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Abstract In recent years, many practical nonlinear optimal control problems have
been solved by pseudospectral (PS) methods. In particular, the Legendre PS method
offers a Covector Mapping Theorem that blurs the distinction between traditional di-
rect and indirect methods for optimal control. In an effort to better understand the PS
approach for solving control problems, we present consistency results for nonlinear
optimal control problems with mixed state and control constraints. A set of sufficient
conditions is proved under which a solution of the discretized optimal control prob-
lem converges to the continuous solution. Convergence of the primal variables does
not necessarily imply the convergence of the duals. This leads to a clarification of
the Covector Mapping Theorem in its relationship to the convergence properties of
PS methods and its connections to constraint qualifications. Conditions for the con-
vergence of the duals are described and illustrated. An application of the ideas to the
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optimal attitude control of NPSAT1, a highly nonlinear spacecraft, shows that the
method performs well for real-world problems.

Keywords Optimal control · Pseudospectral · Nonlinear systems

1 Introduction

A fundamental problem in autonomous systems engineering and theory is the com-
putation of constrained nonlinear optimal controls. Since the 1960s, many computa-
tional methods have been proposed towards the goal of providing robust and accurate
algorithms for solving these problems. These methods are frequently classified under
two categories: indirect and direct methods [3]. Historically, many early numerical
methods [6, 35] were indirect methods; that is, methods based on finding solutions
that satisfy a set of necessary optimality conditions resulting from Pontryagin’s Min-
imum Principle. Implementations of indirect methods have been successfully applied
to many real-world problems that include control of flexible structures, launch vehi-
cle trajectory design and low-thrust orbit transfer [1, 3, 5, 6]. Nonetheless, indirect
methods suffer from many drawbacks [3, 6]. For instance, the boundary value prob-
lem resulting from the necessary conditions is extremely sensitive to initial guesses as
a result of the symplectic structure of the Hamiltonian system [6]. In addition, these
necessary conditions must be explicitly derived—a labor-intensive process for com-
plicated problems that requires an in-depth knowledge in optimal control theory. Over
the last decade, direct methods, that is, methods based on approximations to the orig-
inal (primal) problem, have gained wide popularity [3, 8, 11–13, 15, 21, 30, 31, 47]
as a result of significant progress in theory, large-scale computation and robustness of
the approach. In simple terms, the essential idea of this method is to discretize the op-
timal control problem and solve the resulting large-scale finite-dimensional optimiza-
tion problem. The simplicity of this approach belies a wide range of deep theoretical
issues (see [30]) that lie at the intersection of approximation theory, control theory
and optimization. Even though these issues are yet to be satisfactorily addressed and
dealt with, a wide variety of industrial-strength optimal control problems have been
solved by this approach [2, 3, 23, 25, 29, 44, 49].

Despite the practical successes noted above, results on the convergence of direct
methods, particularly, higher-order direct method are far from satisfactory. Only re-
cently has significant progress been made on such problems [9, 11, 12, 21, 28, 52].
These studies show that convergence theorems are quite difficult to prove, and vali-
dating computational results by checking the assumptions of these theorems are even
harder [22]. In order to overcome suspicions about the extremality of a computed
solution, a two-tier method has long been advocated [34] as a means for validating
or refining a given solution. In these methods, a direct solution is used as starting
point for an indirect method leading to a potential refinement or validation of the
computed solution. In recent years, a far simpler technique has been proposed and
vigorously exploited [16, 17, 25, 27, 28, 38, 48, 49] in several different forms that
can all be encapsulated under the notion of a Covector Mapping Principle [40, 41].
Although some of these ideas go as far back as the early 1990s (see [15, 54]), many
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key constructs were formulated only around the year 2000 [21, 43]. In this approach,
a direct connection between the discrete-time multipliers and the discretized costates
associated with the boundary value problem is sought as a means to commute dis-
cretization with dualization. The ensuing Covector Mapping Theorem then provides
a direct connection to the Pontryagin Minimum Principle, which in turn, facilitates
verification and validation of the computed solution as if an indirect method was
applied. Thus, all the burdens of a two-tier approach are completely circumvented
leading to a simple and robust approach to solving practical optimal control prob-
lems. Verification and validation of the computed solution is particularly important
in solving industrial-strength problems where safety and robustness are crucial for
a successful implementation. In 2000, Hager [21] showed that his transformed ad-
joint system was in fact crucial for a proper convergence analysis of RK methods.
By exploring the discrepancies between the state and costate discretizations, Hager
designed new RK methods for control applications that are distinct from the ones de-
veloped by Butcher. Thus, what has emerged in recent years is a close juxtaposition
of theory, computation and practice enabled through the development and application
of covector mapping theorems.

In this paper we focus on pseudospectral (PS) methods. PS methods were largely
developed in the 1970s for solving partial differential equations arising in fluid dy-
namics and meteorology [7], and quickly became “one of the big three technologies
for the numerical solution of PDEs” [51]. During the 1990s, PS methods were intro-
duced for solving optimal control problems; and since then, have gained considerable
attention [13, 16, 25, 26, 29, 38, 47, 49, 55, 56], particularly in solving aerospace con-
trol problems. Examples range from lunar guidance [25], magnetic control [56], orbit
transfers [49], tether libration control [55], ascent guidance [29] and a host of other
problems. As a result of its considerable success, NASA adopted the Legendre PS
method as a problem solving option for their OTIS software package [33]. Results
for a test suite of problems are discussed in [39]. In addition, the commercially avail-
able software package, DIDO [42], exclusively uses PS methods for solving optimal
control problems.

Similar to Hager’s research on RK methods, a Covector Mapping Theorem was
developed in [16] for the Legendre PS method. In order to address certain discrep-
ancies in the solution, a set of “closure conditions” were identified in [48] to map
the Karush-Kuhn-Tucker (KKT) multipliers associated with the discretized optimal
control problem to the dual variables associated with the continuous-time optimal
control problem. Unlike Hager’s RK method which imposes additional conditions on
the primal problem (i.e. coefficients of the integration scheme), the conditions of [48]
impose constraints on both the primal and dual variables. In the absence of a conver-
gence theorem, this procedure requires solving a difficult primal-dual mixed comple-
mentarity problem (MCP). In this paper, we eliminate the need to solve the MCP by
strengthening earlier results and weakening prior assumptions. This is done by first
establishing a pair of existence and convergence results for the primal problem. These
results extend our prior work [20], which was limited to feedback linearizable sys-
tems. For general nonlinear systems (i.e. systems not feedback linearizable), we show
that the discrete dynamics must be relaxed to guarantee feasibility. Then, we prove
that for constrained optimal control problems, the primal solution of the discretized
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optimal control problem converges to the solution of the continuous optimal control
problem under conditions that may be computationally verified. Thus, the difficult
primal-dual MCP required for costate evaluation may be replaced by simpler NLP
techniques and solvers. More importantly, we demonstrate why the convergence of
the primal variables does not necessarily imply the convergence of the KKT multipli-
ers to the continuous costate. The necessity of the closure conditions in [48] is clar-
ified as a means of ensuring the correct selection of the sequence of multipliers that
converge to the costates. A simple but illustrative example is introduced to tie these
ideas to constraint qualifications. Finally, the theoretical results are demonstrated for
the practical optimal control of NPSAT1, a magnetically controlled spacecraft being
built at the Naval Postgraduate School and scheduled to be launched in 2007.

This paper is organized as follows: in Sect. 2, we briefly present the PS discretiza-
tion method for constrained nonlinear optimal control problems. Sections 3 and 4
contain the results regarding existence and convergence of the discretized primal vari-
ables. Section 5 focuses on the existence and convergence of the dual variables. Fi-
nally, in Sect. 6 we apply the PS method to solve the near-minimum-time minimum-
energy control problem for the NPSAT1 spacecraft.

