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Abstract In this paper we present a redesign of a linear algebra kernel of an in-
terior point method to avoid the explicit use of problem matrices. The only access
to the original problem data needed are the matrix-vector multiplications with the
Hessian and Jacobian matrices. Such a redesign requires the use of suitably precon-
ditioned iterative methods and imposes restrictions on the way the preconditioner is
computed. A two-step approach is used to design a preconditioner. First, the Newton
equation system is regularized to guarantee better numerical properties and then it is
preconditioned. The preconditioner is implicit, that is, its computation requires only
matrix-vector multiplications with the original problem data. The method is there-
fore well-suited to problems in which matrices are not explicitly available and/or are
too large to be stored in computer memory. Numerical properties of the approach
are studied including the analysis of the conditioning of the regularized system and
that of the preconditioned regularized system. The method has been implemented
and preliminary computational results for small problems limited to 1 million of
variables and 10 million of nonzero elements demonstrate the feasibility of the ap-
proach.

Keywords Linear programming · Quadratic programming · Matrix-free · Interior
point methods · Iterative methods · Implicit preconditioner

1 Introduction

Interior point methods (IPMs) for linear and quadratic programming can solve very
large problems in a moderate number of iterations. The best known to date primal-
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dual methods [26, 37] have a guaranteed worst-case complexity of O(
√

n) itera-
tions to reach optimality. Their practical performance is much better than that guar-
anteed by the worst-case complexity analysis. Indeed, they usually converge in a
number of iterations which is proportional to logn [3, 10]. Even with such a small
number of iterations these methods can occasionally be computationally expen-
sive.

IPMs rely on Newton method and therefore share the usual disadvantages of
second-order methods: at each iteration they require building and solving linear equa-
tions corresponding to KKT systems for the barrier subproblem. These computa-
tions might sometimes get expensive. This is bound to happen when solving dense
problems such as for example quadratic programs arising in support vector machine
training [17] or linear programs arising in basis pursuit [9], but it might also occur
when solving certain sparse problems in which the patterns of nonzero entries in the
Hessian and Jacobian matrices render KKT systems difficult for direct approaches
as is often the case when dealing with problems arising from discretisations of par-
tial differential equations [5]. As optimization problems get larger and larger this
aspect of IPM methodology seems to be a bottleneck for their further development
and hampers their ability to solve huge problems some of which cannot even be ex-
plicitly formulated. The technique presented in this paper aims at removing these
drawbacks.

We redesign interior point methods by replacing direct linear algebra with a
suitably preconditioned iterative method. This creates a difficulty because, unlike
direct methods which usually provide very accurate directions, iterative methods
compute only inexact directions. We accept the negative consequence of such a
choice, that is, the need of performing more IPM iterations but expect great ben-
efits from the reduction of effort required to compute inexact solution of New-
ton systems. The use of inexact Newton method goes back to Dembo et al. [13]
and has had a number of applications including those in the context of IPMs [4,
19, 27]. A number of interesting developments have been focused on the analy-
sis of conditions which inexact directions should satisfy to guarantee good con-
vergence properties of the IPM [1, 28]. However the focus of this paper lies else-
where.

We would like to solve KKT systems at the lowest possible cost. Moreover, we
would like to avoid any excessive storage requirements and computations which
might hamper the ability of solving huge problems. To achieve the goal we impose a
condition that the Hessian and Jacobian matrices can be used only to perform mul-
tiplications with. In other words, we redesign the interior point method to work in a
matrix-free regime.

Iterative methods for KKT systems have attracted a lot of attention in the recent
years. 8 out of 10 papers published in a special issue of COAP [23] which was de-
voted to linear algebra techniques of IPMs addressed the use of iterative methods. The
performance of iterative methods and more specifically, of Krylov-subspace methods
[25] depends on the spectral properties of the linear system. A plethora of precon-
ditioners have been designed for linear systems, especially for those arising from
the discretisation of partial differential equations (PDEs). The reader is referred to
[5] for an up-to-date survey of recent developments in this area. KKT systems aris-
ing in optimization and saddle point systems arising in PDE discretisations share
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several common features but display essential differences as well. The structure of
PDE-originated saddle point systems usually enjoys some form of regularity in the
sparsity pattern which is a consequence of the discretisation process. In contrast, the
sparsity pattern of a usual KKT system does not display any regularity at all. KKT
systems arising in barrier subproblems of IPMs have a special feature of added di-
agonal scaling matrix resulting from the barrier terms. This matrix has a very large
condition number (which goes to infinity when barrier term goes to zero) and causes
the condition number of the KKT system to be unbounded.

The performance of iterative methods depends on the spectral properties of the
linear system. Ideally, one would like all the eigenvalues of the matrix involved to be
clustered in one or only a few intervals and/or the condition number of the matrix to
be as small as possible [25]. This is an ultimate goal when designing preconditioners
for KKT systems arising in IPMs [12, 23]. The choice of a preconditioner faces a
particular difficulty because the condition number of these systems can go to infinity
when the algorithm approaches an optimal solution. To guarantee a bounded condi-
tion number of the preconditioned linear system one has to accept that the condition
number of the preconditioner may have to go to infinity as well. This causes all sorts
of problems to the iterative method. One of them is that the termination criteria of the
method which relies on the residual in the preconditioned space does not guarantee a
small residual in the original space.

In this paper we propose a different approach to the problem. Instead of directly
preconditioning the original KKT system arising in the barrier subproblem, we pro-
pose a two-step procedure. First, we regularize the KKT system to guarantee that its
condition number is bounded; then, we design a preconditioner for the regularized
system.

We also set additional requirements on the preconditioner: it has to be computed
without explicitly forming (and factoring) the KKT system. The only operations the
preconditioner is allowed to use are matrix-vector multiplications performed with the
Hessian and Jacobian and its transposition. This is necessary to achieve a matrix-free
implementation of interior point method.

It is worth mentioning at this point an interesting recent work [11] which proposed
a matrix-free algorithm for equality constrained nonlinear programming problems.
There are essential differences between our approach and [11]. In this paper we deal
with interior point methods and need to remedy the ill-conditioning introduced by the
presence of barrier terms while [11] focuses on the ill-conditioning that may result
from the rank-deficient Jacobians. Secondly, we regularize both the primal and dual
variables (which is well-suited to the primal-dual interior point method) while [11]
regularizes the Hessian matrix (what in our terms would correspond to regularizing
the primal solution only). Finally, and most importantly, we propose a preconditioner
which can be computed in a matrix-free regime while [11, p. 1244] uses unprecondi-
tioned MINRES.

