
A Secant Method for Nonlinear Least-Squares Minimization

Thomas F. Coleman1, Wei Xu2 and Gang Liu3

1 Department of Combinatorics and Optimization
University of Waterloo

Waterloo, On. Canada, N2L 3G1.

2,3 Software School , Fudan University
Shanghai, China, 200433.

1 tfcoleman@uwaterloo.ca
2 xuw5@fudan.edu.cn

3 liu gang@fudan.edu.cn

Abstract

Quasi-Newton methods have played a prominent role, over many years, in the de-
sign of effective practical methods for the numerical solution of nonlinear minimization
problems and in multi-dimensional zero-finding. There is a wide literature outlining the
properties of these methods and illustrating their performance [e.g., [8]]. In addition,
most modern optimization libraries house a quasi-Newton collection of codes and they
are widely used. The quasi-Newton contribution to practical nonlinear optimization is
unchallenged.

In this paper we propose and investigate an efficient quasi-Newton (secant) approach
to the nonlinear least-squares problem, made practical due to the selective application
of automatic differentiation (AD) technology. We also observe that AD technology can
increase the efficiency of the standard quasi-Newton (positive definite secant) approach
to the full nonlinear minimization approach to this problem and we compare these two
AD-assisted methods. Finally, we compare the AD-assisted approaches to a standard
globalized Gauss-Newton method.

1 Introduction

The multi-dimensional zero-finding problem is

solve F (x) = 0, (1.1)

where F (x) = (f1(x), f2(x), · · · , fn(x))T and each fi(x) maps real n-vectors x into scalars
in a continuous and differentiable manner. A quasi-Newton method approximates the true
n-by-n Jacobian matrix, J(x) = (∂f

∂xj
)n×n, by successive updates. For example if xk is

the current approximate solution to (1.1), and the current approximation to the Jacobian

1

tfcolema
Sticky Note
To appear in Computational Optimization and Applications

matrix Jk = J(xk) is Bk, then a quasi-Newton method involves an update function U ,
Bk+1 = U(Bk, yk = Fk+1 − Fk, sk = xk+1 − xk) where xk+1 is the new iterate, Fk =
F (xk), Fk+1 = F (xk+1). As indicated, U typically depends only on the current Jacobian
approximation, the change in the iterate x, and the change in the function F . Hence, no
‘extra’ information needs to be computed in order to update Bk to yield Bk+1. The most
successful quasi-Newton update for the nonlinear equations problem, often referred to as the
secant update [2, 10], is the matrix solution to the convex optimization problem,

min
B
{‖B −Bk‖2 : Bsk = yk}, (1.2)

i.e., assuming sk is not the zero vector,

Bk+1 = Bk +
(yk −Bksk)sT

k

sT
k sk

. (1.3)

Acceptable practical convergence properties typically require use of a merit function (to
ensure and measure progress toward a solution), often f2(x) = 1

2‖F (x)‖2
2 is used; a glob-

alization scheme such as a linesearch or dogleg/trust region method is used in conjunction
with the merit function. Consequently, the core loop of a typical globalized secant method
for the multi-dimensional zero-finding problem can be framed as follows.

Algorithm 1 (Secant Quasi-Newton for zero-finding problems.)

1. Solve Bkdk = −F (xk) (i.e., determine a quasi-Newton direction).

2. Use a globalization scheme involving xk, dk, BT
k F (xk) to determine xk+1 such that

f2(xk+1) is ‘sufficiently less than’ f2(xk) . Set yk = Fk+1 − Fk.

3. Determine Bk+1 via (1.3).

A robust quasi-Newton implementation will also attend to other (important) details such
as:

1. Choice of starting matrix approximation B0.

2. Occasional refreshment of the Jacobian approximation Bk for some values of k (when
progress is deemed too slow).

It is important to note that the gradient of the merit function f2, i.e., ∇f2(x) = J(x)T F (x),
is never computed in this popular approach. Generally, modern optimization methods for
continuously differentiable problems expect an accurate gradient determination. However, in
this situation the gradient is not computed - it is deemed too expensive (e.g., if the gradient
computation involves computing the square Jacobian matrix at the current point then the
cost of the gradient computation will be a factor of n times the cost to evaluate F (x)).

