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Abstract We propose a family of gradient algorithms for minimizing a quadratic function f(x) =
(Ax, x)/2− (x, y) in Rd or a Hilbert space, with simple rules for choosing the step-size at each iteration.
We show that when the step-sizes are generated by a dynamical system with ergodic distribution having
the arcsine density on a subinterval of the spectrum of A, the asymptotic rate of convergence of the
algorithm can approach the (tight) bound on the rate of convergence of a conjugate gradient algorithm
stopped before d iterations, with d ≤ ∞ the space dimension.

Key words: Chebyshev polynomials, conjugate gradient, Krylov space, logistic map, quadratic
operator, steepest descent.

1 Introduction

Consider the problem of minimizing a quadratic function f(·) defined either on Rd or a Hilbert space by

f(x) =
1
2
(Ax, x)− (x, y) , (1)

where (·, ·) denotes the inner product. We assume that A is either a symmetric positive-definite matrix
or a self-adjoint operator, with

0 < m = inf
(x,x)=1

(Ax, x) < M = sup
(x,x)=1

(Ax, x) < ∞ .

If A is a matrix, then m and M are the smallest and largest eigenvalues of A, respectively.
Consider a general gradient algorithm with iterations of the form

xk+1 = xk − γkgk , k = 0, 1, 2 . . . (2)

where gk = ∇f(xk) is the gradient of the objective function f(·) at point xk. For the objective function (1),
∇f(x) = Ax− y. The iteration (2) can be rewritten in terms of the gradients as

gk+1 = gk − γkAgk . (3)

In a series of papers [10, 11, 12] and the monograph [9] many gradient algorithms have been shown
to be equivalent to special algorithms for updating measures on the interval [m,M ]. The central idea
is that of renormalization applied to the gradient. For simplicity the presentation is made for the finite
dimensional case where A is a matrix, which can be assumed, without loss of generality, to be diagonal
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A = diag(λ1, . . . , λd) with eigenvalues m = λ1 ≤ λ2 ≤ · · · ≤ λd = M . Extension to the Hilbert-space
case will be considered in Section 5.

Write zk = gk/
√

(gk, gk) for the normalized gradient at xk and define

p
(k)
i = {zk}2i =

{gk}2i∑d
j=1{gk}2j

, i = 1, . . . , d ,

as the i-th probability corresponding to vector zk, where {v}i denotes the i-th component of vector v.
Let νk denote the probability measure on the spectrum of A defined by the p

(k)
i ’s, that is, νk(λi) = p

(k)
i .

The probability measure νk+1 is defined by

p
(k+1)
i =

{gk+1}2i
(gk+1, gk+1)

for i = 1, . . . , d .

Note that (3) gives
(gk+1, gk+1) = (gk, gk)− 2γk(Agk, gk) + γ2

k(A2gk, gk) , (4)

so that

p
(k+1)
i =

(1− γkλi)2

(gk, gk)− 2γk(Agk, gk) + γ2
k(A2gk, gk)

{gk}2i =
(1− γkλi)2

1− 2γkµ
(k)
1 + γ2

kµ
(k)
2

p
(k)
i , (5)

where

µ(k)
α = µα(νk) =

(Aαgk, gk)
(gk, gk)

(6)

is the α-th moment of the measure νk. When two eigenvalues of A are equal, say λj = λj+1, the updating
rules for p

(k)
j and p

(k)
j+1 are identical so that the analysis of the behaviour of the algorithm remains the

same when p
(k)
j and p

(k)
j+1 are confounded. We may thus assume that all eigenvalues of A are distinct.

Also, a zero weight remains equal to zero at all subsequent iterations, we thus assume that ν0(λi) > 0
for all i.

A common definition for the rate of convergence of the algorithm at iteration k is rk = (gk+1, gk+1)/(gk, gk).
The rate for n iterations is

n−1∏

k=0

rk =
(gn, gn)
(g0, g0)

;

therefore, the asymptotic rate of the algorithm can naturally be defined as

R = lim
n→∞

Rn , with Rn =

(
n−1∏

k=0

rk

)1/n

. (7)

Of course, this rate may depend on the initial point x0 or, equivalently, on g0. Other rates which are
asymptotically equivalent to {rk} can be considered as well, see [12] and Remark 6.

The most familiar gradient algorithm is the steepest-descent algorithm, for which the step-size γk at
iteration k is chosen so as to minimize f(xk−γgk) with respect to γ, which gives γk = (gk, gk)/(Agk, gk) =
1/µ

(k)
1 . Its asymptotic behaviour is well-known, see [1, 10]. In particular, its convergence is slow: the

asymptotic rate R depends on the starting point but is never far from its worst value given by the
Kantorovich bound

Rmax =
(

ρ− 1
ρ + 1

)2

,
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where ρ = M/m, the condition number of A. The asymptotic behaviour of the family of algorithms
defined by γk = µ

(k)
α /µ

(k)
α+1 (which includes the method of minimum residues for α = 1) is shown in [12]

to be similar.
Obtaining a faster asymptotic rate of convergence for gradient algorithms requires to extend the

possible choices for the step-size γk. Rewrite the updating rule (5) in terms of iteration applied to the
probability measure νk,

νk+1(λ) =
(1− γkλ)2

1− 2γkµ
(k)
1 + γ2

kµ
(k)
2

νk(λ) =
(λ− βk)2

β2
k − 2βkµ

(k)
1 + µ

(k)
2

νk(λ) , (8)

where βk = 1/γk and νk(λ) is the weight assigned by the measure νk to the point λ. The roots βk in (8)
are the key control variables for a gradient algorithm. Different strategies for choosing βk give different
families of algorithms. Note that the only information about νk one has access to corresponds to its
moments µ

(k)
α , α = 1, 2 . . . Many of the examples of algorithms presented in [6], with βk a function of

µ
(k)
1 and µ

(k)
2 , exhibit a much faster asymptotic rate of convergence than Rmax (it seems that allowing

βk to depend on more moments µ
(k)
α does not yield further improvement in the rate of convergence).

