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Abstract We analyze some new decomposition schemes for the solution of gen-
eralized Nash equilibrium problems. We prove convergence for a particular class of
generalized potential games that includes some interesting engineering problems. We
show that some versions of our algorithms can deal also with problems lacking any
convexity and consider separately the case of two players for which stronger results
can be obtained.

Keywords Generalized Nash equilibrium problem · Generalized potential game ·
Decomposition · Regularization

1 Introduction

In this paper we consider decomposition algorithms for the solution of a Generalized
Nash Equilibrium Problem (GNEP for short). The GNEP extends the classical Nash
Equilibrium Problem (NEP) by assuming that each player’s feasible set can depend
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on the rival players’ strategies. There are N players, and each player ν controls the
variables xν ∈ R

nν . We denote by x the vector formed by all these decision variables

x ≡
⎛
⎜⎝

x1

...

xN

⎞
⎟⎠ ,

which has dimension n := ∑N
ν=1 nν and by x−ν the vector formed by all the players’

decision variables except those of player ν. To emphasize the ν-th player’s variables
within x we sometimes write (xν,x−ν) instead of x.

Each player’s strategy must belong to a set Xν(x
−ν) ⊆ R

nν that depends on the
rival players’ strategies. The aim of player ν, given the other players’ strategies x−ν ,
is to choose a strategy xν that solves the minimization problem

minimizexν θν(x
ν,x−ν) subject to xν ∈ Xν(x

−ν). (1)

The GNEP is the problem of finding a vector x̄ such that each player’s strategy x̄ν

solves the player problem (given x̄−ν):

θν(x̄
ν, x̄−ν) ≤ θν(y

ν, x̄−ν), ∀yν ∈ Xν(x̄
−ν).

Such a point x̄ is called a (generalized) Nash equilibrium or, more simply, a solution
of the GNEP.

We refer the interested reader to [11–13] for a state-of-the-art discussion on
GNEPs. The GNEP has many important applications [11, 13, 18] and in the past ten
years its use has spread from traditional settings in economy to many innovative
models in engineering. Actually it is safe to say that a new branch of game theory has
recently emerged that, using the words of Nobel Laureate Robert Aumann, we call
Game Engineering and that is also widely known, especially in the computer science
community, as Algorithmic Game Theory [18]. In this new setting the computability
and the actual computation of equilibria plays a central role. Unfortunately, algo-
rithms for the solution of general GNEPs are exceptionally difficult to analyze and
useful convergence results are extremely scarce. In fact, while many algorithms have
been proposed, especially in recent years, the conditions that guarantee convergence
of the methods are very strong, technical, difficult to verify and, with the exception of
“jointly convex problems” [4, 11, 13, 16, 22], in most cases it is not possible to prove
convergence for a clearly defined and easily identifiable class of problems [11].

Decomposition algorithms are very natural and immediately spring to mind when
considering GNEPs. Since in a Nash game every player is trying to minimize his
own objective function, a natural approach is to consider an iterative algorithm based
on a Gauss-Seidel scheme where at each iteration every player, given the strategies
of the others, updates his own strategy by solving his optimization problem (1). The
resulting algorithm is described below.

In Step 0, by “feasible” we mean a point that satisfies the constraints of all players.
Algorithms as the one just described are of the utmost importance because in most

applications, in particular in the engineering field (see also Sect. 3), they describe the
“behavior” of the players. Therefore, it is exactly the convergence of such type of
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Algorithm 1 Gauss-Seidel best-response algorithm

(S.0): Choose a feasible starting point x0 = (x1
0 , . . . , xN

0 ), and set k := 0.
(S.1): If xk satisfies a suitable termination criterion: STOP.
(S.2): for ν = 1, . . . ,N , compute a solution xν

k+1 of

minxν θν(x
1
k+1, . . . , x

ν−1
k+1 , xν, xν+1

k , . . . , xN
k )

s.t. xν ∈ Xν(x
1
k+1, . . . , x

ν−1
k+1 , xν+1

k , . . . , xN
k ).

(2)

end
(S.3): Set xk+1 := (x1

k+1, . . . , x
N
k+1), k ← k + 1, and go to (S.1).

algorithms to a Nash equilibrium that actually justifies the use of Nash equilibria as
a suitable solution concept.

Unfortunately, convergence of Algorithm 1 is hard to prove, see e.g. [11, 13]. Ac-
tually, we will show in Sect. 3 that one cannot expect to obtain convergence of Al-
gorithm 1 even for rather well behaved problems. To overcome these difficulties we
analyze a regularized version of Algorithm 1 inspired by the analysis in [15]. This
regularized version essentially differs from Algorithm 1 only in Step 2, where a reg-
ularization term is added to the objective function (see (3) below).

Algorithm 2 Regularized Gauss-Seidel best-response algorithm

(S.0): Choose a feasible starting point x0 = (x1
0 , . . . , xN

0 ), a positive regulariza-
tion parameter τ0 > 0 and set k := 0.

(S.1): If xk satisfies a suitable termination criterion: STOP.
(S.2): for ν = 1, . . . ,N , compute a solution xν

k+1 of

minxν θν(x
1
k+1, . . . , x

ν−1
k+1 , xν, xν+1

k , . . . , xN
k ) + τk‖xν − xν

k ‖2

s.t. xν ∈ Xν(x
1
k+1, . . . , x

ν−1
k+1 , xν+1

k , . . . , xN
k ).

(3)

end
(S.3): Update τk . Set xk+1 := (x1

k+1, . . . , x
N
k+1), k ← k + 1, and go to (S.1).

In Sect. 2 we define a class of Generalized Potential Games (GPGs), expanding
the well-known class of NEP potential games introduced in [17], for which conver-
gence of Algorithm 2 can be established. This class of generalized potential games
is certainly peculiar, but many problems of interest are actually GPGs, see [17] and
Sect. 3 where we report two telecommunication applications that are GPGs; further-
more, it is easy to decide whether a problem is a GPG. We note from the outset
that in principle a Nash equilibrium of a generalized potential game could be calcu-
lated by solving in a centralized way a single optimization problem. However, the
solution of this centralized problem could be impossible in many situations both be-
cause it could turn out to be too difficult and because in many practical settings the
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application of a centralized algorithm is simply not possible, see Sect. 3 for further
comments. In Sect. 3 we will also discuss more in detail the fact that, in spite of
the possible optimization reformulation of a GPG, convergence of Algorithm 2 (or
of any other practical distributed algorithm) cannot be derived by existing decom-
position methods for optimization problems. In Sects. 4, 5, and 6 we consider three
instances of Algorithm 2 under different assumptions. In particular, in Sect. 4, under
convexity assumptions, we show convergence for a fixed value of the regularization
parameters τk . In Sect. 5 we drop the convexity assumptions and prove convergence
by introducing an updating rule for τk that drives it to zero. Finally, in Sect. 6 we
consider the case of two players, where it is possible to show convergence of Algo-
rithm 1 without regularization (i.e. convergence of Algorithm 2 with τk = 0) and for
a broader class of GPGs.

Summarizing, the main contribution of this paper is a convergence theory for Al-
gorithm 2 that is applicable to a class of easily identifiable problems with interest-
ing engineering applications. Generalized potential games constitute the first class of
GNEPs that can be solved by distributed algorithms and overall our results extend
considerably the range of solvable GNEPs.