The paper is organised as follows. In Sect. 2 we will introduce the problem and
define the notation used. In Sect. 3 we will give motivations for the use of a par-
ticular primal-dual regularization and we will discuss the properties of regularized
KKT system. In Sect. 4 we will analyse the normal equation form of the KKT
system. In Sect. 5 we will introduce the preconditioner and perform the spectral
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analysis of the preconditioned linear system. In Sect. 6 we will focus on the com-
putational aspects of the matrix-free interior point method and we will discuss the
preliminary results obtained for small scale problems (with number of variables be-
low 1 million and number of nonzero entries below 10 million). Finally, in Sect. 7
we will give our conclusions and comment on possible further developments of the
method.

2 KKT system in interior point methods

In this paper we are concerned with the use of primal-dual interior point methods to
solve convex quadratic programming problems. We assume that the primal-dual pair
of problems has the form

Primal Dual

min cT x + 1

2
xT Qx max bT y − 1

2
xT Qx

s.t. Ax = b, s.t. AT y + s − Qx = c,

x ≥ 0; y free, s ≥ 0,

(1)

where A ∈ Rm×n has full row rank m ≤ n, Q ∈ Rn×n is a positive semidefinite
matrix, x, s, c ∈ Rn and y, b ∈ Rm. The main computational effort of the primal-
dual algorithm consists in the computation of the Newton direction for the barrier
subproblem [−(Q + �−1) AT

A 0

][
�x

�y

]
=

[
f

d

]
, (2)

where �x ∈ Rn, �y ∈ Rm are Newton directions in the primal and dual space, f ∈
Rn, d ∈ Rm are appropriately computed right-hand-side vectors, � = XS−1 is the
diagonal scaling matrix resulting from the presence of barrier terms, and X and S

are diagonal matrices in Rn×n with elements of vectors x and s spread across the
diagonal, respectively.

The matrix � brings an unwelcome feature to this system. When the algorithm ap-
proaches the optimal solution, the primal variables and dual slacks converge to their
optimal values and for a linear program display a partition into a strongly comple-
mentary pair [37, p. 27]:

xj → x∗
j > 0 and sj → s∗

j = 0, for j ∈ B,

xj → x∗
j = 0 and sj → s∗

j > 0, for j ∈ N .
(3)

As a result the elements θj , j ∈ B, go to infinity and the elements θj , j ∈ N , go
to zero. (3) implies that the eigenvalues of the (1,1) block in (2) may spread from
zero to infinity. In the case of linear programming, when Q = 0, this is inevitable.
For quadratic problems there may exist pairs which are not strictly complementary,
which further complicates (3). The spread of eigenvalues makes the solution of (2)
challenging. Surprisingly, direct methods do not seem to suffer from this property.
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An old result of Dikin [14] (see also Stewart [36]) guarantees that if the optimiza-
tion problem is feasible then the normal equation linear system (Schur complement
obtained by eliminating the (1,1) block from (2)) produces a bounded solution irre-
spective of the spread of �. Indeed, direct methods applied to (2) provide sufficiently
accurate solution regardless the ill-conditioning of this linear system [3].

Unfortunately, for iterative (Krylov-subspace) methods the ill-conditioning of �

and the resulting ill-conditioning of (2) makes the system intractable unless appropri-
ately preconditioned [7, 21, 29, 30]. We formally state this observation below. Before
we do that let us state the assumptions to be satisfied by problem (1) and the primal-
dual algorithm applied to solve it.

Assumption A1 The optimal solution of (1) exists and satisfies

(x∗, y∗, s∗) is O(1).

Assumption A2 All iterates of the primal-dual algorithm stay in the symmetric
neighbourhood of the (infeasible) central path

Ns
β =

{
(x, y, s) ∈ F : βμ ≤ xj sj ≤ 1

β
μ

}
,

for β ∈ (0,1) and F = {(x, y, s) : ‖b−Ax‖ ≤ βbμ‖b−Ax0‖,‖c−AT y−s+Qx‖ ≤
βcμ‖c − AT y0 − s0 + Qx0‖, x > 0, s > 0}, where (x0, y0, s0) is an initial point,
μ = xT s/n is the barrier parameter and βb and βc are given constants.

As a simple consequence of these assumptions we claim

Lemma 2.1 If A1 and A2 are satisfied then

min
j

θ−1
j = O(μ) and max

j
θ−1
j = O(μ−1). (4)

Proof For j ∈ B, we have θ−1
j = sj

xj
= xj sj

x2
j

= O(μ)
O(1)

= O(μ), hence minj θ−1
j =

O(μ). For j ∈ N , we have θ−1
j = sj

xj
= s2

j

xj sj
= O(1)

O(μ)
= O(μ−1), hence maxj θ−1

j =
O(μ−1). �

Throughout the paper we will assume that the singular values of A are

0 < σ1 ≤ σ2 ≤ · · · ≤ σm, (5)

and the eigenvalues of Q are

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn. (6)

In other words, we assume that A has full row rank and that Q is positive semi-
definite. (We cover the special case of linear programming where Q = 0.) To simplify
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the analysis we will also denote the ordered eigenvalues of Q + �−1 as

0 < π1 ≤ π2 ≤ · · · ≤ πn, (7)

and observe that

τ1 + min
j

θ−1
j ≤ π1 and πn ≤ τn + max

j
θ−1
j . (8)

The augmented system matrix (2) is certainly nonsingular and its eigenvalues are
real and satisfy

λ−n ≤ λ−n+1 ≤ · · · ≤ λ−1 < 0 < λ1 ≤ λ2 ≤ · · · ≤ λm. (9)

Following Lemma 2.1 in Rusten and Winther [33] (see also Lemma 2.1 in Silvester
and Wathen [35]) we provide bounds for these eigenvalues.

Lemma 2.2 The eigenvalues of the augmented system matrix (2) satisfy:

−1

2

(
πn +

√
π2

n + 4σ 2
m

)
≤ λ−n, (10)

λ−1 ≤ −π1, (11)

1

2

(√
π2

n + 4σ 2
1 − πn

)
≤ λ1, (12)

λm ≤ 1

2

(√
π2

1 + 4σ 2
m − π1

)
. (13)

Proof See the proof of Lemma 2.1 in [33]. �

Consequently, the eigenvalue with the largest absolute value satisfies

max
j

|λj | = max{−λ−n, λm}

≤ max

{
1

2

(
πn +

√
π2

n + 4σ 2
m

)
,

1

2

(√
π2

1 + 4σ 2
m − π1

)}

≤ max{πn + σm,σm}
= πn + σm ≤ τn + max

j
θ−1
j + σm. (14)

It is reasonable to assume that πn 	 1 and σ1 ≤ 1 so the left hand side of (12) is

1

2

(√
π2

n + 4σ 2
1 − πn

)
= 2σ 2

1√
π2

n + 4σ 2
1 + πn

≈ σ 2
1

πn

.

