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�e problem of optimal placement of point sources is formulated as a dis-
tributed optimal control problem with sparsity constraints. For practical rele-
vance, partial observations as well as partial and non-negative controls need to
be considered. Although well-posedness of this problem requires a non-re�exive
Banach space setting, a primal-predual formulation of the optimality system
can be approximated well by a family of semi-smooth equations, which can be
solved by a superlinearly convergent semi-smooth Newton method. Numerical
examples indicate the feasibility for optimal light source placement problems in
di�usive photochemotherapy.

1 introduction

�is work is concerned with the optimal control problem

(P)

 min
u∈MΓ (ωc)

1

2
‖y− z‖2L2(ωo) + α ‖u‖MΓ (ωc)

subject to Ay = χωcu, y|∂Ω = 0,

where A is a linear second-order elliptic operator, ωo and ωc represent the observation
and control subdomains of the bounded domain Ω ⊂ Rn with characteristic function χ,
and z ∈ L2(ωo) is given. For convenience, we abbreviate Γ = ∂Ω. Furthermore MΓ (ωc)
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†Institute for Mathematics and Scienti�c Computing, University of Graz, Heinrichstrasse 36, A-8010 Graz,
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denotes the topological dual of CΓ (ωc) := {v ∈ C(ωc) : v|∂ωc∩Γ = 0}, where the constraint
v|∂ωc∩Γ = 0 is dropped if ∂ωc ∩ Γ = ∅. �e norm onMΓ (ωc) is given by

(1.1) ‖u‖MΓ (ωc)
= sup

ϕ∈CΓ (ωc)
‖ϕ‖CΓ (ωc)61

∫
ωc

ϕdu,

which coincides with ‖u‖L1(ωc) if u ∈ L1(ωc) (identi�ed with a subspace ofMΓ (ωc)) holds.
Sinceωc \ Γ is a locally compact Hausdor� space, the Riesz representation theorem allows
identifying elements ofMΓ (ωc) with Radon measures that have compact support inωc \ Γ
(cf. [9, �. VIII.2.19]).
�e problem is motivated by the question of optimal source placement, e. g., in di�usive

optical tomography, since the L1 norm is known to promote sparsity in optimization. �e
connection between L1 control costs and source placementwas �rst discussed in [15]. However,
problem (P) is not well-posed in L1, since L1 lacks the necessary weak compactness properties.
Problems with L1 control cost and L∞ control constraints were considered in [15], [18], [19]
and [5], while a measure space setting was �rst investigated in [6].
In this work, we address the feasibility of optimal source placement by optimal control in

measure spaces by including partial observation, control on subdomains and non-negativity
of the controls, which was not considered in the previously cited works. �e Fenchel predual
framework as utilized in [6] is not applicable in this situation, so we consider a primal-predual
setting. �is framework can be modi�ed to allow for nonlinear control-to-state mappings,
which also do not �t into the earlier Fenchel duality framework.
�is paper is organized as follows. In section 2, we discuss the well-posedness of the optimal

control problem for measure source terms de�ned on subdomains and derive the optimality
system. Section 3 is devoted to the regularization of the optimality system and addresses the
convergence of the regularized solutions to those of the original problem. �e numerical
solution using a semi-smooth Newton method is discussed in section 4. Finally, in section 5
we give numerical examples to indicate the feasibility of the proposed approach for a problem
of optimal light source placement in photochemotherapy.
�roughout, we take as W1,r

0 (Ω) the closure of {v ∈ C∞(Ω) : v|∂Ω = 0} in the W1,r(Ω)

norm, r ∈ (1,∞). We denote by W−1,r ′(Ω) = (W1,r
0 (Ω))∗ the topological dual of W1,r

0 (Ω).
Moreover, for ω ⊂ Ω we set W1,r(ω) = {ϕ|ω : ϕ ∈ W1,r

0 (Ω)} with dual denoted by
(W1,r(ω))∗.