2 Generalized potential games

Roughly speaking a generalized potential game is a GNEP where the players are (un-
knowingly) minimizing the same function and where the feasible set of each player is
the “section” of a larger set in the product space R

n. Formally we have the following
definition.

Definition 2.1 A GNEP is a Generalized Potential Game if:

(a) There exists a nonempty, closed set X ⊆ R
n such that, for all ν = 1, . . . ,N ,

Xν(x
−ν) ≡ {xν ∈ Dν : (xν,x−ν) ∈ X}, (4)

where Dν ⊆ R
nν are nonempty, closed sets such that

∏N
ν=1 Dν ∩ X 
= ∅ (i.e. the

“feasible set” of the game is non empty).
(b) There exists a continuous function P(x) : R

n → R such that for all ν, for all x−ν

(such that Xν(x
−ν) is not empty), and for all yν, zν ∈ Xν(x

−ν)

θν(y
ν,x−ν) − θν(z

ν,x−ν) > 0

implies

P(yν,x−ν) − P(zν,x−ν) ≥ σ(θν(y
ν,x−ν) − θν(z

ν,x−ν)), (5)

where σ : R+ → R+ is a forcing function: limk→∞ σ(tk) = 0 ⇒ limk→∞ tk = 0.

Our definition is inspired by the classical definition of Monderer and Shapley [17].
In fact, if (i) the condition (b) becomes that a function P exists such that (5) holds
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Fig. 1 Condition (a): The set X
is convex and so are the sets X1
and X2

with equality and with the forcing function equal to the identity and, most impor-
tantly, (ii) the “big set” X is given by the cartesian product of lower dimensional sets,
X = X1 × · · · × XN , with Xν ⊆ R

nν , then the GPG is just a(n exact) potential NEP
as defined in [17]. We generalize this classical definition of potential game in several
directions and we believe the following points are important.

1. We do not assume a cartesian product structure for X, so that we are really dealing
with a GNEP and not with a NEP;

2. We do not make any of the usual convexity assumptions either on the set X or on
the functions θν(·,xν ).

As a side, more technical point, we underline that in our definition we also have the
freedom to choose a forcing function σ different from the identity. This might be im-
portant in some cases. But the really important departure from the classical definition
of potential game is in the presence of coupling constraints that are represented by
the set X. This feature permits to deal with a host of new, interesting problems, as
exemplified by the applications described in the next section.

Condition (a) in the definition of GNEP is obviously related to the class of “jointly
convex” GNEPs, also known as GNEPs with shared constraints, see [11, 13, 22],
where however the set X must be convex. Indeed, our definition of GPG borrows
from both the classical theory of potential games and the theory of games with shared
constraints.

Condition (a) is illustrated geometrically in Figs. 1, 2, and 3, where for simplicity
we took the sets Dν to be equal to the whole space R

nν .
Figure 1 represents the simplest case: both the set X and the feasible sets Xν(x

−ν)

are convex. With regard to the feasible sets, this is essentially the setting of jointly
convex problems. In Fig. 2 we have a more general situation in which the set X is not
convex, although the feasible sets Xν(x

−ν) are convex so that, assuming the players’
objective functions are also convex, the players’ optimization problems are still con-
vex. As far as we are aware of, this setting is already new in the literature. Finally,
Fig. 3 illustrates the hardest case: both the set X and (some of) the sets Xν(x

−ν) are
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Fig. 2 Condition (a): The set X
is non-convex, but the sets X1
and X2 are convex

Fig. 3 Condition (a): The set X
is non-convex, and the sets X1
and X2 might be non-convex

not convex. In this case, regardless of the objective functions, the players’ problems
are not convex. We will show that suitable variants of our basic Algorithm 2 can
tackle all these cases.

Suppose now that, as usual, the set X is defined by some constraints

X ≡ {x ∈ R
n : g(x) ≤ 0},

where g : R
n → R

m is continuous. Then it is easy to see that condition (a) is equiva-
lent to saying that these constraints g(x) ≤ 0 are shared by all players

Xν(x
−ν) ≡ {xν ∈ Dν : g(xν,x−ν) ≤ 0}. (6)

The more favorable case of a convex X then corresponds to the fact that the Dν are
convex and the gi are convex with respect to all variables x (from which the name
jointly convex comes from).

We now examine condition (b) in Definition 2.1. This condition says that there is
a single function P that, in some sense, reflects the changes in the players’ objective
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functions. It can be easily checked that a global solution of the following optimization
problem

minimizex P(x) subject to x ∈ X, xν ∈ Dν, ν = 1, . . . ,N (7)

yields a Nash equilibrium. This shows that GPGs provide a bridge between game
theory and optimization and obviously suggests a possible avenue for the solution of
the game: the solution of optimization problem (7). However, the solution of prob-
lem (7) might be not simple since this is, in general, a global optimization problem.
In this sense, decomposition methods have a clear advantage in that each player’s
subproblem could be easy, even when (7) is difficult. Furthermore, in many practical
situations, the solution of problem (7) can not be conceptually considered (see next
section). We observe that there is a large body of literature related to decomposition
methods for the solution of optimization problems. However, we are not aware of
any result that could be applied to (7) in order to calculate a (global minimum and
therefore a) Nash equilibrium unless very stringent assumptions are made both on the
function P and the set X.

Verification of condition (b) in Definition 2.1 is usually rather straightforward.
In some cases of interest the objective functions do not depend on the other players’
variables, θν(x) = θν(x

ν), so that the interaction of the players takes places only at the
level of feasible sets. In this event it is immediate to see that condition (b) is satisfied
with the potential function P simply given by the sum of the objective functions of
all players. Another common case is when θν(x) = c(x) + dν(x

ν), that is when the
objective functions have a common term c which is the same for all players plus an
additional cost related only to xν . Also in this case, it is immediate to verify that
condition (b) is satisfied with P(x) = c(x) + ∑N

ν=1 dν(x
ν).

The main contribution of this paper is the development of decomposition algo-
rithms for the calculation of Nash equilibria of a GPG, under the following weak
conditions, that we assume to hold throughout.

A1 For every ν = 1, . . . ,N the objective function θν(x) is continuous on X.
A2 The feasible sets Xν(·) are inner-semicontinuous relative to dom(Xν).1

The inner-semicontinuity requirement says that if x̄ belongs to X and, for any
player ν, we consider any sequence {x−ν

k } ⊂ dom(Xν) such that {x−ν
k } → x̄−ν , then

we may find points xν
k ∈ Xν(x

−ν
k ) such that {xν

k } → x̄ν . This is not too restrictive
a requirement. For example it is certainly satisfied if X is polyhedral, see [21, Ex-
ample 9.35] and at any point in the interior of dom(Xν), provided that X is convex,
see [21, Theorem 5.9(b)]. We further note that for any of the sets in Figs. 1–3, the
inner-semicontinuity property holds. Inner-semicontinuity may be more difficult to
check on the boundary of dom(Xν), even when the set X is convex. In this latter
case some suitable (Slater type) constraint qualification may be needed. For details
we refer the interested reader to [21] and, for a more in-depth treatment, to Chap. 3
of [5].

1We recall that dom(Xν) is the set of points x−ν for which Xν(x−ν) is non empty.
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We remark that by their definition, and by the closure of all sets involved, the
mappings Xν(·) are also closed, i.e. if we have two sequences {xν

k } → x̄ν and
{x−ν

k } → x̄−ν such that xν
k ∈ Xν(x

−ν
k ), then x̄ν ∈ Xν(x̄

−ν). This fact will be used
without further notice throughout the paper.

