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Abstract. A new computational framework for computer-aided convex
analysis is proposed and investigated. Existing computational frame-
works are reviewed and their limitations pointed out. The class of piece-
wise linear-quadratic functions is introduced to improve convergence and
stability. A stable convex calculus is achieved using symbolic-numeric
algorithms to compute all fundamental transforms of convex analysis.
Our main result states the existence of efficient (linear time) algorithms
for the class of piecewise linear-quadratic functions. We also recall that
such class is closed under convex transforms. We illustrates the results
with numerical examples, and validate numerically the resulting com-
putational framework.

1. Introduction

Computational convex analysis focuses on developing efficient tools to
compute fundamental transforms arising in convex analysis. Symbolic com-
putation tools have been developed [4, 5, 14], and have allowed more insight
into the calculation of the Legendre-Fenchel conjugate (also called Fenchel
conjugate, convex conjugate, or —in the context of convex analysis— con-
jugate) and related transforms. When such tools are not applicable e.g.
when there is no closed form, fast transform algorithms perform numerical
computation efficiently.

Although the early idea of efficient numerical computation of convex
transforms can be traced back to [29], the development of efficient algorithms
started with the note [6] on the Fast Legendre Transform (FLT), which was
subsequently investigated in [7, 23]. The FLT algorithm was also indepen-
dently presented in [32, 36]. Its log-linear worst-case time complexity was
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subsequently improved with the Linear-time Legendre transform (LLT) al-
gorithm [24] (see also [25] for the description of a numerical implementation
of the LLT algorithm).

Recently, several new linear fast algorithms have been investigated [18,
27]. They take advantage of the equivalence between the computation of
the conjugate and of the Moreau envelope [35, Example 11.26c] also called
the Moreau–Yosida approximate, Yosida Approximate or Moreau–Yosida
regularization. The Moreau envelope goes back to the work of Yosida [39]
on maximal monotone operators, and its behaviour is well known in the
fields of convex analysis [28, 29, 30, 33] and variational analysis [35, Chapter
12]. Its associated transform, the proximal mapping, has been extensively
studied through the analysis of the proximal point algorithm [34], whose
convergence properties are well known [1, 13, 22].

The fast algorithms are not limited to computing the conjugate or the
Moreau envelope. For example, Moreau [29] already noted that the set of
proximal mappings is convex, although an explicit formula for the convex
function whose proximal mapping is the convex combination of two proximal
mappings was only recently presented [3]. The resulting transform, named
the proximal average in [2], combines several fundamental operations of
convex analysis: addition, scalar multiplication, conjugation, and regular-
ization with the Moreau envelope. Other transforms related to the Moreau
envelope include the Lasry-Lions double envelope, the proximal hull, the
inf-convolution of convex functions, and the deconvolution of convex func-
tions [17, 35]. They are all computable by combining fast algorithms.

Beyond computer-aided convex analysis, the FLT algorithm and the faster
LLT algorithm have been used in efficient numerical simulations of the
Burger’s equation, see for example [11, 31]. The LLT has also found ap-
plications in robotics [20], network communication [19], pattern recogni-
tion [26], numerical simulation of multiphasic flows [15], and analysis of the
distribution of chemical compounds in the atmosphere [21]. The Moreau
envelope is an extension of the distance transform encountered in image
processing, and several authors have investigated fast algorithms in that
context [8, 9, 10, 12, 37] (see also [26] for the explicit application of the
LLT algorithm to the computation of the distance transform). The inf-
convolution and addition of convex functions are also related to the Linear
Cost Network Flow problem on Series-Parallel Networks [38].

We summarize the intrinsic framework of fast algorithms, and point out
their limitations in Section 2. We then consider the parametric framework
introduced in [18], which implicitly model the domain of the conjugate in
Section 3. The underlying models are explicited in Section 4, and the class
of piecewise linear-quadratic (PLQ) functions is introduced in Section 5 to
remedy shortcomings in the implicit and parametric frameworks. In contrast
to these frameworks, the PLQ functions are closed under standard convex
operations, and can be manipulated with linear time algorithms. We present
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numerical examples in Section 6 while Section 7 introduces our numerical
package, and validates the algorithms numerically. We conclude the paper
in Section 8.

Unless otherwise stated, we restrict our framework to lower semicontinu-
ous (lsc) proper extended-valued convex functions on the real line. (Future
extensions to functions of several variables will be considered in Section 8.)
Note that all algorithms for univariate functions extend straightforwardly to
separable functions. So checking that (‖ · ‖2/2)∗ = ‖ · ‖2/2 can be performed
in our framework. We denote IS the indicator function of a set S: IS(x) = 0
when x ∈ S, and IS(x) = +∞ otherwise.

2. Discrete convex Transform

In this section, we recall the computational framework for fast algo-
rithms and point out their limitations for computing composition of con-
vex transforms. We recall that the domain of a lower semicontinuous (lsc)
proper extended-valued convex function f : R → R ∪ {+∞} is defined by
Dom f := {x ∈ R|f(x) < +∞}. (A function is proper if its domain is
nonempty.)

Computing fundamental transforms of convex analysis is reduced to a dis-
crete optimization problem. For example, the computation of the conjugate
or Legendre-Fenchel transform

(1) f∗(s) := sup
x∈R

[sx − f(x)]

is approximated with the discrete Legendre transform

(2) f∗
n(sj) := max

i
[sjxi − f(xi)]

where the function f is only evaluated at the points xi, i = 1 . . . n, and the
conjugate is approximated at the slopes sj, j = 1 . . . m. The key point we
are interested in is evaluating the transform on a grid, and not at a single
point. By evaluating the transform on the full grid, we can take advantage
of evaluations at other points to speed up computation.

