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Abstract: In this paper we propose a class of differentiable gap functions in order to formulate a

generalized variational inequality (GVI) problem, involving a set-valued map with closed and convex

graph, as an optimization problem. We also show that under appropriate assumptions on the set-valued

map, any stationary point of the equivalent optimization problem is a global optimal solution and solves

the GVI. Finally, we describe a descent method, with Armijo-type line search, for solving the optimization

problem equivalent to the GVI and we prove its global convergence.
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1 Introduction

Given a closed and convex set K ⊆ R
n and a set-valued map F : K ⇒ R

n, the generalized variational

inequality (GVI) problem consists in finding x∗ ∈ K and u∗ ∈ F (x∗) such that

〈u∗, y − x∗〉 ≥ 0, ∀ y ∈ K,

where 〈·, ·〉 denotes the usual inner product.

This problem is one of the several equilibrium models which represent powerful tools for solving

many problems arising in Economics, Engineering, Operations Research and Mathematical Physics (see

e.g. [8, 10, 11]).

In the rest of the paper we make the following assumptions.

(A1) The set K ⊆ R
n is closed and convex.

(A2) The graph of F :

Gr (F ) = {(x, u) : x ∈ K and u ∈ F (x)}

is closed and convex.

To support assumptions (A1) and (A2), we show an application in the framework of the traffic network

equilibrium problem.

Example 1.1. The usual model of a traffic network is given by a graph, consisting of a set of nodes N,

a set of links A and a set of origin/destination pairs W. For each origin/destination pair w there is a

known demand dw > 0 distributed among the paths Pw connecting w. Let P be the union of Pw for w

ranging over all w in W. Let hp denote the flow on path p and let h = (hp)p∈P. Thus the set of feasible
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arc flow vectors is given by

K =







x ∈ R
|A| : there existsh ≥ 0, such that

∑

p∈Pw

hp = dw, ∀ w ∈ W andx = ∆h







,

where ∆ is the arc-path incidence matrix, whose entry ∆a,p = 1 if arc a is in path p and ∆a,p = 0,

otherwise. It easy to see that K is convex and compact and therefore (A1) holds.

For each arc a there is a cost function ca(x) representing the delay in traversing the arc a when

the arc flow vector is x. In the basic traffic model a standard choice for the travel cost function is the

Bureau of Public Road (BPR) function (see, e.g. [3]): ca(x) = Ta + α (xa/Ca)
4, where Ta represents

the free flow travel time on the arc a, Ca represents the capacity of the arc a and α is a positive

parameter. The traffic network equilibrium problem is to find a feasible flow vector such that path flows

are positive only on paths of minimum travel cost. This problem can be reformulated as a classical

variational inequality with operator c = (ca)a∈A and feasible set K (see, [4]). To generalize the model

and to consider the possibility that the delay in traversing arc a may vary over a range, we assume that

ca(x) = [la(x), ua(x)], where la(x) is a convex continuous function and ua(x) is a concave continuous

function, e.g. let la(x) to be the BPR function and ua(x) a concave piecewise linear increasing function.

The traffic network equilibrium problem with this modified cost function can be reformulated as a GVI

with operator c(x) =
∏

a∈A
[la(x), ua(x)] and feasible set K. It follows, from the assumptions on la and

ua, that the set-valued map c satisfies (A2).

Let us note that assumption (A2) is not new. In particular in [12, 14, 15] the authors introduced the

graph-convex polyhedral multifunctions, that is set-valued maps whose graph is a convex polyhedral set.

In this paper we describe a solution approach, for a class of GVI, which consists in reformulating

the GVI as a differentiable constrained optimization problem by means of a suitable gap function. We

also show that, under suitable assumptions on F , every stationary point of the equivalent optimization

problem solves the GVI. Finally, we propose a globally convergent descent method, with an Armijo-type

line search, for solving the optimization problem equivalent to GVI.

2 Gap functions for GVI

In this section we reformulate GVI as a differentiable optimization problem by means of a class of gap

functions. We say that a function g : Rn × R
n → R ∪ {+∞} is a gap function for GVI if

• g(x, u) ≥ 0 for all (x, u) ∈ Gr (F );

• (x∗, u∗) is a solution of GVI if and only if (x∗, u∗) ∈ Gr (F ) and g(x∗, u∗) = 0.

These two properties imply that, if the solution set of GVI is not empty, then it coincides with the

set of global minima of the following optimization problem:

{

min g(x, u)

(x, u) ∈ Gr (F ).
(1)

It is worth noting that, if the optimization problem (1) has a strictly positive optimal value, then the

GVI has no solution. On the other hand, when the GVI does not have a solution, problem (1) may have

a global minimizer and the corresponding objective value is strictly positive.