In the setting above we will consider three distinct cases: for every ν and for every
fixed x−ν the players’ problems (1) are convex (Sect. 4); the case in which the same
problems are not necessarily convex (Sect. 5); the case in which there are only two
players (Sect. 6). We remark that while we guarantee that our algorithms converge to
Nash equilibria of the GPG, these Nash equilibria are not necessarily the solutions
of (7).

3 Discussion and examples

This section is devoted to the discussion and clarification through examples of some
of the issues discussed in the previous two sections.

3.1 Algorithm 1 does not work

We begin with an example showing that, in contrast with what stated for example
in [10], Algorithm 1 in general does not converge to a Nash equilibrium of a potential
game, even under favorable assumptions. To show this we consider a (slight) variant
of a classical counterexample of Powell [20].

Consider a potential Nash game with 3 players. Each player controls one variable
(which we denote by u,v, z, having set for simplicity, x1

1 = u,x2
1 = v, x3

1 = z). The
three players minimize the same objective function θ1 = θ2 = θ3 = P with P : R3 →
R given by:

P(x) = −uv − vz − uz + (u − 1)2+ + (−u − 1)2+
+ (v − 1)2+ + (−v − 1)2+ + (z − 1)2+ + (−z − 1)2+,

where (g)+ = max{0, g}. Assume further that X1 = X2 = X3 = [−10,10]. We see
that P is a nonconvex function although it is component-wise convex and the result-
ing game is obviously a GPG, actually even a potential game according to [17].

Suppose that the three players play in the order 1, 2 and 3. This is equivalent, in the
jargon of decomposition optimization methods, to applying the Gauss-Seidel decom-
position method to the minimization of P over X1 × X2 × X3. Powell [20] showed
that if the starting point x0 = (u0, v0, z0) is the point (−1 − ε,1 + 1

2ε,−1 − 1
4ε) (we

take ε ∈ (0,8] to keep feasibility) the steps of the GS method produce the following
sequence of points in the first 6 iterations (Powell showed that these points are the
unconstrained minimizers of each player’s subproblem, therefore they are a fortiori
the minimizers over the set [−10,10])
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⎛
⎜⎝

1 + 1
8ε

1 + 1
2ε,

−1 − 1
4ε

⎞
⎟⎠ →

⎛
⎜⎝

1 + 1
8ε

−1 − 1
16ε

−1 − 1
4ε

⎞
⎟⎠ →

⎛
⎜⎝

1 + 1
8ε

−1 − 1
16ε

1 + 1
32ε

⎞
⎟⎠ →

⎛
⎜⎝

−1 − 1
64ε

−1 − 1
16ε

1 + 1
32ε

⎞
⎟⎠

→
⎛
⎜⎝

−1 − 1
64ε

1 + 1
128ε

1 + 1
32ε

⎞
⎟⎠ →

⎛
⎜⎝

−1 − 1
64ε

1 + 1
128ε

−1 − 1
256ε

⎞
⎟⎠ .

This last point is the same as the starting point x0 except that ε has been replaced
by 1

64ε. Therefore the calculated sequence of points has six limit points given by
⎛
⎜⎜⎝

1
1

−1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1
−1
−1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1
−1
1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−1
−1
1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−1
1
1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−1
1

−1

⎞
⎟⎟⎠.

None of these 6 limit points is a Nash equilibrium, since it is easy to check that in
each of these points, at least one component of the gradient of P is nonzero and no
constraint is active. So we see that in a problem that is actually a NEP (as opposed to
GNEP), and in which every player’s subproblem is convex in the player’s variables
and has a compact feasible set, Algorithm 1 fails completely.

The example we just examined also helps understanding another point we made:
while the minimization of P over the rectangle X1 × X2 × X3 is in this case a dif-
ficult non convex optimization problem, the subproblems each player should solve
according to Algorithm 2 are (very simple) strongly convex optimization problems in
one variable.

3.2 Any minimization algorithm for the solution of (7) is of little help

One could think that the failure analyzed in the previous subsection is due to the par-
ticular (decomposition) algorithm we chose to solve (7). Here we show that, whatever
the algorithm (be it centralized or decomposition-type), we cannot hope to practically
solve a general GPG by solving the minimization problem (7). To illustrate this point
easily, we consider a modification of the problem in the previous subsection, where
we only change the set X by setting X = [−10,10] × [−10,10] × [−10,10] ∩ {x ∈
R

3 : z2 −1 ≥ 0}. Thus we simply intersected the set X in the previous subsection with
the set {x ∈ R

3 : z2 − 1 ≥ 0}. In practice instead of a cube centered in the origin with
sides’ length of 20, we are considering two disjoint “slices” of this cube, having elim-
inated all the points with z ∈ (−1,1). Consider now the feasible point x̄ = (1,1,−1).
In this point we have ∇P(x̄) = (0,0,−2) and only the constraint z2 − 1 ≥ 0 is ac-
tive. It is easy to check, taking the multiplier relative to this constraint equal to 1 and
the remaining ones equal to 0, that x̄ is stationary for the minimization problem (7).
However x̄ is not a Nash equilibrium, since P(1,1,−1) = 1, while P(1,1,1) = −3.
Since (1,1,1) is feasible we see that the third player can improve the objective func-
tion by unilaterally deviating from x̄, thus showing that x̄ is not a Nash equilibrium
point.

This example shows us that in general it might not be a good idea to try to solve
the minimization problem (7) to compute an equilibrium, since standard methods
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will generate stationary points and not global solutions. Obviously, if problem (7) is
convex, any stationary point will be a global solution and so the approach becomes
feasible. But even in the favorable condition in which (7) is convex, in some situations
the solution of (7) in a centralized way may still be not feasible; this is one of the
topics of the next two subsections (see, in particular, the two final paragraphs of
these two subsections). From a different point of view, even if problem (7) is convex,
in general, the set of Nash equilibria will be larger than the set of solutions of the
optimization problem; so if we try to calculate a Nash equilibrium by solving the
optimization problem (7) we are restricting our target and it is intuitively clear that
this might make the computation more difficult.

3.3 Flow control in multi-hop communication networks

The aim of this subsection is twofold. On the one hand we want to illustrate an inter-
esting application whose formulation gives rise to a GPG and, on the other hand, we
use this application to show why solving (7) might be unfeasible in some practical
settings. The model we discuss belongs to a rather well studied class of problems, see
for example the review papers [1, 2]; here we follow in particular the setting of [23].

We consider a general transmission network model based on fluid approximation.
The topology of the network is characterized by a set of nodes V = {1, . . . , V } and
a set of links L = {1, . . . ,L} connecting the nodes (we assume that the network is
connected). There are N active users (players); each user ν is uniquely associated to a
connection between the source node sν and the destination node dν through a path Lν

(predetermined by a routing algorithm), where Lν is the subset of links that form the
path of user ν. The information flow routed through the path Lν by user ν is denoted
by xν and it holds xν ∈ Dν = {xν ∈ R : 0 ≤ xν ≤ xν

max}, where xν
max is a physical or

regulatory positive upper bound. Each link � has a capacity c�. If we introduce the
L × N routing matrix A, defined by A�,ν = 1 if � ∈ Lν and 0 otherwise, the capacity
constraints can be expressed in vector form as Ax ≤ c, where c = (c�)

L
�=1. Finally,

we define the set X of shared constraints as X = {x ∈ R
N : Ax ≤ c}.