Hence the eigenvalue with the smallest absolute value satisfies

min
j

|λj | = min{−λ−1, λ1}
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≥ min

{
π1,

1

2

(√
π2

n + 4σ 2
1 − πn

)}

≈ min

{
π1,

σ 2
1

πn

}
. (15)

We will slightly abuse the notation and write minj |λj | ≥ min{π1,
σ 2

1
πn

}. Both terms on

the right hand side of this inequality may get very small. From (8) π1 ≥ τ1 +minj θ−1
j

and
σ 2

1
πn

≥ σ 2
1

τn+maxj θ−1
j

. In a (difficult) case of solving an LP problem we have τ1 =
τn = 0 and observe that the condition number of augmented system (2) becomes

κaug ≤ σm + maxj θ−1
j

min{minj θ−1
j , σ 2

1 /maxj θ−1
j } .

Even if A is well conditioned and σ1 and σm are both O(1), following Lemma 2.1 we
deduce that the condition number of the augmented system (2) may get as large as
O(μ−2). In the purely theoretical case of nondegenerate linear programs (the author
has not yet seen a nondegenerate LP in his computational practice), a better bound
O(μ−1) for the condition number of (2) could be derived. This is a consequence
of the fact that in nondegenerate case, the columns of A corresponding to variable
indices j ∈ B form a nonsingular optimal basis.

Summing up, ill-conditioning of (2) is an inevitable consequence of the use of
primal-dual interior point methods and the use of logarithmic barrier penalties which
contribute a badly behaving term �−1 to (2). Independently of whether we consider
a computationally relevant degenerate case when κaug = O(μ−2) or a nondegenerate
case (of theoretical interest only) when κaug = O(μ−1), with the barrier term μ go-
ing to zero, κaug inevitably goes to infinity. This makes the system very difficult for
iterative methods.

In the following sections we will discuss a two-step procedure to design a suitable
preconditioner for (2).

3 Regularized KKT system

Following [22], Saunders [34] suggested adding proximal terms to optimization prob-
lems in order to improve the numerical properties of the corresponding KKT systems.
Although his development was concerned with linear programs, it can be easily ap-
plied to quadratic problems as well. Instead of dealing with (1) we consider the fol-
lowing regularized primal quadratic program

min cT x + 1

2
xT Qx + γ 2

2
xT x + 1

2
pT p

s.t. Ax + δp = b, (16)

x ≥ 0, p free,
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where γ and δ are (small) positive terms and p ∈ Rm is a free variable. It is intuitive
that as long as γ and δ are small the solution of (16) does not differ too much from
that of (1). Indeed, the term 1

2γ 2xT x in the objective plays negligible role compared
to the original objective cT x + 1

2xT Qx. Similarly, the strong penalty for large p in
form of its norm added to the objective forces p to be small, and therefore forces the
linear constraint Ax = b to be satisfied approximately.

The reduced KKT system corresponding to the barrier subproblem for (16) has the
following form

[−(Q + �−1 + γ 2I ) AT

A δ2I

][
�x

�y

]
=

[
f ′
d ′

]
, (17)

where f ′ ∈ Rn, d ′ ∈ Rm are appropriately computed right-hand-side vectors.
The regularization proposed in [2] has a different justification. The primal-dual

pair (1) is replaced by two problems: an approximate primal and an approximate
dual:

min cT x + 1

2
xT Qx + 1

2
(x − x0)

T Rp(x − x0)

s.t. Ax = b,

x ≥ 0,

max bT y − 1

2
xT Qx − 1

2
(y − y0)

T Rd(y − y0)

s.t. AT y + s − Qx = c,

y free, s ≥ 0,

(18)

where primal and dual positive definite diagonal regularization matrices Rp ∈ Rn×n

and Rd ∈ Rm×m and primal and dual reference points in proximal terms x0 ∈ Rn and
y0 ∈ Rm, respectively can be chosen dynamically. The elements on the diagonal of
the regularization matrices are small and the reference points x0 and y0 change at
each iteration and are set to the current primal and dual iterates, respectively, see [2]
for more detail. The following regularized KKT system is solved at each iteration of
the primal-dual interior point method

[−(Q + �−1 + Rp) AT

A Rd

][
�x

�y

]
=

[
f

′′

d
′′

]
, (19)

where f ′′ ∈ Rn, d ′′ ∈ Rm are appropriately computed right-hand-side vectors.
While (17) adds uniform regularization terms to all diagonal elements of both the

(1,1) and (2,2) blocks in the augmented system, (19) allows for a dynamic choice
of the regularization terms and achieves similar benefits at a lower cost of introduc-
ing less of perturbation to the original reduced KKT system (2). Indeed, dynamic
choice of Rp and Rd means that acceptable pivots are not regularized at all while
potentially unstable pivots (dangerously close to zero) are suitably regularized to pre-
vent the spread of numerical errors [2]. The reader interested in other regularization
techniques is referred to [8, 20] and the references therein.
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In this paper we are interested in the primal-dual regularization producing the
system (19). To simplify the analysis we assume that the elements of the primal and
dual regularizations satisfy

γ 2 ≤ Rpj ≤ 
2, ∀j and δ2 ≤ Rdi ≤ �2, ∀i, (20)

where Rpj and Rdi are the j th and ith elements of diagonal matrices Rp and Rd ,
respectively and 
 and � are given constants. However, later we will relax some of
these assumptions.

To compare the numerical properties of augmented systems (19) and (2) we derive
bounds on the eigenvalues of (19). As in the previous section, we will assume that
the eigenvalues of Q̃ = Q + �−1 + Rp are

0 < π̃1 ≤ π̃2 ≤ · · · ≤ π̃n, (21)

and observe that

τ1 + min
j

{θ−1
j + Rpj } ≤ π̃1 and π̃n ≤ τn + max

j
{θ−1

j + Rpj }. (22)

The eigenvalues of (19) are real and satisfy

λ̃−n ≤ λ̃−n+1 ≤ · · · ≤ λ̃−1 < 0 < λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃m. (23)

Lemma 3.1 The eigenvalues of the augmented system matrix (19) satisfy:

−1

2

(
π̃n − δ2 +

√
(π̃n + δ2)2 + 4σ 2

m

)
≤ λ̃−n, (24)

λ̃−1 ≤ −π̃1, (25)

1

2

(√
(π̃n + δ2)2 + 4σ 2

1 − π̃n + δ2
)

≤ λ̃1, (26)

λ̃m ≤ 1

2

(√
(π̃1 + �2)2 + 4σ 2

m − π̃1 + �2
)
. (27)

Proof Let (u, v), u ∈ Rn, v ∈ Rm denote an eigenvector associated with the eigen-
value λ̃. The eigenpair satisfies the following system of equations

−Q̃u + AT v = λ̃u, (28)

Au + Rdv = λ̃v. (29)

Suppose λ̃ < 0. From (29) we have (λ̃I − Rd)v = Au. We substitute for v in (28)
and multiply the equation with uT to obtain

uT Q̃u + uT AT (Rd − λ̃I )−1Au = −λ̃uT u.