Recently in [5] it has been proposed the following gap function for GVI:

g(x, u) = sup
y∈K

〈u, x− y〉, (x, u) ∈ R
n × R

n.
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However, this function is, in general, neither finite nor differentiable on Gr (F ). Therefore, to construct

a more tractable reformulation of the GVI, we consider a regularized gap function defined as:

ϕ(x, u) = sup
y∈K

Φ(x, u, y), (x, u) ∈ R
n × R

n, (2)

where

Φ(x, u, y) = 〈u, x− y〉 −
1

2
‖x− y‖2,

and ‖ · ‖ denotes the Euclidean norm. Specifically, let denote the unique maximizer of (2) by y(x, u) =

ΠK(x − u), where ΠK(·) is projection operator onto the closed convex set K, then the regularized gap

function is given by

ϕ(x, u) = 〈u, x− y(x, u)〉 −
1

2
‖x− y(x, u)‖2. (3)

Observe that in the definition of ϕ, the euclidean norm can be substituted with a norm induced by any

symmetric definite positive matrix.

This function has been introduced in a more general context (where K is not fixed but depends on

the solution point x) in [5]. Here we consider the set K to be fixed so that the function ϕ results to be

continuously differentiable, as shown in the following theorem.

Theorem 2.1. If the assumption (A1) is fulfilled, then ϕ is a continuously differentiable gap function

for GVI and its gradient is given by

∇ϕ(x, u) = (u+ y(x, u)− x, x− y(x, u)). (4)

Proof. Since y(x, u) = ΠK(x− u), then from the properties of the projection operator, it follows that

〈x− u− y(x, u), x− y(x, u)〉 ≤ 0, ∀ x ∈ K. (5)

Hence

〈u, x− y(x, u)〉 ≥ ‖x− y(x, u)‖2, ∀ x ∈ K. (6)

From (3) and (6) it follows that

ϕ(x, u) = 〈u, x− y(x, u)〉 − 1
2 ‖x− y(x, u)‖2

≥ ‖x− y(x, u)‖2 − 1
2 ‖x− y(x, u)‖2

= 1
2‖x− y(x, u)‖2

≥ 0.

(7)

Now, if (x∗, u∗) is a solution of GVI, it is well known that it is equivalent to y(x∗, u∗) = x∗, and thus

ϕ(x∗, u∗) = 0. On the other hand, if ϕ(x∗, u∗) = 0, for (x∗, u∗) ∈ Gr (F ), then from (7) it follows that

x∗ = y(x∗, u∗), namely (x∗, u∗) solves GVI. Therefore ϕ is a gap function for GVI. Since the function

Φ(x, u, y) is continuously differentiable and, for every fixed x and u, the maximum of Φ(x, u, ·) over K is

uniquely attained at y(x, u), it follows that (see e.g. [2]) ϕ is continuously differentiable and its gradient

is given by (4). �

Theorem 2.1 states that ϕ yields an optimization problem equivalent to the GVI:

{

min ϕ(x, u)

(x, u) ∈ Gr (F ),
(8)

Therefore we can obtain a solution of GVI, if it exists, by finding a global minimum of ϕ with zero

objective value, on the set Gr (F ). It is worthwhile to remark that solution methods for a constrained

optimization problem of the type (8) does not converge towards a global minimizer, but only to a

stationary point (x∗, u∗). Under assumptions (A1)-(A2) such stationary point is characterized by the

following property:

〈∇ϕ(x∗, u∗), (x, u)− (x∗, u∗)〉 ≥ 0, ∀ (x, u) ∈ Gr (F ). (9)
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Consequently it is important to know conditions under which a stationary point of (8) is actually a global

optimal solution. In the following we show that it is possible to consider a class of maps F for which

every stationary point of (8) is a solution of GVI.

Let consider the following assumption on the map F :

(A3) ∀ x, y ∈ K, x 6= y, ∀ u ∈ F (x), ∃ v ∈ F (y) such that 〈u− v, x− y〉 > 0.

We remark that in the generalized traffic equilibrium problem introduced in Example 1.1, assumption

(A3) holds whenever la and ua are increasing with respect to fa, for every arc a ∈ A.

It is worth noting that condition (A3) is satisfied for every strictly monotone map, i.e. such that:

∀ x, y ∈ K, x 6= y, ∀ u ∈ F (x), ∀ v ∈ F (y) 〈u− v, x− y〉 > 0,

instead, it easy to show that (A3) does not necessarily hold for monotone map, i.e. such that:

∀ x, y ∈ K, x 6= y, ∀ u ∈ F (x), ∀ v ∈ F (y) 〈u− v, x− y〉 ≥ 0.