We can associate with this setting a GPG where X and Dν are the sets defined
above and the payoff function (to be minimized) of each player ν is

θν(x) =
∑

�:�∈Lν

P�(x) − Uν(x
ν), (8)

which is taken as the difference of a pricing function (the sum of the costs relative to
each link on the path Lν ) and a reward Uν associated to the flow xν sent by the player.
The first term in the payoff function can be interpreted as the price that each user pays
for using the network resources. We assume that each P� depends only on the sum
of the flows on that link (the traffic on that link): P�(x) = P�(

∑
μ:�∈Lμ

xμ), with P�

a convex function defined on [0, c�]. The utility function Uν , instead, is assumed to
be, according to standard economic conditions and elastic traffic models, a strictly
concave function defined on [0, xν

max]. Several pricing and reward functions have
been proposed in the literature that satisfy the above assumptions; typical examples
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are

P� = b�

ε + c� − ∑
μ:�∈Lμ

xμ
, and Uν = aν log(1 + xν),

where a�, b� and ε are given positive constants. Note that, under our assumptions,
the objective functions θν(x

ν, x−ν) are strictly convex in xν for every fixed x−ν .
Actually, since the composition of a convex function with a linear function of x is
convex, we have that θν is also convex in x. Finally, we also assume that all the P�

and Uν are continuously differentiable. It is very easy to verify that the game is a
GPG with potential function given by

P(x) =
∑
�∈L

P�

( ∑
μ:�∈Lμ

xμ

)
−

N∑
ν=1

Uν(x
ν). (9)

We could compute a solution of this GPG by solving the optimization problem (7).
Note that in this case the situation is very favorable because P is convex with re-
spect to x and the sets X and Dν are also convex and therefore any standard cen-
tralized optimization algorithm will lead to a global solution. And yet it should be
clear from the type of application that such a centralized algorithm cannot be prac-
tically implemented in most situations of interest (think to the internet), since this
would require a high degree of coordination among selfish users and also an unbear-
able overload of information exchange. If one turns to optimization decomposition
technique, one finds that the only case that can be practically dealt with by standard
decomposition methods is the case in which the set has a cartesian product structure
X = X1 × · · · × XN , i.e. the case of NEPs, which does not cover our setting. On the
other hand it is clear that this telecommunication problem fully fits our framework.

3.4 Joint rate and power optimization in interference limited wireless
communication networks

We complete this section with a short analysis of a further telecommunication appli-
cation that can give rise to problems more complex than the one considered in the
previous subsection. More specifically, we consider the joint optimization of transmit
powers and information rates in wireless (flat-fading) communication networks. Our
description is mostly based on the setting of [19]; see also [7] for a broader picture.

We consider an N -users scalar Gaussian interference channel. In this model, there
are N transmitter/receiver pairs, where each transmitter wants to communicate with
its corresponding receiver over a scalar channel, which may represent time or fre-
quency domains, affected by Gaussian noise. This mathematical model is sufficiently
general to encompass many communication systems of practical interest, such as
peer-to-peer networks, wireless flat-fading ad-hoc networks, and Code Division Mul-
tiple Access (CDMA) single/multicell cellular systems [24]. Here, we assume with-
out loss of generality that all pairs utilize a CDMA transmission scheme [25] and
share the same bandwidth (thus in principle they may interfere with each other). We
denote by Gνν > 0 the effective channel gain of link ν (including the multiplicative
spreading gain, antenna gain and coding gain), while Gνμ ≥ 0 denotes the effective
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(cross-)channel gain between the transmitter μ and the receiver ν. The transmit power
of each transmitter ν is denoted by pν . To avoid excessive signalling and the need of
coordination among users, we assume that encoding/decoding on each link is per-
formed independently of the other links and no interference cancellation techniques
are used. Hence, multiuser interference is treated as additive noise at each receiver.
Within this setup, under mild information theoretical assumptions (see, e.g., [9]), the
maximum information rate Rν achievable over link ν for a given transmit power pro-
file p = (pν)Nν=1 of the users is

Rν(p) = log(SIRν(p)) ≥ 0 with SIRν(p) � Gννp
ν

∑
μ 
=ν Gνμpμ

(10)

where in the definition of the signal-to-noise-plus-interference ratio SIRν receiver
noise is assumed to be dominated by the multiuser interference and is neglected in
this model. This assumption is satisfied by most practical interference limited sys-
tems [19, 26]. Moreover, in these systems we have SIR � 1, since it represents the
effective SIR after spreading gain, antenna gain, and coding gain (see, e.g., [25]).
Note that, in view of these assumptions, the SIR is homogeneous in the transmitters’
powers, and a scaling of the powers does not affect the SIR. Therefore, in the sequel
we assume that the powers have been normalized so that

∑N
ν=1 pν = 1.

Within the setup above, the strategy of each player ν (user) is the transfer rate xν

at which data are sent over the link and the transmit power pν that supports such
a rate xν. A transfer rate profile x = (xν)Nν=1 ∈ R

N+ is feasible if it is possible for
the system to simultaneously transfer data over the network at the specific rates x for
some power vector p. The rate-region of the system is the set of feasible transfer rates
x, which is formally defined as

R � {x ∈ R
N+|∃p ≥ 0 such that xν ≤ Rν(p),∀ν = 1, . . . ,N} (11)

where Rν(p) is defined in (10). It is not difficult to show that the rate-region R is
a convex set [19]. An equivalent characterization of the rate-region R useful for our
purpose can be given through the so called Perron-Frobenius eigenvalue [6] of a non-
negative matrix, as detailed next. We recall that a square matrix M is non-negative,
M ≥ 0, if all its elements are non-negative and that if M is also primitive (meaning
that all elements of Mk are positive for some k) then M has a unique strictly positive
(real) eigenvalue λ(M) which is larger in modulus than any other eigenvalue of M .
Define two matrices D and G̃:

D(x) = diag

(
exν

Gνν

)
, G̃νμ =

{
Gνμ if ν 
= μ,

0 otherwise.

Using the above definition, the following equivalence can be shown to hold [19]

xν ≤ Rν(p), ∀ν ⇔ p ≥ D(x)G̃p (12)

which, using the mentioned results on non-negative matrices and recalling the nor-
malization on p, leads to the following equivalent expression for the rate-region R

R = {x ∈ R
N+|λ(D(x)G̃) ≤ 1}. (13)
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It is important to note that it can be proved that the function x �→ λ(D(x)G̃) is con-
tinuously differentiable and convex [19].

The goal of each player is then to maximize his utility function Uν(x
ν), which

is assumed to depend only on its own transmission rate xν , subject to the rate con-
straints in (13). The form of this utility function can range from very simple to com-
plex expressions and may take into account several system level metrics and Quality
of Service requirements (see, e.g., [7]). In general this function could also be non
concave; we are not interested here in its precise expression. Stated in mathematical
terms, we have a game where each players’ problem is

maxxν Uν(x
ν),

λ(D(x)G̃) ≤ 1,

xν ≥ 0.

(14)

Therefore, the problems (14) define a GPG with (possibly) non concave objec-
tive potential function P(x) = ∑N

ν=1 Uν(x
ν) and a convex set X = R. The power

profile p supporting the optimal rates x
 that are solutions of this game can be com-
puted solving the linear system p ≥ D(x
)G̃p,

∑N
ν=1 pν = 1. This can be done using

some of the (distributed) algorithms proposed in the wide literature of power control
problems (e.g., [14, 26]).