Fast convergence (small R) is observed for algorithms that exhibit a chaotic-type behaviour in Rd, which
makes their theoretical study difficult. The same is true for some algorithms for which βk is allowed to
depend on moments of several previous measures νk−i, i = 1, . . . , u. For instance, in the Barzilai-Borwein
algorithm [2], βk is either µ

(k−1)
1 or µ

(k−1)
2 /µ

(k−1)
1 .

Conjugate gradient, s-step optimal, MINRES and other algorithms based on Krylov spaces do not use
gradient directions for their successive iterations, see, e.g., [8]. However, when analyzing their behaviour,
one can construct an equivalent sequence of iterations following the gradient directions with control
variables βk depending on k and on moments of previous measures νk−i, i = 0, 1, 2 . . . The conjugate
gradient algorithm in Rd converges in d iterations. When d is large, preserving the conjugacy of successive
directions is difficult and restarting the algorithm after each sequence of s iterations is recommended. This
corresponds to the s-step optimal gradient algorithm, see [5, 13], which does not have finite convergence
but whose guaranteed asymptotic rate of convergence is

R∗s =

(
R

s/2
∞ + R

−s/2
∞

2

)−2/s

= T−2/s
s

(
ρ + 1
ρ− 1

)
(9)

where

R∞ = lim
s→∞

R∗s =
(√

ρ− 1√
ρ + 1

)2

and Ts(·) is the s-th Chebyshev polynomial:

Ts(t) = cos[s arccos(t)] =
(t +

√
t2 − 1)s + (t−√t2 − 1)s

2
.

In this paper we propose a family of gradient algorithms based on simple rules for choosing the
sequence of control variables βk. The main idea is to force νk(λj), j = 2, . . . , d − 1, to tend to zero
as k → ∞. The measure νk, which summarizes the state of the iterates at step k, is then almost fully
characterized by νk(m), which facilitates the analysis of the asymptotic behaviour. Furthermore, we show
that the sequence {βk} can be chosen independently of {νk} while ensuring that the asymptotic rate of
convergence is arbitrarily close to R∞. This independence of {βk} on {νk} makes the algorithms at the
same time simple and robust with respect to the precision of calculations. Also, the step-sizes γk = 1/βk,
k = 1, 2 . . . are simpler to calculate than those of the steepest-descent algorithm. Convergence rates close
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to R∞ are obtained when the βk’s are constructed so that their asymptotic distribution is close to a
distribution with the arcsine density.

The worst-case rate R∗s can be reached for the s-step optimal gradient when d > s, in the sense
that there exist eigenvalues λi and initial point x0 for the algorithm such that the rate of convergence
after s iterations is exactly R∗s (and the behavior in terms of renormalized gradient zk is then periodic
with period s), see [5, 13]. The same is true for the conjugate gradient algorithm: for s < d there exist
eigenvalues λi and a starting point x0 such that the convergence rate after s iterations is exactly R∗s .

If d is large (relative to the total number of iterations), s is not very large and the eigenvalues of A are
well-spread in the spectral interval [m,M ], then the actual rates (per one matrix-vector multiplication)
of the MINRES and other optimal methods based on the use of s-dimensional Krylov spaces are very
close to R∗s and are often larger than R∞. Bearing in mind that the asymptotic rates of the algorithms
suggested below can be arbitrarily close to R∞ and these algorithms are extremely simple and robust,
these algorithms may be preferable to MINRES and other Krylov space based methods for large-scale
quadratic optimization problems.

The paper is organized as follows. In Section 2 we show that for a suitable choice of the sequence {βk}
the algorithm attracts to the plane spanned by the eigenvectors associated with λ1 = m and λd = M . In
Section 3, we assume that the values of m and M are known and give the expression of the asymptotic
rate of convergence of the algorithm in the case where the βk’s are generated by pairs symmetric with
respect to (m + M)/2. Several examples are presented, some with a rate arbitrarily close to R∞. The
case where m and M are unknown is considered in Section 4 where a practical algorithm is suggested and
some simulation results are presented. Finally, the infinite dimensional situation where f(·) is defined on
a Hilbert space is considered Section 5.

2 Attraction of the sequence {νk} to the set of measures sup-

ported at m and M

Theorem 1 Assume that βk > 0, βk /∈ {m,M} for all k and that the sequence {βk} has asymptotic
distribution function F (β) which is supported on an interval [m′,M ′] with 0 < m′ ≤ M ′ < ∞. Suppose,
moreover, that the limiting distribution satisfies
∫

log(β−λ)2 dF (β) < max
{∫

log(M − β)2 dF (β),
∫

log(β −m)2 dF (β)
}

, ∀λ ∈ {λ2, . . . , λd−1}. (10)

Then, the gradient algorithm associated with the sequence {βk} is such that limk→∞ νk(λi) = 0 for all
i = 2, . . . , d− 1. Furthermore, there exist constants C > 0, k0 > 0 and 0 ≤ θ < 1 such that

d−1∑

i=2

νk(λi) ≤ Cθk for k > k0 . (11)

Proof. The fact that the sequence {βk} has asymptotic distribution function F (β) implies

lim
k→∞

1
k

k−1∑

j=0

h(βj) =
∫

h(β) dF (β) (12)

for any continuous function h(·) such that
∫ |h(β)| dF (β) < ∞, see [7]. Define

Hk(λ) = Ck (λ− β0)2 (λ− β1)2 · · · (λ− βk−1)2 , (13)
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with Ck a normalizing constant such that νk(λ) = Hk(λ)ν0(λ) in (8), and assume that
∫

log(M − β)2 dF (β) ≤
∫

log(β −m)2 dF (β) (14)

(if this inequality is not met, m should be replaced with M in all considerations below). Define the sum

Sk(λ,m) =
1
k

log
Hk(λ)
Hk(m)

= −1
k

k−1∑

j=0

log(βj −m)2 +
1
k

k−1∑

j=0

log(λ− βj)2 (15)

and consider the first sum Ik(m) = (1/k)
∑k−1

j=0 log(βj−m)2 in the right-hand side of (15) and the related
integral I(m) =

∫
log(β −m)2 dF (β). Since the c.d.f. F (·) is supported on a bounded interval [m′,M ′]

we have I(m) < ∞. The assumptions (10) and (14) imply I(m) > −∞ and the property (12) then gives
the convergence Ik(m) → I(m) as k →∞.