Moreover, there are several maps satisfying assumption (A3) which are neither strictly monotone nor

monotone, as the following example shows.

Example 2.1. Let K = [1, 2] and F : K ⇒ R defined by F (x) =
[x

2
, x

]

. This map satisfies assumption

(A3) because if x, y ∈ K and u ∈
[x

2
, x

]

, then it is sufficient to choose v = y if x < y and v =
y

2
otherwise (see figure below). However, F is neither strictly monotone nor monotone because for x = 1,

y =
3

2
, u = 1, and v =

3

4
one has that (u− v) (x− y) = −

1

8
< 0.

1 x y 2

u

v

1 y x 2

u

v

The following theorem says that, under the additional assumption (A3), each stationary point of

problem (8) is a solution of GVI.

Theorem 2.2. Let assumptions (A1)− (A3) be fulfilled. Then (x∗, u∗) ∈ Gr (F ) is a solution of GVI if

and only if (9) holds.

Proof. If (x∗, u∗) is a solution of GVI then, by Theorem 2.1, it is a global optimal solution of the

problem (8) and thus (9) holds.

Vice versa, let assume that (x∗, u∗) ∈ Gr (F ) satisfies (9). Then, by using (4), we have

〈u∗ + y(x∗, u∗)− x∗, x− x∗〉+ 〈x∗ − y(x∗, u∗), u− u∗〉 ≥ 0, ∀ (x, u) ∈ Gr (F ).

Choosing x = y(x∗, u∗) we obtain that for all u ∈ F (y(x∗, u∗)) one has

〈u− u∗, y(x∗, u∗)− x∗〉 ≤ 〈u∗ + y(x∗, u∗)− x∗, y(x∗, u∗)− x∗〉

= 〈y(x∗, u∗)− (x∗ − u∗), y(x∗, u∗)− x∗〉

= 〈x∗ − u∗ − y(x∗, u∗), x∗ − y(x∗, u∗)〉.
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From (5) it follows that

〈u − u∗, y(x∗, u∗)− x∗〉 ≤ 0 ∀ u ∈ F (y(x∗, u∗)). (10)

Since F satisfies assumption (A3), it follows that the inequality (10) holds only if x∗ = y(x∗, u∗), i.e.

(x∗, u∗) solves GVI. �

3 A descent method

Since the gap function ϕ yields an optimization problem equivalent to GVI, a natural idea to solve GVI

is to develop a descent method for the function ϕ, that is to move from a point (x, u) ∈ Gr (F ), through

the feasible region Gr (F ), in a direction d along which the function ϕ decreases. Observe that if x

does not solve GVI, i.e. x 6= y(x, u), then by assumption (A3), there exists v ∈ F (y(x, u)) such that

〈v − u, y(x, u)− x〉 > 0. This fact is the key to derive a descent direction for ϕ as shown in the following

theorem.

Theorem 3.1. Let assumptions (A1) − (A3) hold. Assume that x 6= y(x, u), and consider v(x, u) ∈

F (y(x, u)) such that:

〈v(x, u)− u, y(x, u)− x〉 > 0.

Then the vector

d = (y(x, u)− x, v(x, u)− u) (11)

satisfies the descent condition 〈∇ϕ(x, u), d〉 < 0.

Proof. Since F satisfies assumption (A3), there exists v(x, u) ∈ F (y(x, u)) such that

〈v(x, u)− u, y(x, u)− x〉 > 0,

thus the vector d is well defined. Taking into account (4) and the choice of v(x, u) we have

〈∇ϕ(x, u), d〉 = 〈u+ [y(x, u)− x], y(x, u)− x〉+ 〈x− y(x, u), v(x, u)− u〉

= 〈y(x, u)− (x− u), y(x, u)− x〉+ 〈x− y(x, u), v(x, u)− u〉

≤ 〈x− y(x, u), v(x, u)− u〉

< 0.

(12)

�

A way to generate the descent direction d considered in Theorem 3.1 is to find

v(x, u) ∈ arg max
w∈F (y(x,u))

〈w − u, y(x, u)− x〉. (13)

Under assumption (A2), this problem consists of maximizing a linear objective function over a closed

and convex set. In particular, when Gr (F ) is polyhedral, (13) is a linear programming problem.

The descent method, with an inexact Armijo-type line search procedure, exploiting the descent di-

rection (11) can be summarized as follows.
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Algorithm

0. (Initial step)

Let β, γ ∈ (0, 1).