Taking the largest possible terms on the left-hand-side of this equation yields

π̃nu
T u + (δ2 − λ̃)−1σ 2

muT u ≥ −λ̃uT u,
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which can be managed into the following inequality

λ̃2 + λ̃(π̃n − δ2) − π̃nδ
2 − σ 2

m ≤ 0.

Any negative λ̃ which satisfies this quadratic inequality has to satisfy (24).
To prove (25) we multiply equations (28) and (29) with uT and vT , respectively

and subtract the second equation from the first one to obtain

uT Q̃u + λ̃uT u = λ̃vT v − vT Rdv.

We consider λ̃ < 0 again hence the right-hand-side of this equation is nonpositive and
therefore uT Q̃u + λ̃uT u ≤ 0. Rearranging this inequality we obtain

π̃1u
T u ≤ uT Q̃u ≤ −λ̃uT u,

which yields (25).
Let us now consider the case of λ̃ > 0. Using (28) we get AT v = (Q̃ + λ̃I )u. We

substitute for u in (29) and multiply the equation with vT to obtain

vT A(Q̃ + λ̃I )−1AT v + vT Rdv = λ̃vT v. (30)

Taking the smallest possible terms on the left-hand-side of this equation yields

(π̃n + λ̃)−1σ 2
1 vT v + δ2vT v ≤ λ̃vT v,

which after rearrangements gives the following inequality

λ̃2 + λ̃(π̃n − δ2) − π̃nδ
2 − σ 2

1 ≥ 0.

Any positive λ̃ which satisfies this quadratic inequality has to satisfy (26).
Finally, to get the last remaining bound, we consider again (30) and for λ̃ > 0 take

the largest possible terms on its left-hand-side to get

(π̃1 + λ̃)−1σ 2
mvT v + �2vT v ≥ λ̃vT v,

which after rearrangements gives the following inequality

λ̃2 + λ̃(π̃1 − �2) − π̃1�
2 − σ 2

m ≤ 0.

Any positive λ̃ which satisfies this quadratic inequality has to satisfy (27). �

We observe that the bounds on the eigenvalues with the largest possible absolute
value λ−n and λm given by inequalities (24) and (27), respectively, are similar to those
obtained for the original system (2) and given by (10) and (13), respectively. On the
other hand, the bounds on small eigenvalues have been changed significantly by the
presence of primal and dual regularization. A comparison of (25) and (11) shows that
λ̃−1 is much better bounded away from zero than λ−1. Moreover, (25) allows for a
selective regularization which should be applied only to the smallest elements θ−1

j ,
see (22). The elements θ−1

j which are large enough do not have to be perturbed at all
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and the corresponding terms of Rpj can be set to zero thus reducing the perturbation
to the original system. A comparison of (26) and (12) reveals that λ̃1 is shifted away

from zero by dual regularization. Indeed,
√

(π̃n + δ2)2 + 4σ 2
1 − π̃n ≥ δ2 and therefore

1
2 (

√
(π̃n + δ2)2 + 4σ 2

1 − π̃n + δ2) ≥ δ2. Summing up, minj |λ̃j | = min{−λ̃−1, λ̃1} is
much larger than that for the original system (15) and the condition number of the
regularized augmented system (19) is therefore significantly smaller than that of the
original system (2).

4 From augmented system to normal equation

In this paper we are concerned with the use of iterative methods to solve the reduced
KKT system (2) and its regularized form (19). A first decision to make is whether
an iterative method should be applied to the indefinite augmented system formula-
tion of KKT conditions such as (2) and (19) or to a reduced positive definite normal
equation (Schur complement) formulation of these equations. The use of iterative
methods such as conjugate gradients for indefinite systems may require some extra
safeguards [18]. The subject has attracted a lot of attention in recent years [29, 32]. It
requires care to be taken about preconditioners [7, 21] as well and/or special versions
of the projected conjugate gradient method to be employed [15, 24]. The reduced pos-
itive definite normal equation formulation of (2) or (19) allows for a straightforward
application of conjugate gradients and we will use it in this paper.

Normal equation formulations are obtained by elimination of �x from the aug-
mented system and take the following forms

A(Q + �−1)−1AT �y = h (31)

and

(A(Q + �−1 + Rp)−1AT + Rd)�y = h′′, (32)

for original system (2) and regularized system (19), respectively. We will start the
analysis by providing bounds on the condition numbers of these two normal equation
systems. We will refer once again to the notation introduced in earlier sections with
singular values of A given by (5), eigenvalues of Q given by (6) and eigenvalues of
Q + �−1 and Q + �−1 + Rp given by (7) and (21), respectively. We will denote the
eigenvalues of (31) as

0 < η1 ≤ η2 ≤ · · · ≤ ηm (33)

and the eigenvalues of (32) as

0 < η̃1 ≤ η̃2 ≤ · · · ≤ η̃m. (34)

Lemma 4.1 The eigenvalues of the normal equation matrix (31) satisfy:

σ 2
1

(
τn + max

j
θ−1
j

)−1 ≤ η1, (35)

ηm ≤ σ 2
m

(
τ1 + min

j
θ−1
j

)−1
. (36)
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We omit an easy proof of this lemma. Instead, we will comment on a special case
of linear programming, when Q = 0 and τ1 = τn = 0. We observe that for well-
centered iterates combining Lemma 2.1 and Lemma 4.1 yields η1 ≥ σ 2

1 O(μ) and
ηm ≤ σ 2

mO(μ−1), hence

κNE ≤ σ 2
mO(μ−1)

σ 2
1 O(μ)

≤ κ2(A)O(μ−2). (37)

With the extra assumption that the linear program is nondegenerate we can improve
this bound. Indeed, for a nondegenerate problem the optimal partition (3) defines a
set of columns j ∈ B corresponding to a nonsingular basis matrix and yields η1 ≥
σ 2

1 O(1). In such case κNE ≤ κ2(A)O(μ−1). Clearly, as μ goes to zero the bounds of
κNE go to infinity and indicate that the original system (31) gets very ill-conditioned.

The regularized system (32) displays much better numerical properties.

