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Abstract In this paper, we present an evolutionary algorithm hybridized with a
gradient-based optimization technique in the spirit of Lamarckian learning for ef-
ficient design optimization. In order to expedite gradient search, we employ local
surrogate models that approximate the outputs of a computationally expensive Euler
solver. Our focus is on the case when an adjoint Euler solver is available for effi-
ciently computing the sensitivities of the outputs with respect to the design variables.
We propose the idea of using Hermite interpolation to construct gradient-enhanced
radial basis function networks that incorporate sensitivity data provided by the ad-
joint Euler solver. Further, we conduct local search using a trust-region framework
that interleaves gradient-enhanced surrogate models with the computationally expen-
sive adjoint Euler solver. This ensures that the present hybrid evolutionary algorithm
inherits the convergence properties of the classical trust-region approach. We present
numerical results for airfoil aerodynamic design optimization problems to show that
the proposed algorithm converges to good designs on a limited computational budget.
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1 Introduction

In recent years, evolutionary algorithms (EAs) have been applied with a great de-
gree of success to aerodynamic design optimization [9, 28, 29]. Its popularity lies
in the ease of implementation and the ability to arrive close to the global optimum
design. However, the high computational costs associated with analysis codes em-
ploying Navier Stokes or Euler computational fluid dynamics (CFD) solvers pose
a serious impediment to the successful application of EAs to aerodynamic design
optimization. This is primarily because a single function evaluation may take many
minutes to hours of computer time and EAs typically take thousands of function eval-
uations to locate a near optimal solution.

Many researchers have examined strategies that make use of approximate models
in lieu of exact models to reduce the computational cost of gradient-based optimiza-
tion algorithms. Since gradient-based algorithms make use of line searches to locate
a new iterate, the issue of range of validity of the approximation models or the con-
trol of approximation errors can be easily addressed using ad hoc move limits or a
trust region framework [1, 3, 35, 36]. In contrast, since EAs make use of probabilistic
recombination operators, controlling the accuracy of approximate fitness predictions
is not as straightforward as in gradient-based optimization algorithms.

More recently, much interest has focused on the development of strategies for
integrating surrogate models with evolutionary search techniques to tackle the com-
putational cost issue; see, for example, references [5, 9, 18, 19, 22, 29-31, 40]. This
makes perfect sense since EAs often require thousands of function evaluations to lo-
cate a near optimal solution and hence, one obvious way to significantly reduce the
computational cost of EAs is to employ computationally cheap surrogate models in
lieu of computationally expensive exact models during fitness evaluations. Surrogate
models are essentially metamodels or approximation models of the original objective
and constraint functions, which are often constructed using techniques in the machine
learning and statistics literature such as polynomial response surface methods, neural
networks, radial basis functions and Kriging [2, 34, 38].

The work on integrating surrogate models with evolutionary search in Ong et al.
[29, 31, 40] represents recent attempts to develop strategies for integrating surrogate
models with EAs. In addition, local surrogate models are used in place of global mod-
els for problems with large number of variables, since it become increasingly difficult
to construct accurate global approximation models due to the curse of dimensionality.
This paper presents an improvement of our earlier approach [29] to tackle problems
where the sensitivities of the objective and constraint functions can be cheaply com-
puted. For example, in the domain of CFD, it is possible to efficiently compute the
sensitivities using adjoint methods. Further, when exact sensitivities are available,
it also becomes possible to guarantee convergence of the optimization search that
makes use of approximation models during search.

In this paper, we present a surrogate-assisted hybrid EA that utilizes the sensi-
tivities of the objective and constraint functions. In diverse contexts, hybrid EAs
are also commonly known as Memetic Algorithms, Baldwinian EAs and Lamarkian
EAs [28]. For each individual in an EA population, we apply a trust-region enabled
gradient-based optimization technique in the spirit of Lamarckian learning. The key
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idea proposed is to employ Hermite interpolation techniques to construct gradient-
enhanced radial basis function networks to speed up local search. Our motivation
behind this approach is two-folds—(1) the surrogate model is more accurate than
that based on function values only and (2) the hybrid evolutionary approach inherits
the convergence property of the classical trust-region approach.

We consider the problem of aerodynamic design, where the derivatives of the ob-
jective and constraint functions with respect to the design variables can be efficiently
computed using the adjoint method. Numerical results are presented for airfoil shape
optimization problems to demonstrate that the gradient-enhanced surrogate modeling
strategy enables EAs to converge faster to the optimal solution on a limited compu-
tational budget.

The remainder of this paper is organized as follows. We begin with a brief
overview of aerodynamic sensitivity analysis using the adjoint method in Sect. 2.
Section 3 presents an overview of how sensitivity information available from ad-
joint solvers can be leveraged to construct gradient enhanced radial basis function
networks. Section 4 presents our evolutionary framework for optimization of compu-
tationally expensive CFD codes using surrogate models. Section 5 presents empirical
results on airfoil design problems. Finally Sect. 6 summarizes the main conclusions.

2 Adjoint methods for aerodynamic sensitivity analysis

In this section, we present an overview of the adjoint Euler solver for aerodynamic
shape sensitivity analysis. The adjoint approach was first applied by Jameson [14]
to design optimization of transonic airfoils. Based on optimal control theory applied
to systems of partial differential equations [23], it treats the problem of shape opti-
mization as a constrained optimization problem. Here, the constraint appears in the
form of the Euler or Navier-Stokes flow equations. For differentiable problems, this
method yields the gradient of the cost function at any given design point.

Compared to traditional finite difference approximations, the computational cost
of the adjoint method is only one solution cycle of the flow equation, plus one solution
cycle of the adjoint equation which has roughly the same computational cost as the
flow equation. Furthermore, the computational cost of sensitivity analysis using the
adjoint method is independent of the number of design variables. In a typical steep-
est descent method, the gradient information can therefore be employed to efficiently
search for local minima, as seen in earlier works on airfoil design optimization [15].
The method has more recently been extended to wing and wing-body design opti-
mization [4, 16, 32]. For a more detailed account of sensitivity analysis techniques
used in design, see [20].