Choose any vector (x0, u0) ∈ Gr (F ) and set k = 0.

1. (Stopping criterion)

If ϕ(xk, uk) = 0 then STOP.

2. (Line search)

Compute yk = ΠK(xk − uk).

Set ∇ϕ(xk, uk) = (uk + (yk − xk), xk − yk).

Compute vk ∈ arg max
w∈F (yk)

〈w − uk, yk − xk〉.

Set dkx = yk − xk, dku = vk − uk, and dk = (dkx, d
k
u).

Compute the smallest nonnegative integer m such that:

ϕ(xk + γm dkx, u
k + γm dku)− ϕ(xk, uk) ≤ β γm 〈∇ϕ(xk, uk), dk〉. (14)

Set tk = γm.

Set xk+1 = xk + tk d
k
x, u

k+1 = uk + tk d
k
u, k := k + 1 and return to step 1.

Additional assumptions that allows us to establish the global convergence of the above algorithm are

the following:

(A4) The set Gr (F ) is bounded.

(A5) The mapping F is lower semicontinuous (l.s.c.) on K, i.e. for each x0 ∈ K, for any u0 ∈ F (x0)

and any neighborhood N of u0, there exists a neighborhood U of x0 such that

F (x) ∩N 6= ∅ ∀ x ∈ U ∩K.

It is worth remarking that assumption (A4) implies in particular that the set K is bounded, which is

quite natural in applications, as for example in traffic equilibrium problems. It may be shown that in

Example 1.1 assumption (A5) is satisfied in view of the continuity of l and u.

We now prove the global convergence of the algorithm.

Theorem 3.2. Let assumptions (A1)− (A5) be fulfilled. Then the algorithm either stops at a solution

to GVI after a finite number of iterations, or generates a bounded sequence {(xk, uk)} such that any of

its cluster points solves GVI.

Proof. First, we show that the algorithm is well defined, i.e. the line search procedure is always finite.

Assume, by contradiction, that there is an iteration k such that for all m ∈ N one has

ϕ(xk + γm dkx, u
k + γm dku)− ϕ(xk, uk) > β γm 〈∇ϕ(xk , uk), dk〉.

Then passing to the limit we have

〈∇ϕ(xk , uk), dk〉 = lim
m→+∞

ϕ(xk + γm dkx, u
k + γm dku)− ϕ(xk, uk)

γm
≥ β 〈∇ϕ(xk, uk), dk〉.

Hence one has

(1− β) 〈∇ϕ(xk , uk), dk〉 ≥ 0,
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which is impossible because β < 1 and 〈∇ϕ(xk , uk), dk〉 < 0 by Theorem 3.1. So the line search procedure

is always finite.

The generated sequence {(xk, uk)} lies in Gr (F ), in fact Gr (F ) is convex, the starting point (x0, u0) ∈

Gr (F ), and {(yk, vk)} ∈ Gr (F ), ∀k ∈ N. Now, if the algorithm stops at (x∗, u∗) after a finite number of

iterations, then ϕ(x∗, u∗) = 0, thus (x∗, u∗) solves GVI by Theorem 2.1.

If the algorithm generates an infinite sequence {(xk, uk)}, then we consider two possible cases: either

lim sup
k→∞

tk > 0, or lim sup
k→∞

tk = 0.

Case 1. If lim sup
k→∞

tk > 0, then there are t∗ > 0 and a subsequence {tks
} such that tks

≥ t∗ > 0. Since

the sequence {(xk, uk)} is infinite, we have

ϕ(xks , uks)− ϕ(xks+1, uks+1) ≥ −β tks
〈∇ϕ(xks , uks), dks〉

≥ −β t∗ 〈∇ϕ(xks , uks), dks〉

> 0.

(15)

The sequence {ϕ(xk, uk)} is monotone decreasing and bounded below, hence

lim
k→∞

[ϕ(xk, uk)− ϕ(xk+1, uk+1)] = 0,

and in particular we have

lim
s→∞

[ϕ(xks , uks)− ϕ(xks+1, uks+1)] = 0. (16)

Using (15) and (16), we obtain

lim
s→∞

〈∇ϕ(xks , uks), dks〉 = 0. (17)

The subsequences {(xks , uks)} and {vks} are bounded, thus they have cluster points (x̄, ū) and v̄,

respectively. Then passing to the limit, and taking a subsequence if necessary, we have

dks

x = (y(xks , uks)− xks) −→ (y(x̄, ū)− x̄) = d̄x.

