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Abstract. The paper deals with equilibrium problems (EPs) with nonlinear convex constraints.

First, EP is reformulated as a global optimization problem introducing a class of gap functions,

in which the feasible set of EP is replaced by a polyhedral approximation. Then, an algorithm

is given for solving EP through a descent type procedure, which exploits also exact penalty

functions, and its global convergence is proved. Finally, the algorithm is tested on a network

oligopoly problem with nonlinear congestion constraints.
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1 Introduction

In this paper we consider the following equilibrium problem

find x∗ ∈ C s.t. f(x∗, y) ≥ 0, ∀ y ∈ C, (EP)

where C ⊆ Rn is closed and convex and f : Rn × Rn → R is a bifunction. It is well-known (see

e.g. [2]) that (EP) provides a general setting which includes several problems such as scalar and

vector optimization, variational inequality, fixed point, complementarity, and Nash equilibrium

problems in noncooperative games.

Several methods to solve equilibrium problems have been proposed, often extending those

originally conceived for optimization problems or variational inequalities (see, for instance, [9,

14]) to the framework of more general equilibrium problems. Well-known solution methods are

the so-called descent methods, which are based on the reformulation of the equilibrium problem

as a global optimization problem through appropriate gap functions [1, 4, 15, 16, 18, 23, 24].

Most approaches need to minimize a convex function over C in order to evaluate the gap function,

and the evaluation could be computationally expensive when the feasible region C is described

by nonlinear convex inequalities. Therefore, we introduce a family of gap functions which rely
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on a polyhedral approximation of C rather than on the feasible region itself, and we develop a

method based on the minimization of convex functions over polyhedra. In Section 2 these gap

functions are introduced, considering f along with an additional regularizing bifunction, and

some properties about their continuity and generalized directional differentiability are given.

Moreover, we prove that monotonicity type assumptions on f guarantee that each stationary

point of a gap function is actually a solution of the equilibrium problem. This result extends

to equilibrium problems a similar one developed in [21] for variational inequalities. Section 3

provides a solution method which does not require the above “stationarity property”, relying on

a concavity type assumption on f . Moreover, unlike most of the available algorithms, we consider

a search direction which could be unfeasible, so that the introduction of an exact penalty function

is required. The direction is indeed a descent one if either the regularization or the penalization

parameter is small enough. Therefore, the algorithm exploits fixed values for the two parameters

as long as they provide a descent direction and it decreases both of them otherwise. Section 4

provides the results of some numerical tests, which have been performed applying the algorithm

to a problem of production competition over a network under the Nash-Cournot equilibrium

framework.

Throughout all the paper the following basic assumptions are made:

• The set C is given by the intersection of a bounded polyhedron D and a convex set given

through convex inequalities, namely C = D ∩ C̃ with

D = {y ∈ Rn : 〈aj , y〉 ≤ bj j = 1, . . . , r1, 〈aj , y〉 = bj j = r1 + 1, . . . , r}

for some aj ∈ Rn and bj ∈ R, and

C̃ = {y ∈ Rn : ci(y) ≤ 0, i = 1, . . . ,m},

where ci : Rn → R are twice continuously differentiable (nonlinear) convex functions.

• The vectors aj with j = r1 + 1, . . . , r are linearly independent and there exists ŷ ∈ D such

that 〈aj , ŷ〉 < bj for all j = 1, . . . , r1 and ci(ŷ) < 0 for all i = 1, . . . ,m.

• The bifunction f : Rn × Rn → R is continuously differentiable, f(x, ·) is convex and

f(x, x) = 0 for all x ∈ D.

It is well-known (see e.g. [10]) that the above assumptions guarantee the existence of at least

one solution of (EP).

2 Gap functions

A function g : C → R is said to be a gap function for (EP) if g is non-negative on C and x∗

solves (EP) if and only if x∗ ∈ C and g(x∗) = 0. Thus, gap functions are tools to reformulate an

equilibrium problem as a global optimization problem, whose optimal value is known a priori.
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In order to build gap functions with good regularity properties, auxiliary bifunctions are

generally exploited together with f . While the most used regularizing bifunction is h(x, y) =

||y−x||22/2, in this paper we consider any continuously differentiable bifunction h : Rn×Rn → R
such that

• h(x, y) ≥ 0 for all x, y ∈ D and h(z, z) = 0 for all z ∈ D,

• h(x, ·) is strictly convex for all x ∈ D,

• ∇yh(z, z) = 0 for all z ∈ D,

• 〈∇xh(x, y) +∇yh(x, y), y − x〉 ≥ 0 for all x, y ∈ D.