2 problem formulation and optimality system

We�rst address thewell-posedness of the state equation. LetM(Ω)denote the topological dual
of C0(Ω) endowed with the operator norm, cf. (1.1). By the Riesz representation theorem (e.g.,
[9, �. VIII.2.10]),M(Ω) can be identi�ed with the Banach space of �nite Radon measures.
We further choose q ∈ (1, n

n−1
) and set q ′ = q−1

q
∈ (n,∞). For this choice, we have

W1,q ′

0 (Ω) ↪→ C0(Ω), and this embedding is compact.
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We consider the operator

Ay = −

n∑
j,k=1

∂j(ajk(x)∂ky+ dj(x)y) +

n∑
j=1

bj(x)∂jy+ d(x)y,

and for µ ∈M(Ω) the abstract Dirichlet problem

(2.1)

{
Ay = µ, inΩ,
y = 0, on ∂Ω,

which is to be interpreted in variational form, i.e., y satis�es

(2.2) −

n∑
j,k=1

〈ajk∂jy, ∂kv〉L2 +
n∑
j=1

〈bj∂jy, v〉L2 +
n∑
k=1

〈y, dk∂kv〉L2 + 〈dy, v〉L2 =
∫
Ω

v dµ

for all v ∈W1,q ′

0 (Ω). Here,Ω is a bounded domain in Rn with C1,δ boundary ∂Ω, ajk, bj ∈
C0,δ(Ω) for some δ ∈ (0, 1), dj, d ∈ L∞(Ω), and it is assumed that 0 is not an eigenvalue of
A. �ese assumptions imply that the adjoint A∗ of A is an isomorphism fromW1,q ′

0 (Ω) to
W−1,q ′(Ω), see, e.g., [17, �. 3.16], [10]. Consequently, A is an isomorphism fromW1,q

0 (Ω)

to W−1,q(Ω). In particular, (2.1) admits a unique solution satisfying

‖y‖W1,q
0 (Ω) 6 C ‖µ‖M(Ω)

for a constantC independent ofµ, by the fact thatM(Ω) embeds continuously intoW−1,q(Ω)

(see, e. g., [16, �. 9.1] and [14, �. 4.1]). We refer to [14] for a discussion of the various
(equivalent) characterizations of solutions to (2.2) and their uniqueness ifA∗ is not surjective
on W−1,q ′(Ω).

We now de�ne the control-to-state mapping associated to (P). For this purpose, let

Rωo : W
1,q
0 (Ω)→W1,q(ωo), Rωc : W

1,q ′

0 (Ω)→W1,q ′(ωc)

denote the canonical restriction operators fromΩ toωc andωo, respectively, with adjoints

R∗ωo : (W
1,q(ωo))

∗ →W−1,q ′(Ω), R∗ωc : (W
1,q ′(ωc))

∗ →W−1,q(Ω).

Further we shall employ the injections

I : W1,q(ωo)→ L2(ωo), J : W1,q ′(ωc)→ CΓ (ωc)

with adjoints

I∗ : L2(ωo)→ (W1,q(ωo))
∗, J∗ : MΓ (ωc)→ (W1,q ′(ωc))

∗.

�en we set

Sω : MΓ (ωc)→ L2(ωo), u 7→ IRωoA
−1R∗ωcJ

∗u,
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and note that Sω is a bounded linear operator. Since Rωo ,Rωc , I and J have dense ranges, their
adjoints are injections. To argue that J has dense range, letϕ ∈ CΓ (ωc). By Tietze’s extension
theorem (e. g., [7, �. 3.1]), there exists a ϕ̃ ∈ CΓ (ωc) with ϕ̃|∂Ω = 0 and ϕ̃|ωc = ϕ (see also
[17, �. 1.N]). Moreover ϕ̃ can be approximated by ϕ̃n ∈W1,q ′

0 (Ω) in the W1,q ′

0 (Ω)-norm,
and hence ϕ̃n|ωc ∈W1,q ′(ωc) approximates ϕ ∈ CΓ (ωc).
We will also need the following continuity property of the control-to-state mapping.

Proposition 2.1. For any sequence {uk} ⊂ MΓ (ωc) converging weakly-? in MΓ (ωc), the
sequence Sω(uk) converges strongly to Sω(u) in L2(ωo).

Proof. Since q ′ > n, the embedding W1,q ′(ωc) ↪→ CΓ (ωc) is compact. �erefore, the
adjoint embedding MΓ (ωc) ↪→ (W1,q ′(ωc))

∗ is compact as well. Weak-? convergence of
uk in MΓ (ωc) thus implies strong convergence of J∗uk. �e claim then follows from the
continuity of IRωoA−1R∗ωc .