Again we note that the application of the decomposition Algorithm 2 reduces the
problem of finding a Nash equilibrium to that of finding a global minimum of a
univariate function on an interval. On the other hand, even assuming that P(x) is
concave, which is not always the case, the solution of problem (7) is by no means
trivial, both with centralized or decomposition methods.

4 The case of N players with convexity

This is the first of three sections where we examine the behavior of Algorithm 2
under different assumptions on the convexity of the players’ subproblems and on
their number. We recall for convenience that each player’s problem is

minimizexν θν(x
ν,x−ν) s.t. xν ∈ Xν(x

−ν) = {xν ∈ Dν : (xν,x−ν) ∈ X}. (15)

We say that a point x is feasible if xν ∈ Xν(x
−ν) for every player ν.

We begin our analysis by considering the case where every player’s subproblem is
convex. Specifically, we suppose that the following assumption holds.

A3 The objective functions θν(·,x−ν) and the feasible sets Xν(x
−ν) are convex.

Under this assumption (implied by all commonly made assumptions in the field) we
will show that we can take a fixed τ in the general Algorithm 2 and prove conver-
gence. Algorithm 2 thus becomes:

Note that the vector xk,ν+1 defined in the algorithm has no specific role in the
algorithm itself; we introduce it for reference purposes only. As usual in a Gauss-
Seidel procedure, for each iteration k the algorithm solves consecutively N optimiza-
tion subproblems, one for each player ν. Therefore, player ν̄ calculates the optimal
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Algorithm 3 Regularized Gauss-Seidel—Convex Subproblems

(S.0): Choose any feasible starting point x0 = (x1
0 , . . . , xN

0 ), a positive regular-
ization parameter τ > 0 and set k := 0.

(S.1): If xk satisfies a suitable termination criterion: STOP.
Otherwise set xk,1 = xk .

(S.2): for ν = 1, . . . ,N , compute a solution xν
k+1 of

minxν θν(x
1
k+1, . . . , x

ν−1
k+1 , xν, xν+1

k , . . . , xN
k ) + τ‖xν − xν

k ‖2

s.t. xν ∈ Xν(x
1
k+1, . . . , x

ν−1
k+1 , xν+1

k , . . . , xN
k ).

(16)

Set xk,ν+1 = (x1
k+1, . . . , x

ν
k+1, x

ν+1
k , . . . , xN

k ).
end

(S.3): Set xk+1 := (x1
k+1, . . . , x

N
k+1), k ← k + 1, and go to (S.1).

solution of his problem using the new information for all players ν < ν̄ and the old
information for all players ν > ν̄. The vector xk,ν̄+1 thus collects the new points xν

k+1
for each players ν ≤ ν̄ and the old points xν

k for ν > ν̄.
We note that Algorithm 3 is well defined, since all subproblems (16) always have

a (unique) solution. This is easily seen because all these subproblems are strongly
convex, thanks to the term τ‖xν − xν

k ‖2 and Assumption A3.
We preliminarily show that all points generated by Algorithm 3, including the

“intermediate” points xk,ν , are feasible according to the definition given immediately
after (15).

Lemma 4.1 For every k and every ν, xk,ν is feasible.

Proof Assume that xk,ν is feasible. We first show that xk,ν+1 is feasible. By defini-
tion,

xk,ν = (x1
k+1, . . . , x

ν−1
k+1 , xν

k , . . . , xN
k ),

xk,ν+1 = (x1
k+1, . . . , x

ν
k+1, x

ν+1
k , . . . , xN

k ).

The feasibility of xk,ν implies that xi
k+1 ∈ Di for all i ∈ {1, . . . , ν−1}, xj

k ∈ Dj for all

j ∈ {ν, . . . ,N} and that (x1
k+1, . . . , x

ν−1
k+1 , xν

k , . . . , xN
k ) ∈ X. By definition of xν

k+1 we

have that xν
k+1 ∈ Xν(x

−ν
k,ν), that is xν

k+1 ∈ Dν , and (x1
k+1, . . . , x

ν
k+1, x

ν+1
k , . . . , xN

k ) ∈
X, namely xk,ν+1 is feasible. This fact, together with x0 ∈ X1(x

−1
0 ) × · · · ×

XN(x−N
0 ), xk,1 = xk , and xk,N+1 = xk+1, completes the proof. �

Before proving the main convergence theorem of this section we still need a tech-
nical result about the behavior of subgradients of functions of two (groups of) vari-
ables. This result is needed in order to avoid differentiability assumptions on the
objective functions θν . Essentially, the proposition below states that a certain partial
gradient is a locally bounded, closed map.
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Proposition 4.2 Let f : R
s ×R

t → R be given and assume that f is locally Lipschitz
continuous around a point (ū, v̄) ∈ R

s × R
t and such that f (·, v) is convex for every

v in a neighborhood of v̄. Let {(uk, vk)} be a sequence of points converging to (ū, v̄)

and let {ξk}, with ξk ∈ ∂uf (uk, vk) be a sequence of (Clarke’s) partial generalized
gradients. Then, every limit point ξ̄ of this sequence (and there is at least one such
limit point) belongs to ∂uf (ū, v̄).

Proof By [8, Proposition 2.3.16] we know that ξk ∈ πu∂f (uk, vk) (where πu de-
notes projection on the u space). Therefore we can find a sequence {ηk} such that
{(ξk, ηk)} ∈ ∂f (uk, vk). By the local boundedness and upper-semicontinuity of the
generalized gradient of a locally Lipschitz function, we then see that we must have
(renumbering if necessary) {(ξk, ηk)} → {(ξ̄ , η̄)} ∈ ∂f (ū, v̄). But then, by the convex-
ity assumption and [8, Proposition 2.5.3], we conclude that ξ̄ ∈ ∂uf (ū, v̄). �

We can now investigate the convergence properties of Algorithm 3.

Theorem 4.3 Assume that Assumptions A1–A3 hold. Let {xk} be the sequence gen-
erated by Algorithm 3 and let x̄ be a cluster point of this sequence. Then x̄ is a Nash
equilibrium of Problem (15).

Proof By Lemma 4.1, we have that for every k and every ν xν
k ∈ Xν(x

−ν
k,ν). By this

and by the definition of xν
k+1 in Step 3, we then have

θν(x
ν
k+1,x

−ν
k,ν) ≤ θν(x

ν
k ,x−ν

k,ν) − τ‖xν
k+1 − xν

k ‖2, ∀k, ν. (17)

By the definition of Generalized Potential Game, this relationship implies that

P(xν
k ,x−ν

k,ν) − P(xν
k+1,x

−ν
k,ν) ≥ σ(θν(x

ν
k ,x−ν

k,ν) − θν(x
ν
k+1,x

−ν
k,ν)) ≥ 0, ∀k, ν. (18)

Noting that xk,ν = (xν
k ,x−ν

k,ν) and xk,ν+1 = (xν
k+1,x

−ν
k,ν), we get from (18)

P(xk,ν+1) ≤ P(xk,ν). (19)

From (19), recalling that xk = xk,1, and xk+1 = xk,N+1, we get

P(xk+1) = P(xk,N+1) ≤ · · · ≤ P(xk,ν) ≤ · · · ≤ P(xk,1) = P(xk). (20)