Why is the merit function gradient not necessary in this case? There are two main rea-
sons:

2

(a). The nonsingularity of Bk ensures that the quasi-Newton direction dk is a descent
direction for the merit function f2, i.e., ∇f2(x)T dk < 0 .

(b). If x̄ satisfies BT F (x̄) = 0 for any nonsingular matrix B, then ∇f2(x̄) = 0; alternatively,
if ∇f2(x̄) = 0 and J(x̄) is nonsingular, then F (x̄) = 0.

Property (a) helps yield downhill steps with respect to the merit function, and property
(b) allows the gradient ∇f2(x) = J(x)T F (x) to be replaced with BT F (x) with respect to
first-order convergence results.

Why is there no secant method specifically for low residual nonlinear least-squares prob-
lems? A nonlinear least squares problem is a nonlinear minimization problem of the form,
minx f2(x) = 1

2‖F (x)‖2
2, where F represents a rectangular mapping,

F (x) = (f1(x), f2(x), · · · , fm(x))T . (1.4)

Each fi(x) maps real n-vectors x into scalars in a continuous and differentiable manner,
and m ≥ n. We are particularly interested in the case where m > n since the equality
case is discussed above. Generally, approaches to the nonlinear least-squares problem fall
into two camps: those that treat the minimization of f2(x) as a general smooth nonlinear
minimization problem (and ignore structure) and those that exploit the specific structure
of this problem. The most popular approach in the latter camp is to ignore the terms of
the Hessian matrix of f2 that involve multiplication by ‘residual’ terms (e.g., fi(x)) since
they are expected to be small at the solution. Consequently, the linear approximation,
F (x + d) ∼= F (x) + J(x)d is used in the step determination procedure at point x. For
example, a trust region approach to the minimization of f2 will involve the determination of
a trial step dk at point xk:

dk : min
d
{‖F (xk) + Jkd‖2

2 : ‖d‖2 ≤ ∆k}. (1.5)

The question we explore in this paper is the potential use of a secant approximation Bk to
the Jacobian approximation Jk, for the (low residual) nonlinear least-squares problem.

2 A Rectangular Secant Approximation

Let Bk be an m-by-n approximation to the m-by-n Jacobian matrix of the nonlinear vector-
valued function F given in (1.4). Clearly problem (1.2) can be stated in the case where
m > n and the solution is the update given in (1.3) - now rectangular - provided the step
sk is not zero. Therefore in principle a globalized secant method can be designed similar to
that used in multi-dimensional zero-finding.

Algorithm 2 (Secant Quasi-Newton Method for nonlinear square problems.)

1. Use the linear approximation F (xk + d) ∼= F (xk) + Bkd to determine a direction dk.

3

2. Use a globalization scheme involving xk, dk, BT
k F (xk) to determine xk+1 such that

f2(xk+1) is ‘sufficiently less than’ f2(xk).

3. Determine Bk+1 via (1.3).

The updated matrix Bk+1 via (1.3) maintains full column rank with the similar conditions
as for the square matrices.

Theorem 2.1 Assume that Bk ∈ Rm×n (m ≥ n) is full column rank and sT
k B†

kyk 6= 0,
where B†

k is the Moore-Penrose inverse [19], then Bk+1 updated by (1.3) maintains full
column rank.

(Refer to the proof in Appendix.)

Note that the framework we have presented here, in analogy to the zero-finding situation,
does not involve the gradient of the function f2, i.e., ∇f2(x) = J(x)T F (x). In the zero-
finding case this approach succeeds essentially because F (x) → 0, as x → x∗, a zero of
F . However, in the rectangular case we are forcing ∇f2(x) = J(x)T F (x) → 0 without the
expectation that F (x) → 0. Therefore it is difficult to see how sufficient progress (step 2)
toward a solution can be ensured without the gradient computation.