Throughout the paper we make extensive use of Sobolev spaces, Wm,p , that con-
sist of all functions, ξ : [−1,1] → R

n whose j th distributional derivative, ξ (j), lies
in Lp for all 0 ≤ j ≤ m with the norm,

‖ξ‖Wm,p =
m∑

j=0

‖ξ (j)‖Lp

where ‖ξ‖Lp denotes the usual Lebesgue norm,

‖ξ‖Lp =
(∫ 1

−1
‖ξ(t)‖pdt

)1/p

and ‖ξ(t)‖ denotes any finite dimensional norm in R
n. By a minor abuse of notation,

we sometimes use ξ(t) to mean both the function, ξ , and the value of ξ at time t .
For a generic vector v ∈ R

n, we use ‖v‖∞ to denote the maximum element of v. For
notational ease, we suppress the dependence of Wm,p on the domain and range of
vector-valued functions.

2 The problem and its discretization

Consider the following optimal control problem:

Problem B: Determine the state-control function pair, t �→ (x,u) ∈ R
Nx × R

Nu ,
that minimizes the cost functional

J [x(·), u(·)] =
∫ 1

−1
F(x(t), u(t)) dt + E(x(−1), x(1))
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subject to the dynamics,

ẋ(t) = f (x(t), u(t)) (1)

endpoint conditions

e(x(−1), x(1)) = 0 (2)

and mixed state-control path constraints

h(x(t), u(t)) ≤ 0. (3)

It is assumed that F : R
Nx ×R

Nu → R, E : R
Nx ×R

Nx → R, f : R
Nx ×R

Nu → R
Nx ,

e : R
Nx × R

Nx → R
Ne , and h : R

Nx × R
Nu → R

Nh , are continuously differentiable
with respect to their arguments and their gradients are Lipschitz continuous over the
domain. In order to properly apply the first-order necessary conditions for state con-
strained problems, particularly, mixed state and control constraints, it is necessary to
define appropriate constraint qualifications. For the purpose of brevity, we do not de-
scribe these conditions and implicity assume that the problem satisfies such technical
conditions which are well documented in [24], [37] and [53]. In addition to these im-
plicit assumptions, we also assume that an optimal solution (x∗(·), u∗(·)) exists with
the optimal state, x∗(·) ∈ Wm,∞, m ≥ 2 and optimal control, u∗(·) ∈ C0[−1,1].

Remark 1 If x∗(·) ∈ C1 and [−1,1] 
 t → ẋ∗(t) has a bounded derivative every-
where except for finitely many points, then it is clear that x∗(·) ∈ W 2,∞. From
Sobolev’s Imbedding Theorems [7], any function x∗(·) ∈ Wm,∞, m ≥ 2 must have
continuous (m − 1)th order classical derivatives (on [−1,1]). Therefore, the condi-
tion, x∗(·) ∈ Wm,∞, m ≥ 2, requires that the optimal state trajectory, x∗(·), be at least
continuously differentiable, which in turn requires that the optimal control trajectory,
u∗(·), be continuous. The NPSAT1 problem discussed in Sect. 6 illustrates the satis-
faction of these regularity conditions.

Remark 2 From the practical point of view, it is desirable to identify conditions on
the problem data that guarantee the required regularity on the optimal solution, i.e.,
x∗(·) ∈ Wm,∞, m ≥ 2 and u∗(·) ∈ C0[−1,1]. It is well-recognized that such regu-
larity theorems are one of the most difficult results to obtain in optimal control [53].
One of the best-known results is Hager’s regularity theorem [10, 53] which imposes
substantial requirements on the problem data such as affine dynamics, convexity etc.
In recognizing the difficulty of developing regularity theorems, we simply assume
certain smoothness conditions keeping in mind that many practical problems (e.g.
the NPSAT1 problem discussed in Sect. 6) indeed satisfy our assumptions.

Remark 3 In [28], we have provided convergence results for discontinuous u∗(·). Our
proof is limited to assuming u∗(·) is a piecewise C1 with finitely many discontinu-
ities, and the dynamic constraint is in feedback linearizable form.

In the Legendre pseudospectral approximation of Problem B , the basic idea is
to approximate t �→ x(t) by N th order polynomials, t �→ xN(t), based on Lagrange
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interpolation at the Legendre-Gauss-Lobatto (LGL) quadrature nodes, i.e.

x(t) ≈ xN(t) =
N∑

k=0

xN(tk)φk(t),

where tk are LGL nodes defined as,

t0 = −1, tN = 1,

tk, for k = 1,2, . . . ,N − 1, are the roots of L̇N (t)

where L̇N (t) is the derivative of the N th order Legendre polynomial LN(t). The
Lagrange interpolating polynomials, φk(t), are given by [7]

φk(t) = 1

N(N + 1)LN(tk)

(t2 − 1)L̇N (t)

t − tk
. (4)

It is readily verifiable that φk(tj ) = 1, if k = j and φk(tj ) = 0, if k �= j . The derivative
of the ith state xi(t) at the LGL node tk is approximated by

ẋi (tk) ≈ ẋN
i (tk) =

N∑

j=0

Dkjx
N
i (tj ), i = 1,2, . . . ,Nx

where the (N + 1) × (N + 1) differentiation matrix D is defined by

Dik =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

LN(ti )
LN (tk)

1
ti−tk

, if i �= k;

−N(N+1)
4 , if i = k = 0;

N(N+1)
4 , if i = k = N ;

0, otherwise.

(5)

Let

x̄k = xN(tk), k = 0,1, . . . ,N.

In a standard PS method for control, the continuous differential equation is approxi-
mated by the following nonlinear algebraic equations

N∑

i=0

x̄iDki − f (x̄k, ūk) = 0, k = 0,1, . . . ,N (6)

where ūk is taken to be analogous to x̄k . This discretization is used in [13, 14, 16, 48]
for optimal control problems. As will be apparent later, it is not necessary to assume
t �→ u(t) to be approximated by a polynomial. This is a sharp distinction from previ-
ous PS methods. It is also worth observing (6) is imposed at all points and not merely
at the interior points. As will be apparent shortly, this implies that a feasible solution
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to (6) may not exist; hence, to guarantee feasibility of the discretization, we propose
the following relaxation,

∥∥∥∥∥

N∑

i=0

x̄iDki − f (x̄k, ūk)

∥∥∥∥∥ ≤ (N − 1)
3
2 −m, k = 0,1, . . . ,N. (7)

Deferring a development of this relaxation scheme, note that when N tends to infin-
ity, the difference between conditions (6) and (7) vanishes, since m, by assumption,
is greater than or equal to 2. Throughout the paper, we use the “bar” notation to de-
note discretized variables. Note that the subscript in x̄k denotes an evaluation of the
approximate state, xN(t) ∈ R

Nx , at the node tk whereas xk(t) denotes the kth com-
ponent of the exact state. The endpoint conditions and constraints are approximated
in a similar fashion

‖e(x̄0, x̄N )‖∞ ≤ (N − 1)
3
2 −m, (8)

h(x̄k, ūk) ≤ (N − 1)
3
2 −m · 1, k = 0,1, . . . ,N (9)

where 1 denotes [1, . . . ,1]T .

Remark 4 The right hand side in (8) and (9) can be set to (N − r)−m+a , provided
1 < a < 2. For simplicity, we choose a = 3

2 .

Remark 5 Although we do not directly use his results, the relaxations in (7–9) are
similar in spirit to Polak’s theory of consistent approximations [36].