The adjoint method can be applied to inverse design problems, where the cost
function is the quadratic sum of the difference between a design’s surface pressure
and a target pressure distribution. In direct design problems, the cost functions are
aerodynamic performance indices such as the drag coefficient, or the drag-to-lift ra-
tio. In the present paper, we shall exploit the efficiency of the continuous adjoint
method within our surrogate-assisted evolutionary optimization strategy, using an
adjoint Euler solver for the inverse-pressure airfoil design problem. The following
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100 Y.S. Onget al.

outlines the fundamentals of the continuous adjoint method in the Lagrange view-
point. For a more detailed account of adjoint approaches, see [10].

2.1 The continuous adjoint method

To illustrate the continuous adjoint approach for sensitivity analysis, consider the
following constrained minimization problem:

migI(w,S) subjectto  R(w, S) =0. )
w,

In the general adjoint method, w and S can be treated as design variables; in the fol-
lowing sections, they take on specific physical meanings. The scalar cost function /
and the constraint function R are assumed to be differentiable, and R is an element
of a Hilbert space with the inner product (-, -). Then, the associated Lagrangian is
given by

L=1(w,S)+ (¥, Rw, S)), 2)

where ' is the Lagrange multiplier, also known as the adjoint or auxiliary variable,
and has the same dimension as R. The main idea of introducing ¥ is to reduce the
problem to that of an unconstrained problem, with an additional set of equations to
solve, i.e., the adjoint equations. This can be obtained by the first-order necessary
condition for optimality, which states that at the optimum (local or global), the vari-
ation 8L is zero for all admissible and independent variations Sw and §S:

al ol oR oR
§L=— — , — , — 1685 =0. 3
3w8w+3565+<w aw>3w+<w as> ©)
If ¥ is chosen to satisfy the following adjoint equation,
dR\ dI '
,— )4+ —=0 4
<W 8w>+ ow @)

then, variations of the Lagrangian depend only on variations in S, i.e.,
8L =(Is(w, S) + (¥, Rs(w, 5)))sS. . ®)

Equation (5) is simply the sensitivity of the Lagrangian with respect to shape changes.
As it is an algebraic expression that depends analytically on v, one can compute
the sensitivities by solving (4). Next, we shall apply the above general theory to an
aerodynamic design problem.

2.2 Variational calculus on the Euler equations

In aerodynamic shape optimization problems, w represents the flow variables, S the
shape design variables, and R the governing equations. Now, consider inviscid flow
over an airfoil that can be modeled by the two-dimensional Euler equations in the
physical domain as

Jw

o +divg(w)=0. ©6)
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Denoting by x; (i =1,2) the coordinates in the physical domain, consider the fol-
lowing transformation to a computational domain with coordinates &;:
Bx,-

_ & ..
Kj=g I=IKl S=JK7', sij=Ja—f’jf G,j=12).

Transformation of (6) yields the contravariant equation
ow
—3? +divG(w, S) =0, (7)

where W = Jw, and G;(w, §) = S;;g;(w). As the computational domain is defined
by a fixed grid, the transformation matrix S is directly related to the shape of the
airfoil, and for the moment can be considered as the shape design variables. Hence,
transforming to the computational domain elicits the relation between the flow vari-
ables and the shape, i.e., they must satisfy the following constraint at steady-state:

divG(w, S) =0. 3)

Moreover, variations of G take the form
_ .08 5. A
5G,-_Sij558w +g165ij—C,~6w+g,~8S,~j. )]
2.3 Adjoint of the Euler equations for inverse pressure design problems

As is evident from (5), the gradient expression depends on the cost-function Jacobian
81/3S. We shall consider the inverse design problem, which involves minimizing the
difference between the surface pressure p of a given airfoil and a desired pressure
profile py. This problem may:be considered in two different aspects. Firstly, it may
be viewed as a test problem, where the desired pressure distribution p, is computed
from a known shape. Convergence to this known shape can thus serve as a validation
of the proposed algorithm. Secondly, the inverse design problem also has a practical
purpose, as the designer generally has an idea of the desired pressure profile that
yields good aerodynamic performance. For example, in transonic design, a shock
front or sharp pressure gradient on the upper surface generally leads to undesirably
high pressure drag that degrades the efficiency of the airfoil. A typical approach to
inverse pressure design is to ‘smoothen’ the pressure distribution on the upper-surface
in a way that maintains the area under the curve, so as to maintain the lift force
generated by the airfoil.

Thus, the inverse pressure design problem can be formulated as a minimization
problem of the form

1
I(w,$)=3 f an(p — pa)*do subject to (8). (10)
Wi

The Lagrangian in the present problem is thus given by

L= (P_Pd)2d0+f ¢ T divGds. (11)
2 Jwant Q
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Here, 2 is the domain of computation. The continuous adjoint formulation has a
natural extension when in the case the of p.d.e. constraints. In effect, taking varia-
tions of (11) and using Gauss’ formula on the second term, and replacing §G by its
expressions in (9), we obtain the following:

5 T
6£=/ (p—~pd)3pd0-/ L(Ciéw-i-gj(SS,-j)dQ—l-f vT8G; - do;.
wall o 0§ a0

Application of the adjoint method consists in choosing ¥ as a function on the domain
Q2 and its boundary conditions such that the variations of the flow field, w and dp,
are eliminated in the expression of §.£, in the volume and boundary integrals. We omit
the intermediate steps and refer the interested reader to [15]. The derivation yields the
p.d.e. adjoint equation (12), and the adjoint wall boundary conditions (13):