However, automatic differentiation technology allows for the computation of the gradient,
∇f2(x) = JT (x)F (x), in time proportional to the time required to evaluate f2(x), i.e., pro-
portional to the time to evaluate F (x) - there is no need to compute the Jacobian itself
[13]. Therefore, without significant extra expense the globalization scheme (step 2) can also
involve the additional information ∇f2(xk) = JT (xk)F (xk).

To follow is an efficient dogleg/secant method for the (low-residual) nonlinear least-squares
problem. We note that the ‘nonlinear computations’ in each iteration take time O(ω(F (x)))
where ω(F (x)) is the time (or work) required to evaluate the argument.

The trust region subproblem to be solved at each iteration to generate a trial step sk is

min
s
{sT∇f2(xk) +

1
2
sT BT

k Bks : ‖s‖2 ≤ ∆k, s ∈ Pk}, (2.6)

where ∆k > 0 is the trust region radius, and Pk is the ‘dogleg’ piecewise linear path con-
necting xk to CP, the Cauchy Point (i.e., the minimizer of the quadratic function in (2.6)
along the negative gradient direction −∇f2(xk)), and then connecting CP to xN

k , where
xN

k = xk + sN
k , and

[BT
k Bk]sN

k = −∇f2(xk). (2.7)

The overall dogleg/trust region approach, which guarantees our proposed Algorithm 2 is
able to converge to a first-order point from any starting point (e.g., Theorem 6.4.5 and 6.4.6
[1]), is:

4

For k = 1, · · ·
Solve (2.6) for sk, set qpk ← sT

k∇f2(xk) + 1
2sT

k BT
k Bksk

Set newk ← f2(xk + sk), ratiok ← newk−f2(xk)
qpk

Adjust ∆k:
If ratiok < τ1

∆k+1 ← ‖sk‖
γ1

Elseif ratiok > τ2 and ‖sk‖ = ∆k

∆k+1 ← γ2∆k

Else
∆k+1 ← ∆k

Endif
Update x

If ratiok ≤ 0
xk+1 ← xk

Else
xk+1 ← xk + sk,
update Bk → Bk+1 via (1.3).

Endif

The constants in this approach satisfy: 0 < τ1 < τ2 < 1, γ1 > 1, γ2 > 1. Typical choices are:
τ1 = 0.25, τ2 = 0.75, γ1 = 4, γ2 = 2.

3 Local Convergence

This section is devoted to analyzing the local convergence property for Algorithm 2 proposed
in Section 2 for two different initial approximation of Jacobians. The results are similar to
those in [4].

Theorem 3.1 Let x∗ be a least squares solution of the nonlinear least square problem,
minx f2(x), where f2(x) = 1

2‖F (x)‖2
2. Assume that there exists a neighborhood N of x∗

such that

1. J(x0) satisfies a Lipschitz condition on N of order one with constant L,

2. x0 ∈ N , where x0 is the initial approximation to the solution and

‖e0‖2 ≤ µ1/αL,

where e0 = x0−x∗, µ1 ' 0.244, α = ‖J†‖2, where J is the Jacobian of F (x) at x∗ and
has full column rank,

3.

‖E0‖2
2 ≤

(
θ1 − 0.5αL‖e0‖2

α(1 + θ1)

)2

− L2‖e0‖2
2

1− θ2
1

,

5

where E0 = B0 − J , where B0 is the initial approximation Jacobian and θ1 ' 0.671.

Then, if xi is the ith approximation to the solution generated by Algorithm 2 and ei = xi−x∗,
we have

‖ei‖2 ≤ θi
1‖e0‖2.