We focus on the efficient computation of (2) in terms of worst-case time
complexity. While a brute force computation has an O(nm) complexity
(evaluate a maximum over n points for m slopes), an efficient (linear-time)
algorithm like the LLT algorithm [24] evaluates (2) in O(n + m).

Convergence results [7, 23] allow us to approximate (1) from (2) as follow.
Indeed, when the function or its transform have an unbounded domain, we
enlarge the grid to obtain a more accurate numerical approximation of its
domain i.e. we consider intervals [a, b] with a → −∞ and b → +∞. Then
we fix a and b, and increase the number of points in the grid by decreasing
the grid stepsize.

For the sake of completeness we recall the main convergence facts.

Fact 2.1. Assume f : R → R ∪ {+∞} is proper.

Convergence on a bounded domain: (see [7, 23, 24]).
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(i) If f is upper semi-continuous on [a, b], then f∗
n converges point-

wise to f∗
[a,b](s) := supx∈[a,b][sx − f(x)].

(ii) If f is continuously twice differentiable on an open interval con-
taining [a, b], then

max
[a,b]

|f∗
[a,b] − f∗

n| ≤
1

2

(b − a)2

n2
max
[a,b]

f ′′.

Convergence on unbounded domains: (see [16, 24])
The following equivalence holds for any s ∈ R, and any a > 0

∂f∗(s) ∩ [−a, a] 6= ∅ ⇔ f∗
[−a,a](s) = f∗(s),

where ∂f is the subdifferential in the sense of convex analysis

∂f(x) := {s ∈ R : f(y) ≥ f(x) + s(y − x) for all y}.
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(a) Convergence by enlarging the do-
main: the conjugate of f(x) := |x| con-
verges to I[−1,1](x) the indicator func-
tion of the interval [−1, 1]
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(b) Convergence by decreasing the grid
stepsize: the discrete conjugate of the
function f(x) := x2/2 converges to f∗ =
f .

Figure 1. Convergence of the discrete Legendre transform.

Figure 1(a) illustrates an approximation of the domain: increasing the
size of the grid for xi gives a better approximation of the conjugate (the
slopes converge to the two vertical lines), which is the indicator function
of the interval [−1, 1]. Figure 1(b) shows an approximation of the function
within the domain: reducing the grid stepsize gives a better approximation
(the approximation is the piecewise linear function; it converges to the exact
conjugate, which is the quadratic function).

We will see in Section 5 how the approximation of the domain can be
avoided altogether by using a more general class of functions than the piece-
wise linear functions. The convergence on the domain will also be improved
by using piecewise quadratic functions instead of piecewise linear functions.

Similarly, the computation of the Moreau envelope

Mλ(s) := inf
x∈R

[

(s − x)2

2λ
+ f(x)

]
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for all values of s in an interval [a, b] (λ > 0 is a fixed parameter) is approx-
imated with the discrete Moreau envelope

Mn,λ(sj) := min
i

[

(sj − xi)
2

2λ
+ f(xi)

]

where i = 1 . . . n, and j = 1 . . . m. Note that the Moreau envelope is a
special case of the inf-convolution operator

f�g(x) := inf
y

[f(x − y) + g(y)].

Throughout the paper we will use the following facts.

Fact 2.2. [17, X.2.1.3]
Assume f and g are both lsc convex proper functions and Dom f∗ ∩Dom g∗

is nonempty. Then (f�g)∗ = (f∗ + g∗)∗

Fact 2.3. [35, 11.26c] and [27, Proposition 3]
The following formula holds for any function f

(3) Mλ(s) =
s2

2λ
−

1

λ

(

λf +
| · |2

2

)∗

(s).

Formula 3 implies that as far as computational algorithms are concerned,
computing the conjugate is equivalent to computing the Moreau envelope.
So any efficient (linear-time) algorithm to compute one transform can be
used to compute the other.

The framework is the same for all the fast transform algorithms previ-
ously considered [27]: the computation is restricted to a grid of points, and
convergence results are employed to obtain a numerical approximation of
the transform under consideration.

Unfortunately, the fast algorithm approach becomes awkward when we
consider transforms like the proximal average

P(f0, λ, f1) :=

[

(1 − λ)

(

f0 +
1

2
| · |2

)∗

+ λ

(

f1 +
1

2
| · |2

)∗]∗

−
1

2
| · |2.

While it decomposes in several transforms, functions resulting from inter-
mediate computations have unbounded domains. In other words, even when
the input function requires only few grid points and we only want a coarse
approximation of the transform, we may have to compute on large grids
with a prohibitive number of points during intermediate computations.

Consider the following example.

Example 2.4. Let f0(x) := −x, f1(x) := x, and compute their proximal
average f := P(f0, 1/2, f1). The conjugate of f0 (resp. f1) is f∗

0 (s) =
I{−1}(s) (resp. f∗

1 (s) = I{1}(s)). The Moreau envelope of f∗
0 (resp. f∗

1 ) is

f∗
0�1/2| · |2 = (x+1)2/2 (resp. f∗

1 �1/2| · |2 = (x−1)2/2). Since the domain
of both Moreau envelopes is R, computing their average requires modeling
the domain: taking a large number of points to numerically approximate the
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domain. Failing to do that results in a poor numerical approximation of
the sum, which propagates to a poor approximation of the conjugate, and
eventually to a poor approximation of the proximal average.