Consider now the second sum Ik(λ) = (1/k)
∑k−1

j=0 log(βj − λ)2 in the right-hand side of (15) and the
related integral I(λ) =

∫
log(β − λ)2 dF (β). Since the c.d.f. F (·) is supported on a bounded interval, the

integral I(λ) is properly defined but may equal −∞ (for example, if the c.d.f. F (·) has a discontinuity at
the point λ). If I(λ) = −∞ then as k → ∞ the sum Ik(λ) tends to −∞ too. If I(λ) > −∞ then either
Ik(λ) = −∞ for all k large enough (when at least one βj is equal to λ) or (12) implies that Ik(λ) tends
to I(λ) as k →∞.

Therefore, from (10), Sk(λ,m) tends to a negative value (possibly −∞) as k →∞. This implies that
there exists k0 ≥ 0 and δ > 0 such that for all k ≥ k0 and λ ∈ {λ2, . . . , λd−1}

Sk(λ,m) =
1
k

log
Hk(λ)
Hk(m)

≤ −δ ; (16)

that is, Hk(λ)/Hk(m) ≤ θk, where θ = exp(−δ) < 1. This yields
∑d−1

i=2 νk(λi) ≤ θk
(∑d−1

i=2 ν0(λi)
)

/ν0(m)
for k > k0, hence (11). The result limk→∞ νk(λi) = 0 for i = 2, . . . , d− 1 obviously follows from (11).

Remark 1 The sequence {βk} can be assumed random, for instance formed by independent and identi-
cally distributed random variables. In this case, all the statements are true with probability one. When
the βk’s are simply independent, with {Fk} the sequence of corresponding distribution functions and
(1/k)

∑k−1
j=0 Fj converging weakly to F as k tends to infinity, one may refer to [3, Th. 2.5.3, p. 36] for a

property similar to (12).

Remark 2 Typically, the spectrum of A is unknown. In that case, the condition (10) can be replaced
with the more restrictive one

∫
log(β − λ)2 dF (β) < max

{∫
log(M − β)2 dF (β),

∫
log(β −m)2 dF (β)

}
, ∀λ ∈ (m,M) . (17)

Remark 3 If the distribution with c.d.f. F (·) is symmetric with respect to (m + M)/2, then we have∫
log(M − β)2 dF (β) =

∫
log(β −m)2 dF (β) and therefore the condition (17) simplifies to

∫
log(β − λ)2 dF (β) <

∫
log(β −m)2 dF (β) , ∀λ ∈ (m, M) . (18)

Remark 4 Note that the support [m′,M ′] of the distribution with c.d.f. F (·) could be different from
[m,M ] and does not have to be a subset of [m,M ].
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Remark 5 The results of Theorem 1 also apply when βk depends on the moments of previous measures
νk−i, i = 0, 1, 2 . . .

Example 1 For the steepest-descent algorithm with βk = µ
(k)
1 , the limiting measure for {βk} is the

two-point measure assigning weights 1/2 at z and m + M − z for some z ∈ (m,M). The condition (17)
then simply expresses the property that two successive iterations (8) of the algorithm asymptotically give
a larger increase of the weights at the endpoints m and M than at any other point in the interval (m,M);
that is,

(z −m)2 (M − z)2 > (z − λ)2 (m + M − z − λ)2 , ∀λ ∈ (m,M) . (19)

Since for all z the only maximum of (z − λ)2 (m + M − z − λ)2 with respect to λ ∈ (m,M) is at
λ∗ = (m+M)/2, the inequality (19) can be rewritten as (z−m)2 (M−z)2 > (z−λ∗)2 (m+M−z−λ∗)2,
which gives

z ∈
(

1
2
(m + M)− 1

2
√

2
(M −m) ,

1
2
(m + M) +

1
2
√

2
(M −m)

)
. (20)

This corresponds to the definition of the stability interval for the attractor in [10, 12]. A similar result
holds for all gradient-type algorithms from the family considered in [12].

Example 2 If we choose βk =
√

µ
(k)
2 , then the limiting measure for {βk} is the delta-measure concen-

trated at the point λ∗ = (m + M)/2; as a consequence, the asymptotic rate for the related gradient
algorithm is Rmax. Proof of these facts can be found in [4] and [6], Sect. 2.7.

3 Asymptotic rate for symmetrically placed control variables

3.1 Main result

Theorem 2 Assume that the conditions of Theorem 1 are satisfied and that, moreover, the control vari-
ables βk are generated by symmetric pairs for large k; that is, β2j+1 = M + m− β2j for all j ≥ j0, with
β2j ∈ [m + ε,M − ε] for some ε ∈ (0, (M −m)/2). Then, the asymptotic rate R satisfies

log R =
∫

log
∣∣∣∣
(M − β) (β −m)
β (m + M − β)

∣∣∣∣ dF (β) =
∫

log
(β −m)2

β2
dF (β) . (21)

Proof. First note that dividing (4) through by (gk, gk) gives the following expression for the rate rk,

rk = 1− 2γk
(Agk, gk)
(gk, gk)

+ γ2
k

(A2gk, gk)
(gk, gk)

= 1− 2µ
(k)
1 /βk + µ

(k)
2 /β2

k . (22)

Consider a measure ν with weights p and 1−p at m and M respectively, 0 < p < 1. Apply two successive
iterations (8) with control parameters β and β′ = m + M − β to this measure. The product of the two
successive rates does not depend on p and is equal to R2

2(β) = (M − β)2(β −m)2/[β(m + M − β)]2.
According to Theorem 1, νk tends to be supported at m and M and the rate of convergence is

exponential. We thus obtain for two successive iterations with control variables β2j and β2j+1 = m +
M − β2j

R2
2(β2j)

[
1− Aθ2j

R2
2(β2j)

]
< r2jr2j+1 < R2

2(β2j)
[
1 +

Aθ2j

R2
2(β2j)

]

for some A > 0 and j > k0/2, see Theorem 1. Since β2j ∈ [m+ε,M −ε], we have R2
2(β2j) ≥ R2

2(m+ε) =
ε(M −m− ε)/[(m + ε)(M − ε)] > 0. Therefore,

log R2(β2j)−Bθ2j < log
√

r2jr2j+1 < log R2(β2j) + Bθ2j ,
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Figure 1: R2(β) for m = 1, M = 4

with B = A/R2
2(m + ε), for j large enough. Since

∑∞
j=0 θ2j = 1/(1− θ2) < ∞, we obtain from (12),

log R = lim
k→∞

1
k

k−1∑

j=0

log
√

r2jr2j+1 =
∫

log R2(β) dF (β) ,

hence the first expression in (21). The second expression follows from the fact that the c.d.f. F (·) is
symmetric with respect to (m + M)/2.