Lemma 4.2 The eigenvalues of the normal equation matrix (32) satisfy:

σ 2
1

(
τn + max

j
(θ−1

j + Rpj )
)−1 + min

i
Rdi ≤ η̃1, (38)

η̃m ≤ σ 2
m

(
τ1 + min

j
(θ−1

j + Rpj )
)−1 + max

i
Rdi . (39)

Again, we skip a simple proof and analyze a special case of LP, when Q = 0 and
τ1 = τn = 0. Using (20), the bounds (38) and (39) are simplified

δ2 ≤ η̃1, (40)

η̃m ≤ σ 2
mγ −2 + �2, (41)

and the condition number of the regularized normal equation matrix satisfies

κ̃NE ≤ σ 2
mγ −2 + �2

δ2
= σ 2

m + γ 2�2

γ 2δ2
. (42)

The bound does not depend on μ. It depends only on the level of regularization and
σm, the largest singular value of A. It is reasonable to assume that σm can be kept
moderate, say, O(1). Indeed, this can be achieved with appropriate scaling of the
optimization problem. The regularization terms γ 2 and δ2 could be kept large enough
to guarantee a good bound on κ̃NE .

One has to realise however that large regularization terms γ 2 and δ2 mean that (19)
differs significantly from (2) and Newton direction computed from (19) may have
little in common with the true primal-dual interior point direction obtained from (2).
In our approach we look for a compromise solution where γ 2 and δ2 are small (to
keep (19) close to (2)) but large enough to provide a reasonable bound in (42).

To conclude the analysis of this section we will recall a standard result regarding
the speed of convergence of the conjugate gradient (CG) algorithm [25, eq. (2.15),
p. 17] which guarantees that an error is systematically reduced at every CG iteration
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by a factor of κ1/2−1
κ1/2+1

. Assuming a uniform dual regularization Rdi = δ2, ∀i, that is

δ2 = �2, and assuming that the regularization terms are small (δ 
 σm and γ 
 σm)
from (42) we obtain

κ̃
1/2
NE ≤

(
1 + σ 2

m

γ 2δ2

)1/2

≈ σm

γ δ
	 1,

and then deduce

κ1/2 − 1

κ1/2 + 1
≈

σm

γ δ
− 1

σm

γ δ
+ 1

= 1 − γ δ
σm

1 + γ δ
σm

≈ 1 − 2
γ δ

σm

. (43)

The last approximation shows that the larger the regularizations in the primal and
dual spaces the better (smaller) the condition number of (19) is, and consequently the
convergence of CG algorithm applied to (32) is faster.

Following our earlier comments we want to avoid over-regularization in order to
keep (19) close to (2). Hence we will use very small regularizations and we will have
to accept that γ δ 
 σm. In this case the speed of convergence predicted by (43) is not
enough to satisfy our needs. Indeed, so far we have only met the first objective of our
approach: we have used the primal-dual regularization to guarantee that the condition
number of (32) is bounded and independent of the barrier parameter μ. We do not
intend to apply the CG method directly to (32). The second important feature of our
approach is the use of a suitable preconditioner for this regularized normal equation
system. The design and analysis of this preconditioner are subject of next section.

5 Preconditioner for regularized normal equation

We observe an important feature of the regularized normal equation matrix in (32)

GR = A(Q + �−1 + Rp)−1AT + Rd, (44)

which has been captured by the bounds on its eigenvalues in Lemma 4.2.
All eigenvalues of this matrix remain in an interval determined by (38) and (39).

For our choice of regularization (20) all small eigenvalues are clustered above the
lower bound (40) and the large eigenvalues are spread and may reach up to the upper
bound (41). Our preconditioner P ∈ Rm×m attempts to identify the largest eigenval-
ues of GR and guarantee that κ(P −1GR) 
 κ(GR). This is achieved by computing
a partial Cholesky decomposition of GR with complete pivoting choosing the largest
(diagonal) pivots from GR and the updated Schur complements. We compute only
a partial decomposition, that is we truncate the process after producing the first k

columns of Cholesky corresponding to k largest pivots in GR , where k is a predeter-
mined number such that k 
 m. We compute

GR =
[
L11
L21 I

][
DL

S

][
LT

11 LT
21
I

]
, (45)

where L =
[

L11
L21

]
is a trapezoidal matrix which contains the first k columns of

Cholesky factor of GR (with triangular L11 ∈ Rk×k and L21 ∈ R(m−k)×k containing
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the remaining part of Cholesky columns), DL ∈ Rk×k is a diagonal matrix formed
by k largest pivots of GR and S ∈ R(m−k)×(m−k) is the Schur complement obtained
after eliminating k pivots.

If we had set k = m, (45) would have determined an exact Cholesky decomposi-
tion of GR = LDLLT obtained with complete pivoting. Since GR is a positive defi-
nite matrix complete diagonal pivoting is an unnecessary luxury, a very costly one if
GR is a sparse matrix! Indeed, for sparse GR modern implementations of Cholesky
decomposition [16] ignore the values of pivots and choose their order based entirely
on the grounds of preserving sparsity in L. Our setting of computing (45) is differ-
ent: we truncate the Cholesky decomposition after producing merely k (k 
 m) first
columns and we insist on these columns to eliminate k largest pivots from GR . We
accept the fact that for sparse GR the first k columns of L obtained using complete
diagonal pivoting will be much denser than those which would have been computed
if ordering for sparsity had been used.

An important feature of our approach is that partial Cholesky decomposition (45)
is computed using an implicit process in which neither GR nor its Schur complements
need to be fully formulated. Only the diagonal and selected columns of the Schur
complements are calculated.

We will precondition (45) with

P =
[
L11
L21 I

][
DL

DS

][
LT

11 LT
21
I

]
, (46)

where DS is a diagonal of S. We will first analyse a simplified version of the precon-
ditioner

P0 =
[
L11
L21 I

][
DL

I

][
LT

11 LT
21
I

]
, (47)

in which the diagonal of the Schur complement has been replaced with an identity
matrix.

Let us order diagonal elements of DL and DS = diag(S) as follows

d1 ≥ d2 ≥ · · · ≥ dk︸ ︷︷ ︸
DL

≥ dk+1 ≥ dk+2 ≥ · · · ≥ dm︸ ︷︷ ︸
DS

. (48)

The inequalities are the consequence of complete diagonal pivoting applied when
decomposing GR . We will exploit this ordering to argue that the condition number of
the preconditioned matrix P −1

0 GR is much better than that of GR .
Using the symmetric decomposition P0 = E0E

T
0 , where

E0 =
[
L11
L21 I

][
D

1/2
L

I

]
(49)

it is easy to derive

E−1
0 GRE−T

0 =
[

I

S

]
. (50)
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From Lemma 4.2 we deduce that the smallest eigenvalues of both GR and
E−1

0 GRE−T
0 satisfy (38) and for a special case of LP they are both greater than or

equal to δ2, see (40). As the largest eigenvalues of a positive definite matrix cannot
exceed the trace of the matrix, we observe that

η̃max(GR) ≤ trace(GR) and η̃max(E
−1
0 GRE−T

0 ) ≤ k + trace(S).

