974.

I. Maros and G. Mitra. Finding better starting bases for the simplex
method. In P. Kleinschmidt, et al., editor, Operations Research Proceedings
1995, pages 7T-12. Springer Verlag, 1996.

R. Tarjan. Depth first search and linear graph algorithms.
SIAM J. Comput., 1:146-160, 1972.

J. A. Tomlin. Pivoting for size and sparsity in linear programming inversion
routines. J. Inst. Maths. Applics, 10:289-295, 1972.

25