�e reduced problem corresponding to (P) can then be formulated as

(2.3) min
u∈MΓ (ωc)

1

2
‖Sωu− z‖2L2(ωo) + α ‖u‖MΓ (ωc)

.

Existence of aminimizeru∗ follows from the fact that bounded sequences inMΓ (ωc) contain a
weakly-? convergent subsequence, and that u 7→ ‖u‖MΓ (ωc)

is weak-? lower semicontinuous.
Remark 2.2. If a minimizer u∗ satis�es u∗ ∈ L1(ωc), it is also a solution of the problem

min
u∈L1(ωo)

1

2
‖Sωu− z‖2L2(ωo) + α ‖u‖L1(ωc) .

�is follows from the embedding of L1(ωc) into MΓ (ωc) and the fact that ‖v‖MΓ (ωc)
=

‖v‖L1(ωc) for v ∈ L1(ωc) (cf. [4, Ch. IV]).

To derive a necessary optimality condition for (2.3), we shall utilize the operator

∗Sω : L2(ωo)→ CΓ (ωc), ϕ 7→ JR∗ωc(A
∗)−1RωoI

∗ϕ,

noting that

(∗Sω)
∗ = Sω,

i. e., ∗Sω is the “preadjoint” to Sω.

�eorem 2.3. Let u∗ ∈ MΓ (ωc) be a solution to (2.3). �en there exists a p∗ ∈ CΓ (ωc)
satisfying

(OS)

{
∗Sω(Sωu

∗ − z) = p∗,

〈u∗, p∗ − p〉MΓ (ωc),CΓ (ωc) 6 0, ‖p∗‖CΓ (ωc) 6 α,

for all p ∈ CΓ (ωc) with ‖p‖CΓ (ωc) 6 α.
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Proof. We shall employ a Fenchel duality argument. To avoid dealing with (MΓ (ωc))
∗, we

shall consider a predual of (2.3) rather than a dual problem. Such a procedure was previously
used in [3, 6, 11], for example. For this purpose we consider the following problem in L2(ωo):

(2.4) min
q∈L2(ωo)

1

2
‖q+ z‖2L2(ωo) −

1

2
‖z‖2L2(ωo) + I{‖q‖CΓ (ωc)6α}(

∗Sωq)

=: min
q∈L2(ωo)

F(q) + G(∗Sωq),

where F : L2(ωo) → R and G : CΓ (ωc) → R ∪ {∞}. A short computation shows that the
Fenchel conjugates F∗ : L2(ωo)→ R and G∗ : MΓ (ωc)→ R are given by

F∗(v) =
1

2
‖v− z‖2L2(ωo) , G∗(v) = α ‖v‖MΓ (ωc)

.

Since q 7→ F(q) + G(∗Sωq) is continuous at 0, the Fenchel duality theorem (see, e. g., [8,
�. 4.1]) is applicable and implies that

(2.5) min
q∈L2(ωo)

F(q) + G(∗Sωq) = min
u∈MΓ (ωc)

F∗(Sωu) + G∗(−u)

= min
u∈MΓ (ωc)

1

2
‖Sωu− z‖2L2(ωo) + α ‖u‖MΓ (ωc)

,

where we utilize (∗Sω)∗ = Sω. Moreover (cf. [8, Prop. 4.1]), to every minimizer q∗ ∈ L2(ωo)
of the le� hand side of (2.5) corresponds a minimizer u∗ ∈MΓ (ωc) of the right hand side
satisfying the relationship {

Sωu
∗ = q∗ + z,

−u∗ ∈ ∂I{‖q‖CΓ (ωc)6α}(
∗Sωq

∗).

From the second relation, we have ‖∗Sωq∗‖CΓ (ωc) 6 α and

(2.6) 〈−u∗, p− ∗Sωq∗〉MΓ (ωc),CΓ (ωc) 6 0 for all ‖p‖CΓ (ωc) 6 α.

Setting p∗ = ∗Sωq∗ = ∗Sω(Sωu∗ − z) we �nd that

〈u∗, p∗ − p〉MΓ (ωc),CΓ (ωc) 6 0 for all ‖p‖CΓ (ωc) 6 α

and ‖p∗‖CΓ (ωc) 6 α.

We note that by construction p∗ ∈W1,q ′(ωc) holds. From the second relation of (OS), we
can also obtain the following structural information on an optimal control u∗.