Our rule of choosing the largest possible pivots when computing partial Cholesky
decomposition corresponds to a greedy heuristic which is likely to reduce the trace
of the resulting Schur complement at the fastest possible rate. Therefore we expect
that the condition number of E−1

0 GRE−T
0 is decreasing rapidly with an increase of

the number of columns k allowed in the partial Cholesky decomposition. Actually we
expect that k + trace(S) 
 trace(GR).

We have performed our analysis for a simpler preconditioner (47). Similarly we
may decompose P = EET , where

E =
[
L11
L21 I

][
D

1/2
L

D
1/2
S

]
(51)

and observe that

E−1GRE−T =
[
I

D
−1/2
S SD

−1/2
S

]
. (52)

A comparison of (52) and (50) reveals that the difference between P and P0 is an
extra Jacobi-type preconditioner applied to the Schur complement S.

The reduction of augmented system (19) to normal equation (32) makes sense
only if matrix Q + �−1 + Rp is easily invertible. This is of course the case if we
deal with a linear programming (Q = 0) or a separable quadratic programming (Q is
a diagonal matrix). We can extend the approach to the case when Q is a band matrix
or when Q displays some other sparsity pattern which leads to a trivially invertible
matrix. However, if Q is a general sparse matrix then its inverse may actually be quite
dense [16] and the reduction of augmented system to normal equation may lead to a
serious loss of efficiency. In such case we would not perform the reduction but work
with the augmented system.

To maintain the matrix-free feature of the approach we define Q̄ = diag{Q} +
�−1 + Rp , compute ḠR = AQ̄−1AT + Rd and its partial Cholesky decomposition

ḠR =
[
L̄11

L̄21 I

][
D̄L

S̄

][
L̄T

11 L̄T
21
I

]
. (53)

As before, the off-diagonal elements of the Schur complement S̄ should not be com-
puted because they are dropped to produce the following approximation of ḠR

P̄ =
[
L̄11

L̄21 I

][
D̄L

D̄S

][
L̄T

11 L̄T
21
I

]
= L̄D̄L̄T , (54)
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where D̄S is a diagonal of S̄. Finally, we define the preconditioner for the augmented
system (19)

Paug =
[

I

−AQ̄−1 L̄

][−Q̄

D̄

][
I −Q̄−1AT

L̄T

]
. (55)

The computation of such a preconditioner and its application to a vector requires only
the multiplications with the Jacobian matrix and the diagonal of the Hessian matrix
and the operations with the partial Cholesky matrix P̄ . Therefore Paug satisfies the
requirements of matrix-free regime. Obviously, since the augmented system (19) and
the preconditioner (55) are indefinite we cannot use the conjugate gradient algorithm
any longer. Instead, we can use for example the LSQR algorithm of Paige and Saun-
ders [31].

We summarize this section by giving a complete algorithm of the matrix-free in-
terior point method on the next page.

The computation of partial Cholesky preconditioner requires access to the diag-
onal of ḠR = AQ̄−1AT + Rd and to selected k columns of this matrix. The com-
putation of infeasibilities ξp and ξd , the right-hand-side vectors in the reduced KKT
system (19), and matrix-vector multiplications in the iterative scheme need to per-
form numerous matrix-vector multiplications with matrices A,AT and Q which can
all be executed as implicit operations.

The primal-dual Newton direction is computed using multiple centrality correctors
[10]. The use of centrality correctors is not an obvious choice in the implementation
which relies on iterative methods to solve the linear equations because the effort
to compute the preconditioner is relatively small compared to the one needed for
every extra backsolve. However, the correctors help to maintain well-centered iterates
and stabilize the behaviour of interior point method. Therefore one or two centrality
correctors are allowed per interior point iteration in the matrix-free method.

The following default values of parameters are used in our implementation: k =
20, maxItKM = 20, εKM = 10−4, εp = 10−4, εd = 10−4, εo = 10−6. The default
primal and dual regularizations are set to γ 2 = 10−8 and δ2 = 10−6, respectively.
It is tempting to use stronger default regularizations γ 2 = 10−6 and δ2 = 10−4 to
produce a much better conditioned ḠR and improve the efficiency and accuracy of
the preconditioned iterative solver. However, too strong regularizations might hamper
the convergence of the primal dual interior point method.

When the regularized indefinite factorization of (19) is computed in the direct ap-
proach [2], both primal and dual regularizations are defined dynamically. The matrix-
free method works with the normal equation matrix and therefore needs to compute
Q̄ = diag{Q} + �−1 + Rp before defining the necessary parts (a diagonal or a col-
umn) of ḠR = AQ̄−1AT + Rd . Thus the primal regularization is always fixed to
Rp = γ 2I . The dual regularization Rd is defined dynamically during the compu-
tation of the partial Cholesky decomposition of ḠR . For all stable pivots a default
value of Rdi = δ2 is used. However, for pivots which fall dangerously close to zero
(dii ≤ 10−6) a stronger regularization term is applied Rdi = 10−4.
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MATRIX-FREE INTERIOR POINT METHOD

Input
Define: Q̄ = diag{Q} + �−1 + Rp and ḠR = AQ̄−1AT + Rd ;
matrix-vector operators: u �→ Au, v �→ AT v, u �→ Qu and functions which compute the
diagonal and a single column of ḠR = AQ̄−1AT +Rd : (x, s) �→ diag{ḠR} and (x, s) �→
columnj {ḠR}, respectively.

Parameters
k rank of the partial Cholesky matrix;
maxItKM maximum number of iterations allowed for the Krylov subspace method;

εKM relative accuracy tolerance in the Krylov method: (rq )T rq

(r0)T r0 ≤ εKM ;

εp, εd , εo primal feasibility, dual feasibility and optimality tolerances:

IPM stops when
‖ξ l

p‖
1+‖b‖ ≤ εp ,

‖ξ l
d‖

1+‖c‖ ≤ εd and (xl )T sl/n

1+|cT xl+1/2(xl )T Qxl | ≤ εo .

γ : default primal regularization;
δ: default dual regularization.

Initialize IPM
iteration counter l = 0, primal-dual point x0 > 0, y0 = 0, s0 > 0;
barrier parameter μ0 = (x0)T s0/n;

primal and dual infeasibilities ξ0
p = b − Ax0 and ξ0

d
= c − AT y0 − s0 + Qx0.