In fact, if we only consider the convergence required due to unbounded
domains and ignore the convergence required by decreasing the grid stepsize,
the combination of fast discrete algorithms to compute the proximal average
— add the energy x2/2, apply the LLT, build the convex combination, apply
the LLT, and subtract the energy — results in the following function























+∞ if |x| > b,

(2λ − 1)x − 2λ(1 − λ) if 2(1 − λ) − b ≤ x ≤ b − 2λ,
λ

2(1−λ)x
2 + λ+λb−1

1−λ x + λb(4λ+b−4)
2(1−λ) if − b ≤ x ≤ 2(1 − λ) − b,

1−λ
2λ x2 + λ−b+λb

λ x + b(4λ2+b−λb−4λ)
2λ if b − 2λ ≤ x ≤ b

where f0 (resp. f1) is approximated with −x+I[−b,b](x) (resp. x+I[−b,b](x)),
and b > 1.

Even though the functions f0 and f1 are linear, the fast algorithm frame-
work requires an (unnecessary) technical knowledge: in addition to guessing
the domain on which to calculate the convex combination for each of the
intermediate operations, we now need to increase b to +∞ to guarantee ac-
curate approximations. When b is chosen large enough, we finally have to
decrease the grid stepsize to achieve our desired approximation.

To use the fast numerical algorithms to compute the proximal average, we
have to keep track of four sets: The domain of f0, the domain of f1, the set
that approximates the domain of (1−λ)(f0 + | · |2/2)∗ +λ(f1 + | · |2/2)∗, and
the domain on which we want to compute P(f0, λ, f1). Section 5 presents a
new model that does not require such tracking. It thus greatly simplify the
computational framework, and the technical knowledge to compute compo-
sitions of convex operator such as the proximal average.

The next section considers another existing computational framework
which has a better modeling of the domain.

3. Parametric convex transforms

We summarize the recent introduction of a parametric algorithm [18] to
compute the conjugate (which using (3) can also be used to compute the
Moreau envelope), generalize the approach to a full convex calculus, and
point out the limitations of such a framework.

Recently, the numerical computation of the conjugate was investigated
using the parametrization

{

s ∈ ∂f(x),

f∗(s) = sx − f(x);
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for x ∈ R. The term parametrization comes from the description of the
conjugate: instead of returning a function f∗, the algorithm returns a para-
metric description of the planar curve (s, f∗(s)). Note that we no longer
have access to f∗(s) at any slope s, we only obtain f∗ on the range of ∂f .
The idea relies on the geometric characterization of the epigraph of f∗ whose
extreme points are obtained using the parametrization, then the epigraph
is completed by affine parts to recover the full graph of f∗. Consider the
following example.

Example 3.1. Take f(x) := |x|. Then ∂f(x) = {−1} when x < 0, ∂f(x) =
[−1, 1] when x = 0, and ∂f(x) = {1} when x > 0. So the parametrization
above gives

• for x < 0, s = −1 and f∗(s) = sx − f(x) = −x − |x| = 0.
• for x = 0, s ∈ [−1, 1] and f∗(s) = 0.
• for x > 0, s = 1 and f∗(s) = x − |x| − 0.

Consequently, f∗(s) = 0 for s ∈ [−1, 1]. For any s not in the range of ∂f ,
which is [−1, 1], f∗(s) = +∞. We obtain the right answer: f∗ = I[−1,1].

While the framework is different from Section 2, the fast algorithms can
be formalized in the parametric framework as follow. Their computation of
the conjugate amounts to computing the function

(xi, fi, sj) 7→ (sj, f
∗
j ),

where xi is a primal grid point, fi is an approximation of f(xi), sj is a dual
grid point, and f∗

j is an approximation of f∗(sj). Note that the algorithms

really return f∗
j since sj is part of the input, but we write the pair (sj , f

∗
j )

to emphasize the comparison with the parametric framework of the current
section. The points (sj , f

∗
j ) are an approximation of the graph of f∗ in the

plane.
To simplify our presentation, we assume the function f is twice differen-

tiable for the remainder of this section only. Note that contrary to second
order results which do not hold when f is not twice differenciable, the first
order results still hold by replacing the derivative f ′ with the subgradient
∂f when f is not differentiable.

In the parametric framework, given a discretization fi ≈ f(xi) of a func-
tion f and of its derivatives gi ≈ f ′(xi), hi ≈ f ′′(xi) on a grid xi, we define
the discretization of the conjugate and its derivatives by

(4) Conj : (xi, fi, gi, hi) 7→ (gi, xigi − fi, xi,
1

hi
).

Proposition 3.2. The function Conj provides an approximation of the con-
jugate and of its first two derivatives:

Conj(xi, fi, gi, hi) ≈ (gi, f
∗(gi), (f

∗)′(gi), (f
∗)′′(gi)).

Proof. The proof that Conj is an approximation of the conjugate is contained
in [18] except for the second order approximation, which is proven in [17,
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X.4.2.9] and also in [35, 13.21 and p. 605] (we are using the convention
1/0 := +∞). �

Remark 3.3. Note that Formula (4) implies the discrete equivalent of the
Biconjugation Theorem, which states that f∗∗ = f . Indeed, apply Conj twice,
to obtain

Conj(Conj(xi, fi, gi, hi)) = Conj(gi, xigi − fi, xi,
1

hi
) = (xi, fi, gi, hi).

So we recover our original discrete data set (xi, fi, gi, hi).

In addition to providing approximations to the derivatives of the conju-
gate, the advantage of the parametrization is two-fold: the implementation
is very simple in matrix-like languages like Matlab, Scilab, or GNU Oc-
tave, and the domain of the conjugate is automatically obtained without
any a priori knowledge of the original function. In effect, the domain of the
conjugate is implicitly modeled using the range of ∂f .

The first price we pay for such advantages is that we only obtain vertices
on the convex envelope of the graph of the conjugate, not the full graph. We
have to complete the result by linear interpolation. Consider the following
example.