Corollary 2.4. Let (u∗, p∗) be a solution to (OS). �en for any p ∈ CΓ (ωc) with p > 0,

〈u∗, p〉MΓ (ωc),CΓ (ωc) = 0 if supp(p) ⊂ {x ∈ ωc : |p∗(x)| < α} ,
〈u∗, p〉MΓ (ωc),CΓ (ωc) 6 0 if supp(p) ⊂ {x ∈ ωc : p∗(x) = α} ,
〈u∗, p〉MΓ (ωc),CΓ (ωc) > 0 if supp(p) ⊂ {x ∈ ωc : p∗(x) = −α} .
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�is can be interpreted as a sparsity property: An optimal control u∗ will be non-zero only
on sets where the constraint on p∗ is active; hence the larger the penalty α, the smaller the
support of the control.
Remark 2.5 (Non-negative controls). If in (P) only non-negative controls are admitted, we
replace G∗(v) by

G∗+ : MΓ (ωc)→ R ∪ {∞}, v 7→ I{v60} + α ‖v‖MΓ (ωc)

(noting that the dual problem involves the term G∗+(−u
∗)). �is is the Fenchel dual of

G+ : CΓ (ωc)→ R ∪ {∞}, q 7→ I{q>−α},

and (2.6) must be replaced by

〈−u∗, p− ∗Sωq∗〉MΓ (ωc),CΓ (ωc) 6 0 for all p > −α.

�e optimality conditions for the case of non-negative controls become

(OS+)

{
∗Sω(Sωu

∗ − z) = p∗,

〈u∗, p∗ − p〉MΓ (ωc),CΓ (ωc) 6 0, p∗ > −α

for all p ∈ CΓ (ωc) with p > −α.

3 regularization

�e numerical solution of the optimality system (OS) is based on a Moreau–Yoshida regu-
larization of (OS). For given c > 0, we search for (uc, pc) ∈ L2(ωc) ×W1,q ′(ωc) which
satisfy

(OSc)

{
pc = S

∗
ω(Sωuc − z),

−uc = cmax(0, pc − α) + cmin(0, pc + α),

where the max and min are taken pointwise in ωc. Here, Sω is considered as an operator
from L2(ωc) → L2(ωo). �e action of its adjoint S∗ω : L2(ωo) → L2(ωc) coincides with
that of ∗Sω. Moreover, the range of S∗ω is contained in W1,q ′(ωc).
�is regularization can be interpreted as a quadratic penalization of the box constraints in

(2.4).

�eorem 3.1. �ere exists a unique solution (uc, pc) ∈ L2(ωc)×W1,q ′(ωc) of (OSc).

Proof. �e claim will follow from the fact that (OSc) are the necessary optimality conditions
of the problem

(Pc) min
u∈L2(ωc)

1

2
‖Sωu− z‖2L2(ωo) + α ‖u‖L1(ωc) +

1

2c
‖u‖2L2(ωc) .
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�e cost function in (Pc) is continuous, bounded from below and strictly convex due to the
presence of the L2(ωc) term, hence (Pc) admits a unique minimizer uc ∈ L2(ωc). To express
(Pc) abstractly, we introduce

F∗c : L2(ωc)→ R, u 7→ 1

2
‖Sωu− z‖2L2(ωo),

G∗c : L2(ωc)→ R, u 7→ α ‖u‖L1(ωc) +
1

2c
‖u‖2L2(ωc) .

�e optimality condition for (Pc) is given by

0 ∈ S∗ω(Sωuc − z) + ∂G∗c(uc)

or equivalently,

(3.1)

{
pc = S

∗
ω(Sωuc − z),

−pc ∈ ∂G∗c(uc),

where the �rst equation implies pc ∈W1,q ′(ωc) ↪→ CΓ (ωc).
We claim that G∗c is the Fenchel conjugate of

Gc : L2(ωc)→ R, p 7→ c

2
‖max(0, p− α)‖2L2(ωc) +

c

2
‖min(0, p+ α)‖2L2(ωc) .

To show this, we compute the Fenchel conjugate of Gc at u ∈ L2(ωc), which is de�ned as

G∗c(u) = sup
q∈L2(ωc)

〈u, q〉L2(ωc) − Gc(q).