Let K ⊆ {0,1, . . .} be an infinite subset of indices such that limk→∞,k∈K xk = x̄. By
the continuity of P and by (20) it follows that the full sequence {P(xk)} is convergent
to a finite value P̄ , and, therefore, again by (20) it also follows that

lim
k→∞P(xk,ν) = P̄ , ∀ν. (21)

In turn, taking into account (18), this implies

lim
k→∞σ(θν(x

ν
k ,x−ν

k,ν) − θν(x
ν
k+1,x

−ν
k,ν)) = 0, (22)
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and hence by definition of forcing function

lim
k→∞(θν(x

ν
k ,x−ν

k,ν) − θν(x
ν
k+1,x

−ν
k,ν)) = 0, (23)

that combined with (17) gives

lim
k→∞‖xν

k+1 − xν
k ‖ = 0. (24)

By (24) and the definition of xk,ν in Step 2, we then also have

lim
k→∞,k∈K

xk,ν = x̄, ∀ν. (25)

By Lemma 4.1 and by the closure of Xν(·) for all ν, we have x̄ν ∈ Xν(x̄
−ν), for all ν.

We prove that

θν(x̄
ν, x̄−ν) ≤ θν(x

ν, x̄−ν), ∀xν ∈ Xν(x̄
−ν). (26)

By contradiction assume that there exists a ν and a vector ȳν ∈ Xν(x̄
−ν) such that

θν(ȳ
ν, x̄−ν) < θν(x̄

ν, x̄−ν).

By Assumption A3, the problem of the ν-th player is convex. Therefore θν is direc-
tionally differentiable at (x̄ν, x̄−ν) and, with dν ≡ (ȳν − x̄ν), we can write

θ ′
ν(x̄

ν, x̄−ν;dν) = max
ξ∈∂xν θν(x̄ν ,x̄−ν )

ξ T dν

= inf
λ>0

θν(x̄
ν + λdν, x̄−ν) − θν(x̄

ν, x̄−ν)

λ

≤ θν(ȳ
ν, x̄−ν) − θν(x̄

ν, x̄−ν)

1
< 0. (27)

From the inner-semicontinuity of Xν(·) and from (25), it follows that there exists a se-
quence {yν

k } such that yν
k ∈ X(x−ν

k,ν) and limk→∞ yν
k = ȳν . Let us set �(xν,x−ν, z) ≡

θ(xν,x−ν) + 1
2‖xν − z‖2. Note that �′(xν,x−ν, z;dν) = θ ′

ν(x
ν,x−ν;dν) +

(xν − z)T dν , so that recalling the definition of xν
k+1 at Step 2, the optimality con-

ditions for a convex problem and elementary properties of convex functions, we can
write, for some suitable ξk ∈ ∂xν θ(xν

k+1,x
−ν
k,ν),

�′(xν
k+1,x

−ν
k,ν, x

ν
k ; (yν

k − xν
k+1))

= θ ′(xν
k+1,x

−ν
k,ν;yν

k − xν
k+1) + (xν

k+1 − xν
k )T (yν

k − xν
k+1)

= (ξk)T (yν
k − xν

k+1) + (xν
k+1 − xν

k )T (yν
k − xν

k+1) ≥ 0.

Passing to the limit for k → ∞, k ∈ K , using Proposition 4.2, (24) and (25), we get,
for some suitable ξ̄ ∈ ∂xν θ(x̄ν, x̄−ν),

0 ≤ ξ̄ T (ȳν − x̄ν) ≤ θ ′
ν(x̄

ν, x̄−ν; (ȳν − x̄ν)).

This contradicts (27) and concludes the proof. �
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The previous theorem leaves open the question whether the sequence generated
by Algorithm 3 admits a cluster point. Because of Lemma 4.1 this would obviously
be true if the feasible set {x ∈ D1 × · · · × DN : x ∈ X} is bounded. A more general
assumption could be that the potential function be coercive, but we do not go into
these details here.

Remark 4.1 For sake of simplicity, in Algorithm 3, we took τ fixed and the same for
every player. It is however easy to see that all the results of this section go through if
each player uses a different τν and if these τν vary from iteration to iteration, provided
they are all bounded away from zero and from above.

Remark 4.2 By way of example we consider the three players potential Nash game
described in Sect. 3.1. Assumptions A1–A3 hold so that Algorithm GS-C can be
applied and the convergence is guaranteed. We take as starting point the point
(−1 − ε,1 + 1

2ε,−1 − 1
4ε) with ε = 0.1. At each iteration k, at Step 3 of Algorithm

GS-C subproblem (16) is a univariate and convex problem that can actually be solved
analytically. We set τ = 0.5, and the algorithm converged in 8 iterations to the Nash
equilibrium point (−10,−10,−10) (we terminated the algorithm when the norm of
the violation of the KKT conditions of all the players was below 10−6).

5 The case of N players without convexity

In this section we drop Assumption A3 and show that we can still obtain useful con-
vergence results using decomposition, even when the players’ problem are not con-
vex. The “price” we have to pay to get these results is that non convex subproblems
have to be solved by the players at each iteration, and this can obviously be difficult
in general. However, the problems the players have to solve in the decomposition
scheme are often simple (if compared to the global solution of the optimization prob-
lem (7)); for example, this is the case for the application discussed in Sect. 3.4.

The key point in order to achieve convergence in the non convex case is a suitable
law for controlling the parameter τ in Algorithm 2 that forces it to zero in a controlled
way. The resulting algorithm is the following.

A first observation concerns the stopping criterion in Step 1. Since we dropped any
convexity assumption, this step is not totally straightforward in principle. However,
since a solution x̄ of the game is a fixed point of the iteration in Step 2 (in the sense
that if xk = x̄ then xk+1 = x̄), then a suitable stopping criterion is ‖xk+1 −xk‖ ≤ tol,
where tol is a prefixed positive tolerance.

The question also arises of whether subproblems (28) do have a solution, so that
the algorithm is well defined. These subproblems will obviously have solutions under
a host of standard assumptions. For example it would be enough to assume that the
set Xν(x

−ν) is non empty and compact (which in turn is true if either X or Dν are
compact). In the sequel, to avoid such irrelevant hypotheses, we simply require that:

A4 For all ν and for all k, subproblem (28) has a solution.

The main difference of Algorithm 4 with respect to Algorithm 3 is obviously
Step 3. We will see that the updating rule (29) forces the regularization parameter
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Algorithm 4 Regularized Gauss-Seidel—NonConvex Subproblems

(S.0): Choose any feasible starting point x0 = (x1
0 , . . . , xN

0 ), a positive regular-
ization parameter τ0 > 0 and set k := 0.

(S.1): If xk satisfies a suitable termination criterion: STOP.
Otherwise set xk,1 = xk .

(S.2): for ν = 1, . . . ,N , compute a (global) solution xν
k+1 of

minxν θν(x
1
k+1, . . . , x

ν−1
k+1 , xν, xν+1

k , . . . , xN
k ) + τk‖xν − xν

k ‖2

s.t. xν ∈ Xν(x
1
k+1, . . . , x

ν−1
k+1 , xν+1

k , . . . , xN
k ).