Proof. Let Bi be the approximation of the Jacobian of ith iteration at xi and define the
matrix error Ei by Ei = Bi − J . From (1.3), we have

Ei+1 = Ei − (yi −Bisi)sT
i

sT
i si

,

so that

Ei+1 = Ei − [yi − (J + Ei)si]sT
i

sT
i si

= Ei(I − sis
T
i

sT
i si

)− (yi − Jsi)sT
i

sT
i si

.

Since F (xi+1) ' F (xi) + J(xi+1)si, that is yi ' J(xi+1)si, it follows that

Ei+1 ' Ei(I − sis
T
i

sT
i si

)− (J(xi+1)− J)sis
T
i

sT
i si

,

so that,

‖Ei+1‖2
2 ≤ ‖Ei‖2

2 + ‖J(xi+1)− J‖2
2 ≤ ‖E1‖2

2 + L2‖ei+1‖2
2 ≤ ‖E1‖2

2 + L2‖ei‖2
2, (3.8)

since ‖ei+1‖2 < ‖ei‖2 and condition (1) of the theorem implies that, for x, y ∈ N ,

‖J(x)− J(y)‖2 ≤ L‖x− y‖2. (3.9)

Now, if we define r by
ri = F (xi)− Jei, (3.10)

it follows from (3.9) and a Lemma 1. in [7] that

‖ri‖2 ≤ 0.5L‖ei‖2
2.

Now, xi+1 = xi −B†
i F (xi), so that, from (3.10), and the definition of xi,

ei+1 = ei −B†
i (Jei + r). (3.11)

Since Ei = Bi−J and from Theorem 2.1, Bi is column full rank, that is B†
i Bi = I, it follows

that
B†

i J = I −B†
i Ei. (3.12)

6

Inserting (3.12) into (3.11), we have

ei+1 = (I −B†
i J)ei −B†

i r = B†
i Eiei −B†

i r.

Taking the 2-norm on the both sides of the above equation for ei+1, it follows that

‖ei+1‖2 ≤ ‖B†
i ‖2‖Ei‖2‖ei‖2 + ‖B†

i ‖2‖r‖2. (3.13)

From Corollary 8.6.2 of [12] and α = ‖J†‖2, if α‖Ei‖2 < 1, we have

‖B†
i ‖2 =

1
σmin(Bi)

≤ 1
σmin(J)− ‖Ei‖2

=
α

1− α‖Ei‖2
,

where σmin(A) is the smallest nonzero singular value of matrix A.
Equation (3.13) can be rewritten as

‖ei+1‖2 ≤ α(‖Ei‖2‖ei‖2 + ‖r‖2)
1− α‖Ei‖2

≤ α(‖Ei‖2‖ei‖2 + 0.5L‖ei‖2
2)

1− α‖Ei‖2
,

that is,
‖ei+1‖2

‖ei‖2
≤ α(‖Ei‖2 + 0.5L‖ei‖2)

1− α‖Ei‖2
. (3.14)

Next, the proof proceeds inductively, and we use the subscript kth to denote kth approxi-
mation. Assume that for i = 1, 2, · · · , k, ‖ei‖2 ≤ θ‖ei−1‖2, where 0 ≤ θ ≤ 1. Then, from
(3.8), we have

‖Ek‖2
2 ≤ ‖E0‖2

2 + L2‖e0‖2
2(1 + θ2 · · ·+ θ2k−2)

< ‖E0‖2
2 +

L2‖e0‖2
2

1− θ2
.

So, from (3.14), ‖ek+1‖2 ≤ θ‖ek‖2 is true only if

‖Ek‖2 ≤ (θ − 0.5αL‖e0‖2)
α(1 + θ)

, (3.15)

and it follows that from (3.14), that ‖ek+1‖2 ≤ θ‖ek‖2, if

‖E0‖2
2 +

L2‖e0‖2
2

1− θ
≤

(
θ − 0.5αL‖e0‖2

α(1 + θ)

)2

, (3.16)

or

α2‖E0‖2
2 ≤

(
θ − 0.5µ

1 + θ

)2

− µ2

1− θ2
,

where µ = αL‖e0‖2.
It is only possible to satisfy (3.16) if

(
θ − 0.5µ

1 + θ

)2

− µ2

1− θ2
≥ 0,

7

i.e.,

µ ≤ 2θ(1− θ2)1/2

(1− θ2)1/2 + 2(1 + θ)
.