�e supremum is attained at p ∈ L2(ωc) if and only if

u = ∂Gc(p) = cmax(0, p− α) + cmin(0, p+ α)

holds almost everywhere in ωc. If u(x) > 0, the right hand side has to be positive as well,
which implies that u(x) = c(p(x) − α) and hence p(x) = 1

c
u(x) + α. Similarly, u(x) < 0

yields p(x) = 1
c
u(x) − α. For u(x) = 0, we deduce that −α 6 p(x) 6 α holds. Substituting

in the de�nition of G∗, we have that

G∗c(u) =

∫
{u>0}

u(x)(
1

c
u(x) + α) −

1

2c
max(0, u(x))2 dx

+

∫
{u<0}

u(x)(
1

c
u(x) − α) −

1

2c
min(0, u(x))2 dx

=
1

2c
‖u‖2L2(ωc) + α ‖u‖L1(ωc) .

Since Gc is Lipschitz continuous, the second condition in (3.1) can be expressed as (cf., e. g.,
[1, �. 9.5.1])

uc ∈ ∂Gc(−pc) = {c(max(0,−pc − α) +min(0,−pc + α))}.
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Noting that max(0,−p) = −min(0, p), the optimality conditions (OSc) follow.
Turning to uniqueness, let (uc, pc) and (uc, pc) be two solutions to (OSc) and set (δu, δp) =

(uc − uc, pc − pc). �en, subtracting the corresponding optimality conditions and taking
the inner product with (δu, δp) implies that

(3.2) 0 = ‖Sωδu‖2L2(ωo) + c 〈max(0, pc − α) −max(0, pc − α), pc − pc〉L2(ωc)
+ c 〈min(0, pc + α) −min(0, pc + α), pc − pc〉L2(ωc)

.

Since the mappings p 7→ max(0, p) and p 7→ min(0, p) are monotone, we obtain that the
inner products in (3.2) are non-negative and thus that Sωδu = 0. Since δp = S∗ω(Sωδu) = 0

by linearity of state and adjoint equation, we deduce pc = pc and hence uc = uc from the
second equation of (OSc).

Next, we address the convergence of solutions of (OSc) as c→∞.

�eorem 3.2. Let (uc, pc) ∈ L2(ωc)×W1,q ′(ωc) be solutions of (OSc) for c > 0. �en the
family (uc, pc) contains a subsequence, denoted by the same symbol, such that

uc −⇀? u∗ inMΓ (ωc),

pc −→ p∗ inW1,q ′(ωc) and hence in CΓ (ωc),

and (u∗, p∗) is a solution of (OS).

Proof. Since uc = 0 is an admissible control, we have

(3.5) α ‖uc‖MΓ (ωc)
6
1

2
‖Sωuc − z‖2L2(ωo) + α ‖uc‖MΓ (ωc)

+
1

2c
‖uc‖2L2(ωc)

6
1

2
‖z‖2L2(ωo) .

�e family of minimizers {uc}c>0 is thus bounded in MΓ (ωc), and hence there exists a
subsequence (also denoted by {uc}) which converges weakly-? inMΓ (ωc) to a ũ ∈MΓ (ωc).
Since Sω(uc)→ Sω(ũ) strongly in L2(ωo) by Proposition 2.1, we deduce from the continuity
of S∗ω that

pc → p̃ := S∗ω(Sωũ− z)

strongly in W1,q ′(ωc) and hence in CΓ (ωc).
We next verify the feasibility of p̃. By squaring the second relation of (OSc) and inspecting

pointwise, we obtain that

1

c
‖uc‖2L2(ωc) = c ‖max(0, pc − α)‖2L2(ωc) + c ‖min(0, pc + α)‖2L2(ωc) .

From (3.5), we have that 1
c
‖uc‖2L2(ωc) 6 ‖z‖

2
L2(ωo), so that

‖max(0, pc − α)‖2L2(ωc) 6
1

c
‖z‖2L2(ωo) → 0,

‖min(0, pc + α)‖2L2(ωc) 6
1

c
‖z‖2L2(ωo) → 0,
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hold for c→∞. Since pc → p̃ strongly in CΓ (ωc), this implies that

−α 6 p̃(x) 6 α for all x ∈ ωc.