Interior Point Method

while (
‖ξ l

p‖
1+‖b‖ > εp or

‖ξ l
d‖

1+‖c‖ > εd or (xl )T sl/n

1+|cT xl+1/2(xl )T Qxl | > εo) do

Update (reduce) the barrier μl+1 = 0.1μl ;
Define Rp = γ 2I , compute � = Xl(Sl)−1 and Q̄ = diag{Q} + �−1 + Rp ;
Define proximal points x0 = xl and y0 = yl ;
Compute partial Cholesky decomposition of ḠR (53);
Define the preconditioner:

for LP or separable QP use (54);
for nonseparable QP use (55).

Solve the reduced KKT system (19). Use the Krylov subspace method with the par-
tial Cholesky preconditioner. Terminate when relative accuracy tolerance drops below
εKM or the number of Krylov method iterations reaches the limit maxItKM.

Find αP = max{α : xl + α�x ≥ 0} and αD = max{α : sl + α�s ≥ 0};
Set αP := 0.99αP and αD := 0.99αD ;
Make step

xl+1 = xl + αP �x;
yl+1 = yl + αD�y;
sl+1 = sl + αD�s.

Compute the infeasibilities: ξ l+1
p = b − Axl+1 and ξ l+1

d
= c − AT yl+1 − sl+1 +

Qxl+1;
Update the iteration counter: l := l + 1.

end-

while
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6 Implementation and numerical results

The matrix-free interior point method has been implemented in HOPDM [2, 10]. We
use an infeasible primal-dual path following algorithm in which the Newton search
directions are computed from the regularized system (19). For linear and separable
quadratic problems we reduce this system to (32) and solve it using the precondi-
tioned conjugate gradient (PCG) algorithm with the preconditioner (54). For non-
separable quadratic problems we apply Krylov subspace method directly to the reg-
ularized system (19) and precondition it with (55). In most of our runs the linear
systems are solved to a relative accuracy εKM = 10−4, that is, the iterative solver ter-
minates when the residual in the equation satisfies ‖rq‖2 ≤ εKM‖r0‖2, where rq and
r0 are the residuals at iterations q and zero, respectively. As an additional safeguard
against the loss of efficiency, we interrupt the iterative method after a maximum of
maxItKM= 20 steps regardless of the residual reduction achieved by that time. For
nonseparable QPs we used εKM = 10−8 and maxItKM= 100.

Two variants of the preconditioner (46) have been implemented. If A is a sparse
matrix then the preconditioner is computed and stored as a sparse matrix as well, that
is, L is stored as a collection of sparse columns. Due to complete pivoting applied to
GR when computing the partial Cholesky decomposition the columns of L fill-in very
quickly. (The sparsity pattern of a new column in Cholesky matrix is a result of merg-
ing the column of the Schur complement with all or a subset of Cholesky columns
computed earlier.) Therefore we do not expect the approach to be competitive for
sparse problems. The reason for solving a few sparse examples is to demonstrate the
performance of the method on well-known test problems. If A is a dense matrix or is
available only implicitly as an operator providing results of multiplications Au and
AT v then dense partial Cholesky is computed.

An important feature of our approach is that preconditioner P given by (46) and
based on partial Cholesky decomposition is implicit. We do not formulate the matrix
GR except for a few elements of it. The computations start from the diagonal of
GR which is easy to calculate when Q is diagonal or has another easily invertible
form. Once the largest pivot in GR is determined the appropriate column of GR is
computed and used to form the first column of L in (45) and to update the diagonal
of GR to become a diagonal DS of the first Schur complement. The largest element
in DS is selected to be the next pivot to enter DL, then the appropriate column of
GR is formed and used to produce the next column in the partial Cholesky matrix L

and to update the diagonal of the Schur complement. The process continues until the
predetermined number k of columns of L are calculated.

To guarantee the efficiency of the approach we keep the rank of L really small.
For linear problems and separable quadratic problems we set k = 2,5,10,20 or 50
at most. Such low-rank approximations are not accurate enough to tackle nonsepa-
rable quadratic problems. This is the case because for nonseparable QPs the normal
equation matrix GR is approximated with ḠR in which the matrix Q is already ap-
proximated with merely its diagonal. In fact, a low-rank approximation of the (already
approximate) normal equation matrix ḠR is computed. In consequence we work with
approximations of both the (1,1) block and the Schur complement of (19) when con-
structing the preconditioner (55) and the partial Cholesky of small rank is unable to
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provide sufficient quality of the preconditioner. For nonseparable quadratic problems
we therefore set k = 50,100 or 200. Let us observe that the spectral analysis of inex-
act constraint preconditioner [6] applies to (55). It is worth adding however that the
inexact constraint preconditioner [6] offers more flexibility in dropping off-diagonal
nonzero entries from Q and dropping nonzero entries from A and allows to produce
more sparse preconditioner than the one presented in this paper and based on partial
Cholesky factorization with complete pivoting.

It is not easy to compare computational complexity of direct and matrix-free ap-
proaches for sparse case because the degree of sparsity and the speed of generating
fill-in in partial Cholesky are difficult to quantify. However we can perform such a
comparison for the dense case. We assume that Q is diagonal (or zero), A ∈ Rm×n

is dense, partial Cholesky (45) contains k columns and the preconditioned conjugate
gradient algorithm performs q steps. We report only dominating terms. Computing
the preconditioner would require building a diagonal of A(Q+�−1 +Rp)−1AT +Rd

which involves 2mn floating point operations (flops), building k columns of this ma-
trix costs kmn flops and computing a trapezoidal L in (45) costs 1

2mk2 flops. A single
PCG iteration needs one multiplication with L,LT and A(Q+�−1 +Rp)−1AT +Rd

so it costs 2mk + 2mn flops. Assuming that q steps of PCG are performed the overall
cost of solving one linear system (32) is

Cost(PCG) = (2 + k + 2q)mn +
(

k2

2
+ 2qk

)
m. (56)

This number should be compared with the cost of a direct approach, which comprises
building full A(Q+�−1 +Rp)−1AT +Rd in 1

2mn2 flops and computing its Cholesky
decomposition which requires 1

3m3 flops giving the total cost

Cost(Direct) = 1

2
m2n + 1

3
m3. (57)

It is clear that as long as k 
 m and q 
 m the matrix-free approach wins the com-
petition.

The storage requirements of the preconditioner are limited to k columns of length
m for the partial Cholesky matrix L and one column of length m to remember the
diagonal of the Schur complement S. It is trivial to determine the maximum rank k

of the partial Cholesky decomposition as a function of memory available for the pre-
conditioner. The limited-memory feature of our approach is an important advantage
which should become essential when solving truly large problems.