We would like to obtain the largest bounds for e0, thus the maximum value of µ, denoted
as µ1, is about 0.244, and the corresponding θ, denoted as θ1, is about 0.671.

Therefore, if e0 and E0 satisfy condition (3) of the theorem, and ‖ei+1‖2 ≤ ‖θ1‖ei‖2,
for i = 1, 2, · · · , k, then ‖ek+1‖2 ≤ θ1‖ek‖2, which implies that ‖ek+j‖2 ≤ θj

1‖ek‖2, for
i = 1, 2, · · ·. Also, if E0 satisfies (3.15) with k = 0, then ‖e1‖2 ≤ θ1‖e0‖2, which implies that
‖ei‖2 ≤ θi

1‖e0‖2. 2

Theorem 3.2 If x0 ∈ N , B0 = J(x0) and ‖e0‖2 ≤ µ2/αL, where µ2 ' 0.205, then ‖ei‖2 ≤
θi
2‖e0‖2 where θ2 ' 0.724.

The proof of Theorem 3.2 is similar to the one for Theorem 2 in [4]. 2

The above two theorems establish that our proposed method for rectangular problems has
the same convergence properties as the Broyden method in [2, 4].

4 Numerical Experiments

In this section, we will compare the performance of three nonlinear least squares solver ap-
proaches.

Method 1.(Secant Quasi-Newton) The secant quasi-Newton method is proposed in Sec-
tion 2. In this method, we use the secant update for the Jacobian matrix and the re-
verse mode AD to evaluate ∇f2(x). In order to reduce the number of iterations, we use
the criterion in [14] to occasionally refresh the exact Jacobian matrix. That is we recom-
pute the exact Jacobian matrix by forward AD, rather than the Broyden update, when
‖∇f2(xi+1)‖inf ≥ 0.9 ∗ ‖∇f2(xi)‖inf , where ‖ · ‖inf is the infinite norm.

Method 2.(Powell’s dogleg) We choose the Powell’s dogleg method [17] developed by Nielsen
in their toolbox, ‘immoptibox’,[16]. Users have to supply their own Jacobian computation
method for the dogleg method, thus we use the forward mode AD approach in ADMAT 2.0
[6] as our derivative computation method.

Method 3.(Standard Quasi-Newton) We choose the standard quasi-Newton method ‘fmi-
nunc’ in MATLAB optimization toolbox. Before calling ‘fminunc’ function, we have to set
two flags of input argument ‘options’— ‘Gradobj’ to on and ‘Largescale’ to off (See MATLAB
function ‘fminunc’ documentation for details). The first flag will call the reverse mode AD in
ADMAT-2.0 [6] (or user specified differentiation method) to compute gradients. The second
flag is set to choose the BFGS quasi-Newton method [3, 9, 11, 18] with a mixed quadratic
and cubic line search procedure to solve nonlinear least squares problems.

8

All experiments were taken on a laptop with Intel Duo Core processor T2300 1.66GHz
and 1G RAM running Matlab 7.0 under Windows XP. MATLAB AD toolbox ADMAT 2.0
[6] carries the forward and reverse mode AD computations. Then, these three approaches are
used to solve following three nonlinear typical least squares problems with various problem
sizes.

Problem 1. (Data fitting problem) Consider the following data fitting problem.

M(x, t) = x1e
x2

ti+x3 + exmin{i,n} ,

where i = 1, 2, · · · ,m and n is the number of entries in x. We assume that there exists an
x] so that

yi = M(x], ti) + εi, i = 1, 2, · · · , m,

where the {εi} are errors on the data ordinates, assumed to behave like ‘white-noise’. Then,
for any choice of x, we can compute the residuals, F = (f1, f2, · · · , fm),

fi(x) = yi −M(x, ti).