It remains to pass to the limit in the second equation of (OSc). Observe that

〈−uc, p− pc〉L2(ωc) = c 〈max(0, pc − α), p− pc〉L2(ωc)
+ c 〈min(0, pc + α), p− pc〉L2(ωc) 6 0

holds for all p ∈ CΓ (ωc) with ‖p‖CΓ (ωc) 6 α, and thus that

〈ũ, p̃− p〉MΓ (ωc),CΓ (ωc) 6 0

is satis�ed for all p ∈ CΓ (ωc) with ‖p‖CΓ (ωc) 6 α. �erefore, (ũ, p̃) ∈ MΓ (ωc) × CΓ (ωc)
satis�es (OS).

Remark 3.3 (Non-negative controls). By a similar argument as in the proof of �eorem 3.1, it
can be shown that

G∗+,c : L2(ωc)→ R, v 7→ I{v60} +
1

2c
‖v‖2L2(ωc) + α ‖v‖L1(ωc) ,

is the Fenchel conjugate of

G+,c : L2(ωc)→ R, q 7→ c

2
‖min(0, q+ α)‖2L2(ωc) ,

and thus that the corresponding regularized optimality system is

(OS+,c)

{
pc = S

∗
ω(Sωuc − z),

−uc = cmin(0, pc + α).

�e convergence result for c→∞ as in �eorem 3.2 remains valid.

4 semi-smooth newton method

For the numerical solution, we consider (OSc) as the operator equation F(uc) = 0 for F :

L2(ωc)→ L2(ωc), given by

F(u) = u+ cmax(0, S∗ω(Sωu− z) − α) + cmin(0, S∗ω(Sωu− z) + α).

It is known (e.g., from [12, Ex. 8.14]), that the function v 7→ max(0, v−α) is Newton di�eren-
tiable from Lp to Lq for any p > q > 1 with Newton derivative in direction h given pointwise
almost everywhere by

[DNmax(0, v− α)]h = χ{v>α}h =

{
h(x), if v(x) > α,
0, if v(x) 6 α.
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An analogous statement holds for the pointwise min function. Since S∗ωv ∈W1,q ′(ωc) holds
for all v ∈ L2(ωo), F is Newton di�erentiable and the chain rule for Newton derivatives (e.g.,
[12, Lemma 8.15]) yields that the action of the Newton derivative of

G+(u) := max(0, S∗ω(Sωu− z) − α)

in the direction h is given by

DNG+(u)h = χ{S∗ω(Sωu−z)>α}(S
∗
ωSωh)

=

{
(S∗ωSωh)(x) if (S∗ω(Sωu− z))(x) > α,

0 if (S∗ω(Sωu− z))(x) 6 α,

and a similar claim holds for the min term. A semi-smooth Newton step thus consists in
solving for δu in the equation

(4.1) δu+ cχ{|S∗ω(Sωuk−z)|>α}(S
∗
ωSωδu) = −uk − cmax(0, S∗ω(Sωuk − z) − α)

− cmin(0, S∗ω(Sωuk − z) + α)

and setting uk+1 = uk + δu. �e semi-smooth Newton step (4.1) can be solved using an
iterative Krylov solver (e.g., gmres), where the action of the Newton derivative on given δu is
computed by �rst solving the linearized state equation for the state di�erential δy followed by
the adjoint equation for the adjoint di�erential δp. �e full procedure is given as Algorithm 1.

It remains to verify the well-posedness and uniform boundedness of the Newton step (4.1).

Proposition 4.1. For �xed α, c > 0 and for any u ∈ L2(ωc), the mapping DNF(u) ∈
L(L2(ωc),L2(ωc)) is invertible, and there exists a constant C > 0 independent of u such
that

‖DNF(u)−1‖L(L2(ωc),L2(ωc)) 6 C

holds.

Proof. Let u ∈ L2(ωc) be given and set

A = {|S∗ω(Sωu− z)| > α}

as well as I = ωc \ A.
For arbitraryw ∈ L2(ωc), we need to �nd δu ∈ L2(ωc) satisfying

(4.2) δu+ cχA(S
∗
ωSωδu) = w.