Let now prove that passing to the limit, and taking a subsequence if necessary, we obtain

dks

u = (vks − uks) −→ (v̄ − ū) = d̄u,

where

v̄ ∈ arg max
w∈F (y(x̄,ū))

〈w − ū, y(x̄, ū)− x̄〉,

i.e.

〈v̄ − ū, y(x̄, ū)− x̄〉 ≥ 〈w − ū, y(x̄, ū)− x̄〉 ∀ w ∈ F (y(x̄, ū)).

Let w ∈ F (y(x̄, ū)). Since F is l.s.c on K, for any neighborhoodN of w, there exists a neighborhood

V of y(x̄, ū), such that

F (x) ∩N 6= ∅ ∀ x ∈ V ∩K.

Then there exists a sequence {wk} converging to w, with wk ∈ F (y(xk, uk)). By definition of vk

we have

〈vk − uk, y(xk, uk)− xk〉 ≥ 〈z − uk, y(xk, uk)− xk〉 ∀ z ∈ F (y(xk, uk)), ∀ k ∈ N.

In particular, for z = wk we have

〈vk − uk, y(xk, uk)− xk〉 ≥ 〈wk − uk, y(xk, uk)− xk〉 ∀ k ∈ N.
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Passing to the limit we get

〈v̄ − ū, y(x̄, ū)− x̄〉 ≥ 〈w − ū, y(x̄, ū)− x̄〉.

This prove that

dks

u = (vks − uks) −→ (v̄ − ū) = d̄u,

where

v̄ ∈ arg max
w∈F (y(x̄,ū))

〈w − ū, y(x̄, ū)− x̄〉.

Therefore passing to the limit, and taking a subsequence if necessary, we have

lim
s→∞

〈∇ϕ(xks , uks), dks〉 = 〈∇ϕ(x̄, ū), d̄〉. (18)

From (17) and (18) it follows that

〈∇ϕ(x̄, ū), d̄〉 = 0,

thus, taking into account Theorem 3.1, we deduce that (x̄, ū) is a solution of GVI. Therefore

lim
s→∞

ϕ(xks , uks) = ϕ(x̄, ū) = 0.

Since {ϕ(xk, uk)} is a decreasing sequence, then lim
k→∞

ϕ(xk, uk) = 0. Finally, let (x∗, u∗) be any

cluster point of {(xk, uk)}, then by continuity of ϕ we obtain ϕ(x∗, u∗) = 0, i.e. (x∗, u∗) is a

solution of GVI.

Case 2. If lim sup
k→∞

tk = 0, then lim
k→∞

tk = 0. From the step length rule it follows that for all k ∈ N one

has

ϕ

(

xk +
tk
γ
dkx, u

k +
tk
γ
dku

)

− ϕ(xk, uk) > β
tk
γ
〈∇ϕ(xk, uk), dk〉.

By the mean value theorem we have

ϕ

(

xk +
tk
γ
dkx, u

k +
tk
γ
dku

)

− ϕ(xk, uk) =

〈

∇ϕ

(

xk + θk
tk
γ
dkx, u

k + θk
tk
γ
dku

)

,
tk
γ
dk

〉

,

for some θk ∈ (0, 1). Therefore for all k ∈ N we have

〈

∇ϕ

(

xk + θk
tk
γ
dkx, u

k + θk
tk
γ
dku

)

, dk
〉

> β 〈∇ϕ(xk, uk), dk〉. (19)

Let (x∗, u∗) be any cluster point of {(xk, uk)}. Passing to the limit, and taking a subsequence if

necessary, we have

dk −→ d∗,

where d∗x = y(x∗, u∗)− x∗ and d∗u = v∗ − u∗, with

v∗ ∈ arg max
w∈F (y(x∗,u∗))

〈w − u∗, y(x∗, u∗)− x∗〉.

Since lim
k→∞

tk = 0, then passing to the limit in (19), and taking the subsequence if necessary, we

have

〈∇ϕ(x∗, u∗), d∗〉 ≥ β 〈∇ϕ(x∗, u∗), d∗〉.

Since β < 1 we obtain

〈∇ϕ(x∗, u∗), d∗〉 ≥ 0.

From Theorem 3.1 we deduce that (x∗, u∗) is a solution of GVI.
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Remark 3.1. A convergence result similar to Theorem 3.2 can be obtained by replacing the inexact line

search in (14) with the exact one of the form

ϕ(xk + tk d
k
x, u

k + tk d
k
u) = min

t∈[0,1]
ϕ(xk + t dkx, u

k + t dku).

In such a case the proof is based on the well-known Zangwill’s convergence Theorem [17].
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