The least squares fit is to determine a minimizer x∗, such that

‖F (x∗)‖2 = min ‖F (x)‖2.

Here, we use these three methods to solve 50 problems with n varying from 40 to 2000 and m
varying from 50 to 2500. The vector x] is chosen as a random vector with the corresponding
size. The initial guess, x0, is a random vector equally distributed on interval [0, 1]. Table
1 displays a part of the performance results of these three solvers. Figure 1 illustrates the
execution time of these three solvers in seconds.

Problem 2. (Variably dimensioned function) In this example, we tested the three
approaches on the variably dimensioned function in the Moré-Garbow-Hillstrom collection
[15], which is widely used in testing unconstrained optimization software.

Consider solving the nonlinear least squares problem,

min
x
‖g(x)‖2,

where y = g(x) : Rn → Rm, where m = n + 2, is the variably dimensioned function, which
is defined as,

y = x− 1;
tmp = 0;
for i = 1 : n

tmp = tmp + i ∗ (x(i)− 1);
end
y(n + 1) = tmp;
y(n + 2) = tmp2.

9

problem size Secant Quasi-Newton Powell’s dogleg Standard Quasi-Newton
(m× n) time it ‖F‖2 time it ‖F‖2 time it ‖F‖2
100× 80 2.42 8 (1) 1.4356 0.14 6 1.4356 1.25 67 1.4356
200× 160 5.46 10 (2) 1.5381 0.82 7 1.5381 6.01 97 1.5381
400× 320 16.34 10 (1) 2.3425 11.47 7 2.3425 37.99 98 2.3436
800×640 31.92 9 (1) 4.0912 48.34 7 4.0912 123.32 98 4.0912

1600×1240 229.44 13 (2) 5.5856 1245.69 7 5.5856 669.17 98 5.5888
2500×2000 739.33 12 (2) 6.6311 1591.48 7 6.6311 2353.89 98 6.9432

Table 1: The performance and results comparison of the secant Quasi-Newton, Powell’s
dogleg and standard quasi-Newton approaches for data fitting problem. (Column ‘it’ for
the number of iterations.) Numbers in brackets in column ‘it’ is the number of Jacobian
revaluations.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Problem size (n)

E
xe

cu
tio

n
tim

e
(S

ec
)

Secant Quasi−Newton
Powell’s dogleg
Standard Quasi−Newton

Figure 1: Running times for three approaches to solving varying-sized data fitting problems.

10

problem Secant Quasi-Newton Powell’s dogleg
size (n) time it ‖g‖2 time it ‖g‖2

100 0.08 8 (1) 1.54E−8 0.23 17 1.54E−8
200 0.16 6 (1) 1.52E−8 1.57 19 1.32E−8
400 0.72 6 (1) 2.85E−7 11.34 21 2.85E−7
800 4.82 6 (1) 4.20E−7 97.78 22 5.10E−7
1250 17.59 6 (1) 5.90E−7 371.89 24 5.90E−7
1500 33.39 6 (1) 1.08E−6 637.58 24 1.09E−6

Table 2: The performance and results comparison of the secant Quasi-Newton and Pow-
ell’s dogleg approaches for variably dimensioned function. (Column ‘it’ for the number of
iterations.) Numbers in brackets in column ‘it’ is the number of Jacobian revaluations.

The initial guess, x0 is a random vector distributed on interval [0, 1]. As we know, the
minimizer of min ‖g(x)‖2 is x∗ = [1, 1, · · · , 1, 1]T and ‖g(x∗)‖2 = 0. Similar to Problem 1,
we list a part of the performance results in Table 2 and plot the execution times in Figure 2.
In Table 2 and Figure 2, we only record the performance results of the secant Quasi-Newton
and Powell’s dogleg method since the standard Quasi-Newton method failed in solving this
problem.