Finally, the cost functional J [x(·), u(·)] is approximated by the Gauss-Lobatto
integration rule,

J [x(·), u(·)] ≈ J̄ N (X̄, Ū ) =
N∑

k=0

F(x̄k, ūk)wk + E(x̄0, x̄N )

where wk are the LGL weights given by

wk = 2

N(N + 1)

1

[LN(tk)]2
, k = 0,1, . . . ,N

and X̄ = [x̄0, . . . , x̄N ], Ū = [ū0, . . . , ūN ].
Since practical solutions are bounded, we add the following constraints,

{x̄k ∈ X, ūk ∈ U, k = 0,1, . . . ,N}
where X and U are two compact sets representing the search region and containing the
continuous optimal solution [−1,1] 
 t → (x∗(t), u∗(t)). Thus, the optimal control
Problem B is approximated to a nonlinear programming problem with J̄ N as the
objective function and (7), (8) and (9) as constraints; this is summarized as:
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Problem BN : Find x̄k ∈ X and ūk ∈ U, k = 0,1, . . . ,N , that minimize

J̄ N (X̄, Ū ) =
N∑

k=0

F(x̄k, ūk)wk + E(x̄0, x̄N ) (10)

subject to

∥∥∥∥∥

N∑

i=0

x̄iDki − f (x̄k, ūk)

∥∥∥∥∥∞
≤ (N − 1)

3
2 −m, (11)

‖e(x̄0, x̄N )‖∞ ≤ (N − 1)
3
2 −m, (12)

h(x̄k, ūk) ≤ (N − 1)
3
2 −m · 1. (13)

3 Feasibility of Problem BN

In the case of Eulerian discretizations, for any given initial condition and control
discretization, the states are uniquely determined. Hence, there always exists a feasi-
ble solution to the discretized dynamic system. For Runge-Kutta methods, a similar
property holds if the mesh is sufficiently dense [21]. For pseudospectral methods
such an existence result for controlled differential equations is not readily apparent.
There are two main difficulties. PS methods are fundamentally different than tradi-
tional methods (like Euler or Runge-Kutta) in that they focus on approximating the
tangent bundle rather than the differential equation. Since the differential equation
is imposed over discrete points, in standard PS methods the boundary conditions
are typically handled by not imposing the differential equations over the boundary
[4, 51]. This technique cannot be used for controlled differential equations as it im-
plies that the control can take arbitrary values at the boundary. Thus, PS methods
for control differ from their standard counterparts in imposing the differential equa-
tion at the boundary as well. Although this notion is quite beneficial in extending
PS methods to hybrid optimal control problems [44–46], it generates an apparently
unfortunate consequence in that the discretized dynamics without relaxation may not
have a feasible solution; this is illustrated by the following example.

Example 1 Consider the linear system

ẋ1 = x1 + u,

ẋ2 = x2 + u.
(14)

Its standard PS discretization is

D

⎛

⎜⎝
x̄N

10
...

x̄N
1N

⎞

⎟⎠ =
⎛

⎜⎝
x̄N

10
...

x̄N
1N

⎞

⎟⎠ +
⎛

⎜⎝
ūN

0
...

ūN
N

⎞

⎟⎠ ,
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D

⎛

⎜⎝
x̄N

20
...

x̄N
2N

⎞

⎟⎠ =
⎛

⎜⎝
x̄N

20
...

x̄N
2N

⎞

⎟⎠ +
⎛

⎜⎝
ūN

0
...

ūN
N

⎞

⎟⎠ .

Therefore

(D − I )

⎛

⎜⎝
x̄N

10
...

x̄N
1N

⎞

⎟⎠ = (D − I )

⎛

⎜⎝
x̄N

20
...

x̄N
2N

⎞

⎟⎠ .

Since D is nilpotent [51], (D − I ) is nonsingular. Hence, (x̄N
10, . . . , x̄

N
1N) = (x̄N

20, . . . ,

x̄N
2N). Therefore, if the initial condition is such that x̄N

10 �= x̄N
20, the discretized dy-

namics with arbitrary initial conditions has no solution, although a continuous-time
solution satisfying (14) always exists for any given initial condition.

In this paper, we propose to relax the equality in (6) to the inequality of (11). In
this way, the feasibility of Problem BN can be guaranteed as proved in Theorem 1
below; but first, we need the following lemma.

Lemma 1 [7] Given any function ξ ∈ Wm,∞, t ∈ [−1,1], there is a polynomial
pN(t) of degree N or less, such that

|ξ(t) − pN(t)| ≤ CC0N
−m, ∀t ∈ [−1,1]

where C is a constant independent of N and C0 = ‖ξ‖Wm,∞ . (pN(t) with the smallest
norm ||ξ(t) − pN(t)||L∞ is called the N th order best polynomial approximation of
ξ(t) in the norm of L∞.)

Proof This is a standard result in approximation theory; see [7]. �

Theorem 1 Given any feasible solution, t �→ (x,u), for Problem B , suppose x(·) ∈
Wm,∞ with m ≥ 2. Then, there exists a positive integer N1 such that, for any N >

N1, Problem BN has a feasible solution, (x̄k, ūk). Furthermore, the feasible solution
satisfies ūk = u(tk) and

‖x(tk) − x̄k‖∞ ≤ L(N − 1)1−m, (15)

for all k = 0, . . . ,N , where tk are LGL nodes and L is a positive constant independent
of N .

Proof Let p(t) be the (N − 1)th order best polynomial approximation of ẋ(t) in the
norm of L∞. By Lemma 1 there is a constant C1 independent of N such that

‖ẋ(t) − p(t)‖L∞ ≤ C1(N − 1)1−m. (16)

Define

xN(t) =
∫ t

−1
p(τ)dτ + x(−1),
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x̄k = xN(tk),

ūk = u(tk).

From (16),

‖x(t) − xN(t)‖L∞ ≤ 2C1(N − 1)1−m. (17)

It follows that both x(tk) and x̄k are contained in some compact set whose boundary
is independent of N .

On this compact set, because f is continuously differentiable, it must be Lipschitz
continuous. By definition, t �→ xN(t) is a polynomial of degree less than or equal
to N . It is known (see [7]) that, for any polynomial of degree less than or equal to
N , its derivative at the LGL nodes t0, . . . , tN are exactly equal to the value of the
polynomial at the nodes multiplied by the differential matrix D, which is defined by
(5). Thus we have

N∑

i=0

x̄iDki = ẋN (tk).

Therefore,

∥∥∥∥∥

N∑

i=0

x̄iDki − f (x̄k, ūk)

∥∥∥∥∥∞
≤ ‖ẋN (tk) − ẋ(tk)‖∞ + ‖ẋ(tk) − f (x̄k, ūk)‖∞

= ‖p(tk) − ẋ(tk)‖∞ + ‖f (x(tk), u(tk)) − f (x̄k, ūk)‖∞
≤ C1(N − 1)1−m + C2‖x(tk) − xN(tk)‖∞
≤ C1(1 + 2C2)(N − 1)1−m

where C2 is the Lipschitz constant of f with respect to x. Since there exists a positive
integer N1 such that, for all N > N1,

C1(1 + 2C2)(N − 1)1−m ≤ (N − 1)
3
2 −m.

It follows that (11) holds for all N > N1.
As for the constraint (13), because h is continuously differentiable, the following

estimate holds.

‖h(x(t), u(t)) − h(xN(t), u(t))‖L∞ ≤ C3‖x(t) − xN(t)‖L∞ ≤ 2C1C3(N − 1)1−m

where C3 is the Lipschitz constant of h with respect to x which is independent of N .
Hence

h(x̄k, ūk) ≤ h(x(tk), u(tk)) + 2C1C3(N − 1)1−m · 1 ≤ 2C1C3(N − 1)1−m · 1.

Thus, the constraint (13) holds for all N ≥ N1. As for the endpoint condition (12),
it can be proved in a similar fashion. Thus, we have constructed a feasible solution
(x̄k, ūk) for Problem BN . Finally, (15) follows directly from (17). �
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Remark 6 From the result of Theorem 1, it is easy to see that the feasible set of Prob-
lem BN is nonempty and compact. Therefore, the existence of the optimal solution
is guaranteed by the continuity of the cost function, J̄ N (·).

Remark 7 In practice, we use a small number, δP > 0 as a feasibility tolerance. Then,
Theorem 1 guarantees that for any δP howsoever small, (11–13) always has a solution
provided a sufficiently large number of nodes are chosen. Although the exact value
of N is unknown because m is usually unknown, it is possible to exploit the quali-
tative information that connects δP with N in designing a practically robust spectral
algorithm [42].

4 Convergence of the primal variables

With the existence result in hand, we now establish the convergence of the primal
variables, (x,u). That is, we will show the existence of a sequence of optimal solu-
tions of Problem BN converging to an optimal solution of Problem B . The method
generalizes the results in [20] and is similar in spirit to Polak’s theory of consistent
approximations [36]. We indeed show that, under certain conditions, the sequence of
finite dimensional nonlinear programming, Problem BN , consistently approximates
the infinite dimensional continuous optimal control Problem B .