(28)

Set xk,ν+1 = (x1
k+1, . . . , x

ν
k+1, x

ν+1
k , . . . , xN

k ).
end

(S.3): Set

τk+1 = max
{

min
[
τk, max

ν=1,...,N
{‖xν

k+1 − xν
k ‖}

]
,0.1τk

}
, (29)

xk+1 := (x1
k+1, . . . , x

N
k+1), k ← k + 1, and go to (S.1).

τk to zero, without actually ever letting it be zero, and therefore τk is reduced an infi-
nite number of times. Let K be the subsequence of iterations where τk is reduced. In
Theorem 5.2 below we show that every limit point of {xk}K is a Nash equilibrium.
To this end we preliminarily observe that Lemma 4.1 is easily seen to be still valid in
the current setting under Assumption A4.

Lemma 5.1 Suppose Assumption A4 holds. If there exists a cluster point of the se-
quence {xk}, then

(i) we have

lim
k→∞ τk = 0 (30)

(ii) there exists an infinite index set K of iterations such that

τk+1 < τk. (31)

Proof From the instructions at Step 3 we have

τk+1 ≤ τk.

In order to prove point (i), we assume by contradiction that

τk ≥ τ̄ > 0, ∀k. (32)

By Lemma 4.1, we have that for every k and for every ν xν
k ∈ Xν(x

−ν
k,ν). By this and

by the definition of xν
k+1 in Step 2, we then have

θν(x
ν
k+1,x

−ν
k,ν) ≤ θν(x

ν
k ,x−ν

k,ν) − τ̄‖xν
k+1 − xν

k ‖2, ∀k, ν. (33)
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By definition of Generalized Potential Game this relationship implies that

P(xν
k ,x−ν

k,ν) − P(xν
k+1,x

−ν
k,ν) ≥ σ(θν(x

ν
k ,x−ν

k,ν) − θν(x
ν
k+1,x

−ν
k,ν)) ≥ 0, ∀k, ν. (34)

Noting that xk,ν = (xν
k ,x−ν

k,ν) and xk,ν+1 = (xν
k+1,x

−ν
k,ν), we can rewrite (34) as

P(xk,ν+1) ≤ P(xk,ν), ∀ν. (35)

From (35), recalling that xk = xk,1, and xk+1 = xk,N+1, we get

P(xk+1) = P(xk,N+1) ≤ · · · ≤ P(xk,ν) ≤ · · · ≤ P(xk,1) = P(xk). (36)

Let K̂ ⊆ {0,1, . . .} be an infinite subset of indices such that

lim
k→∞,k∈K̂

xk = x̄.

By the continuity of P and by (36) it follows that the full sequence {P(xk)} is con-
vergent to a finite value P̄ , and, therefore, again by (36) it also follows that

lim
k→∞P(xk,ν) = P̄ , ∀ν. (37)

In turn, taking into account (34), this implies

lim
k→∞σ(θν(x

ν
k ,x−ν

k,ν) − θν(x
ν
k+1,x

−ν
k,ν)) = 0, (38)

and hence by definition of forcing function

lim
k→∞(θν(x

ν
k ,x−ν

k,ν) − θν(x
ν
k+1,x

−ν
k,ν)) = 0, (39)

that combined with (33) gives

lim
k→∞‖xν

k+1 − xν
k ‖ = 0. (40)

From (40) we get

max
1,...,N

{‖x1
k+1 − x1

k‖, . . . ,‖xν
k+1 − xν

k ‖, . . . ,‖xN
k+1 − xN

k ‖} < τ̄

for k sufficiently large, which implies, together with (29), that τk+1 < τ̄ , and this
contradicts (32).

Point (ii) follows from point (i) and the updating rule (29). �

Theorem 5.2 Suppose that Assumptions A1, A2 and A4 hold. Assume that there
exists a cluster point of the sequence {xk}. Let K be the infinite subset of iterations
defined at point (ii) of Lemma 5.1. Then any cluster point of the subsequence {xk}K
is a Nash equilibrium of Problem (15).
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Proof Let K ⊆ {0,1, . . .} be the infinite subset of iterations defined at point (ii) of
Lemma 5.1 where

τk+1 < τk.

Then for all k ∈ K we have

max
1,...,N

{‖x1
k+1 − x1

k‖, . . . ,‖xν
k+1 − xν

k ‖, . . . ,‖xN
k+1 − xN

k ‖} < τk.

From the above inequality and from point (i) of Lemma 5.1 we obtain

lim
k→∞,k∈K

‖xν
k+1 − xν

k ‖ = 0, ∀ν. (41)

Let x̄ be any cluster point of the subsequence {xk}K . By (41) and the definition of
xk,ν in Step 3, we then also have

lim
k→∞,k∈K

xk,ν = x̄, ∀ν. (42)

By Lemma 4.1 and by the closure of Xν(·) for all ν, we have x̄ν ∈ Xν(x̄
−ν), for all ν.

We prove that

θν(x̄
ν) ≤ θν(x

ν), xν ∈ Xν(x̄
−ν). (43)

By contradiction assume that there exists a ν and a vector ȳν ∈ Xν(x̄
−ν) such that

θν(ȳ
ν) < θν(x̄

ν). (44)

From the inner-semicontinuity of Xν(·) and from (42), it follows that there exists a
sequence {yν

k } such that yν
k ∈ X(x−ν

k,ν) and

lim
k→∞,k∈K

yν
k = ȳν .

Then, recalling the definition of xν
k+1 at Step 3 we can write

θν(x
ν
k+1) + τk‖xν

k+1 − xν
k ‖2 ≤ θν(y

ν
k ) + τk‖yν

k − xν
k ‖2.

Passing to the limit for k → ∞, k ∈ K , recalling point (i) of Lemma 5.1 and (41) we
get a contradiction to (44) and this concludes the proof. �

Note that the previous result is based on the existence of a limit point of {xk}
which, however, does not ensure that limit points of {xk}K exist. What it claims is
that if limit points of this latter sequence exist, then these are solution. In order to be
sure that such limit points exist it is sufficient to require that Dν ∩ X be bounded for
all ν.

We believe that the results of this theorem are interesting, since they are obtained
without making any of the standard convexity assumptions usually encountered when
studying (decomposition) algorithms for the solution of games. Furthermore, the the-
orem also makes clear that the regularization term in Algorithm 4 plays a role rather
different from the traditional one, since it is applied to a fully non convex problem.
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A final simple example might be useful to prove that in the non convex setting
of this section we really need the parameter τk to decrease to zero and can not keep
it fixed, as in the previous section. To this end we show that given any fixed positive
parameter τ , we can find a problem for which Algorithm 3 does not converge to Nash
equilibria. So, let a fixed, positive τ be given. Consider a game with two players,
N = 2. Assume that each player controls only one variable, n1 = 1 and n2 = 2, and
let the players’ problems be

minx −τ

2
x2 + xy,

0 ≤ x ≤ 1,

y ≤ x + 1,

miny y2 + xy,

0 ≤ y,

y ≤ x + 1.

It is obvious that this problem has a unique solution given by (x̄, ȳ) = (1,0). If we
set (x0, y0) = (0,0) and apply one step of the regularization procedure, we get that
x1 will be the solution of the regularized problem

minx −τ

2
x2 + 0x + τ(x − 0)2,

0 ≤ x ≤ 1,

0 ≤ x + 1,

and it is easy to see that x1 = 0. Consequently, y1 will be the solution of the regular-
ized problem

miny y2 + 0y + τ(y − 0)2,

0 ≤ y,

y ≤ 0 + 1,

and even in this case it is immediate to check that y1 = 0. Therefore (x1, y1) =
(x0, y0) = (0,0), and it is clear that the application of Algorithm 3 will generate a
sequence {(xk, yk)} with (xk, yk) = (0,0) for every k. This sequence converges to
(0,0) which is not the solution of the problem.