Problem 3. (Penalty function I) This testing problem is also selected from the Moré-
Garbow-Hillstrom collection [15].

Consider solving the nonlinear least squares problem,

min
x
‖g(x)‖2,

where y = g(x) : Rn → Rm, where m = n + 1, is the penalty function I, which is defined as,

y =
√

10−5 ∗ (x− 1);
y(n + 1) = xT ∗ x.

The initial guess, x0 is also chosen randomly, whose entries are distributed uniformly on
interval [0, 1]. Table 3 lists some performance results of three approaches while Figure 3
plots all the execution time for the penalty function I with n varying for 50 to 1000.
The numerical results presented above support the thesis that our proposed secant method

(in combination with reverse-mode automatic differentiation), can be an efficient way to
solve nonlinear least-squares minimization problems, relative to popular alternatives. Re-
verse mode automatic differentiation plays a crucial role because this allows for the efficient
and accurate determination of the gradient of the nonlinear least-squares objective function
without assuming the accurate determinate of the (perhaps expensive) Jacobian matrix.

11

0 250 500 750 1000 1250 1500
10

−2

10
−1

10
0

10
1

10
2

10
3

Problem size (n)

E
xe

cu
tio

n
tim

e
(S

ec
.)

Secant Quasi−Newton
Powell’s dogleg

Figure 2: Running times for three approaches to solving variably dimensioned function
problems.

problem Secant Quasi-Newton Powell’s dogleg Standard Quasi-Newton
size (n) time it ‖F‖2 time it ‖F‖2 time it ‖F‖2

100 0.14 23(9) 0.0035 0.13 19 0.0035 1.61 63 0.0035
200 0.39 25(10) 0.0045 0.91 20 0.0045 3.32 69 0.0045
400 2.11 25(8) 0.036 7.55 22 0.036 7.36 61 0.036
800 15.81 25(10) 0.064 58.71 22 0.064 15.59 50 0.064
1000 18.08 17(9) 0.082 113.38 22 0.082 21.79 51 0.082

Table 3: The performance and results comparison of the secant Quasi-Newton, Powell’s
dogleg and standard quasi-Newton approaches for the penalty function I. (Column ‘it’ for
the number of iterations.) Numbers in brackets in column ‘it’ is the number of Jacobian
revaluations.

12

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

10
3

Problem size (n)

E
xe

cu
tio

n
tim

e
(S

ec
.)

Secant Quasi−Newton
Powell’s dogleg
Standard Quasi−Newton

Figure 3: Running times for three approaches to solving the penalty function I problems.

5 Concluding Remarks

We have presented a new secant method for nonlinear least squares, especially for low-
residual problems. This method is computationally feasible because of the application of
(reverse-mode) automatic differentiation which enables the efficient calculation of the gradi-
ent of the objective function without requiring the calculation of the Jacobian matrix (which
can be prohibitively expensive).

We have established strong supporting local convergence results, and a standard globaliza-
tion technique yields good global behavior. The numerical results indicate this new approach
can outperform the best existing methods, and is certainly competitive.

We conclude with one caution. The memory demands of reverse mode AD can be large
and if fast memory availability is exceeded then the performance of this approach can de-
grade in a significant way. However, there are techniques available - and this is an active
research area - that can often limit memory requirements [5] thus increasing the range of
applicability of reverse-mode AD and thus the proposed nonlinear least-squares techniques
in this paper.

13

6 Appendix

Proof of Theorem 2.1.
We first assume that Bk+1 updated by (1.3) is rank deficient. Thus, there exists a nonzero
vector z ∈ Rn, such that

0 = Bk+1z = Bkz +
sT
k z

sT
k sk

(yk −Bksk).