Example 3.4. Consider Example 3.1 with x1 := −1, x2 := 0, and x3 := 1.
Then Conj(x1, f1, g1) = Conj(−1, 1,−1) = (−1, 0,−1), Conj(x2, f2, g2) =
Conj(0, 0, 0) = (0, 0, 0), and Conj(x3, f3, g3) = Conj(1, 1, 1) = (1, 1, 1). The
values of f∗ between the grid values are recovered by linear interpolation.
The values outside the grid must be computed by extrapolation (see [18] for
more details).

See Example 3.6 below for the equivalent effect on computing the Moreau
envelope (in that case quadratic interpolation is needed).

The second price we pay is we require more than just a black box returning
the values of the function, we also need an approximation of the derivative
of f or its subgradients when such derivative does not exist.

To obtain a similar parametrization for the Moreau envelope, we use
Formula (3) to deduce (see [18] for details)

{

z ∈ x + λ∂f(x),

Mλ(z) = f(x) + (z−x)2

2λ .

The equivalent to the discrete parametrization Conj is then the discrete
parametrization Me defined by

(5) Me : (xi, fi, gi, hi) 7→ (xi + λgi, fi +
λ

2
g2
i , gi,

hi

1 + λhi
),

where, as for Conj, the appropriate modifications are made when f is not
twice differentiable.



CONVEX CALCULUS 9

Proposition 3.5. The function Me provides an approximation of the Mo-
reau envelope and, when they exist, of its first two derivatives.

Proof. The discretization (5) can be obtained either from Equation (4) and
Equation (3) or in our present convex framework from Equation (4) and

using Mλ =
(

f∗ + λ
2 | · |

2
)∗

. The result follows using Proposition 3.2. �

The next example from [18] illustrates the fact that while the graph of
the conjugate has to be completed by linear interpolation, the graph of the
Moreau envelope has to be completed by quadratic interpolation.

Example 3.6. Consider the function f defined as the convex envelope of
x 7→ ||x| − 1|. We have f(x) = −x − 1 when x ≤ −1, f(x) = 0 when
−1 ≤ x ≤ 1, and f(x) = x − 1 when 1 < x. Its Moreau envelope is

Mλ(x) =































−x − 1 − λ
2 when x ≤ −λ − 1,

(x+1)2

2λ when −λ − 1 ≤ x ≤ −1,

0 when −1 ≤ x ≤ 1,
(x−1)2

2λ when 1 ≤ x ≤ λ + 1,

x − 1 − λ
2 when 1 + λ < x.

However, the parametrization formula gives










z = x − λ and Mλ(z) = −x − 1 + λ
2 when x < −1,

z = x and Mλ(z) = 0 when −1 < x < 1,

z = x + λ and Mλ(z) = x − 1 + λ
2 when 1 < x.

So we deduce

Mλ(z) =











−z − λ
2 − 1 when z < −λ − 1,

0 when −1 < z < 1,

z − λ
2 − 1 when λ + 1 < z.

The two remaining segments when x is in [−λ − 1,−1] and [1, λ + 1], have
to be recovered by quadratic interpolation.

We finish the section by pointing out that in addition to conjugation, two
further elementary operations are needed to compute transforms such the
proximal average: scalar multiplication and addition.

The multiplication by a positive scalar λ (the result is true for λ ∈ R

although convexity is preserved only when λ ≥ 0) trivially gives the following
transform

scalar : (xi, fi, gi, hi) 7→ (xi, λfi, λgi, λhi).

So scalar multiplication integrates perfectly in our parametric framework.
Unfortunately, the addition operator is not so easy since adding two dis-

cretizations is not straightforward when the functions do not have identical
grids. In the extreme case when the functions have no grid point in com-
mon, the pointwise addition results in the function that is identically equal
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to +∞. So the underlying functions have to be modeled between grid points,
e.g. as piecewise linear functions, to compute their sum. The next section
considers several such models

4. The zeroth- and first-order models

In this section, we consider several models to recover a (convex) contin-
uous function from a discrete set of points. We aim to provide an answer
to the previous section in term of an addition operator for the parametric
framework. In addition, our results motivate the introduction of the class
of piecewise linear-quadratic functions in Section 5.

Given a discretization of a function f on a grid xi and possibly of its
derivatives, we say that the function f̌ is a model of the function f if it
interpolates the function on the grid i.e. f(xi) = f̌(xi). It is a zeroth-order
model if only the value of the function is taken into account, a first-order
model if both the value of the function and of its first derivative are inter-
polated i.e. f(xi) = f̌(xi) and f ′(xi) = f̌ ′(xi), and a second order model if
in addition f ′′(xi) = f̌ ′′(xi). Again we do not assume f is differentiable. At
any point where it is not, substitute ∂f for f ′, make the appropriate modi-
fications, and discard the statement for f ′′. We only write f ′ to simplify the
exposition and clarify the main ideas.

A natural zeroth-order model to consider for convex transforms is the
piecewise linear model

f̌0(x) := max
i

[fi + si(x − xi)],

where si corresponds to increasing slopes in R (i.e. si < si+1), not neces-
sarily to the derivative of f at xi. Since the function f is convex, under
a reasonable choice of si, we have f̌0(xi) = fi = f(xi), and the func-
tion f̌0 is convex as the maximum of convex functions. Additionally, its
conjugate is also piecewise linear [35, 11.14 (a)] with bounded domain.
This is the implicit model used by the fast transform algorithms. In par-
ticular, the LLT algorithm relies explicitly on the finite difference slopes
si := (fi+1 − fi)/(xi+1 − xi).