Let (x̄∗
k , ū∗

k), k = 0,1, . . . ,N , be an optimal solution to Problem BN . Let xN(t) ∈
R

Nx be the N th order interpolating polynomial of (x̄∗
0 , . . . , x̄∗

N) and uN(t) ∈ R
Nu be

any interpolant of (ū∗
0, . . . , ū

∗
N), i.e.

xN(t) =
N∑

k=0

x̄∗
k φk(t), uN(t) =

N∑

k=0

ū∗
kψk(t)

where φk(t) is the Lagrange interpolating polynomial defined by (4) and ψk(t) is any
continuous function such that ψk(tj ) = 1, if k = j and ψk(tj ) = 0, if k �= j . Note that
uN(t) is not necessarily a polynomial, but an interpolating function. Now consider a
sequence of Problems BN with N increasing from N1 to infinity. Correspondingly,
we get a sequence of discrete optimal solutions {(x̄∗

k , ū∗
k), k = 0, . . . ,N}∞N=N1

and

their interpolating function sequence {xN(t), uN(t)}∞N=N1
.

Definition 1 A continuous function, [−1,1] 
 t → ρ(t) ∈ R
n is called a uniform ac-

cumulation point of a function sequence, {t �→ ρN(t)}∞N=0, t ∈ [−1,1], if there exists
a subsequence of {t �→ ρN(t)}∞N=0 that uniformly converges to t �→ ρ(t). Similarly,
a point v ∈ R

n is called an accumulation point of a sequence {vN }∞N=0, if there exists
a subsequence of {vN }∞N=0 that converges to v.

Assumption 1 It is assumed that the sequence, {(x̄∗
0 , ẋN (·), uN(·))}∞N=N1

has a uni-
form accumulation point, (x∞

0 , q(·), u∞(·)). Moreover, t �→ q(t) and t �→ u∞(t) are
continuous on t ∈ [−1,1].
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Lemma 2 [18] Let tk , k = 0,1, . . . ,N , be the LGL nodes, and wk be the LGL
weights. Suppose ξ(t) is Riemann integrable; then,

∫ 1

−1
ξ(t)dt = lim

N→∞

N∑

k=0

ξ(tk)wk.

Theorem 2 Let {(x̄∗
k , ū∗

k),0 ≤ k ≤ N}∞N=N1
be a sequence of optimal solutions to

Problem BN and {t �→ (xN(t), uN(t))}∞N=N1
be their interpolating function sequence

satisfying Assumption 1. Then, t �→ u∞(t) is an optimal control to the original con-
tinuous Problem B , and x∞(t) = ∫ t

−1 q(τ)dτ + x∞
0 is the corresponding optimal

trajectory.

Proof See Appendix. �

Theorem 2 demonstrates that Problem BN is indeed a consistent approximation
[36] to the continuous optimal control Problem B . In other words, if the optimal so-
lution of the discrete-time Problem BN converges as N increases, then the limit point
must be an optimal solution of the continuous-time Problem B . In practical compu-
tation, the assumptions in Theorem 2 can be verified up to a large N as illustrated
in Sect. 6. In this sense, Theorem 2 provides a certain level of confidence on the
optimality of the computed solutions. An additional level of confidence is provided
in terms of the Covector Mapping Theorem discussed in the subsequent sections.
It should be pointed out that Theorem 2 does not complete convergence analysis.
An important question that remains unanswered is the condition under which a uni-
form accumulation point exists for the sequence of interpolations of the discrete-time
optimal solutions (ẋN (t), uN(t))∞N=N1

. It is well-recognized that convergence analy-
sis beyond consistent approximation is an important and difficult problem [9, 22].
Progress on Euler and Runge-Kutta discretizations are provided in [11, 21]. Similar
results for PS methods are beyond the scope of the present paper.

5 Convergence of the dual variables

As noted in Sect. 1, convergence of dual variables is a critical issue in discrete ap-
proximations to optimal control problems for both theory and practice. Furthermore,
in the design of optimal feedback control systems, dual variables play a critical role
in problem formulation in the construction of the inner loop [50]. Thus, in design-
ing efficient methods, a study of convergence of dual variables takes center stage. In
this section, we explore the link between the KKT multipliers and the discrete-time
costates and clarify the Covector Mapping Theorem of [48]. Throughout this section,
we assume that Assumption 1 holds.
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5.1 Necessary conditions for Problems BN and B

Construct the Lagrangian for Problem BN as

LN = J̄ N +
N∑

k=0

λT
k

(
−

N∑

i=0

x̄iDki + f (x̄k, ūk)

)
+ ν̄T e(x̄0, x̄N ) +

N∑

k=0

μT
k h(x̄k, ūk)

where λk ∈ R
Nx , ν̄ ∈ R

Ne and μk ∈ R
Nh are the KKT multipliers associated with

Problem BN . Let, δP = (N − 1)
3
2 −mx ; then, a feasible point is called a KKT point if

the KKT conditions are approximately satisfied,
∥∥∥∥

L

λk

∥∥∥∥∞
≤ δP , h(x̄k, ūk) ≤ δP · 1, ‖e(x̄0, x̄N )‖∞ ≤ δP , (18)

∥∥∥∥
L

ūk

∥∥∥∥∞
≤ δD,

∥∥∥∥
L

x̄k

∥∥∥∥∞
≤ δD, (19)

‖μk · h(x̄k, ūk)‖∞ ≤ δD, μk ≥ −δD · 1, (20)

where k = 0,1, . . . ,N and 1 = [1, . . . ,1]T with appropriate dimension and δD is a
dual feasibility tolerance. A proper selection of δD will be apparent shortly. Part of
the motivation for δD comes from the convergence criteria used in solving NLPs;
see for example [19]. Motivated by the results of [45] and [48], we use the discrete
weights wk to scale the KKT multipliers as

λ̄k = λk

wk

, μ̄k = μk

wk

.

Then, the KKT conditions can be summarized as follows. (For the purpose of brevity,
we omit a detailed derivation of an evaluation and subsequent simplification of
(18–20); these steps can be found in [48].)

Problem BNλ: Find (x̄∗
k , ū∗

k, λ̄
∗
k, μ̄

∗
k, ν̄

∗), k = 0,1, . . . ,N , such that

∥∥∥∥∥

N∑

i=0

x̄∗
i Dki − f (x̄∗

k , ū∗
k)

∥∥∥∥∥∞
≤ δP ,

‖e(x̄∗
0 , x̄∗

N)‖∞ ≤ δP ,

h(x̄∗
k , ū∗

k) ≤ δP · 1,

∥∥∥∥∥wk

[
N∑

i=0

λ̄∗
i Dki + Fx(x̄

∗
k , ū∗

k) + f T
x (x̄∗

k , ū∗
k)λ̄

∗
k + hT

x (x̄∗
k , ū∗

k)μ̄
∗
k

]
+ ck

∥∥∥∥∥∞
≤ δD, (21)

‖wk [Fu(x̄
∗
k , ū∗

k) + f T
u (x̄∗

k , ū∗
k)λ̄

∗
k + hT

u (x̄∗
k , ū∗

k)μ̄
∗
k]‖∞ ≤ δD,

‖wkμ̄
∗
k · h(x̄∗

k , ū∗
k)‖∞ ≤ δD,

wkμ̄
∗
k ≥ −δD · 1
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where ci = 0 for 2 ≤ i ≤ N − 1 and

c0 = λ̄∗
0 + ∂E

∂x0
(x̄∗

0 , x̄∗
N) +

(
∂e

∂x0
(x̄∗

0 , x̄∗
N)

)T

ν̄∗,

cN = −λ̄∗
N + ∂E

∂xN

(x̄∗
0 , x̄∗

N) +
(

∂e

∂xN

(x̄∗
0 , x̄∗

N)

)T

ν̄∗.