The above equation can be rewritten as,

Bkz =
sT
k z

sT
k sk

(yk −Bksk) 6= 0,

since Bk is full column rank and z is nonzero. For any nonzero vector q ∈ N (BT
k), where

N (BT
k) is the null space of BT

k , that is BT
k q = 0 or qT Bk = 0, thus, we have

0 = qT Bkz =
qT yks

T
k z

sT
k sk

− qT Bksks
T
k z

sT
k sk

,

i.e.,
qT yk = 0.

It implies that yk ∈ R(Bk), where R(Bk) is the range of Bk, that is there exists a nonzero
vector p ∈ Rn such that yk = Bkp. Since Bk is full column rank, it follows that p = B†

kyk,
where B†

k is the Moore-Penrose inverse.

Then, insert yk = Bkp into (1.3), we have

Bk+1 = Bk(I +
(p− sk)sT

k

sT
k sk

).

Since Bk+1 is rank deficient and Bk is full column rank, the matrix (I + (p−sk)sT
k

sT
k sk

) must be
rank deficient. According to the Sherman-Morrison formula, this implies that

0 = 1 +
sT
k (p− sk)

sT
k sk

= sT
k p = sT

k B†
kyk,

which contradicts the assumption that sT
k B†

kyk 6= 0. Thus, Bk+1 is full column rank. 2

References

[1] A. R. Conn, N. I. M. Gould and P. L. Toint, Trust-region methods, SIAM, Philadelphia,
2000.

14

[2] C.G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math.
Comput., vol.19, 577-593, 1965.

[3] C. G. Broyden, The Convergence of a Class of Double-rank Minimization Algorithms,
Journal of the Institute of Mathematics and Its Applications, vol. 6, 76-90, 1970.

[4] C.G. Broyden, The convergence of an algorithm for solving sparse nonlinear systems,
Math. Comput., vol. 25, 285-294, 1971.

[5] T.F. Coleman and G.F. Jonsson, The efficient computation of structured gradients using
automatic differentiation, SIAM J. Sci. Comput. Vol. 20, 1999, 1430–1437.

[6] T.F. Coleman and W. Xu, ADMAT-2.0, Available at
http://www.math.uwaterloo.ca/CandO Dept/securedDownloadsWhitelist/index.shtml.

[7] J.E. Dennis, On convergence of Newton-like methods, Numerical Methods for Non-linear
Algebraic Equations edited by P. Rabinowitz, Gordon & Breach, London, 1970.

[8] J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, SIAM, Philadelphia, PA, 1996.

[9] R. Fletcher, A New Approach to Variable Metric Algorithms, Computer Journal, vol.
13, 317-322, 1970.

[10] D.M. Gay, Some convergence properties of Broyden’s method, SIAM Num. Anal., vol.
16, 623-630, 1979.

[11] D. Goldfarb, A Family of Variable Metric Updates Derived by Variational Means, Math-
ematics of Computation, vol. 24, 23-26, 1970.

[12] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 3rd edition, 1996.

[13] A. Griewank and G.F. Corliss, eds., Automatic Differentiation of Algorithms: Theory,
Implementation and Applications, SIAM, Philadelphia, PA, 1991.

[14] K. Madsen,A Combined Gauss-Newton and Quasi-Newton Method for Non-Linear Least
Squares, IMM, DTU. Report NI-88-10, 1988.

[15] J.J. Moré, B.S. Grabow and K.E. Hillstrom, Test unconstrained optimization software,
ACM Tran. Math. Soft. vol.7, 17-24, 1981.

[16] H.B. Nielsen, immoptibox—A MATLAB TOOLBOX FOR OPTIMIZATION, IMM,
Technical University of Denmark, 2006. Available at
http://www2.imm.dtu.dk/ hbn/immoptibox/

[17] M.J.D. Powell, A hybrid method for nonlinear equations, in Numerical Methods for
Nonlinear Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach, London, 87-
114, 1970.

15

[18] D. F. Shanno, Conditioning of Quasi-Newton Methods for Function Minimization,
Mathematics of Computation vol. 24, 647-656, 1970.

[19] G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computations, Science
Press, Beijing/New York, 2004.

16