Given any α > 0, a well-known gap function (see e.g. [11, 18]) is

φα(x) = −min
y∈C

{f(x, y) + αh(x, y)} . (1)

Computing φα(x) involves the solution of a convex optimization problem with nonlinear con-

straints. Thus, we consider a modification of the above gap function, which is obtained replacing

the feasible region C by its polyhedral approximation at each considered point, namely

ϕα(x) = − min
y∈P (x)

{f(x, y) + αh(x, y)} , (2)

where

P (x) = {y ∈ D : ci(x) + 〈∇ci(x), y − x〉 ≤ 0, i = 1, . . . ,m}.

Since the constraining functions ci are convex, then C ⊆ P (x) ⊆ D holds for all x ∈ Rn, that

is P (x) is a bounded polyhedral outer approximation of the feasible region C at the point x.

Moreover, x ∈ C if and only if x ∈ P (x).

Since the objective function f(x, ·) + αh(x, ·) is strictly convex and P (x) is compact, there

exists a unique optimal solution yα(x) of the optimization problem which defines the gap function

(2). Therefore, it can be written as

ϕα(x) = −f(x, yα(x))− αh(x, yα(x)), (3)

and yα(x) satisfies the optimality condition

〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), y − yα(x)〉 ≥ 0, ∀ y ∈ P (x). (4)

Let Λα(x) denote the set of Lagrange multipliers associated to yα(x), i.e. the set of the vectors

(λ, µ) ∈ Rm+ × Rr such that µ1, . . . , µr1 ≥ 0 and

∇yf(x, yα(x)) + α∇yh(x, yα(x)) +

m∑
i=1

λi∇ci(x) +

r∑
j=1

µj aj = 0,

λi [ci(x) + 〈∇ci(x), yα(x)− x〉] = 0, i = 1, . . . ,m,

µj [〈aj , yα(x)〉 − bj ] = 0, j = 1, . . . , r1.
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A fixed point reformulation of (EP) holds relying on the optimal map yα, which is single-

valued under our assumptions.

Lemma 2.1. Given any α > 0, x∗ solves (EP) if and only if yα(x∗) = x∗.

Proof. If x∗ solves (EP), then it minimizes f(x∗, ·) over C since f(x∗, x∗) = 0. Thus, there exist

Lagrange multiplier vectors λ∗ ∈ Rm+ and µ∗ ∈ Rr such that µ1, . . . , µr1 ≥ 0 and

∇yf(x∗, x∗) +
m∑
i=1

λ∗i∇ci(x∗) +
r∑
j=1

µ∗jaj = 0,

λ∗i ci(x
∗) = 0, i = 1, . . . ,m,

µj [〈aj , x∗〉 − bj ] = 0 j = 1, . . . , r1,

ci(x
∗) ≤ 0, i = 1, . . . ,m,

〈aj , x∗〉 ≤ bj , j = 1, . . . , r1,

〈aj , x∗〉 = bj , j = r1 + 1, . . . , r.

Setting gi(y) = ci(x
∗) + 〈∇ci(x∗), y − x∗〉, then we have gi(x

∗) = ci(x
∗) and ∇gi(y) = ∇ci(x∗)

for all y ∈ Rn and i = 1, . . . ,m. Hence, the above system can be equivalently stated as

∇yf(x∗, x∗) +

m∑
i=1

λ∗i∇gi(x∗) +

r∑
j=1

µ∗jaj = 0,

λ∗i gi(x
∗) = 0, i = 1, . . . ,m,

µj [〈aj , x∗〉 − bj ] = 0 j = 1, . . . , r1,

gi(x
∗) ≤ 0, i = 1, . . . ,m,

〈aj , x∗〉 ≤ bj , j = 1, . . . , r1,

〈aj , x∗〉 = bj , j = r1 + 1, . . . , r,

which are the Karush-Kuhn-Tucker conditions for the problem of minimizing f(x∗, ·) over P (x∗).

Since this is a convex problem, x∗ solves it and therefore

f(x∗, yα(x∗)) ≥ f(x∗, x∗) = 0.

Moreover, condition (4) for y = x = x∗ reads

〈∇yf(x∗, yα(x∗)) + α∇yh(x∗, yα(x∗)), x∗ − yα(x∗)〉 ≥ 0.
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Since f(x∗, ·) + αh(x∗, ·) is convex and f(x∗, x∗) = h(x∗, x∗) = 0, we have

0 ≥ f(x∗, yα(x∗)) + αh(x∗, yα(x∗))

+〈∇yf(x∗, yα(x∗)) + α∇yh(x∗, yα(x∗)), x∗ − yα(x∗)〉.