W v

Y Ci g =0 over Q, (12)
0 0

J 1!’22 + 1,[/32 =(p— pg) onthe wall boundary. (13)
8x1 3X2

The conditions of the adjoint variables in the far-field boundary are free, and are com-
putationally determined via standard characteristics analysis of propagating waves
[15]. Finally, one obtains the following sensitivity expression for the Lagrangian’s
variations:

9 T
8L=— ngﬁsijd9~f P (Y8821 + ¥38822)dEr. (14)
Q 0§ wall

It is now obvious that in order to obtain sensitivity information, one only needs to
solve (12) with (13), which is a linear differential equation of the same dimension
as the Euler equations. Hence, the cost of gradient calculation is only one adjoint

computation in addition to the contravariant Euler equations (7).
2.4 Shape parameterization and gradient calculation

As mentioned earlier, S;; are the local coordinate-change variables that are directly
but not explicitly related to the definition of the airfoil shape. The next step is to
arrive at expressions for the gradients of the Lagrangian with respect to variations
in the shape, which is defined by a parametric representation. Here, we consider the
function-series representation proposed by Hicks and Henne [12] which gives the
upper and lower surfaces of the airfoil as respective linear combinations of a finite
number of basis functions:

N
Yupper(X) = ¥opper (6) + D 2 (x),

s

o (15)
Yiower(¥) = Yoo+ Y 2jhj(x),
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Fig. 1 Series of 12 Hicks-Henne basis functions

where ygpper and yﬁ)wer are the upper and lower surfaces of a baseline shape, x is
the position along the chord, and the z; are design variables. Essentially, the search
space is a set of variants of the baseline shape. The greater the number of design
variables (2N), the larger the set of shapes represented. For example, Figs. 1 and 2
show a series of 12 such functions, and an airfoil it represents. The sensitivities of the
objective function with respect to the shape design variables can be readily computed
using (14). Finally, the gradient of the Lagrangian can be simply written as

£=(—a-‘—£—£,£) (16)
dz1 022 dz2N

Note that the same method of gradient calculation is applicable to other represen-
tations of airfoil geometry, such as B-splines and PARSEC [9]. The aerodynamic
shape representations using basis functions, especially Hicks-Henne functions, have
been widely used as they yield smooth shapes with few parameters, making this rep-
resentation an efficient one for design optimization, although it has been shown that
representations using B-splines are more accurate [37].

3 Surrogate modeling using Hermite interpolation

A variety of techniques exist in the literature for constructing surrogate models of
simulation codes. These include response surface methodology [24], artificial neural
network methods [2], multivariate regression splines [8], and Kriging [34]. A de-
tailed comparison of some metamodeling techniques can be found in Jin et al. [17].
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Fig. 2 Airfoil represented by a series of 12 Hicks-Henne functions on each surface (normalized by chord
length ¢)

In the present investigation, our objective is to construct interpolating surrogate mod-
els using radial basis functions (RBFs) that employ sensitivity information provided
by the adjoint CFD solver for enhanced accuracy [20]. We use the idea of Hermite
interpolation to construct gradient enhanced RBF approximations. The idea of Her-
mite interpolation is not new and the theoretical foundations of this approach in the
context of function approximation can be found in the literature; see, for example,
references [6, 11, 26, 39]. In this section, we outline-how Hermite interpolation can
be implemented using RBFs when sensmv1ty information is cheaply available via an
adjoint CFD solver.

Let us denote the training dataset by {z, f(z'), Vf(@)},i = 1,2,...,m, where
z' € ¢ denotes the input vector, f(z') denotes the output to be approximated and
Vf ={8f/dz1,8f/022,...,0f/z4} e®? denotes the partial derivatives of the out-
put f(z) with respect to the components of the input vector. Then, a Hermite inter-
polant for approximating f (z) can be written in terms of a set of RBFs as follows:

f@ = st(nz—-z ||>+ZZﬁ,, <nz—z I, a7

i=1 j=1

where ¢ (||z — z'|)) is a radial basis function which is differentiable at least twice. ;
and Bij, wherei=1,2,...,m,j=0,1,2,...,d, are aset of m(d + 1) undetermined
weights.

Since the training dataset contains f(z) and V f(z) at m points, we can arrive
at a total of m(d + 1) linear algebraic equations to compute the undetermined co-
efficients in the RBF model. The first set of m equations using the function values
corresponding to the points Zi,i=1,2,...,m can be written as

f@H=fa@), i=12,....m. (18)
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An additional set of md equations can be derived by using the derivative information
available in the training dataset, which gives

ViZ)=VfE), i=1,2,...,m. (19)

To implement the above conditions, we first differentiate (17) with respect to the
variable zj, which gives

3

N
M)X:'¢WﬂM£ZZma—ﬂnzm 20

92k i=1 i=1 j=1

Given a set of m data points for a problem with d variables, we arrive at a total of
m(d -+ 1) linear algebraic equations using (18-20), which can be compactly written
as

AB =y,
where
ﬁ:{ﬁlylgll,ﬁl%=--,l§1d,,32,1§21’l§22»~~~’l§2ds-~e»ﬂm,l§m17,ém2w~ul§md}
Emm(d—‘-l)’
and
)
{f( ), f(z) —f( ... —f—(zl),o..,f(z'"x—i(z'"),
024 071
af f

@), ..., ———(z’”)} € jmd+D),
022 024

The coefficient matrix A € ®m@+D>xm@+1) can be written in partitioned form in
terms of m submatrices as follows:

by @12 ... Py
A= Py P ... @y ’
Ot B2 . B
where
(I —27|) 8m(nz—zfn) aZd(ﬂz—sz)
8, = 212 — /) %Z?(;lz—zfm am,z,,<||z—zfn)
U~ (i 2l . SR -2

e m(d+1)><(d+l).