Example 3 Uniform density. Let the distribution with c.d.f. F (·) be uniform with density p(β) =
1/(M ′−m′), β ∈ [m′,M ′], with m′ = m+ ε, M ′ = M − ε and 0 < ε < (M −m)/2. Then the asymptotic
rate of convergence is

Runiform, ε = exp

{
1

M ′ −m′

∫ M ′

m′
log

(β −m′)2

β2
dβ

}
= (M ′ −m′)2 exp

{
−2

M ′ log M ′ −m′ log m′

M ′ −m′

}
.

(23)

Remark 6 One can easily check that the result stated in Theorem 2 holds for other definitions for the
rate of convergence, see, e.g., [12, Th. 6]. For instance, the rate

r′k =
f(xk+1)− f∗

f(xk)− f∗
=

(A−1gk+1, gk+1)
(A−1gk, gk)

,

where f∗ = minx f(x), can be written as

r′k = 1− 2/(µ(k)
−1 βk) + µ

(k)
1 /(µ(k)

−1 β2
k) (24)

and the corresponding asymptotic rate R′ = limn→∞
(∏n−1

k=0 r′k
)1/n

is equal to R which can be computed
by (21).

Remark 7 The shape of R2(β) as a function of β shows that fast convergence is obtained for β close to
m or M , see Figure 1, hence the interest of taking ε small in Theorem 2.

Remark 8 When νk is a two-point measure supported at m and M , two iterations of (8) with βk+1 =
M + m − βk give νk+2 = νk. Under the conditions of Theorem 2 the measure νk thus converges to a
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measure ν̄k = pkδm + (1− pk)δM supported at m and M , with p2j tending to a constant p∞ as j tends
to infinity. The limiting distribution of the sequence {p2j+1} depends on F (·) and p∞, while the value of
p∞ depends on the initial measure ν0 and the spectrum of A.

3.2 Finite collection of control variables

Assume that the points β0, β1 . . . are generated in repeated groups B = {β0, . . . , βN} of N + 1 points in
(m,M), N ≥ 0. Additionally, the points in B are symmetric with respect to (m+M)/2. We may always
assume that β0 ≤ . . . ≤ βN . In this case, if N is even then βN/2 = (m + M)/2. The condition (18) now
becomes

N∑

j=0

log(βj − λ)2 <

N∑

j=0

log(βj −m)2 , ∀λ ∈ (m, M) . (25)

If this condition is met then the asymptotic rate is

R = RN =




N∏

j=0

(βj −m)2

β2
j




1/(N+1)

. (26)

Example 4 Uniform grid. Assume that for some integer N ≥ 0,

B = {β0, . . . , βN} with βi = m +
i + 1

2

N + 1
(M −m), i = 0, 1, . . . , N . (27)

It is easy to see that the condition (25) is met. The rate RN computed by (26) is given by

RN =


Γ2 (N + 3/2) Γ2

(
m+M+2Nm

2(M−m)

)

π Γ2
(

2 NM+3 M−m
2(M−m)

)



1/(N+1)

,

where Γ(·) is the gamma-function. The value of RN for m = 1, M = 4 is plotted in Figure 2 as a function
of N . Asymptotically, as N → ∞, RN approaches Runiform, 0 defined in (23) (with Runiform, 0 ' 0.2232
for m = 1, M = 4). Instead of using the βi’s according to (27) for large N , one can generate the sequence
{βi} using, for example, the Bernoulli shift:

HB(t) = 2t [mod 1] , t ∈ (0, 1) , (28)

with β0 randomly chosen in (m′,M ′), and for all j = 0, 1, 2 . . .

β2j+1 = M ′ + m′ − β2j , β2j+2 = m′ + (M ′ −m′)HB

(
β2j −m′

M ′ −m′

)
,

with m′ = m + ε, M ′ = M − ε and 0 < ε < (M −m)/2.

Example 5 Nearly optimal N + 1 points. Consider first the case N = 1. When the condition (25) is
satisfied, the asymptotic rate is R2 = |M − β| |β − m|/[β |m + M − β|], see the proof of Theorem 2.
For β ∈ [m,M ], R2 improves when |β − (m + M)/2| increases and reaches its minimum value, zero, at
β ∈ {m, M}, see Remark 7. Condition (25) imposes that β belongs to the interval (20), by choosing β

sufficiently close to (m + M)/2 ± (M −m)/(2
√

2) one makes the rate arbitrarily close to R∗2, with R∗s
defined by (9).
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Figure 2: Asymptotic rate of convergence (26) for m = 1 and M = 4 when the βj ’s are on the uniform
grid (stars) and when they correspond to Chebyshev points (triangles, ε = 10−6)

Take now N = 2, with β0 = β, β1 = (m + M)/2 and β2 = m + M − β. Similarly to the previous
case, condition (25) imposes that β belongs to the interval ((m + M)/2 −√3(M −m)/4, (m + M)/2 +√

3(M −m)/4), with the rate R3 getting close to R∗3 for β close to (m + M)/2±√3(M −m)/4.
By induction, one can show that the rate RN can be made arbitrarily close to the value R∗s defined

by (9), with s = N + 1, when the N + 1 points βi are suitably chosen and are constructed from the
roots of Chebyshev polynomials. This construction is considered in the next example. (Note that the
fact that RN can be made arbitrarily close to R∗N+1 is not a coincidence: the worst case analysis of the
s-step optimal gradient algorithm, which yields the rate R∗s , corresponds to the situation where the βi’s
are rescaled roots of the s-th order Chebyshev polynomial, see [5].)