From this, we have that δu = w almost everywhere in I. By the linearity of Sω and S∗ω, we
can thus write

cχA(S
∗
ωSωδu) = cχA(S

∗
ωSω(χAδu)) + cχA(S

∗
ωSω(χIw)).
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Algorithm 1 Semi-smooth Newton method
1: Choose u0, set k = 0

2: repeat
3: Solve for ỹk in Ay = R∗ωcu

k, set yk = Rωoỹ
k

4: Solve for p̃k in A∗p = R∗ωo(y
k − z), set pk = Rωcp̃

k

5: Compute active sets

Ak+ =
{
x ∈ ωc : pk(x) > α

}
Ak− =

{
x ∈ ωc : pk(x) < −α

}
,

Ak = Ak+ ∪Ak−

6: Set F(uk) = −uk − cχAk+(p
k − α) − cχAk−(p

k + α)

7: Compute δu by solving DNF(uk)δu = F(uk) using ApplyNewtonMatrix in
Krylov method

8: Set uk+1 = uk + δu, k← k+ 1

9: until (Ak+ = Ak−1+ and Ak− = Ak−1− ) or k = k∗

1: function ApplyNewtonMatrix(δu,Ak)
2: Solve for δ̃y in Aδy = R∗ωcδu, set δy = Rωo δ̃y

3: Solve for δ̃p in A∗δp = R∗ωoδy, set δp = Rωc δ̃p

4: return δu+ cχAkδp

5: end function

Inserting this identity into (4.2) and testing with δu, we obtain

‖δu‖2L2(ωc) + c ‖Sω(χAδu)‖
2
L2(ωo) = 〈w, δu〉L2(ωc) − c 〈Sω(χIw), Sω(χAδu)〉L2(ωo)

6 ‖w‖L2(ωc) ‖δu‖L2(ωc) + C ‖w‖L2(ωc) ‖δu‖L2(ωc)
6 C ‖w‖L2(ωc) ‖δu‖L2(ωc)

by the continuity of Sω. Together this implies

‖δu‖L2(ωc) 6 C ‖w‖L2(ωc)
with a constant C > 0 depending on c but independent of A and therefore of u, which yields
the claimed uniform boundedness.

From this, the superlinear convergence of the semi-smooth Newton method follows from
standard arguments (e.g., [12, �. 8.16]). �e termination criterion in Algorithm 1, step 9,
can be justi�ed as follows: If Ak+1± = Ak± holds, then uk+1 satis�es F(uk+1) = 0 (cf. [12,
Rem. 7.1.1]).
For the numerical implementation,we use a continuation strategy: Solve foruck , set ck+1 =

qck with q > 1, and use uck as initial guess for the computation of uck+1 .
Remark 4.2 (Non-negative controls). By setting Ak+ = ∅, Algorithm 1 can be applied to the
numerical solution of (OS+,c). �e superlinear convergence holds in this case as well.
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Figure 1: Target z, control domainωc and observation domainωo.

5 numerical examples

We illustrate the proposed approach with a simple convection-di�usion equation, described
by the operator Ay = −ν∆y − b · ∇y with ν = 0.1 and b = (1, 0)T and homogeneous
Dirichlet conditions on the unit square [−1, 1]2. �e control and observation domains are
given by

ωc =
{
x ∈ Ω : 1

16
6 |x|2 6 1

2

}
,

ωo =
{
x ∈ Ω : |x|2 6 1

32

}
,

and the target is z = χωox2 (see Figure 1). �e di�erential operators are discretized using stan-
dard �nite di�erences withN = 128 nodes in each direction, and Algorithm 1 is implemented
in Matlab.
�e parameters for this example are set as follows. In the continuation scheme for the

penalty parameter c, the initial value is c0 = 1, the incrementation factor is set to q = 10, and
the continuation is terminated at c∗ = 1012. �e semi-smooth Newton method is terminated
if the active sets coincide or k∗ = 10 iterations are reached. For the solution of the linear
systems arising in the semi-smooth Newton step, we use Matlab’s built-in gmres with a
relative tolerance of 10−9 and a maximum number of iterations of 100. �e Matlab code of
our implementation can be downloaded from http://www.uni-graz.at/~clason/codes/

measurecontrol.m.
�e optimal controls uα and corresponding states yα for di�erent values of α are shown in

Figure 2. As α is decreased, the state becomes closer to the target, while the control becomes
less sparse. Note that the loss in sparsity ismanifested by an increasing numberof point sources,
but the support of the control remains localized. �is is due to the structural properties of
the optimality system: the control is allowed to be active only where the dual variable p∗ is
active and must be identically zero everywhere else (cf. Corollary 2.4). Also, the controls are
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placed asymmetrically due to the directionality of the convection term. We point out that the
placement of the corresponding sources is not obvious.
We indicate the superlinear convergence of the semi-smooth Newton method by �xing

c = 105 and α = 10−4 and starting from the initial guess u0 = 0. Table 1 shows the norm of
the residual ‖F(uk)‖L2 and the change in active sets δAk for each iteration in the semi-smooth
Newton method, verifying the locally superlinear convergence.