6 The case of two players

The case of two players is particularly interesting for two reasons. First, it often oc-
curs in practice and represents the “antagonistic” behavior in its purest form. Second,
in the case of two players, stronger results can be obtained. In fact, we can somewhat
enlarge the class of problems for which we can show convergence by relaxing con-
dition (b) in the Definition 2.1 of Generalized Potential Game. But the most striking
fact about the 2 players case is that there is no need of regularization.
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Let the following GNEP with two players be given:2

minimizex θ1(x, y)

subject to x ∈ X(y)
and

minimizey θ2(x, y)

subject to y ∈ Y(x)
(45)

where x ∈ R
n1 , y ∈ R

n2 , θ1 : R
n1 × R

n2 → R, θ2 : R
n1 × R

n2 → R and the following
two conditions are satisfied for a suitable potential function P :

(a)

X(y) = {x ∈ Dx : (x, y) ∈ X}, Y (x) = {y ∈ Dy : (x, y) ∈ X},
with Dx ⊆ R

n1 ,Dy ⊆ R
n2 and X ⊆ R

n1+n2 closed sets,

(b)

θ1(x̄, y) − θ1(x̃, y) ≥ (>)0 =⇒ P(x̄, y) − P(x̃, y) ≥ (>)0,

θ2(x, ȳ) − θ2(x, ỹ) ≥ (>)0, =⇒ P(x, ȳ) − P(x, ỹ) ≥ (>)0.

In the next theorem we show that we can apply Algorithm 2 taking τk = 0 for every k.
This means that we are actually applying Algorithm 1, and this is the only case in
which the latter algorithm actually works. For sake of clarity we report the algorithm
for the present setting.

Algorithm 5 Gauss-Seidel—Two Players
(S.0): Choose a feasible starting point x0 ∈ R

n1, y0 ∈ R
n2 and set k := 0.

(S.1): If (xk, yk) satisfies a suitable termination criterion: STOP.
(S.2): Let xk+1 be a (global) solution of

min θ1(x, yk)

x ∈ X(yk).
(46)

(S.3): Let yk+1 be a (global) solution of

min θ2(xk+1, y)

y ∈ Y(xk+1).
(47)

(S.4): Set k ← k + 1, and go to (S.1).

As usual, we assume that subproblems (46) and (47) have a solution at each step,
and call this Assumption A4. Furthermore note that, by an immediate extension of
Lemma 4.1 we have that

xk ∈ X(yk), ∀k ≥ 1, (48)

2For sake of clarity in this section we deviate from the general notation adopted and indicate the variables
of the first player with x and those of the second with y.
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yk ∈ Y(xk+1), ∀k ≥ 1. (49)

With this preparation, we can now prove the following theorem.

Theorem 6.1 Assume that Assumptions A1, A2, and A4 hold. Let {(xk, yk)} be the
sequence generated by the Algorithm 5. Let (x̄, ȳ) be a cluster point of {(xk, yk)}.
Then (x̄, ȳ) is a Nash equilibrium of Problem (45).

Proof By steps 2 and 3, for every k we have

θ1(xk+1, yk) ≤ θ1(x, yk), ∀x ∈ X(yk), (50)

θ2(xk+1, yk+1) ≤ θ2(xk+1, y), ∀y ∈ Y(xk+1). (51)

Using (48), (49), (50), (51) we obtain

θ1(xk+1, yk) ≤ θ1(xk, yk), (52)

θ2(xk+1, yk+1) ≤ θ2(xk+1, yk). (53)

Since condition (b) in this section holds, we then get

P(xk, yk) − P(xk+1, yk) ≥ 0, (54)

P(xk+1, yk) − P(xk+1, yk+1) ≥ 0, (55)

that imply

P(xk+1, yk+1) ≤ P(xk+1, yk) ≤ P(xk, yk). (56)

Let K ⊆ {0,1, . . .} be an infinite subset of indices such that

lim
k→∞,k∈K

(xk, yk) = (x̄, ȳ).

By the continuity of P and by (56), we have

lim
k→∞P(xk, yk) = lim

k→∞P(xk+1, yk) = P̄ . (57)

Since X(·) and Y(·) are closed, we have that x̄ ∈ X(ȳ) and ȳ ∈ Y(x̄). We prove
that

θ1(x̄, ȳ) ≤ θ1(x, ȳ), ∀x ∈ X(ȳ), (58)

θ2(x̄, ȳ) ≤ θ2(x̄, y), ∀y ∈ Y(x̄). (59)

By contradiction assume first that (58) does not hold, i.e., that there exists a vector
x̂ ∈ X(ȳ) such that

θ1(x̂, ȳ) < θ1(x̄, ȳ), (60)
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that implies

P(x̄, ȳ) − P(x̂, ȳ) > 0. (61)

From the inner-semicontinuity of X(·) it follows that there exists a sequence {x̂k}K
such that x̂k ∈ X(yk) for all k ∈ K and limk→∞,k∈K x̂k = x̂. From (50) we get

θ1(xk+1, yk) ≤ θ1(x̂k, yk),

that implies

P(x̂k, yk) − P(xk+1, yk) ≥ 0. (62)

The continuity of P and (57) imply

P(x̄, ȳ) = P̄ . (63)

Taking the limits for k → ∞, k ∈ K , taking into account (57) and (63), we obtain

P(x̄, ȳ) ≤ P(x̂, ȳ),

which contradicts (61).
Now, again by contradiction assume that (59) does not hold, i.e., that there exists

a vector ŷ ∈ Y(x̄) such that

θ2(x̄, ŷ) < θ2(x̄, ȳ), (64)

and hence

P(x̄, ȳ) − P(x̄, ŷ) > 0. (65)

From the inner-semicontinuity of Y(·) it follows that there exists a sequence {ŷk}K
such that ŷk ∈ Y(xk) for all k ∈ K and limk→∞,k∈K ŷk = ŷ. From (51) we get

θ2(xk, yk) ≤ θ2(xk, ŷk),

and hence

P(xk, ŷk) − P(xk, yk) ≥ 0,

Taking the limits for k → ∞, k ∈ K , recalling (63), we obtain

P(x̄, ȳ) ≤ P(x̄, ŷ),

which contradicts (65). Thus (58) and (59) show that (x̄, ȳ) is a Nash equilibrium
of (45). �

This theorem could seem to suggest that our analysis in previous sections was not
deep enough and that maybe it could be possible to eliminate the regularization terms
also in the case of games with more than two players. Unfortunately this is not so, as
shown by the example in Sect. 3.1. The case of two players is really peculiar.
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Remark 6.1 Antipin devoted some papers (see [3] and references therein) to the study
of convergence of regularized projection-like methods for the solution of two-person
games. His algorithms are close in spirit to those considered in this paper, and his
(rather complex) assumptions also appear to be strongly related to that of potential
game we used here (although, among other things, he certainly assumes convexity of
the feasible regions and of the objective functions of each player for a fixed strategy
of the opponent). It may be interesting to note then that we show that regularization
is not really needed in the case of two players only. On the other hand, Antipin is able
to show convergence of the whole sequence to a single solution.
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