Example 6 Chebyshev points. Chebyshev points are defined by

tk = cos
(

π

2
2k + 1
N + 1

)
, k = 0, . . . , N .

and correspond to the roots of TN+1(x) = cos((N + 1) arccos x), the Chebyshev polynomials of the first
kind. These points are symmetric on (−1, 1). The asymptotic density of the points {tk}N

0 , as N → ∞,
is p(t) = 1/(π

√
1− t2), t ∈ (−1, 1).

Define
βk =

m + M

2
+

M −m− 2ε

2
tk , k = 0, . . . , N ,

where 0 < ε < (M −m)/2. These points belong to the interval (m + ε, M − ε) and are symmetric with
respect to (m + M)/2. As ε > 0, the condition (25) holds. The rate RN computed by (26) is plotted in
Figure 2 as a function of N for m = 1, M = 4 and ε = 10−6. Asymptotically, as N →∞, RN approaches
Rarcsin, ε defined below in (31).

3.3 Control variables with arcsine density on a subinterval of [m, M ]

Let us assume that the distribution with c.d.f. F (·) has the density

pε(β) =
1

π
√

(β −m′)(M ′ − β)
, m′ ≤ β ≤ M ′ , (29)

9



where m′ = m + ε, M ′ = M − ε and 0 < ε < (M −m)/2. The density (29) is called the arcsine density
on the interval [m′,M ′].

The sequence of points {βi} can be generated using, for example, the logistic map

HL(x) = 4x(1− x) , x ∈ (0, 1) , (30)

with β0 randomly chosen in (m′,M ′), and for all j = 0, 1, 2 . . .

β2j+1 = M ′ + m′ − β2j , β2j+2 = m′ + (M ′ −m′)HL

(
β2j −m′

M ′ −m′

)
.

Note that the control variables βj are placed symmetrically in the interval [m,M ]. We show below that
the condition (17) holds for each ε > 0. According to (21), the asymptotic rate of convergence is then

Rarcsin, ε = exp

{∫ M ′

m′
log

(β −m)2

β2
pε(β) dβ

}
(31)

and we show below that

Rarcsin, ε =

(
M −m + 2

√
ε(M −m− ε)

M + m + 2
√

(M − ε)(m + ε)

)2

. (32)

For ε = 0 this gives Rarcsin, 0 = R∞ = (
√

ρ − 1)2/(
√

ρ + 1)2 where ρ = M/m. However, we cannot
choose ε = 0 as the condition (17) does not hold (we also show below that I(λ) =

∫
log(β − λ)2 dF (β) =

2 log(M − m) − 4 log 2 for λ ∈ [m,M ]). Since the condition does hold for any ε > 0, the rate of the
algorithm can be made arbitrarily close to R∞: for small ε > 0, we have

Rarcsin, ε = R∞
(
1 + 4

√
ε(M −m)

)
+ O(ε), ε → 0 .

The rest of this section is devoted to the verification of (17) for ε > 0 and to the derivation of the
formula (32) for the rate Rarcsin, ε. Define the integral

J(z,m′,M ′) =
∫ M ′

m′

log(β − z)2

π
√

(β −m′)(M ′ − β)
dβ , (33)

where −∞ < z < ∞. The changes of variables t = −1 + 2(β − m′)/(M ′ − m′) and x = −1 + 2(z −
m′)/(M ′ −m′) in the integral (33) give

J(z,m′,M ′) = 2 log
M ′ −m′

2
+

1
π

Ix, where Ix =
∫ 1

−1

log(t− x)2√
1− t2

dt . (34)

Assume first that |x| ≤ 1. By changing the variable t = cos φ in the integral Ix, we obtain

Ix =
∫ π

0

log(cos φ− x)2

sin φ
sin φ dφ =

∫ π

0

log(cos φ− x)2 dφ .

As cos(φ) = cos(2π − φ) ∀φ, we have
∫ π

0
log(cos φ − x)2 dφ =

∫ 2π

π
log(cos φ − x)2 dφ, which implies

Ix = 1
2

∫ 2π

0
log(cos φ − x)2 dφ. As we assume −1 ≤ x ≤ 1 we can set ψ = arccos x (so that x = cos ψ).

Using now the identity cosφ− cos ψ = 2 sin ψ−φ
2 sin φ+ψ

2 , we obtain

Ix =
1
2

∫ 2π

0

log(cos φ− cosψ)2 dφ =
1
2

∫ 2π

0

log
(

2 sin
φ− ψ

2
sin

φ + ψ

2

)2

dφ

=
1
2

[∫ 2π

0

2 log 2 dφ +
∫ 2π

0

log
(

sin
φ− ψ

2

)2

dφ +
∫ 2π

0

log
(

sin
φ + ψ

2

)2

dφ

]

= 2π log 2 +
[∫ π

0

log
(
sin2 (φ− ψ/2)

)
dφ +

∫ π

0

log
(
sin2 (φ + ψ/2)

)
dφ

]
.

10



The function t → sin2 t is π-periodic and therefore for any ψ′ we get
∫ π

0

log
(
sin2 (φ + ψ′)

)
dφ =

∫ π

0

log
(
sin2 (φ)

)
dφ = 2

∫ π

0

log (sin φ) dφ .

This implies

Ix = 2π log 2 + 4
∫ π

0

log (sin φ) dφ = 2π log 2− 4π log 2 = −2π log 2 , ∀x ∈ [−1, 1] . (35)

Assume now that |x| ≥ 1. From (35) we have I1 = −2π log 2 and differentiating Ix we get

I ′x =
(∫ 1

−1

log(x− t)2√
1− t2

dt

)′
=

2π√
x2 − 1

.