The first-order necessary conditions for Problem B are based on the Minimum
Principle that uses the D-form of the Lagrangian [24]. Let λ(t) be the costate and
μ(t) be the instantaneous KKT multiplier (covector) associated with the Hamiltonian
Minimization Condition. Under suitable constraint qualifications [24], the necessary
conditions for Problem B can be summarized as:

Problem Bλ: If (x∗(·), u∗(·)) is the optimal solution to Problem B , then there exist
(λ∗(·),μ∗(·), ν∗) such that

ẋ∗(t) = f (x∗(t), u∗(t)), (22)

λ̇∗(t) = −Fx(x
∗(t), u∗(t)) − f T

x (x∗(t), u∗(t))λ∗(t) − hT
x (x∗(t), u∗(t))μ∗(t), (23)

0 = Fu(x
∗(t), u∗(t)) + f T

u (x∗(t), u∗(t))λ∗(t) + hT
u (x∗(t), u∗(t))μ∗(t), (24)

0 = e(x∗(1), x∗(−1)), (25)

0 ≥ h(x∗(t), u∗(t)), (26)

0 = μ∗(t)h(x∗(t), u∗(t)), μ∗(t) ≥ 0, (27)

λ∗(−1) = −Ex(−1)(x
∗(−1), x∗(1)) − eT

x(−1)(x
∗(−1), x∗(1))ν∗, (28)

λ∗(1) = Ex(1)(x
∗(−1), x∗(1)) + eT

x(1)(x
∗(−1), x∗(1))ν∗. (29)

The discretization of Problem Bλ is denoted as Problem BλN and can be summa-
rized as:

Problem BλN : Find x̄k , ūk , λ̄k , μ̄k , k = 0,1, . . . ,N , and ν̄0, ν̄N such that

∥∥∥∥∥

N∑

i=0

x̄iDki − f (x̄k, ūk)

∥∥∥∥∥∞
≤ δP ,

‖e(x̄0, x̄N )‖∞ ≤ δP ,

h(x̄k, ūk) ≤ δP · 1,
∥∥∥∥∥

N∑

i=0

λ̄iDki + Fx(x̄k, ūk) + f T
x (x̄k, ūk)λ̄k + hT

x (x̄k, ūk)μ̄k

∥∥∥∥∥∞
≤ δD,

‖Fu(x̄k, ūk) + f T
u (x̄k, ūk)λ̄k + hT

u (x̄k, ūk)μ̄k‖∞ ≤ δD,

‖μ̄k · h(x̄k, ūk)‖∞ ≤ δD, μ̄k ≥ −δD · 1,
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Fig. 1 Schematic for the
covector mapping principle

∥∥∥∥λ̄0 + ∂E

∂x0
(x̄0, x̄N ) +

(
∂e

∂x0
(x̄0, x̄N )

)T

ν̄

∥∥∥∥∞
≤ δD,

∥∥∥∥λ̄N − ∂E

∂xN

(x̄0, x̄N ) −
(

∂e

∂xN

(x̄0, x̄N )

)T

ν̄

∥∥∥∥∞
≤ δD.

Although they appear to be similar, it is apparent that Problem BλN is not the
same as Problem BNλ. That is, as illustrated in Fig. 1, it is clear that dualization
and discretization are not necessarily commutative operations. As noted earlier, a
similar observation has been made by Hager on RK methods. Note however, that
unlike a Runge-Kutta method, the order and scheme of the discretization is naturally
preserved in a PS discretization without any additional conditions. The main points
of Fig. 1 are illustrated by the following example (which is a counter example to the
widely-held notion that if the primals converge, the KKT multipliers associated with
the discretized dynamic constraints converge to the costates).

Example 2 Minimize J [x(·), u(·)] = x(2), subject to

ẋ(t) = u(t), t ∈ [0,2], (30)

x(0) = 0, u(t) ≥ −1. (31)

The necessary conditions

λ̇∗(t) = 0, λ∗(2) = 1,

λ∗(t) − μ∗(t) = 0, (32)

μ∗(t)(−u∗(t) − 1) = 0, μ∗(t) ≥ 0
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Fig. 2 Discrete PS solution with N = 20

uniquely determine the optimal solution as

x∗(t) = −t, u∗(t) = −1,

λ∗(t) = 1, μ∗(t) = 1.

A PS solution for 20 nodes is shown in Fig. 2.

The left plot clearly shows that the primal variables (x̄∗
k , ū∗

k) coincide with the
analytic solution t �→ (x∗(t), u∗(t)). On the other hand, the right plot shows that the
weighted KKT multipliers λ̄∗

k , do not agree with the costate, λ∗(·). If the unweighted
KKT multiplies are used, the disagreements between the multipliers are even worse
(as expected). Clearly, the convergence of the discretized primals does not imply the
convergence of the KKT multipliers to the continuous costates. To clarify this point,
consider the PS discretization of (30), (31). We ignore the tolerances, δP and δD ,
justified by the fact that the optimal continuous-time solutions being polynomials, the
discretized problem can be posed exactly without introducing any feasibility problem.
Thus, an application of our method yields,

Minimize J̄ N = x̄N ,

subject to x̄0 = 0, ūk ≥ −1,0 ≤ k ≤ N and

D

⎛

⎝
x̄0
...

x̄N

⎞

⎠ =
⎛

⎝
ū0
...

ūN

⎞

⎠ . (33)

It is easy to show that, for any N , the discretized problem admits a unique globally
optimal solution: ū∗

k = −1, x̄∗
k = −tk , 0 ≤ k ≤ N , where tk are the LGL nodes. As a

matter of fact, from

[w0,w1, . . . ,wN ] · D = [−1,0, . . . ,0,1]



Connections between the covector mapping theorem 323

we have

[w0,w1, . . . ,wN ] ·
⎛

⎝
ū0
...

ūN

⎞

⎠ = [w0,w1, . . . ,wN ]D
⎛

⎝
x̄0
...

x̄N

⎞

⎠ = x̄N .

Therefore,

x̄N =
N∑

k=0

ūkwk ≥ −
N∑

k=0

wk = −2

and the equality holds if and only if ūk = −1, for all k. With this result, it is easy to
show that x̄k = −tk . Thus, for any fixed N , the discrete optimal solution, (x̄∗

k , ū∗
k) =

(−tk,−1), exists and converges to the continuous-time optimal solution. The left plot
in Fig. 2 demonstrates this point.

Next, the KKT conditions for the discrete problem are

D

⎛

⎜⎜⎜⎜⎜⎝

λ̄∗
0

λ̄∗
1
...

λ̄∗
N−1
λ̄∗

N

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

ν̄

0
...

0
(λ̄∗

N − 1)/wN

⎞

⎟⎟⎟⎟⎠
, (34)

λ̄∗
k = μ̄∗

k, 0 ≤ k ≤ N, (35)

μ̄∗
k(−u∗

k − 1) = 0, μ̄∗
k ≥ 0 (36)

where ν̄ is the multiplier associated with the initial condition. Since the constraint
ūk ≥ −1 is always active at the optimal solution, μ̄∗

k is undetermined in (36). In
addition, (34) has infinitely many solutions since there are N + 2 variables, i.e.,
(λ̄∗

0, . . . , λ̄
∗
N, v̄), but only N + 1 consistent equations. In other words, the KKT multi-

pliers are not unique although the optimal primal solution is unique. It is also straight-
forward to show that the linear independence constraint qualification is violated in
this example but the weaker Mangasarian-Fromovitz constraint qualification [32]
holds. Thus, the KKT multipliers exist but are not unique.