It can be noted from the above derivation that in order to implement Hermite inter-
polation the RBF ¢ must be differentiable at least twice. Note that in comparison to
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standard interpolating RBF models, the size of the resulting system of equations for
Hermite interpolation depends on the total number of design variables. As a result,
the computational cost of Hermite RBF interpolation becomes significant when the
number of training points and design variables are increased. However, in the present
research, we only construct local surrogate models using a subset of the training
dataset. Hence, the size of the system of equations to be solved for the weight vector
B turns out to be modest. We use Gaussian RBFs (which are infinitely differentiable)
to construct surrogate models, i.e., ¢( Izt —z/|) = exp(—ﬂzl—;f;ﬁ), where || -|| de-
notes the Ly norm and ¢ is a hyperparameter which is chosen using a cross-validation

procedure.

4 Hybrid evolutionary algorithm for computationally expensive adjoint
solvers

In this section, we present a brief overview of our proposed hybrid evolutionary algo-
rithm for computationally expensive adjoint solvers. In particular, we consider bound
constrained nonlinear programming problems of the form:

Minimize: f(z)
. 21
Subjectto: z <z <z,,
where z € %9 denotes the vector of design variables, and z; and z, are vectors of
lower and upper bounds on the design variables.

The basic structure of our hybrid EA which makes use of Hermite RBF inter-
polants is shown in Fig. 3. The hybrid evolutionary algorithm begins with the ini-
tialization of a database using a set of designs, either randomly, or using design of
experiments techniques or a priori knowledge if it exists. Exact adjoint CFD analysis
is then carried out for each design point and its objective function value f(z) to-
gether with its partial derivatives with respect to the components of the design vector
are archived in the database.

Subsequently, for each non-duplicated new design point in the EA population, a
gradient-based optimization algorithm is applied with this point as the initial guess.
The main idea used here is to interleave the computationally expensive CFD solver
with a surrogate model to reduce the computational cost of gradient-based optimiza-
tion. We use a trust-region approach to manage the interplay between the exact and
approximate model [29, 33]. This involves the solution of a sequence of subproblems
of the form: '

minimize f k(z)

. 5 } (22)
subjectto 7 <z <z <z <z,
where k =0,1,2,..., kmax is the subproblem number or the trust-region iteration

counter. z;‘ = z’g — A¥ and z’,j = z’c‘ + AF are the lower and upper bounds, respectively.
z’é is the initial guess for z at the kth trust-region iteration and AF is the trust-region
radius used to control the move limits on the design variables. F*(z) is a local surro-
gate model of the original objective function f(z). Note that we use the superscript k
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Procedure: Hybrid Evolutionary Algorithm for Computationally Expensive
Adjoint Solvers
BEGIN

Initialize:

e  Generate a database containing a population of designs. (Optional: up-
load a historical database if exists)
e  Specify m and ky,«

While (computational budget not exhausted)

Evaluate all individuals in the population using the exact adjoint CFD analy-

sis code.

For (each non-duplicated individual in population)

e  Apply trust-region enabled gradient-based optimization algorithm to
each non-duplicated individual in the population by interleaving the ex-
act and local Hermite RBF interpolation models.

e  Update the database with any new design points, z¥, generated during
the trust-region iterations with exact objectives, f¥, and its partial deriv-
atives, V f¥.

e  Replace the individuals in the population with the locally improved so-
lution in the spirit of Lamarckian learning.

End For

Apply standard EA operators to create a new population.

End While
END

Fig.3 Outline of hybrid evolutionary algorithm for computationally expensive adjoint solvers using Her-
mite RBF interpolants

to indicate that the design variable bounds as well as the surrogate model are updated
at each iteration.

During the solution of each subproblem, a local surrogate model, f*(z), is cre-
ated dynamically. The training dataset ©* used for constructing the surrogate model
is formed from the nearest m neighboring points of the initial guess, z¥, which are
chosen by searching a central database containing an archive of all previous designs.
The metric used here to establish similarity between design points during database
search is the Euclidean distance measure. We use local surrogate models since ear-
lier studies have shown that they provide more accurate approximations compared to
standard global surrogate models [29]. Further, we construct local surrogate models
using the Hermite RBF interpolation approach presented earlier. The motivation for
this arises from our observations that the accuracy of the gradient-enhanced surrogate
model is superior to standard RBF approximations that do not make use of sensitivity
information. Further, as discussed later, the use of gradient information also guaran-
tees convergence of the proposed hybrid EA.
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108 Y.S.Ongetal.

After solving each subproblem in (22), the trust region size, A¥, is updated based
on how well the surrogate model predicts the kth local optimum, zé‘o‘ A figure of merit
for the performance of the surrogate model, pk, is calculated as

e @) - 1)
f@& - 7))
The preceding equation provides a measure of the actual versus predicted change in

the function values at the kth local optimum. p* is then used to update the trust region
radius, A’S as follows:

(23)

0.25A%, if pk <0.25,
AR = 1 Ak if 0.25 < p* < 0.75, 24)
c Ak, if pF > 0.75,

where ¢ =2,if |25 — 28 loo = A¥ or ¢ =1, if ||z}, — 2t |00 < AF.

After solving the kth subproblem, the exact objective function value at the local
optimum f (zfo) and its partial derivatives V f (zf‘o) are used in the augmented dataset
®F+1 o construct an updated surrogate model for the subsequent trust-region itera-
tion. Note that, as indicated in Fig. 3, there is a user specified parameter m, which is
the maximum number of points used to construct a surrogate model. This parameter
controls the degree to which the surrogate model is local—in the limit when m equals
the total number of points in the database we arrive at a global surrogate model.

The initial guess for the (k -+ 1)th iteration is subsequently found using

i
L
z;, ifp*<0.
The trust-region iterations are terminated when k > kpax, Where kmax is the maximum
number of exact function and gradient evaluations for each individual in the EA pop-
ulation which is set a priori. At the end of the trust-region iterations, the exact fitness
of the locally optimized design point is determined. If the exact fitness of this point is
found to be better than its initial value, then Lamarckian learning proceeds. Lamarck-
ian learning forces the genotype to reflect the result of improvement through placing
the locally improved individual back into the population to compete for reproductive
opportunities. In addition, the optimized design point along with its exact fitness and
sensitivities are appended to the database. As indicated in Fig. 3, the hybrid EA is
terminated when the computational budget specified by the user is exhausted.