Therefore, for x > 1,

I−x = Ix = I1 +
∫ x

1

I ′zdz = −2π log 2 +
∫ x

1

2π√
z2 − 1

dz = −2π log 2 + 2π log

(
x +

√
x2 − 1
2

)
. (36)

Combining (35) and (36) we obtain

Ix =
∫ 1

−1

log(t− x)2√
1− t2

dt =

{
−2π log 2 if |x| ≤ 1
2π log

(|x|+√
x2 − 1

)− 2π log 2 if |x| ≥ 1 ,

together with (34), it gives

J(z, m′,M ′) =

{
2 log(M ′ −m′)− 4 log 2 if m′ ≤ z ≤ M ′

2 log(M ′ −m′) + 2 log
(
|tz|+

√
t2z − 1

)
− 4 log 2 if z < m′ or z > M ′ ,

(37)

where tz = −1 + 2(z −m′)/(M ′ −m′). Therefore, J(λ, m′,M ′) < J(m,m′,M ′) = J(M, m′,M ′) for all
λ in (m,M) and (17) is satisfied. The expression (32) for the rate Rarcsin, ε easily follows from (37) and
the representation Rarcsin, ε = exp [J(m,m′,M ′)− J(0,m′,M ′)] with m′ = m + ε and M ′ = M − ε.

4 Estimation of m,M and a practical algorithm

4.1 Estimation of m,M and asymptotic behavior in the non symmetric case

The values of m and M can be easily estimated in the first iterations of the algorithm (3), for instance
by computing the first moment µ

(j)
1 for several values of j = 0, 1, 2 . . . and taking

mk = min{µ(j)
1 , j = 0, . . . , k} , Mk = max{µ(j)

1 , j = 0, . . . , k} (38)

as estimates. We then necessarily have m < mk < Mk < M for k ≥ 1.
Suppose that the estimation is stopped at some k0, that is, mk = mk0 and Mk = Mk0 for all k > k0.

Then, under the conditions of Theorem 1 with m′ = mk0 and M ′ = Mk0 we have
∑d−1

i=2 νk(λi) ≤ Cθk

for k larger than some k1 and constants C > 0 and 0 ≤ θ < 1. Suppose that the control variables are
generated by pairs for k > k0, as in Theorem 2, but with β2k+1 = Mk0 + mk0 − β2k, for all k > k0.

If Mk0 + mk0 = M + m, Theorem 2 applies and the asymptotic rate R satisfies (21). For instance, if
the βk’s are generated as in Section 3.3, and have the arcsine density on [mk0 ,Mk0 ], the asymptotic rate is
Rarcsin, ε with ε = mk0 −m = M −Mk0 . Consider now the standard situation where Mk0 +mk0 6= M +m

11



and suppose that M−Mk0 > mk0−m. The asymptotic distribution of the βk’s, symmetric in [mk0 ,Mk0 ],
is then biased towards m and νk(m) tends to zero when k →∞. Following the same line as in the proof
of Theorem 2, we obtain that the product of rates at two successive iterations for the delta measure at
M , with control parameters respectively β and β′ = Mk0 + mk0 − β, is R2

2 = (M − β)2(M − β′)2/(ββ′)2.
The asymptotic rate then satisfies

log R =
∫

log
∣∣∣∣
(M − β) (M + β −Mk0 −mk0)

β (Mk0 + mk0 − β)

∣∣∣∣ dF (β) .

Similarly, supposing that M−Mk0 < mk0−m gives an asymptotic distribution of the βk’s biased towards
M , so that νk(m) tends to 1 as k →∞, and the asymptotic rate satisfies

log R =
∫

log
∣∣∣∣
(β −m) (Mk0 + mk0 − β −m)

β (Mk0 + mk0 − β)

∣∣∣∣ dF (β) .

Now, note that νk(m) → 0 implies that µ
(k)
1 → M and νk(m) → 1 implies that µ

(k)
1 → m, k → ∞,

so that maintaining the adaptation of the estimation of mk and Mk by (38) ensures that mk → m and
Mk → M as k →∞. This permits to recover the same asymptotic rates as Section 3.3, even in situations
where m and M are unknown. Since the estimated values mk and Mk quickly converge to m and M , see
for instance Figure 3, we need to generate the control variable βk in [mk + ε, Mk − ε] at iteration k. A
practical algorithm is given below.

4.2 An algorithm based on the arcsine density

A possible algorithm is then as follows.

• Choose τ as a small positive number (e.g., τ = 10−6), set z0 = 0;

• for k = 0, 1, set βk = µ
(k)
1 (steepest-descent) and set m1 = min{µ(0)

1 , µ
(1)
1 }, M1 = max{µ(0)

1 , µ
(1)
1 };

• for k > 1, set εk = τ(Mk−1 −mk−1) and generate the βk’s by pairs:

– for k = 2j, set zj = {ϕ + zj−1} and β2j = mk + εk + (cos(πzj) + 1)(Mk −mk − 2εk)/2, where
{t} denotes the fractional part of t and ϕ = (

√
5− 1)/2 ' 0.61803;

– for k = 2j + 1, set β2j+1 = Mk + mk − β2j ;

set mk = min{mk−1, µ
(k)
1 }, Mk = max{Mk−1, µ

(k)
1 } .

The sequence z1, z2 . . . is such that zj = {jϕ} so that the sequence is asymptotically uniform on [0, 1],
see, e.g., [7]. This implies that the asymptotic distribution of the sequence βk has the arcsine density on
[m + ε, M − ε] where ε = τ(M −m). From (32), the rate of the algorithm satisfies

lim
n→∞

Rn = Rarcsin,τ(M−m) = R∞(1 + 4
√

τ) +O(τ) , τ → 0 .

The dynamical system zj = {jϕ} generates a sequence in [0, 1] with much better uniformity characteristics
than sequences generated by the Bernoulli shift (28). Since the logistic map (30) corresponds to a
transformation of the Bernoulli shift, the construction above, based on zj = {jϕ}, produces a sequence
of control variables βk with better distribution characteristics than sequences generated with (30).