The main drawback of this model is its absence of any modeling of the
domain of the function f (see Example 2.4). Even if we only consider piece-
wise linear functions, their conjugate is piecewise linear but with a bounded
domain. So its domain has to be approximated using convergence results.
Moreover, the lack of second order term means that any quadratic function
is approximated by piecewise linear functions. Unfortunately, the Moreau
envelope gives rise to quadratic functions for the simplest convex functions:
indicators of a point.

We now turn to the parametric framework of Section 3. The PLT algo-
rithm uses the following first order model

f̌1(x) := max
i

[fi + gi(x − xi)]
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with gi := f ′(xi) (or gi ∈ ∂f(xi) when f is not differentiable at xi). We have
f̌1(xi) = f(xi), and f̌ ′

1(xi) = gi = f ′(xi). Hence f̌1 is a first order model.
Additionally, Formula (4) provides a nice duality for the class of piecewise
linear functions.

However, f̌1 suffers from the same drawbacks as f̌0: the class of piecewise
linear functions is not closed under standard convex operators. For example,
computing the conjugate of a linear function results in an indicator function
whose Moreau envelope is a quadratic function. Consequently, convergence
has to be used to obtain a good numerical approximation even for linear,
indicator, or quadratic functions.
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(a) Zeroth order interpolation as used in the
LLT algorithm
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Figure 2. Interpolation schemes for discrete transforms.

Figure 2(a) illustrates the zeroth order model f̌0 to approximate a qua-
dratic function, while Figure 2(b) shows the first order model f̌1 to also
approximate a quadratic. Taylor approximation justifies the better fitting
of the first order model.

Both models can be used to build a discrete addition operator for the
parametric framework of the previous section as follow. Consider two func-
tions to be added on two potentially disjoint grids. Consider the union of
both grids, and compute any missing value for each function by linear in-
terpolation. Then just add the values at each grid point. While the idea
is simple and provides a solution to the parametric framework, it is an ad
hoc solution that does not solve the intrinsic issues of a piecewise linear
model namely the class of piecewise linear functions is not closed under the
standard convex operators.

To remedy this shortcoming we consider second order models in the next
section using the class of piecewise linear-quadratic functions.

5. Piecewise linear-quadratic (PLQ) functions

Our objective is to work with a class of functions that is closed under
the standard convex operators (conjugation, addition, regularization, scalar



12 YVES LUCET, HEINZ H. BAUSCHKE, AND MIKE TRIENIS

multiplication). The class should be rich enough to approximate any convex
function, and offer efficient numerical algorithms for all fundamental convex
transforms namely addition, scalar multiplication, conjugation, regulariza-
tion (by taking the Moreau envelope), and combinations.

Let F be the class of all convex lower-semicontinuous proper extended-
valued functions with a piecewise linear subdifferential mapping ∂f : R →
2R. The set F contains the piecewise linear functions, the piecewise qua-
dratic functions, and the sum of any such function with an indicator func-
tion. In [35, 10.20 p. 440], F is defined as the set of convex lower-
semicontinuous proper extended-valued functions with piecewise linear do-
main for which the function is either linear or quadratic on each piece of
its domain. A function in F is called a piecewise linear-quadratic (PLQ)
function. In the present paper, we keep the same name even though for
functions of one variable the class is usually called convex piecewise qua-
dratic functions (the classes differ when considering functions of more than
one variable). (Note that in the present paper, a PLQ function is always
convex.) The PLQ functions provide a natural class of functions for convex
calculus.

Within that framework, we have the following properties.

Proposition 5.1 (Closedness under convex transforms). The class of PLQ
functions is closed under positive scalar multiplication, addition, conjuga-
tion, and taking the Moreau envelope.

Proof. It is clear that the class is closed under (positive) scalar multiplication
and addition. Using Formula (3), it will be closed by taking Moreau envelope
as soon as it is closed for conjugation.

So we only need to prove that the conjugate of a PLQ function f is a
PLQ function. The fact that f∗ is PLQ comes from [35, 11.14 p. 484].
Alternatively, one can notice that the graph of ∂f∗ is piecewise linear as it
is the symmetric with respect to the line y = x of the graph of f . So f∗ is
PLQ.

An alternate proof is to note that the proposition is contained in [35,
10.22, 11.14, 11.32, 11.33]. �

Proposition 5.2 (Efficient Algorithms). All fundamental convex operators,
addition, scalar multiplication, conjugation, and taking the Moreau envelope,
can be computed in linear time and space within the class of PLQ functions.

Proof. Assume f, f0, f1 are PLQ functions.
First for scalar multiplication, take any α ∈ R. The function αf is defined

on the same grid as the function f (only its values are multiplied by α). So
we can compute it in linear time and space by multiplying each coefficients
of f by α.

Next we consider the addition of f0 and f1. The function f0 + f1 is PLQ
and can be computed in linear time and space i.e. in O(n + m), where
n and m are the number of intervals partitioning the domain of f0 and of
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f1, respectively. Indeed, elementary computations show that the function
f0 + f1 is PLQ on the grid {xi} ∪ {yj}, where xi (resp. yj) is the grid of f0

(resp. f1).
For the conjugation operation, we first provide the details for a represen-

tative special case. Consider the PLQ function f defined by

f(x) :=

{

ϕ0(x) := a0x
2 + b0x + c0 if x ≤ x0,

ϕ1(x) := a1x
2 + b1x + c1 otherwise.

It is convex if, and only if,
{

ϕ0(x0) = ϕ1(x0) (continuity condition),

ϕ′
0(x0) ≤ ϕ′

1(x0) (convexity condition).