4.1 Convergence property
Clearly, the performance of the proposed hybrid EA depends on the ability of the
approximation models to accurately predict the objective function. Hence it is of

theoretical interest to make some general mathematical statements about the conver-
gence properties of the proposed hybrid EA which uses surrogate models. We would
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Hybrid evolutionary algorithm with Hermite radial basis function 109

like to note that here by convergence we mean the assurance that the iterates pro-
duced by an optimization algorithm working with the surrogate models, started at
an arbitrary initial iterate, will converge to a stationary point or local optimizer of
the original problem. As discussed in Alexandrov et al. [1, 33], convergence can be
guaranteed provided the following two consistency conditions are satisfied by the

surrogate model at the initial guess, z£.

f@) = r&h,

- 25
V@)=V f@Eh). =

For the case of using standard RBF surrogate models in our earlier studies [29],
only the zero-order consistency condition is satisfied at the initial guess. However,
in the case of using Hermite RBF interpolants as proposed here, both consistency
conditions are satisfied at the initial guess. This implies that our proposed hybrid EA
inherits the convergence property of the classical trust-region approach.

It is worth noting here that the convergence property is of theoretical interest only
since the local search strategy in the proposed hybrid evolutionary algorithm is of-
ten not run to convergence in real-world design problems. Even so, for the example
problems considered later, we find that the algorithm is capable of convergence. Fur-
ther, we find that since the proposed framework satisfies both the zero- and first-order
consistency conditions, the convergence rate is significantly faster for solving com-
putationally expensive adjoint solvers compared to our earlier work [29] where only
the zero-order consistency condition is satisfied by the surrogate model.

5 Numerical results

In this section, we present results obtained using the proposed memetic algorithm
on airfoil design problems when adjoint CFD solvers are available. In particular,
we consider the inverse pressure design problems described in Sect. 2. The airfoil
geometry is characterized using 24 design variables with the NACA 0012 or NACA
0015 airfoils as baselines, as shown in Fig. 4.

Here, a single analysis of a typical airfoil geometry using an Euler CFD solver
takes -around 10 minutes on a Pentium IV processor, while an exact adjoint CFD
calculation takes around 15 minutes. In comparison, surrogate model construction
using Hermite RBF interpolation takes only a few seconds when around a hundred
points are used for training. When dealing with computationally expensive adjoint
solvers that cost more than a few minutes of CPU time per function evaluation, this
training cost is negligible. To start the evolutionary search process, we first construct
a space filling set of initial designs using Latin hypercube sampling (LHS). LHS is
a stratified sampling technique where the random variable distributions are divided
into equal probability intervals and the population of individuals is randomly selected
from within each interval. This serves to generate a distribution of space filling set
collections of initial GA population from the large multidimensional search space.
The exact objective function value and its sensitivities are computed for these points
to create an initial database.

@ Springer



110 Y.S. Onget al.

0-2 T T

0.15

-5.18e-04
1.29e-04

o
b
g
@
-
I

-1.10e-03
8.47e-04

0.1

—3.406-04
3.456-04

9.03e-05

0.05r

1.80e-04
1.12e-04
5.12e-05
1.34e-05

2.89e-04
2.42e-04

g|
[}
10
™~
-

2.45e-04

2.93e-04
3.16e-04
3.15e-04

i 1 1 1 Il

-0.2 . L
0 0.1 02 03 04 05 06 07 08 09 1

Fig.4 Airfoil geometry characterized using 24 design variables with the NACA 0012 as baseline

In our numerical studies, we employ a standard binary coded parallel genetic algo-
rithm (GA) for the search. 10-bit encoding is used in representing each search dimen-
sion. A linear ranking algorithm with selection pressure of 1.5 is used for selection.
The population size is kept at 20 for the problems considered. Uniform crossover and
mutation operators are applied at probabilities 0.6 and 0.01, respectively. The search
termination criteria are set to a maximum computational budget of a thousand exact
evaluations or convergence to the global optimum.

Local search for each individual in the GA population is carried out using the
feasible sequential quadratic programming solver [21]. A well-known strength of
evolutionary algorithm is the ability to partition the population of individuals among
multiple compute nodes. Hence it is important that the intrinsic parallelism of EA is
retained in our work. Here, parallelism is attained in our parallel GA using Grid Com-
puting technologies [7]. The use of Grid technologies enables us to tap on large com-
pute power and achieve better utilization of remote solvers during the design search.
In our numerical studies, the adjoint codes implementing the objective functions were
wrapped as Grid services [13]. Further, the EA codes used here are gridified using
standard Grid Remote Procedure Call (Gridrpc) and Globus such that execution of
the adjoint Euler code on computing clusters that spans across at geographically dis-
tributed locations may be attained remotely [27].

Next, we present numerical results for the case when local surrogate models are
constructed using Hermite RBF (HRBF) interpolation. These results are compared
with the approach presented in Ong et al. [29] where only standard RBF (SRBF)
interpolants are used as surrogate models and a standard GA implementation. In the
hybrid GA, the parameters m(number of nearest neighbors used to construct the local
surrogate model) and kpax (maximum number of trust-region iterations) are set to
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Table 1 Criteria for measuring performance

Criterion Definition

Average Average number of exact evaluations consumed by the EA before the search termination
Evaluations criteria sets in

Average Average fitness value of the solutions obtained across all five simulation runs

Average gap  Average gap = (Average — go)
Difference between the average value and the global optimum, where go is the global
optimum value of the fitness function

Best Best solution obtained among all the EA runs

Gap gap = (bf — go)
Difference between the best-found and the global optimum, where go is the global
optimum of the fitness function

Success rate Number of times the algorithm converges to the global optimum out of all five simulation
runs under limited computational budget. Here convergence is assumed to occur when the
fitness reaches 3 significant figures

40 and 3, respectively. These parameter configurations were selected based on our
previous experiences. Further, it is to be noted here that one design cycle for the
standard and SRBF-assisted GA is one run of the Euler CFD solver. For the case of
the HRBF-assisted GA, one design cycle is one run of the adjoint CFD solver which
includes efforts to compute the sensitivities of the objective function.