Figures 3, 4 and 5 illustrate the typical behavior of the algorithm above in a large-dimensional badly
conditioned problem. In the example presented, d = 1000, m = 1, M = ρ = 1000 and the eigenvalues λi

12
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Figure 3: Convergence of the estimates mn and Mn as functions of n (m = 1,M = 1000, d = 1000)
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Figure 5: Rate of convergence Rn, see (7), as a function of n; the limiting value Rarcsin,τ(M−m) is indicated
by the dashed line (m = 1,M = 1000, d = 1000, τ = 10−6)

are random and uniformly distributed on the interval [m,M ] (one would obtain exactly the same plots if
the eigenvalues were equally-spaced on [m,M ]).

In terms of complexity of calculations, only the multiplications of d-dimensional vectors by the d× d

matrix A are expensive. The steepest descent algorithm requires the calculation of βk = µ
(k)
2 /µ

k)
1 =

(Agk, Agk)/(Agk, gk) at iteration k. Having computed gk and Agk, one may notice that next gradient
gk+1 can be obtained as gk+1 = gk − (1/βk)Agk, so that only the computation of Agk+1 is expensive
at iteration k + 1. However, a long sequence of iterations of this type may produce an accumulation of
rounding errors, and it is rather recommended to recalculate gk+1 from xk+1 by gk+1 = Axk+1 − y, see
(1). This then requires two multiplications by A at each steepest-descent iteration.

In the algorithm above, iteration k only requires the calculation of the gradient gk = Axk − y, and
thus only one multiplication by A. Notice that the estimation of mk and Mk through the moments
µ

(j)
1 = (Agj , gj)/(gj , gj), see (38), does not require the calculation of Agj at step k. Indeed, allowing a

delay of one step in the estimation, we have (gj , gj+1) = (gj , gj − (1/βj)Agj) so that µ
(j)
1 is obtained at

next step from

µ
(j)
1 = βj

[
1− (gj , gj+1)

(gj , gj)

]
.

Also, one may observe in Figure 3 that the convergence of mn and Mn to m and M respectively is very
fast, so that the estimation can be stopped after a few iterations. On the whole, it makes iterations
with the algorithm above about twice simpler than steepest-descent iterations (even when m and M are
estimated), with much faster convergence.

5 Hilbert space case

In the Hilbert-space case, A is a self-adjoint operator and its spectrum SA is a closed subset of the interval
[m,M ] of the real line, with m, M ∈ SA. Let Eλ be the spectral family associated with A and define
the measure νk = d(Eλzk, zk), m ≤ λ ≤ M , with zk = gk/

√
(gk, gk) the normalized gradient at xk. We

have (zk, zk) = 1 =
∫ M

m
νk(dλ) and νk is a probability measure on the Borel sets of (0,∞), satisfying
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νk([m,M ]) = 1 for all k and with moments still defined by (6). One iteration of a gradient algorithm
with control variable βk thus gives in terms of νk

νk+1(A) =

∫
A(λ− βk)2 νk(dλ)

β2
k − 2βkµ

(k)
1 + µ

(k)
2

,

for A any measurable subset of [m,M ], see (8). The properties obtained for the finite dimensional case
remain valid and only a few adaptations are required.

Theorem 3 Assume that the sequence {βk} has asymptotic distribution function F (β) which is supported
on an interval [m′,M ′] = [m + ε,M − ε] with 0 < ε < (M − m)/2. Suppose, moreover, that I(λ) =∫

log(β − λ)2 dF (β) is a continuous function of λ on (m′, M ′) and that

I(λ) < max
{∫

log(M − β)2 dF (β),
∫

log(β −m)2 dF (β)
}

, ∀λ ∈ (m′,M ′) , (39)

and that ν0{[m,m + γ)} > 0 and ν0{(M − γ, M ]} > 0 for all γ > 0. Then, the measure νk converges to
a two-point measure supported at m and M , in the sense that there exists k0 such that, for any function
g(λ) continuous on [m,M ] and any δ > 0, there exists γ > 0 such that

max

{∣∣∣∣∣
∫ C

m

g(λ)νk(dλ)− g(m)
∫ C

m

νk(dλ)

∣∣∣∣∣ ,

∣∣∣∣∣
∫ M

C

g(λ)νk(dλ)− g(M)
∫ M

C

νk(dλ)

∣∣∣∣∣

}
< δ+Cγαk

γ , k > k0 ,

where C = (m + M)/2 and Cγ > 0, αγ ∈ (0, 1) are constants depending on γ. If, moreover, the control
variables βk are generated by symmetric pairs for large k, that is, β2j+1 = M + m − β2j for all j ≥ j0,
then the asymptotic rate R satisfies (21).

Proof. The proof of convergence of νk to a two-point measure follows the same arguments as for Theorem
1. Suppose that F (·) satisfies (14). We still have for the first term of the sum Sk(λ,m) defined by (15)

Ik(m) =
1
k

k−1∑

j=0

log(βj −m)2 → I(m) =
∫

log(β −m)2 dF (β) , k →∞ .

Concerning the second term Ik(λ) = (1/k)
∑k−1

j=0 log(βj − λ)2 we need now a bound uniform in λ, that
is, we need to show that

∀ε > 0 , ∃K0 such that: sup
λ∈(m′,M ′)

Ik(λ)− I(λ) < ε , ∀k > K0 . (40)

Take a ball B(λ1, δ) = {λ : |λ − λ1| ≤ δ} and consider āδ(β) = supλ∈B(λ1,δ) log(β − λ)2, which is an
increasing function of δ, āδ(β) = 2 log(|β − λ1|+ δ). We have

lim
δ→0

∫
āδ(β) dF (β) =

∫
[ lim
δ→0

āδ(β)] dF (β) = I(λ1)

and therefore, there exists δ1 = δ1(λ1) such that
∫

āδ(β) dF (β) < I(λ1) + ε/3 for δ < δ1. Now,

sup
λ∈B(λ1,δ)