From an optimal control perspective [41], there is a loss of information resulting
from the act of discretization that is independent of the mesh size. This information
loss is different from the well-known notion of hidden convexity [30, 31], since the
differential inclusion, ẋ ∈ {u : u ≥ −1} is convex. The information loss can be re-
stored by supplying the missing information,

λ̄∗
N = 1

to the dual feasibility conditions. This missing condition is obtained simply by com-
paring (34) with (32). With this additional condition, it is easy to see that the KKT
conditions (34–36) admit a unique solution. This is plotted in the right plot of Fig. 2
indicating a perfect match with the costate t �→ λ(t).
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5.2 The augmented KKT conditions

By comparing Problem BλN with Problem BNλ, it is apparent that the transversality
conditions (28), (29) are missing in the KKT conditions. Alternatively, the costate
differential equations are not naturally collocated at the boundary points, −1 and 1.
By restoring this information loss to the KKT conditions, the KKT multipliers can be
mapped to the discretized covectors associated with Problem Bλ. More specially, the
following conditions are needed in addition to the KKT conditions

∥∥∥∥−λ̄∗
0 − ∂E

∂x0
(x̄∗

0 , x̄∗
N) −

(
∂e

∂x0
(x̄∗

0 , x̄∗
N)

)T

ν̄∗
∥∥∥∥∞

≤ δD, (37)

∥∥∥∥λ̄∗
N − ∂E

∂xN

(x̄∗
0 , x̄∗

N) −
(

∂e

∂xN

(x̄∗
0 , x̄∗

N)

)T

ν̄∗
∥∥∥∥∞

≤ δD. (38)

These equations generalize the “closure conditions” identified in [48]. They lead to a
proof of Theorem 3 which clarifies the Covector Mapping Theorem [48].

Theorem 3 (Covector Mapping Theorem) Given any feasible solution, t �→ (x(t),

u(t), λ(t), ν), for Problem Bλ, suppose x(·) ∈ Wmx,∞ and λ(·) ∈ Wmλ,∞ with
mx,mλ ≥ 2. Then, there exists a positive integer N2 such that, for any N > N2, the
augmented KKT conditions, i.e., (18–20) plus (37), (38), have a feasible solution with

a primal feasibility tolerance of δP = (N − 1)
3
2 −mx and a dual feasibility tolerance

of δD = (N − 1)
3
2 −m, where m = min{mx,mλ}.

The proof of this theorem is very similar to the proof of Theorem 1. The basic idea
is to construct a discrete-time solution around the continuous solution of Problem Bλ,
such that it satisfies both the KKT conditions and the transversality conditions (37),
(38). For the purpose of brevity, we skip this proof.

Remark 8 In practice, we often observe the convergence of the primal variables, and
as illustrated in Example 2, the KKT multipliers do not converge to the continuous-
time covectors. In the absence of Theorem 3, the existence of a solution to the aug-
mented KKT conditions was in doubt. Theorem 3 guarantees the existence of a so-
lution to both the KKT conditions and the augmented KKT conditions. When mul-
tiple solutions exist for the KKT multipliers, the closure conditions, (37), (38), act
as a selection criterion in picking the correct set of KKT multipliers that map to the
continuous-time covectors. In the event the KKT conditions admit a unique solution,
the closure conditions do not introduce an infeasibility problem into the augmented
KKT conditions.

We now establish a final theorem on the convergence of the sequence of the
mapped dual variables. This is done in a manner similar to the analysis of the conver-
gence of the primal variables. Let (x̄∗

k , ū∗
k, λ̄

∗
k, μ̄

∗
k, ν̄

∗), k = 0,1, . . . ,N , be a solution
to the augmented KKT conditions, i.e., Problem BNλ plus the closure conditions
(37–(38). Consider a sequence of the augmented KKT conditions with N increas-
ing from N2 to infinity. Correspondingly we get a sequence of discrete solutions
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{(x̄∗
k , ū∗

k, λ̄
∗
k, μ̄

∗
k, ν̄

∗), k = 0,1, . . . ,N}∞N=N2
. Furthermore, let t �→ (xN(t), λN(t)) de-

note N th order interpolating polynomials of (x̄∗
k , λ̄∗

k), and t �→ (uN(t),μN(t)) as any
interpolating function of (ū∗

k, μ̄
∗
k), i.e.

xN(t) =
N∑

k=0

x̄∗
k φk(t), uN(t) =

N∑

k=0

ū∗
kψk(t),

λN(t) =
N∑

k=0

λ̄∗
kφk(t), μN(t) =

N∑

k=0

μ̄∗
kψk(t),

where φk(t) is the Lagrange interpolating polynomial defined by (4) and ψk(t) is
any continuous function such that ψk(tj ) = 1, if k = j and ψk(tj ) = 0, if k �= j . For
instance, ψk(t) can be a linear or spline interpolant.

Assumption 2 It is assumed that the sequence {(x̄∗
0 , λ̄∗

0, ν̄
∗, ẋN (·), uN(·), λ̇N (·),

μN(·))}∞N=N2
has a uniform accumulation point (x∞

0 , λ∞
0 , ν̄∞, η(·), u∞(·), ρ(·),

μ∞(·)), where t �→ (η(t), u∞(t), ρ(t),μ∞(t)) are continuous functions over t ∈
[−1,1].

Theorem 4 Let δP = (N − 1)
3
2 −mx with mx ≥ 2 and δD = (N − 1)

3
2 −m with m ≥ 4.

Let {t �→ (xN(t), uN(t), λN(t),μN(t))}∞N=N2
be a sequence of interpolating func-

tions constructed from solutions to the augmented KKT conditions. Suppose Assump-
tion 2 holds. Then the functions (x∞(t), u∞(t), λ∞(t),μ∞(t)) satisfy all the neces-
sary conditions for optimality as indicated by Problem Bλ, where

x∞(t) =
∫ t

−1
η(τ)dτ + x∞

0 ,

λ∞(t) =
∫ t

−1
ρ(τ)dτ + λ∞

0 .

A sketch of the proof This theorem can be proved in the same manner as The-
orem 2. Therefore only a sketch is provided. In the proof of Theorem 2, we
already showed that (x∞(·), u∞(·)) satisfy the state dynamics (22), path con-
straint (26) and endpoint condition (25). As for the adjoint equation, suppose t �→
(x∞(t), λ∞(t), u∞(t),μ∞(t)) does not satisfy (23). Then there is a time instance,
t ′ ∈ [−1,1], such that

λ̇∞(t ′) + Fx(x
∞(t ′), u∞(t ′)) + f T

x (x∞(t ′), u∞(t ′))λ∞(t ′)

+ hT
x (x∞(t ′), u∞(t ′))μ∞(t ′) �= 0.

By assumption, it is easy to show that {t �→ (xN(t), ẋN (t), uN(t), λN(t), λ̇N (t),

μN(t))}∞N=N2
has a subsequence that converges uniformly to {t �→ (x∞(t),

ẋ∞(t), u∞(t), λ∞(t), λ̇(t),μ∞(t))}. Denote the subsequence as {N = Mi}∞i=1, Mi ∈
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{1,2, . . .} with limi→∞ Mi = ∞. Since the LGL nodes, tk, k = 0,1, . . . ,N , are dense
in [−1,1] as N → ∞ [18], there exists a sequence kMi satisfying

0 < kMi < Mi and lim
i→∞ tkMi = t ′.

Thus

λ̇∞(t ′) + Fx(x
∞(t ′), u∞(t ′)) + f T

x (x∞(t ′), u∞(t ′))λ∞(t ′)

+ hT
x (x∞(t ′), u∞(t ′))μ∞(t ′)

= lim
i→∞{λ̇Mi (tkMi ) + Fx(x

Mi (tkMi ), u
Mi (tkMi ))

+ f T
x (xMi (tkMi ), u

Mi (tkMi ))λ
Mi (tkMi )

+ hT
x (xMi (tkMi ), u

Mi (tkMi ))μ
Mi (tkMi )} �= 0. (39)

Because λN(·) is an N th order polynomial, we have

λ̇Mi (tkMi ) =
Mi∑

j=0

λ̄∗
jDkMi ,j .