The above inequalities imply h(x∗, yα(x∗)) = 0 since h is non-negative on D×D. Moreover, the

assumptions on h imply that x∗ is the unique minimizer of h(x∗, ·) over D and hence yα(x∗) = x∗.

Now, suppose yα(x∗) = x∗. Since x∗ ∈ P (x∗), then x∗ ∈ C. Moreover, condition (4) for

x = x∗ reads

〈∇yf(x∗, x∗), y − x∗〉 ≥ 0, ∀ y ∈ P (x∗).

Since C ⊆ P (x∗) and f(x∗, ·) is convex, we have

f(x∗, y) ≥ f(x∗, x∗) + 〈∇yf(x∗, x∗), y − x∗〉 ≥ 0, ∀ y ∈ C,

i.e. x∗ solves (EP).

Since the solutions of (EP) coincide with the fixed points of the optimal map yα, they actually

minimize ϕα over C.

Theorem 2.1. Given any α > 0, ϕα is a gap function for (EP), i.e.

a) ϕα(x) ≥ 0 for all x ∈ C;

b) x∗ solves (EP) if and only if x∗ ∈ C and ϕα(x∗) = 0.

Proof. a) If x ∈ C, then x ∈ P (x). Thus, ϕα(x) ≥ −f(x, x)− αh(x, x) = 0.

b) If x∗ solves (EP), then x∗ ∈ C and Lemma 2.1 implies yα(x∗) = x∗. Hence,

ϕα(x∗) = −f(x∗, x∗)− αh(x∗, x∗) = 0.

Now, suppose x∗ ∈ C and ϕα(x∗) = 0. Thus, we have

f(x∗, y) + αh(x∗, y) ≥ −ϕα(x∗) = 0, ∀ y ∈ P (x∗).

Since C ⊆ P (x∗), x∗ minimizes f(x∗, ·)+αh(x∗, ·) over C and therefore the first order optimality

condition reads

〈∇yf(x∗, x∗) + α∇yh(x∗, x∗), y − x∗〉 ≥ 0, ∀ y ∈ C.

Since f(x∗, ·) is convex and ∇yh(x∗, x∗) = 0, we have

f(x∗, y) ≥ f(x∗, x∗) + 〈∇yf(x∗, x∗), y − x∗〉 ≥ 0, ∀ y ∈ C,

i.e. x∗ solves (EP).

In order to achieve continuity and generalized differentiability properties of ϕα, the map yα
has to be continuous in light of equality (3).

5



Lemma 2.2. Given any α > 0, the map yα is continuous on Rn.

Proof. The set-valued map x 7−→ P (x) is continuous on Rn (see [21]). Moreover, f is continuous

and the map yα is single-valued and it is also bounded since yα(x) ∈ P (x) ⊆ D for all x ∈ Rn.

Hence, [13, Corollary 8.1] guarantees that yα is continuous on Rn.

The gap function ϕα is locally Lipschitz continuous near any x ∈ Rn, and therefore its

generalized directional derivative

ϕ◦α(x; d) := lim sup
z→x
t↓0

t−1 [ϕα(z + t d)− ϕα(z)]

at x in any direction d ∈ Rn is finite. Furthermore, an upper estimate of the directional derivative

at x in the particular direction yα(x)− x is available.

Theorem 2.2. Let α > 0. Then,

a) ϕα is locally Lipschitz continuous on Rn;

b) the inequality

ϕ◦α(x; yα(x)− x) ≤ −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), yα(x)− x〉 (5)

holds for any x ∈ D.

Proof. a) Introducing gi(x, y) := ci(x) + 〈∇ci(x), y − x〉 for i = 1, . . . ,m and

g(x, y) = (g1(x, y), . . . , gm(x, y)),

the optimization problem in (2) can be written as

min { f(x, y) + αh(x, y) : g(x, y) ≤ 0, y ∈ D},

and its dual problem is

sup { inf {f(x, y) + αh(x, y) + 〈u, g(x, y)〉 : y ∈ D} : u ∈ Rm+}.

By the assumptions gi(x, ŷ) ≤ ci(ŷ) < 0 for all x ∈ D and all i = 1, . . . ,m. Thus, the set Uα(x)

of the optimal solutions of the dual problem is nonempty for all x ∈ D and (yα(x), uα(x)) is a

saddle point of the Lagrangian function

L(x, y, u) = f(x, y) + αh(x, y) + 〈u, g(x, y)〉,

for any uα(x) ∈ Uα(x), i.e.

L(x, yα(x), u) ≤ L(x, yα(x), uα(x)) ≤ L(x, y, uα(x)), ∀ y ∈ D, ∀ u ∈ Rm+ .