In this study, several criteria have been defined to measure the performance. These
are listed in Table 1. Among these criteria, CPU time is used to measure the compu-
tational cost of the algorithms in wall-clock time. Average, Average gap, Best, Gap
and Success rate serve as the criteria for measuring the solution quality of the algo-
rithms. In our experimental studies, the pool of heterogeneous computing clusters in
the Nanyang Campus Grid has been employed to facilitate parallel execution of the
solvers [25].

5.1 Case study I-—subsonic inverse pressure design problem

We first consider a subsonic inverse pressure design problem. In Case Study I, the tar-
get pressure profile is generated from the NACA 0012 airfoil, which itself is also the
baseline shape. Hence, there exists for this problem a global solution corresponding
to 21 = --- = z24 = 0. This constitutes a good test problem for validating the con-
vergence property of the proposed hybrid EA, since the optimal design is known in
advance. The free-stream conditions in this problem are subsonic speed of Mach 0.5,
and zero angle of attack (AOA), corresponding to symmetric pressure profiles on the
upper and lower walls.

Using 24 design variables and the cost function in (10), the empirical results of the
HRBF-assisted hybrid GA, the SRBF-assisted hybrid GA and standard GA for Case
Study I are summarized in Table 2 and Figs. 5, 6. On this particular problem, the
global minimum given by cost function (10) equals zero, i.e., go = 0.0, see Table 1.
The results in Table 2 indicate that the HRBF-assisted hybrid GA outperforms both
the SRBF-assisted hybrid GA and standard GA algorithm significantly in terms of
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Table 2 Simulation results for case study I

Algorithm Average Average, Average Best Gap Success
evaluations  standard dev  gap rate
Case 0.007832, 0.007832  0.005950  0.005950 0%
studyl GA 1000 0.003131
0.001709, 0.001709  0.000949  0.000949 20%
SRBF-GA 1000 0.000074
0.000331, 0.000331  0.000315 0.000315 100%
HRBF-GA 320.8 0.000023

solution quality and computational cost on the subsonic inverse pressure design prob-
lem. The Average criterion shown in Table 2 indicates that both HRBF-assisted hybrid
GA and SRBF-assisted hybrid GA has significantly better convergence rate than the
standard GA across all five independent runs conducted. In particular, the HRBF-
assisted hybrid GA converges to the global optimum correctly at a greater precision
and at significantly a lower computational cost than both the SRBF-assisted hybrid
GA and standard GA algorithms, i.e., see Average Evaluations criterion in Table 2.
Further, the 100% Success Rate of the HRBF-assisted hybrid GA also demonstrates
the superior convergences ability of the algorithm, indicating that the algorithm was
capable of converging to the global across all five independent runs conducted. On
the whole, the HRBF-assisted hybrid GA displays the best performances on all other
criteria, see Table 2.

Figure 5 reveals the final airfoil geometries obtained on one of the five simulation
runs using HRBF-assisted hybrid GA, SRBF-assisted hybrid GA and standard GA.
The NACA 0012 target shape is also included in the plot for comparison. It can be
observed that the HRBF-assisted hybrid GA converges very close to the target shape
than the other two algorithms considered.

The rationale between the superiority of the HRBF-assisted hybrid GA over the
SRBF-assisted hybrid GA may be explained by the fact that employing Hermite in-
terpolation techniques to construct gradient-enhanced radial basis function networks
generally produce more accurate surrogate models than those based on function val-
ues only. This in turn helps generate significant improvements in the design opti-
mization search. To illustrate this, we show in Fig. 6, the typical prediction errors,
If (zllo) - f (zllo)l, and local improvements, f (z}.) —f (z}o), produced at the 1st itera-
tion of the trust-region approach (i.e., k = 1) when HRBF and SRBF are used for sur-
rogate modeling are presented for several GA individuals. It can be seen from Fig. 6
that the HRBF-assisted hybrid GA produces smaller prediction errors and this in turn
leads to a larger local search improvements than the SRBF-assisted hybrid GA. This
trend explains the faster convergence rate of the HRBF-assisted hybrid GA.

5.2 Case study II—transonic inverse pressure design problem

In the second design problem, we consider the NACA 0015 airfoil as baseline, at a
transonic speed of Mach 0.7 and an angle of attack of 4 degrees. Under these con-
ditions, a shock front appears on the upper surface of the airfoil in the form of a
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Fig.5 Comparison of best airfoil geometries obtained after approximately 30 hours using HRBF-assisted
hybrid GA, SRBF-assisted hybrid GA and standard GA with the NACA 0012 target shape for Case Study I

step jump in the pressure profile. Consequently, pressure drag increases and degrades
the efficiency of the design as discussed in Sect. 2. Note that for the angle of attack
considered, the flow remains laminar, for which modeling using the inviscid Euler
equations is still valid ignoring skin friction.

Figure 7 shows the pressure profile of the NACA 00135 airfoil in the case study con-
ditions. A sharp pressure gradient can be seen on the upper surface. For this problem,
we consider the more practical goal of ‘smoothening’ out the shock by synthesizing
a target pressure profile (shown as dotted line in Fig. 7) with gentler pressure gradi-
ents, but roughly the same area under the curve as for the NACA 0015. In this way,
a design that closely matches the target pressure will have lower drag than the NACA
0015 but with similar lift performance. In this problem, there is obviously no ‘target
shape’, as the desired pressure distribution profile is synthetic and not produced by a
known shape.