Ik(λ) ≤ (1/k)
k−1∑

j=0

2 log(|βj − λ|+ δ) <

∫
āδ(β) dF (β) + ε/3

for all k larger than some K1 = K1(λ1, δ). Also, from the continuity of I(λ), there exists δ2 = δ2(λ1)
such that infλ∈B(λ1,δ) I(λ) > I(λ1)− ε/3 for δ < δ2. Altogether it gives supλ∈B(λ1,δ) Ik(λ)− I(λ) < ε for
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δ < δ0(λ1) = min(δ1, δ2) and k > K1. It only remains to cover [m′, M ′] with a finite number of such balls
B(λi, δ), with δ < mini δ0(λi) to obtain the result (40). Since log(β−λ)2 is a decreasing (resp. increasing)
function of λ in [m,m′] (resp. in [M ′, M ]), together with the condition (39) it implies that for any set
S ⊂ (m,M), lim supk→∞ supλ∈S Sk(λ,m) ≤ −δ for some δ = δ(S) > 0. Therefore, there exists k0 such
that, ∀k > k0, supλ∈(m′,M ′) Hk(λ)/Hk(m) ≤ θk

ε where θε = exp(−δε) < 1.
Consider now a function g(λ) continuous on [m,M ] and define

∆k =

∣∣∣∣∣
∫ C

m

g(λ)νk(dλ)− g(m)
∫ C

m

νk(dλ)

∣∣∣∣∣ ,

where C = (m + M)/2. We show below that

∀δ > 0 , ∃γ > 0 such that ∆k < δ + 2
Dg∫ m+γ

m
ν0(dλ)

αk
γ for all k > k0 , (41)

for some αγ < 1, where Dg = maxλ∈[m,C] |g(λ) − g(m)|. We have ∆k <
∫ C

m
|g(λ) − g(m)|νk(dλ) =

∆k,1 + ∆k,2 + ∆k,3, with

∆k,1 =
∫ m+2γ

m

|g(λ)− g(m)|νk(dλ), ∆k,2 =
∫ m′

m+2γ

|g(λ)− g(m)|νk(dλ), ∆k,3 =
∫ C

m′
|g(λ)− g(m)|νk(dλ),

γ < ε/2. From the continuity of g(λ), we can take γ small enough to have ∆k,1 < δ
∫ m+2γ

m
νk(dλ) ≤ δ.

Next, ∆k,2 < Dg

∫ m′

m+2γ
νk(dλ) = Dg

∫ m′

m+2γ
Hk(λ)ν0(dλ) with Hk(λ) defined by (13). Since βk ∈ [m′,M ′]

for all k, Hk(λ) is a decreasing function of λ for λ ∈ [m,m′], and for m + 2γ < λ < m′ it satisfies

Hk(λ) < Hk(m + 2γ) < Hk(m + γ)
(

M −m− ε− 2γ

M −m− ε− γ

)2k

.

Since
∫ m+γ

m
νk(dλ) =

∫ m+γ

m
Hk(λ)ν0(dλ) ≥ Hk(m + γ)

∫ m+γ

m
ν0(dλ), we obtain

∆k,2 <
Dg∫ m+γ

m
ν0(dλ)

[
M −m− ε− 2γ

M −m− ε− γ

]2k

.

We also obtain for the last term,

∆k,3 < Dg

∫ C

m′
Hk(λ)ν0(dλ) < Dgθ

k
εHk(m)

∫ C

m′
ν0(dλ) < Dgθ

k
εHk(m) for k > k0 .

For λ ∈ [m,m′] we have Hk(λ)/Hk(m) ≥ (m′ − λ)2k/ε2k so that

1 ≥
∫ m+γ

m

νk(dλ) ≥ Hk(m)
∫ m+γ

m

[(m′ − λ)/ε]2kν0(dλ) > Hk(m)[(ε− γ)/ε]2k

∫ m+γ

m

ν0(dλ) .

Therefore, for k > k0,

∆k,3 <
Dg∫ m+γ

m
ν0(dλ)

[
θεε

2

(ε− γ)2

]k

.

We have θεε
2/(ε− γ)2 < 1 for γ < ε(1−√θε) so that (41) is satisfied for αγ = max{θεε

2/(ε− γ)2, (M −
m − ε − 2γ)2/(M −m − ε − γ)2} and αγ < 1 for γ small enough. One can show a similar property for

∆′
k =

∣∣∣
∫ M

C
g(λ)νk(dλ)− g(M)

∫ M

C
νk(dλ)

∣∣∣.
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Finally, we apply the property above to g(λ) = λ and g(λ) = λ2 and, following the same line as in
the proof of Theorem 2, we then obtain for the product of rates at two successive iterations with control
variables β2j and β2j+1 = m + M − β2j :

R2
2(β2j)

[
1− Aγ α2j

γ + Bδ

R2
2(β2j)

]
< r2jr2j+1 < R2

2(β2j)

[
1 +

Aγ α2j
γ + Bδ

R2
2(β2j)

]
,

for some Aγ > 0, B > 0 and j > k0/2. Therefore,

log R2(β2j)−A′γα2j
γ −B′δ < log

√
r2jr2j+1 < log R2(β2j) + A′γα2j

γ + B′δ ,

with A′γ = Aγ/R2
2(m+ ε) and B′ = B/R2

2(m+ ε), for j large enough. Since
∑∞

j=0 α2j
γ = 1/(1−α2

γ) < ∞,
we obtain from (12),

∣∣∣∣log R−
∫

log R2(β) dF (β)
∣∣∣∣ =

∣∣∣∣∣∣
lim

k→∞
1
k

k−1∑

j=0

log
√

r2jr2j+1 −
∫

log R2(β) dF (β)

∣∣∣∣∣∣
< B′δ .

Since δ is arbitrary, the asymptotic rate of convergence is thus the same as in the finite dimensional case.

Remark 9 Note that the condition I(λ) being a continuous function of λ is satisfied for all examples
considered in Section 3. It is also satisfied when the distribution function F (·) has density φ(·) with
derivative φ′(·) uniformly bounded on (m′,M ′). Indeed, one can write I(λ) =

∫ λ−m′

λ−M ′ φ(λ − t) log t2 dt

which has derivative I ′(λ) = φ(m′) log(λ − m′)2 − φ(M ′) log(λ − M ′)2 +
∫ M ′

m′ φ′(t) log(λ − t)2 dt; this
derivative is bounded, which implies the continuity of I(λ).
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