Then its conjugate is directly computed as

f∗(s) =











ϕ∗
0(s) if s ≤ ϕ′

0(x0),

s̄(s − ϕ′
0(x0)) + ϕ∗

0(ϕ
′
0(x0)) if ϕ′

0(x0) ≤ s ≤ ϕ′
1(x0),

ϕ∗
1(s) if s ≥ ϕ′

1(x0);

where

s̄ :=
ϕ′

1(x0)x0 − ϕ1(x0) − ϕ′
0(x0)x0 + ϕ0(x0))

ϕ′
1(x0) − ϕ′

0(x0)
.

In fact, the middle case, which only arises when the function f ′ is not con-
tinuous at x0, is an affine function bridging the graph of ϕ∗

0 with ϕ∗
1. Now

computing f∗ can be done in constant time and space since the computation
of ϕ∗

0 and ϕ∗
1 can be performed explicitly directly.

The result follows by considering a general (convex) PLQ function as a se-
quence of quadratic (or linear) functions from left to right, taking boundary
points of the domain into account. Applying variants of the above special
case to each interval in the domain of f individually, we can compute the
coefficients of that part in constant time and space. Hence, computing f∗

takes linear time and space in the number of intervals that partition its
domain.

Finally, the existence of a linear time and space algorithm for the Moreau
envelope is a direct consequence of Formula (3) and of the above algorithms.

�

Corollary 5.3. The proximal average of two convex PLQ functions is a
convex PLQ function that can be computed in linear time and space.

Proof. The proximal average decomposes into conjugation, addition, and
scalar multiplication, so it is a closed operation on the class of PLQ functions
and can be computed in linear time and space. �

The key results in the present section are not only that the class of con-
vex PLQ functions is closed under the operations of addition, positive scalar
multiplication, conjugation, and regularization, but also that for each oper-
ation we can explicitly compute the resulting transform in linear time in the
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size of the grid; in other words, each transform has an associated efficient
algorithmic implementation.

One can view the PLQ algorithms as hybrid symbolic-numeric algorithms:
they provide exact results on the class of PLQ functions. Hence, computing
the transform of any convex function decomposes into two step: a numerical
approximation step which returns a PLQ function, and a symbolic computa-
tion step which returns the transform of that PLQ function. The later step is
exact up to floating point arithmetic while the former relies on convergence.

Note also that the domain of a PLQ function is explicitly modeled, and
that PLQ functions form an explicit second order model, which resolve the
issues pointed out in Section 4. Consider again Example 2.4. The PLQ
algorithms compute the (exact) proximal average

P(f0, λ, f1) = (2λ − 1)x − 2λ(1 − λ).

Compare the simplicity of that answer with the one provided by fast al-
gorithms in Example 2.4: no convergence is necessary to approximate an
intermediate function, or its domain.

6. Numerical Examples

Several examples are presented here to illustrates the powerful convex
calculus provided through the PLQ class.

The transform of any function belonging to the PLQ class is computed
symbolically. So we immediately obtain the conjugate of the absolute value
(| · |)∗ = I[−1,1], the Moreau envelope of the absolute value, and that the

energy function is self-conjugate: (0.5|·|2)∗ = 0.5|·|2. We also obtain that for
any linear function f(x) := ax, its conjugate is the indicator function f∗ =
I{a}. Hence, we do not need to resort to symbolic computation packages
like [14] to build simple examples with piecewise quadratic functions.

To illustrate Section 4, consider Figure 3(a), which shows a zeroth order
model approximating the exponential function. Figure 3(b) shows the cor-
responding conjugate: f∗(x) = x ln(x)−x. Compare with Figure 3(c) (resp.
Figure 3(d)) which shows a first-order model approximating the exponential
(resp. which shows the conjugate of the first-order model).

To compare the PLQ framework of Section 5 with the Fast Algorithm
framework of Section 2, consider Figure 4. The addition of two quadratic
functions on disjoint grids (15 points equispaced for function f1 but 5 points
equispaced for function f2) results in a visible error for the fast algorithms
but no visible difference for PLQ functions. (Recall that addition is one
of the missing operators for the parametric framework of Section 3, which
motivated the models of Section 4.)

Finally, Figure 5(a) shows the proximal average for Example 2.4 computed
using the PLQ algorithm. The colour scheme corresponds to the value of
the parameter λ in P(f0, λ, f1). Figure 5(b) illustrates another example for
which the PLQ algorithm is exact: the proximal average of the indicator
function of a single point with the indicator function of (another) single
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(a) Zeroth order approximation.
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(b) Conjugate of the zeroth-order model
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(c) First order approximation.
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(d) Conjugate of the first-order model

Figure 3. Approximation of the exponential by a zeroth-
and first-order models with the corresponding conjugates.
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(a) Fast algorithms (using piecewise linear
functions).
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(b) PLQ (using piecewise quadratic func-
tions).

Figure 4. Comparing the addition of functions f1(x) :=
(x − 1)2 and f2(x) := x2.
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point. (The intermediate functions are indicator functions, see [2] for the
explicit formula).

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

 0    

 0.25 

 0.5  

 0.75 

 1    

(a) Proximal average of f0(x) := −x with
f1(x) := x.
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(b) Proximal average of f0 := I{−1} with
f1 := I{1}

Figure 5. Proximal averages computed exactly by the PLQ algorithm.

7. The PLQ Toolbox

The PLQ toolbox is a collection of functions to manipulate PLQ functions
implemented in Scilab v4.0. A PLQ function is stored as an n × 4 matrix
e.g. the function

f(x) :=































a0x
2 + b0x + c0 if x ≤ x0,

a1x
2 + b1x + c1 if x0 < x ≤ x1,

...
...

an−1x
2 + bn−1x + cn−1 if xn−1 < x ≤ xn−1,

anx2 + bnx + cn otherwise.

is stored as the matrix

plqf :=















x0 a0 b0 c0

x1 a1 b1 c1
...