The convergence trends of the HRBF-assisted hybrid GA, SRBF-assisted hybrid
GA and the standard GA are shown in Fig. 8. The search traces indicate that the
HRBF-assisted hybrid GA converges to the best obtained cost function value of 0.041
after 222 design cycles or exact evaluations based on the adjoint Euler solver. This
is equivalent to 333 design cycles or exact evaluations for HRBF-assisted hybrid GA
which uses the computationally cheaper Euler solver. In addition, both the SRBF-
assisted hybrid GA and standard GA failed to reach this value even after 1000 exact
evaluations. To make a fair comparison of the three algorithms, we shall examine
the respective designs obtained at the end of 333 design cycles. Figure 9 shows the
resulting pressure profiles of designs obtained using the standard GA and the SRBF-
assisted hybrid GA. It can be seen that the shock front is merely shifted forward in
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Fig. 6 Prediction errors, |f (zllo) - f (z}a)], and local improvements, f (zg) - f (zll”) using SRBF and
HRBF surrogate models
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Fig.7 Pressure profile at Mach Number 0.7 and 4-degree angle of attack: sharp pressure gradient on the
NACA 0015 versus a synthetic target profile for case study II

both cases but not eliminated. Figure 10 shows the resulting pressure profile of the
optimal design obtained using the HRBF-assisted hybrid GA. Clearly, the shock front
has disappeared and a good match with the target pressure distribution is achieved.
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Fig. 8 Convergence trends of HRBF-assisted hybrid GA, SRBF-assisted hybrid GA and standard GA for
the transonic inverse pressure design problem, case study I

Table 3 Aerodynamic performances (normalized values) of optimal airfoil geometries obtained using
Standard GA, SRBF-assisted hybrid GA and HRBF-assisted hybrid GA for case study Il

Inverse pressure design Drag D Lift L D/L ratio
NACA 0015 (baseline) 00316 Co0e12 00509
Standard GA 0.0154 05834 0.0263
SRBF-assisted hybrid GA 0.0142 0.6253 0.0228
HRBF-assisted hybrid GA 0.0122 0.5657 0.0215

The practicality of Case Study II can be elucidated by examining the aerodynamic
performances (normalized values) of the 3 different designs versus those of the base-
line. As shown in Table 3, this exercise consists in drag reduction. The final design
produced by the HRBF-assisted hybrid GA, which best matches the target profile, has
the lowest drag corresponding to a 60% reduction, albeit with marginal loss in lift.
Another performance index is the drag/lift ratio (D/L). The target pressure profile
entails lower D /L ratio, which improves airplane efficiency.

5.3 Discussion
In this section, numerical studies were presented for the evolutionary design opti-
mization of two airfoil aerodynamic design problems with computational expensive

adjoint Euler solvers. The results show that using Hermite interpolation techniques to
construct gradient-enhanced radial basis function networks in the proposed algorithm

@ Springer




116 Y.S. Onget al.

Upper and lower surface pressure coefficients

Standard RBF-Assisted Hybrid GA ———
i Standard GA -
NACA 0015 -

TR I S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

15 L . L
Normalized Chord

Fig. 9 Pressure distribution profiles of optimal designs obtained after 333 design cycles (based on the
Euler solver) using standard GA and SRBF-assisted hybrid GA optimization compared with the original
NACA 0015 airfoil and the target pressure profile for case study II
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Fig. 10 Pressure distribution profile of optimal design obtained using HRBF-assisted hybrid GA opti-
mization after 333 design cycles (based on the Euler solver) for case study 1T

help to generate a more accurate surrogate model than that based on function values
only. The numerical results presented also show that the HRBF-assisted hybrid GA is
capable of converging to the global optimum accurately on a limited computational

@ Springer



Hybrid evolutionary algorithm with Hermite radial basis function : 117

budget. Most importantly, the proposed algorithm contributes significant speedup in
the evolutionary search. This is evident for the airfoil design problems considered
where the HRBF-assisted hybrid GA results in faster convergence when compared to
both SRBF-assisted hybrid GA and the Standard GA.

6 Concluding remarks

In this paper, we have presented a hybrid evolutionary algorithm that leverages Her-
mite radial basis function interpolants for optimization of computationally expensive
adjoint solvers on a limited computational budget. Our focus was on aerodynamic
design problems where the sensitivities of the objective function can be efficiently
computed using adjoint methods. The key idea was to employ Hermite interpolation
techniques to construct gradient-enhanced radial basis function networks so that more
accurate surrogate models can be constructed than those based on function values
only. Besides expediting the search process, the proposed hybrid evolutionary algo-
rithm also guarantees convergence since a trust-region approach is used to interleave
the exact analysis model with a surrogate model using local search.

Numerical studies were presented for evolutionary design optimization of air-
foil aerodynamic design problems analyzed using computationally expensive adjoint
solvers. Case Studies show that our proposed algorithm converges to good designs on
a much lower computational budget. Most importantly, our studies also clearly show
that the use of Hermite interpolants results in faster convergence compared to stan-
dard radial basis function approximations on the airfoil design problems considered.

Acknowledgements This work has been funded in part under the NTU/SCE grant number CE-SUG
3/03, and DSTA grant number POD 1820, The authors would also like to thank the members of Emerging
Research Laboratory and Parallel and Distributed Computing Center at School of Computer Engineering,
Nanyang Technological University for their support in making this work possible.