On the other hand, from (21) and the fact kMi �= 0,Mi , we have

lim
i→∞

∥∥λ̇Mi (tkMi ) + Fx(x
Mi (tkMi ), u

Mi (tkMi )) + f T
x (xMi (tkMi ), u

Mi (tkMi ))λ
Mi (tkMi )

+ hT
x (xMi (tkMi ), u

Mi (tkMi ))μ
Mi (tkMi )

∥∥∞

≤ lim
i→∞

δD

wkMi

≤ lim
i→∞

Mi(Mi + 1)

2
δD

= lim
i→∞

Mi(Mi + 1)

2
(Mi − 1)

3
2 −m = 0 (40)

where the last few equations in (40) follow from the fact that for any N , wk ≥ 2
N(N+1)

,
0 ≤ k ≤ N [18], and the assumption m ≥ 4. Because (40) contradicts (39), the adjoint
equation, (23), holds for all t ∈ [−1,1].

Equations (24), (27), (28) and (29) can be proved in a similar way. Note that to
prove transversality conditions (28) and (29), the closure conditions (37) and (38)
have to be used.

Remark 9 The regularity of the optimal solution required in Theorems 3 and 4
are different. To prove the feasibility of the augmented KKT system, we need
(x∗(·), λ∗(·)) ∈ Wm,∞ with m ≥ 2. But to prove the convergence of the costate, we
need (x∗(·), λ∗(·)) ∈ Wm,∞ with m ≥ 4. This requirement on higher regularity comes
from the fact that in Problem BNλ the adjoint equations are naturally weighted by wk

which converges to zero at a quadratic rate as N → ∞; consequently, we need the
dual feasibility tolerance δD to converge faster than wk to ensure the convergence
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Fig. 3 Artist’s view of NPSAT1
in orbit

of the discrete adjoint equations. Therefore, to complete the loop in Fig. 1, a higher
regularity of the optimal solution is required.

Remark 10 Theorems 3 and 4 were developed by choosing δD to be independent of
k = 0,1, . . . ,N . If δD is also weighted by wk , it is possible to reduce the regularity
required in Theorem 4 to m ≥ 2; this would, however, require a substantially longer
derivation of the results. In order to maintain the focus of this paper to the main
points, we assumed a stronger-than-necessary regularity in Theorem 4.

6 Optimal attitude control of NPSAT1 spacecraft

NPSAT1 is a small satellite being built at the Naval Postgraduate School, and is
scheduled to be launched in September 2007. It is currently in an assembly stage.
An artist’s view of it in orbit is shown in Fig. 3. The spacecraft uses magnetic actu-
ators and a pitch momentum wheel for attitude control. One experiment onboard the
NPSAT1 spacecraft is to demonstrate in flight the application of the PS method for
time-optimal attitude maneuvers. Choosing the standard quaternion and body rates as
the state variables, the dynamical equations of motion for NPSAT1 are given by [17]:

q̇1(t) = 1

2
[ωx(t)q4(t) − ωy(t)q3(t) + ωz(t)q2(t) + ω0q3(t)], (41)

q̇2(t) = 1

2
[ωx(t)q3(t) + ωy(t)q4(t) − ωz(t)q1(t) + ω0q4(t)], (42)

q̇3(t) = 1

2
[−ωx(t)q2(t) + ωy(t)q1(t) + ωz(t)q4(t) − ω0q1(t)], (43)
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q̇4(t) = 1

2
[−ωx(t)q1(t) − ωy(t)q2(t) − ωz(t)q3(t) − ω0q2(t)], (44)

ω̇x(t) = I2 − I3

I1

[
ωy(t)ωz(t) − 3

μ

r3
0

C23(q(t))C33(q(t))

]

+ 1

I1
[Bz(q(t), t)u2(t) − By(q(t), t)u3(t)], (45)

ω̇y(t) = I3 − I1

I2

[
ωx(t)ωz(t) − 3

μ

r3
0

C13(q(t))C33(q(t))

]

+ 1

I2
[Bx(q(t), t)u3(t) − Bz(q(t), t)u1(t)], (46)

ω̇z(t) = I1 − I2

I3

[
ωx(t)ωy(t) − 3

μ

r3
0

C13(q(t))C23(q(t))

]

+ 1

I3
[By(q(t), t)u1(t) − Bx(q(t), t)u2(t)] (47)

where ω0 is angular velocity of the orbit with respect to the inertial frame; (I1, I2, I3)

are the principal moments of inertia of NPSAT1; μ = 3.98601×1014 m3/s2 is Earth’s
gravitational constant; r0 is the distance from the mass center of NPSAT1 to the center
of the Earth; Cij (q) denote the quaternion-parameterized ij th element of the matrix,

C(q) =
⎡

⎣
q2

1 − q2
2 − q2

3 + q2
4 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) q2
2 − q2

1 − q2
3 + q2

4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) q2
3 − q2

1 − q2
2 + q2

4

⎤

⎦ ∈ SO(3).

(Bx(q, t),By(q, t),Bz(q, t)) are the components of the Earth’s magnetic field in the
body frame,

[Bx(q, t),By(q, t),Bz(q, t)]T = C(q)[B1(t),B2(t),B3(t)]T . (48)

(B1(t),B2(t),B3(t)) are the time-varying components of the Earth’s magnetic field
in the orbit frame [17]. The controls, (u1, u2, u3) ∈ R

3, are the dipole moments
on NPSAT1 that are bounded by the maximum available dipole moment, |ui | ≤
30 A m2, i = 1,2,3. Clearly, the dynamics of NPSAT1 are quite complex with
substantial nonlinearities. Note also that the system is not autonomous. Further-
more, that the quaternions must lie on S3 is given by the state variable constraint,
q2

1 (t) + q2
2 (t) + q2

3 (t) + q2
4 (t) = 1. Thus, the NPSAT1 control system contains both

state and control constraints.
A benchmark optimal control problem for the NPSAT1 spacecraft is a minimum

time slew for a horizon-to-horizon scan. A solution to this problem is expected to
demonstrate the agility of NPSAT1; however, it is well-known that minimum-time
control problems typically take a substantial amount of energy. Hence, an alternative
benchmark control problem for the NPSAT1 is a minimum-energy control problem
with the final time fixed near the minimum time. This problem is expected to demon-
strate the agility of NPSAT1 while consuming the least amount of electrical energy.
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Fig. 4 The left plot shows the controls for 30 and 100 nodes. The solid lines are generated from a 100-node
solution with linear interpolation. The dotted lines are discrete optimal controls for 30 nodes. The right
figure shows the switching function, t �→ s1(t), and the corresponding control, t �→ u1(t)

The electrical power is given by the square of the current flow through the magnetic
coils; hence, the quadratic cost functional,

J [x(·), u(·)] =
∫ tf

t0

u2
1(t) + u2

2(t) + u2
3(t) dt

directly measures energy. A benchmark set of endpoint conditions for NPSAT1 are
given by [17],

[t0, tf ] = [0,300],
[q(t0),ω(t0)] = [0,0,0,1,0,−0.0011,0], (49)

[q(tf ),ω(tf )] = [sin(φ/2),0,0, cos(φ/2),0,7.725 × 10−4,7.725 × 10−4]

where φ = 135◦ is the principal rotation angle. All of the following solutions to
this problem were obtained by way of DIDO [42], and using the NPSAT1 model
parameters: (I1, I2, I3) = (5,5.1,2) kg m2; ω0 = 0.00108 rad/s; r0 = 6938 km and
i = 35.4◦.

A candidate control solution to the optimal control problem is shown in the left
plot of Fig. 4 for 30 and 100 nodes. From the negligible difference between the
30-node solution and the 100-node solution, it is apparent that the discrete optimal
solution has indeed converged. Furthermore, despite the fact that the NPSAT1 sys-
tem is highly nonlinear, it is clear that a mere 30-node solution is quite adequate for
practical purposes. As a matter of fact, the states obtained from a numerical (RK4/5)
propagation of the 30-node discrete-time optimal controller is shown in Fig. 5 along
with the 30-node state solution. Clearly, the discrete optimal states match the propa-
gated trajectory quite accurately, which numerically demonstrates the feasibility and
accuracy of the 30-node discrete optimal controller.