...
...

...
xn−1 an−1 bn−1 cn−1

+∞ an bn cn















,

with bounded domains stored by a0 := b0 := 0, c0 := +∞, and an := bn := 0,
cn := +∞. The indicator function f(x) := I{x0}(x) of a single point x0 is
stored, as a special case, as the row vector plqf := [x0 0 0 + ∞].

The toolbox provides the functions listed on Table 1. For example,
plq lft([+∞, 1/2, 0, 0]) = [+∞, 1/2, 0, 0] means the conjugate of the en-
ergy x2/2 is the energy. Similarly, the fact the conjugate of the absolute
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Function Name Description
plq eval(plqf,X) Evaluate a PLQ function on the grid X.
plq build(x,f,df) Build a first-order model of a function.
plq add(plqf1,plqf2) Addition.
plq me(plqf,λ) Moreau envelope.
plq scalar(plqf,λ) Scalar multiplication.
plq pa(plqf1,plqf2,λ) Proximal average.
plq lft(plqf) Conjugation.

Table 1. Functions provided in the PLQ package.

Listing 1. Computing the conjugate of the exponential

1 plqf = plq build ([-2,-1,0,0.5],exp ,exp)

2 plqfstar = p l q l f t (plqf)

3 x=linspace (-2,2)’;

4 y=plq eval(plqf ,x);

5 s=linspace (0,2)’;s=s(2:$);

6 ystar=plq eval(plqfstar ,s);

7 scf(0);clf();scf (1);clf();

8 plot2d(x,y);plot2d(x,exp(x),style=2);

9 plot2d(s,ystar);plot2d(s,s.*log(s)-s,style=2)

value is the indicator function of [−1, 1] is written as

plq lft

([

0 0 −1 0
+∞ 0 1 0

])

=





−1 0 0 +∞
1 0 0 0

+∞ 0 0 +∞



 ,

and the Moreau envelope of the absolute value is computed by

plq me

([

0 0 −1 0
+∞ 0 1 0

]

,
1

2

)

=





−1
2 0 −1 −1

4
1
2 1 0 0

+∞ 0 1 −1
4



 .

Note that all these computations do not involve numerical approximation
or convergence — they are exact!

Listing 1 illustrates how one can quickly investigate the conjugate of a
given function. Line 1 computes a PLQ approximation of the exponential
function, and Line 2 computes the conjugate of the exponential: s ln(s)− s.
The remaining lines plot the PLQ function along with their exact counter-
parts. Line 3 builds a uniform grid x of 100 points between -2 and 2. Line 4
evaluates the PLQ function on the grid x, and Line 8 plots both the expo-
nential function and its PLQ approximation. Line 5 builds a grid for the
dual space (the singular value 0 is removed), and the conjugate function is
plotted along its PLQ approximation on Line 9.
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As for numerical performance, the PLQ package is compared with previ-
ous computational convex analysis algorithms in Table 2. The Transform
column indicates which transform (Moreau or Conjugate) the core algorithm
computes, the Scales column indicates whether the algorithm scales imme-
diately to higher dimension, and the Order column indicates up to what
derivative the algorithm takes into account (zeroth order for incorporating
function values, first order for using also the values of the first derivative,
etc.). The algorithms are fully detailed in [27]. Briefly, Brute and Direct

are provided for comparison only (Brute stands for brute force while Direct
uses the separability of the dot product to speed up the computations in
higher dimensions). The FLT is historically the first algorithms considered
and runs in log-linear time (provided for comparison only, see [23]). The
LLT, NEP, and PE belong to the fast algorithm framework of Section 2 and
are presented in [24], [10], and [27] respectively. The PLT belongs to the
parametric framework of Section 3 and is detailed in [18]. The PLQ column
stands for algorithms in the PLQ framework. The current state-of-the-art
as summarized in the table implies that one should use the PLQ framework
to compute with univariate functions, and the fast algorithms for functions
of more than one variable.

Algorithm Transform Convex Only Scales Order Complexity (Rd)
Brute Both No Yes 0 N2

Direct Both No Yes 0 N1+1/d

FLT Conjugate No Yes 0 Nd log N
LLT Conjugate No Yes 0 dN
PE Moreau No Yes 0 dN
NEP Moreau Yes Yes 0 dN
PLT Conjugate Yes No 1 N
PLQ Conjugate Yes No 2 N

Table 2. Computational Convex Analysis Algorithm Comparison.

Table 3 provides a running time comparison of the algorithms. The test
were run on an IBM Thinkpad T60 with Intel dual core CPU at 1.8GHz
under Linux Mandriva 2007 running Scilab v4.0. The table confirms the
linear running time of our implementations.

Table 3 columns PLQ, PLTc, PLTi, LLTc, LLTi correspond to the PLQ al-
gorithm for computing the conjugate (using interpreted Scilab syntax), the
PLT algorithm (Parametric Legendre Transform) using vectorized Scilab
syntax, the PLT algorithm using interpreted Scilab syntax, the LLT algo-
rithm (Linear-time Legendre Transform) using Scilab vectorized syntax, and
the LLT algorithm using interpreted Scilab syntax respectively. Note that
the c in LLTc and PLTc stands for compiled since these implementations are
almost as efficient as compiled functions.
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Although the ranking favours PLTc then LLTc, the comparison with PLTi

and LLTi shows that most of the difference comes from taking advantage
of Scilab optimized matrix operations. In contrast, the PLQ algorithm for
computing conjugates cannot be straightforwardly put into matrix opera-
tions. So it should really be compared with PLTi and LLTi. In that context,
the PLQ algorithm is very competitive, achieving an order of magnitude
similar to matrix-optimized codes like LLTc and PLTc. In addition, keep
in mind that the PLT needs to be completed by linear interpolation, and
the LLT algorithm requires both a priori knowledge of the domain of the
conjugate, and convergence properties to achieve similar results as the PLQ
algorithm. In other words, the PLQ algorithm has many significant struc-
tural advantages, while enjoying similar computational efficiency as the LLT
and PLQ algorithms.