References

1. Alexandrov, N., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing the
use of approximation models in optimization. Struct. Optim. 15(1), 16-23 (1998)

2. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

3. Booker, A.J.,, Dennis, Jr J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous
framework for optimization of expensive functions by surrogates. Struct. Optim. 17(1), 1-13 (1998)

4. Burgreen, G.W., Baysal, O.: Three-dimensional aerodynamic shape optimization of wings using dis-
crete sensitivity analysis. AIAA J. 34(9), 1761-1770 (1996)

5. El-Beltagy, M.A., Nair, P.B., Keane, A.J.: Metamodelling techniques for evolutionary optimization
of computationally expensive problems: promises and limitations. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 196-203, Morgan Kaufman, Los Altos (1999)

6. Fasshauer, G.: Hermite interpolation with radial basis functions on spheres. Adv. Comput. Math. 10,
81-96 (1999)

7. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations,
Int. J. Supercomput. Appl. 15(3) (2001)

8. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1-141 (1991)

9. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic optimization methods
and computational intelligence. Prog. Aerosp. Sci. 38, 43~76 (2001)

@ Springer




118 ‘ Y.S. Onget al.

10. Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul. Combust.
65, 393-415 (2000)

11. Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method. Comput. Math. Appl.
19, 163-208 (1990)

12. Hicks, R.M., Henne, P.A.: Wing design by numerical optimization. J. Aircr. 15(7), 407-412 (1978)

13. Ho, Q.T, Ong, Y.S., Cai, W.T.: Gridifying aerodynamic design problem using GridRPC. In: Second
Grid and Cooperative Computing: Second International Workshop 2003, Part I, Shanghai, China.
Lecture Notes in Computer Science, vol. 3032, pp. 83-90. Springer, Heidelberg (2004)

14. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233-260 (1988)

15. Jameson, A., Reuther, J.: Control theory based airfoil design using the Euler equations. AIAA 94-
4272-CP (1994)

16. Jameson, A., Vassberg, J.C.: Computational fluid dynamics for aerodynamic design: its current and
future impact. AIAA 2001-0538 (January 2001)

17. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodeling techniques under multiple
modeling criteria. Struct. Multidiscip. Optim. 23(1), 1-13 (2001)

18. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation: Soft Com-
put. J. 9(1), 3-12 (2005)

19. Iin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fit-
ness functions. IEEE Trans. Evol. Comput. 6(5), 481-494 (2002)

20. Keane, A.J., Nair, PB.: Computational Approaches for Aerospace Design. Wiley, New York (2005).
Chapter 4

21. Lawrence, C.T., Tits, A.L.: A computionally efficient feasible sequential quadratic programming al-
gorithm. SIAM J. Optim. 11(4), 1092-1118 (2001)

22. Liang, K.H,, Yao, X., Newton, C.: Evolutionary search of approximated N-dimensional landscapes.
Int. J"Knowl.-Based Intell. Eng. Syst. 4(3), 172-183 (2001)

23. Lions, J.L.: Optimal Control Of Systems Governed by Partial Differential Equations. Springer, Berlin
(1971). Translated by S.K. Mitter

24, Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization
Using Designed Experiments. Wiley, New York (1995)

25. Nanyang Campus Grid: http://ntu-cg.ntu.edu.sg/

26. Narcowich, F.J., Ward, J.D.: Generalized Hermite interpolation via matrix-valued conditionally posi-
tive definite functions. Math. Comput. 63(208), 661-687 (1994)

27. Ng, HK., Lim, D., Ong, Y.S,, Lee, B.S., Freund, L., Parvez, S., Sendhoff, B.: A multi-cluster grid

ST, enabled evolution framework for aerodynamic airfoil design optimization. In: Wang, L..P.,-Chen, K.,
Ong, Y.S. (eds.) International Conference on Natural Computing. Lecture Notes in Computer Science,
vol. 3611, pp. 1112-1121. Springer, New York (2005)

28. Ong, Y.S., Keane, A.J.: Meta-Lamarckian learning in memetic algorithm. IEEE Trans. Evol. Comput.
8(2), 99-110 (2004)

29. Ong, Y.S., Nair, PB., Keane, A.J.: Evolutionary optimization of computationally expensive problems
via surrogate modeling. Am. Inst. Aeronaut. Astronaut. J. 41(4), 687-696 (2003)

30. Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary optimization frame-
works for high-fidelity engineering design problems. In: Jin, Y. (ed.) Knowledge Incorporation in
Evolutionary Computation, pp. 307-331. Studies in Fuzziness and Soft Computing Series. Springer,
New York (2004)

31. Ong, Y.S., Nair, PB., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm for robust aero-
dynamic design. IEEE Trans. Evol. Comput. 10(4), 392-404 (2006)

32. Reuther, J., Jameson, A., Alonso, 1.J., Rimlinger, M.J., Saunders, D.: Constrained multipoint aero-
dynamic shape optimization using adjoint formulation and parallel computers. AIAA Paper 97-0103
(January 1997)

33. Rodriguez, J.F,, Renaud, J.E., Watson, L.T.: Convergence of trust region augmented Lagrangian meth-
ods using variable fidelity approximation data. Struct. Optim. 5(3-4), 141-156 (1998)

34. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat.
Sci. 4(4), 409435 (1989)

35. Serafini, D.B.: A framework for managing models in nonlinear optimization of computally expensive
functions. Ph.D. Thesis, Rice University (1998)

36. Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, PN,, Yang, R.J.: Approximation meth-
ods in multidisciplinary analysis and optimization: a panel discussion, In: Proceedings of the Third
ISSMO/ATAA Internet Conference on Approximations in Optimization, pp. 14-25 (2002)

&) Springer




Hybrid evolutionary algorithm with Hermite radial basis function 119

37. Song, W.B., Keane, A.J.: A study of shape parameterisation methods for airfoil optimisation. In:
10th ATAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 2031-2038 (2004).
ATAA 2004-4482 .

38. Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In: Touretsky, D.S., Mozer,
M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cam-
bridge (1996)

39. Zhongmin, W.: Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx.
Theory Appl. 8, 1-10 (1992)

40. Zhou, Z.Z., Ong, Y.S., Nair, PB., Keane, A.J., Lum, K.Y.: Combining global and local surrogate
models to accelerate evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part C 36(6), 814—
823 (2006)

@ Springer