�e feasibility of our approach for the optimal placement of sources is illustrated with
an example that is motivated by an application in photochemotherapy. Here,ωo denotes a
region where a photosensitive chemotherapeutic agent is locally activated by laser light from
multiple strategically placed �ber-optic light sources [2]. �e latter can be focused inside a
small boundary layer, which corresponds to the control domainωc. �is example further
demonstrates the dependence of the locations of the optimal controls on the geometry of the
problem, here determined by an irregular domain (see Figure 3).
�e corresponding state equation is−∇ ·

(
1

2(µa+µs)
∇y
)
+ µay = χωcu onΩ,

1
2(µa+µs)

∂νy+ ρy = 0 on ∂Ω,

which describes di�usive photon transport in tissue. Here, µa is the tissue’s absorption
coe�cient, µs is the scattering coe�cient, and ρ is the re�ection coe�cient at the boundary
∂Ω. In our tests, we set µa = 0.03, µs = 0.275 and ρ = 0.1992 to model a small piece of
lung tissue. �e objective is then to achieve a homogeneous illumination of the region of
interestωo for the optimal activation of the chemo-sensitive agent. Due to the linearity of
the equation, we set without loss of generality z ≡ 1. As noted in Remark 4.2, non-negativity
of the controls is enforced by setting A+ ≡ ∅.
Due to the irregularity of the domain, we now use a standard �nite element discretization

of state and adjoint equation in weak form (cf. (2.2)) with triangular elements, where the
discretized control is taken as piecewise constant and the discretized state and adjoint as
piecewise linear. �e implementation is based on the open source FEniCS project [13]. Here,
the �nal penalty parameter is set to c∗ = 109, the remaining parameters being unchanged.
�e results for di�erent values ofα are shown in Figure 4.�e in�uence ofα on sparsity of the
controls and homogeneity of the illumination can be observed clearly. Note that the placement
of the optimal point sources is again not obvious, and depends on α in a non-intuitive manner

Table 1: Convergence of semi-smooth Newton method. Shown are the norm of the residual
of (4.1) and the change in active sets δAk in each iteration.

k 1 2 3 4 5∥∥F(uk)∥∥ 3.84 · 102 3.78 · 101 6.12 · 100 6.16.78 · 10−1 1.08 · 10−10
δAk 3678 532 106 8 0
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(a) uα, α = 10−3 (b) yα, α = 10−3

(c) uα, α = 10−4 (d) yα, α = 10−4

(e) uα, α = 10−5 (f) yα, α = 10−5

Figure 2: Optimal controls uα and states yα for di�erent values of α.
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(a) control domainωc (b) observation domainωo

Figure 3: Geometry for model problem. Shown are the indicator functions of control and
observation domain.

(compare the location of the major point source on the right hand side of the domain between
Figs. 4a and 4b).

6 conclusion

�e problem of optimal placement of point sources was formulated in a non-re�exive Banach
space setting. �e optimality system for this non-smooth optimization problem was derived
and a family of regularized problems, which can be approximated e�ciently by semi-smooth
Newton methods, was analyzed. �e numerical examples demonstrate the e�ectivity for
optimal light source placement problems in di�usive photochemotherapy. Current work
is concerned with the application of the proposed approach to patient-speci�c geometries.
Formally, the primal-dual framework considered here can be extended to nonlinear control-
to-state mappings, although the proper functional analytic treatment of the linearization
remains challenging. Finally, it would be of interest to consider parabolic state equations.
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(a) α = 5 · 10−2 (b) α = 1 · 10−2

(c) α = 5 · 10−3 (d) α = 1 · 10−3

(e) α = 5 · 10−4 (f) α = 1 · 10−4

Figure 4: Optimal controls u and state y for di�erent values of α. Shown is a superposition
of u onωc (as height plot) and y onωo (as color plot).
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