We have performed several tests of the matrix-free interior point method. We have
used a Dell Precision M60 laptop computer with a 2 GHz (single core) processor and
2 GB of RAM running Linux. HOPDM was compiled with the GNU Fortran compiler
g77 with optimization option -O2. We have used the same termination criteria for
direct and for matrix-free approaches and set the following tolerances: εp = 10−4,
εd = 10−4 and ε0 = 10−6.

We first report the results for sparse test examples coming from Kennington’s col-
lection of network problems osa-07 and osa-14 (http://www.netlib.org/lp/data/
kennington/) and set covering problems from the Italian railroad from Mittelmann’s

http://www.netlib.org/lp/data/kennington/
http://www.netlib.org/lp/data/kennington/


476 J. Gondzio

Table 1 Dimensions of sparse problems

Prob Dimensions

rows columns nonzeros

osa-07 1119 23949 167643

osa-14 2338 52460 367220

rail507 507 63009 472358

rail2586 2586 920683 8929459

Table 2 Solution statistics for sparse problems

Prob Direct Matrix-free IPM

HOPDM rank = 10 rank = 20 rank = 50

iters time iters time iters time iters time

osa-07 11 1.41 17 4.21 15 3.56 15 3.85

osa-14 13 4.71 15 8.50 15 8.66 18 11.84

rail507 15 6.29 16 9.72 16 9.45 17 11.56

rail2586 20 293.23 27 531.39 28 625.54 26 434.97

Table 3 Dimensions of Netlib problems

Prob Dimensions

rows columns nonzeros

fit1d 24 1026 14430

fit2d 25 10500 138018

collection rail507 and rail2586 (http://plato.asu.edu/ftp/lptestset/rail/). Ta-
bles 1 and 2 are self-explanatory. We report in them the problem dimensions and
the solution statistics, respectively. CPU times in bold indicate the winner which in
all cases is the direct approach. Although matrix-free interior point method is slower
on these problems it is not very far behind the direct approach, which is encouraging.

In our second experiment two problems from Netlib (http://www.netlib.org/lp/
data/) fit1d and fit2d are solved. These problems are very small for today’s
standards. Their constraint matrices are narrow but long (m 
 n). Direct approach is
obviously very efficient for these problems having to deal with a sparse Cholesky de-
composition of dimension merely 24 or 25. The matrix-free approach delivers com-
parable performance even with a partial Cholesky decomposition of rank k = 2 as
can be seen in Tables 3 and 4. Since these problems are small and the timings may be
inaccurate we do not indicate the winners with bold print.

In our third experiment, a few nonseparable quadratic programming problems
were solved. We chose problems with significant quadratic term as shown by the
number of off-diagonal nonzero entries in the triangular part of matrix Q reported

http://plato.asu.edu/ftp/lptestset/rail/
http://www.netlib.org/lp/data/
http://www.netlib.org/lp/data/
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Table 4 Solution statistics for Netlib problems

Prob Direct Matrix-free IPM

HOPDM rank = 2 rank = 5 rank = 10

iters time iters time iters time iters time

fit1d 12 0.06 12 0.10 12 0.10 11 0.08

fit2d 13 1.01 12 1.20 11 1.12 12 1.19

Table 5 Dimensions of nonseparable QP problems

Prob Dimensions

rows columns nonzeros A nonzeros Q

scagr25 471 500 2029 100

25fv47 820 1571 11127 59053

ship12l 1151 5427 21597 60205

Table 6 Solution statistics for nonseparable QP problems

Prob Direct Matrix-free IPM

HOPDM rank = 50 rank = 100 rank = 200

iters time iters time iters time iters time

scagr25 11 0.04 18 0.44 13 0.36 11 0.18

25fv47 19 1.36 63 10.12 38 9.31 27 11.93

ship12l 9 1.20 10 0.61 10 0.60 10 0.89

in the last column of Table 5. The problems come from the Maros and Mészáros’
collection of quadratic programming test examples (http://www.sztaki.hu/~meszaros/
public_ftp/qpdata/brunel/). We needed to change the default settings of the matrix-
free method for these problems. Namely, we allow the rank of partial Cholesky ma-
trix to vary between 50 and 200. Additionally, we increased the accuracy require-
ment of the Krylov subspace solver to εKM = 10−8 and the limit of iterations to
maxItKM = 100. The results collected in Table 6 show that with the rank equal
to 50, the matrix-free method struggled to reach optimal solution for two problems
scagr25 and 25fv47 and a higher rank of partial Cholesky preconditioner was
required.

Finally, in the fourth experiment we solved randomly generated dense test exam-
ples which attempt to mimic basic pursuit problems [9]. Their dimensions are given
in Table 7 and the solution statistics are reported in Table 8. For these problems the
matrix-free approach is a clear winner. We could use a partial Cholesky decomposi-
tion preconditioner (46) with a small rank k = 10,20 or 50 and we observed the fast
convergence of the PCG algorithm. In early IPM iterations, PCG converged in 5–8
steps, in the “middle” of optimization, PCG usually required more iterations occa-

http://www.sztaki.hu/~meszaros/public_ftp/qpdata/brunel/
http://www.sztaki.hu/~meszaros/public_ftp/qpdata/brunel/
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Table 7 Dimensions of dense problems

Prob Dimensions

rows columns nonzeros

Pb1 200 1000 200000

Pb2 500 10000 5000000

Pb3 1000 8000 8000000

Table 8 Solution statistics for dense problems

Prob Direct Matrix-free IPM

HOPDM rank = 10 rank = 20 rank = 50

iters time iters time iters time iters time

Pb1 5 1.41 5 0.27 6 0.45 5 0.67

Pb2 5 61.77 6 10.02 6 11.58 6 15.87

Pb3 5 201.62 5 13.15 5 11.71 5 20.03

sionally matching the limit of 20 steps, and towards the end of optimization, when
IPM approached an optimal solution, the convergence of PCG improved again and
the sufficient reduction of the residual was achieved in 10-15 steps on average.

7 Conclusions

We have discussed in this paper the matrix-free implementation of interior point
method for linear and quadratic programming. The method allows for an implicit
formulation of the optimization problem in which matrices Q and A do not have to
be stored. Instead, they are only used to compute matrix-vector products. The design
of the method relies on the use of iterative methods to compute Newton directions.
The KKT systems are first regularized to guarantee a bounded condition number and
then preconditioned with a partial Cholesky decomposition of the normal equation
matrix. The preconditioner is computed without explicit use of matrices defining the
optimization problem: it needs only matrix-vector products with the problem matri-
ces. Moreover, the way it is computed easily allows for a limited-memory implemen-
tation. The method has been implemented and the preliminary computational results
for small to medium scale problems demonstrate its feasibility. An implementation
for large scale problems is an ongoing effort and we expect to report on it shortly in
another paper.
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