To further investigate the optimality of the computed solution, we apply Pontrya-
gin’s Minimum Principle. From the Hamiltonian Minimization Condition, it is quite
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Fig. 5 Quaternions and angular velocities. Dots represent the discrete optimal trajectory from a 30-node
solution. Solid lines are the state trajectories generated by propagating the 30-node discrete optimal con-
troller

straightforward to show that a candidate optimal controller must satisfy,

u1(t) =
⎧
⎨

⎩

−30; if s1(t) ≤ −30,

s1(t); if − 30 < s1(t) < 30,

30; if s1(t) ≥ 30

where s1(t) = − 1
2 (

λ7(t)
I3

By(q, t) − λ6(t)
I2

Bz(q, t)). Obviously, a check on the optimal-
ity (extremality) of the solution via the Minimum Principle requires a computation
of the costate trajectory, t �→ λ(t). We compute these costates by way of the Covec-
tor Mapping Theorem. A plot of the control, t �→ u1(t), and its switching function,
t �→ s1(t), for N=100 is shown in the right plot of Fig. 4. It is clear that the costates
obtained from the Covector Mapping Theorem together with the candidate optimal
control, t �→ u1(t), satisfy the Hamiltonian Minimization Condition. In other words,
the Covector Mapping Theorem facilitates quick checks on the optimality of the com-
puted solution without the trials and tribulations of generating and solving two-point-
boundary-value problems. Tests on other controls and their switching functions reveal
the same conclusion. We omit these plots for the purposes of brevity.
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Appendix

Proof of Theorem 2 By assumption, there is a subsequence Ni ∈ 1,2, . . . , with
limi→∞ Ni = ∞ such that

lim
i→∞(ẋNi (t), uNi (t)) = (q(t), u∞(t))
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uniform in t . It is easy to show (under Assumption 1)

lim
i→∞xNi (t) = x∞(t) (50)

uniformly on t ∈ [−1,1]. The remaining part of the proof is broken into three steps.
First, we show that (x∞(t), u∞(t)) is a feasible solution to Problem B . Then, we
prove the convergence of the cost function J̄ Ni (X̄∗, Ū∗) to the continuous cost func-
tion J (x∞(·), u∞(·)), and finally show that (x∞(t), u∞) is indeed an optimal solu-
tion of Problem B .

Step 1 To prove that (x∞(t), u∞(t)) is a feasible solution to Problem B , we first
need to show that (x∞(t), u∞(t)) satisfies the state equation (1). By the contradiction
argument, suppose (x∞(t), u∞(t)) is not a solution of the differential equation (1).
Then there is a time t ′ ∈ [−1,1] so that

ẋ∞(t ′) − f (x∞(t ′), u∞(t ′)) �= 0.

Since the LGL nodes tk are dense with N → ∞ [18], there exists a sequence kNi

satisfying

0 < kNi < Ni and lim
i→∞ tkNi = t ′.

Thus

ẋ∞(t ′) − f (x∞(t ′), u∞(t ′)) = lim
i→∞(ẋNi (tkNi ) − f (xNi (tkNi ), u

Ni (tkNi )) �= 0. (51)

Because xN(t) is a N th order polynomial, we have

ẋNi (tkNi ) =
Ni∑

j=0

x̄∗
j DkNi j .

Thus from (11) and the fact that (xN(t), uN(t)) are the interpolating functions of
{(x̄∗

k , ū∗
k),0 ≤ k ≤ N}, the following holds

lim
i→∞(ẋNi (tkNi ) − f (xNi (tkNi ), u

Ni (tkNi )) = lim
i→∞(Ni − 1)

3
2 −m = 0. (52)

This contradicts (51); therefore, (x∞(t), u∞(t)) must be a solution of the differential
equation (1).

The path constraint can be proved by the same contradiction argument. As for the
end-point condition e(x∞(−1), x∞(1)) = 0, it follows directly from the convergence
property, since

e(x∞(−1), x∞(1)) = lim
i→∞ e(xNi (−1), xNi (1)) = lim

i→∞ e(x̄∗
0 , x̄∗

Ni
) = 0. (53)
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Step 2 In this step, we will show that

lim
i→∞ J̄ Ni (X̄∗, Ū∗) = J (x∞(·), u∞(·)),

where

J̄ Ni (X̄∗, Ū∗) = E(x̄∗
0 , x̄∗

Ni
) +

Ni∑

k=0

F(x̄∗
k , ū∗

k)wk,

J (x∞(·), u∞(·)) = E(x∞(−1), x∞(1)) +
∫ 1

−1
F(x∞(t), u∞(t))dt.

Since (xNi (t), uNi (t)) converge to (x∞(t), u∞(t)) uniformly, we have,

lim
i→∞‖xNi (tk) − x∞(tk)‖∞ = lim

i→∞‖x̄∗
k − x∞(tk)‖∞ = 0, (54)

lim
i→∞‖uNi (tk) − u∞(tk)‖∞ = lim

i→∞‖ū∗
k − u∞(tk)‖∞ = 0 (55)

uniformly in k. Therefore, by the fact that F(x,u) is continuously differentiable,
there exists a constant M > 0 independent of Ni , such that

‖F(x∞(tk), u
∞(tk)) − F(x̄∗

k , ū∗
k)‖∞ ≤ M(‖x∞(tk) − x̄∗

k ‖∞ + ‖u∞(tk) − ū∗
k‖∞)

for all 0 ≤ k ≤ Ni . Furthermore, F(x∞(t), u∞(t)) is continuous in t . Thus, by
Lemma 2, we have

∫ 1

−1
F(x∞(t), u∞(t))dt = lim

i→∞

Ni∑

k=0

F(x∞(tk), u
∞(tk))wk.

Therefore,

∫ 1

−1
F(x∞(t), u∞(t))dt

= lim
i→∞

(
Ni∑

k=0

F(x̄∗
k , ū∗

k)wk +
Ni∑

k=0

[F(x∞(tk), u
∞(tk)) − F(x̄∗

k , ū∗
k)]wk

)
.

From the uniform convergence of (54) and (55) and the property of wk ,
∑N

k=0 wk = 2,
we know that

lim
i→∞

∥∥∥∥∥

Ni∑

k=0

(F (x∞(tk), u
∞(tk)) − F(x̄∗

k , ū∗
k))wk

∥∥∥∥∥∞

≤ lim
i→∞M

Ni∑

k=0

(‖x∞(tk) − x̄∗
k ‖∞ + ‖u∞(tk) − ū∗

k‖∞)wk = 0.
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Thus,

∫ 1

−1
F(x∞(t), u∞(t))dt = lim

i→∞

Ni∑

k=0

F(x̄∗
k , ū∗

k)wk. (56)

It is obvious that

lim
i→∞E(x̄∗

0 , x̄∗
Ni

) = E(x∞(−1), x∞(1)). (57)

Thus the limit in (6) follows from (56) and (57).

Step 3 Denote (x∗(t), u∗(t)) as any optimal solution of Problem B with the prop-
erty that x∗(t) ∈ Wm,∞, m ≥ 2 (the optimal solution may not be unique). According
to Theorem 1, there exists a sequence of feasible solutions, (x̃N

k , ũN
k )∞N=N1

, of Prob-

lem BN that converges uniformly to (x∗(t), u∗(t)). Now, from (6) and the optimality
of (x∗(t), u∗(t)) and (x̄∗

k , ū∗
k), we have

J (x∗(·), u∗(·)) ≤ J (x∞(·), u∞(·)) = lim
i→∞ J̄ Ni (X̄∗, Ū∗) ≤ lim

i→∞ J̄ Ni (X̃, Ũ ). (58)

By using the same arguments as in Step 2, it is straightforward to show that

J (x∗(·), u∗(·)) = lim
i→∞ J̄ Ni (X̃, Ũ ), (59)

since (x̃N
k , ũN

k )∞N=N1
converge uniformly to (x∗(t), u∗(t)). Equations (58) and (59)

imply that

J (x∗(·), u∗(·)) = J (x∞(·), u∞(·)).
This is equivalent to saying that (x∞(t), u∞(t)) is a feasible solution that achieves the
optimal cost. Therefore, (x∞(t), u∞(t)) is an optimal solution to the optimal control
Problem B . Thus, the conclusions of Theorem 2 follow. �
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