Remark 7.1. If one compares Table 3 with [18, Table 1], one needs to take
into account that we computed the conjugate instead of the Moreau envelope,
we also assumed the data is convex and did not include the computation of
the convex hull with the timing of the LLT algorithm, and finally we used
vectorized versions of all three algorithms. Vectorization accounts for the
difference between our timings of the LLT and the timings reported in [18].

n PLQ PLTc PLTi LLTc LLTi

10,000 0.04 0.00 0.29 0.02 2.20
20,000 0.10 0.01 0.57 0.03 8.61
30,000 0.15 0.01 0.86 0.05 18.75
40,000 0.20 0.02 1.20 0.06 33.16
50,000 0.29 0.02 1.50 0.09 49.71
60,000 0.31 0.03 1.79 0.10 79.84
70,000 0.41 0.03 2.21 0.13 106.56
80,000 0.49 0.05 2.54 0.17 146.57
90,000 0.54 0.05 2.92 0.20 174.68

100,000 0.61 0.06 3.22 0.23 223.60
110,000 0.66 0.06 3.57 0.21 270.26
120,000 0.73 0.08 3.73 0.21 330.63

Table 3. Numerical comparison of the fast algorithms,
parametric and PLQ framework for computing the conjugate
of the function f(x) := x2/2 on the interval [−n/2, n/2]. The
results are in seconds.

Table 4 shows computational results for the Moreau envelope. Note
that the LLTi implementation was not included since it takes a prohibi-
tive amount of time to run for these values of n. The conclusions are the
same as for computing the conjugate: the PLQ algorithm for the Moreau
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envelope is competitive with compiled versions of the PLT and LLT algo-
rithms (in this case, PLQ even outperforms LLTc) while providing significant
structural advantages.

n PLQ PLTc PLTi LLTc

10,000 0.05 0.01 0.58 0.03
20,000 0.13 0.02 1.32 0.06
30,000 0.19 0.02 1.99 0.15
40,000 0.26 0.03 2.76 0.23
50,000 0.33 0.04 3.28 0.33
60,000 0.38 0.04 3.91 0.45
70,000 0.46 0.06 4.69 0.59
80,000 0.45 0.05 5.19 0.75
90,000 0.50 0.07 6.01 0.83

100,000 0.67 0.08 6.66 0.98
110,000 0.74 0.09 7.28 1.19
120,000 0.80 0.08 8.03 1.57

Table 4. Numerical comparison of the fast algorithms,
parametric and PLQ framework for computing the Moreau
envelope of the function f(x) := x2/2 on the interval
[−n/2, n/2]. The results are in seconds.

8. Conclusion

To conclude, we reviewed the two existing frameworks in computer-aided
convex analysis: fast algorithms, and parametric algorithms. We pointed
out their intrinsic limitations, and presented a new framework, based on
PLQ functions, that allows for hybrid symbolic-numeric algorithms, and
enjoys the following advantages:

• The class of PLQ functions is closed under the standard operations
of convex analysis. As such it offers a natural framework for inves-
tigation.

• The PLQ functions give rise to natural algorithms with a linear
worst-case time (and space) complexity. Moreover, the algorithms
are easy to implement: they require only a single loop and no ad-
vanced data structures.

• The algorithms do not require a priori knowledge of the domain of
the conjugate. Furthermore, there is no need to enlarge the domain
of the function, which would be unavoidable when relying on con-
vergence results. Both properties simplify significantly the manip-
ulation of functions when one computes advanced convex operators
like the proximal average.
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• The PLQ functions offer a flexible framework in which a function can
be initially numerically approximated using a zeroth-order model, a
first-order model, or a second-order model.

While the parametric framework of Section 3 is limited to functions of
one variable, fast algorithms extend to functions of several variables using
the key fact that computing multivariate conjugates amounts to computing
several univariate conjugates. This key property named factorization applies
to all convex operators, and has been used in all fast algorithms [23, 24, 27].

The existence of efficient algorithms for the PLQ framework for multivari-
ate functions remains a challenging topic of future research. For example,
bivariate PLQ functions have a domain which is the intersection of linear
functions, in other words it is a triangulation of the plane.
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Birkhäuser, Basel, 1989, pp. 73–87.

[23] Y. Lucet, A fast computational algorithm for the Legendre–Fenchel transform, Com-
putational Optimization and Applications, 6 (1996), pp. 27–57.

[24] , Faster than the Fast Legendre Transform, the Linear-time Legendre Trans-

form, Numer. Algorithms, 16 (1997), pp. 171–185.
[25] , The Legendre-Fenchel conjugate: Numerical computation, tech. rep., CECM,

1998.
[26] , A linear Euclidean distance transform algorithm based on the Linear-time

Legendre Transform, in Proceedings of the Second Canadian Conference on Computer
and Robot Vision (CRV 2005), Victoria BC, May 2005, IEEE Computer Society
Press.

[27] , Fast Moreau envelope computation I: Numerical algorithms, Numerical Algo-
rithms, 43 (2006), pp. 235–249. DOI - 10.1007/s11075-006-9056-0.

[28] J.-J. Moreau, Propriétés des applications “prox”, C. R. Acad. Sci. Paris, 256 (1963),
pp. 1069–1071.
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