Since L(x, yα(x), uα(x)) = f(x, yα(x)) + αh(x, yα(x)) = −ϕα(x), we get

−L(x, y, uα(x)) ≤ ϕα(x) ≤ −L(x, yα(x), u), ∀ y ∈ D, ∀ u ∈ Rm+ .
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Similarly, given any z ∈ D and any uα(z) ∈ Uα(z), we have

−L(z, y, uα(z)) ≤ ϕα(z) ≤ −L(z, yα(z), u), ∀ y ∈ D, ∀ u ∈ Rm+ . (6)

Therefore, choosing y = yα(x) and u = uα(z) , we get

ϕα(x)− ϕα(z) ≤ L(z, yα(x), uα(z))− L(x, yα(x), uα(z))

= f(z, yα(x)) + αh(z, yα(x))− [f(x, yα(x)) + αh(x, yα(x))]

+〈uα(z), g(z, yα(x))− g(x, yα(x))〉

≤ f(z, yα(x)) + αh(z, yα(x))− [f(x, yα(x)) + αh(x, yα(x))]

+‖uα(z)‖2 ‖g(z, yα(x))− g(x, yα(x))‖2

Let x̄ ∈ Rn be fixed. The mean value theorem guarantees that

f(z, yα(x)) + αh(z, yα(x))− [f(x, yα(x)) + αh(x, yα(x))]

= 〈∇xf(z′, yα(x)) + α∇xh(z′, yα(x)), z − x〉

holds for some z′ in the line segment between z and x. Since yα, ∇xf , and ∇xh are continuous,

there exist L1 > 0 and δ1 > 0 such that

f(z, yα(x)) + αh(z, yα(x))− [f(x, yα(x)) + αh(x, yα(x))] ≤ L1 ‖z − x‖2

holds for all x, z ∈ B(x̄, δ1). On the other hand, the functions gi are continuously differentiable

with respect to the first variable, hence there exist L2 > 0 and δ2 > 0 such that

‖g(z, yα(x))− g(x, yα(x))‖2 ≤ L2 ‖z − x‖2

holds for all x, z ∈ B(x̄, δ2). Moreover, [12, Lemma 2] guarantees that there exist L3 > 0 and

δ3 > 0 such that ‖uα(z)‖2 ≤ L3 holds for all z ∈ B(x̄, δ3) and all uα(z) ∈ Uα(z). Therefore, the

last three inequalities imply that

ϕα(x)− ϕα(z) ≤ (L1 + L2 L3) ‖z − x‖2

holds for all x, z ∈ B(x̄, δ), where δ = min{δ1, δ2, δ3}.

b) Set d := yα(x)−x and zt := z+t d for any z ∈ Rn and t > 0, and consider any uα(zt) ∈ Uα(zt).

Arguing as in a), we get

ϕα(zt)− ϕα(z) ≤ f(z, yα(zt)) + αh(z, yα(zt))−
[
f(zt, yα(zt))

+αh(zt, yα(zt))
]

+ 〈uα(z), g(z, yα(zt))− g(zt, yα(zt))〉.
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The mean value theorem guarantees that

f(z, yα(zt)) + αh(z, yα(zt))− [f(zt, yα(zt)) + αh(zt, yα(zt))]

= 〈∇xf(z̃(z, t), yα(zt)) + α∇xh(z̃(z, t), yα(zt)), z − zt〉

= t 〈−∇xf(z̃(z, t), yα(zt))− α∇xh(z̃(z, t), yα(zt)), d〉

holds for some z̃(z, t) in the line segment between z and zt. Similarly, applying the mean value

theorem to gi, we get

gi(z, yα(zt))− gi(zt, yα(zt)) = 〈∇xgi(z̃′i(z, t), yα(zt)), z − zt〉

= −t 〈∇xgi(z̃′i(z, t), yα(zt)), d〉

for some z̃′i(z, t) in to the line segment between z and zt.

By the definition of the generalized directional derivative there exist two sequences zk → x,

tk ↓ 0 such that ϕ◦α(x; d) = limk→∞ t
−1
k

[
ϕα(zktk)− ϕα(zk)

]
. Exploiting the last three formulas

above with z = zk and t = tk (and therefore zt = zktk), we get

ϕα(zktk)− ϕα(zk)

tk
≤ 〈−∇xf(z̃(zk, tk), yα(zktk))− α∇xh(z̃(zk, tk), yα(zktk)), d〉

−〈uα(zk), wα(x, zktk , tk)〉.

where wα(x, zktk , tk) = (〈∇xgi(z̃′i(zk, tk), yα(ztk)), d〉)i=1,...,m. Since zk → x and tk ↓ 0, then

zktk → x, z̃(zk, tk)→ x, and yα(zktk)→ yα(x) by Lemma 2.2. Hence, we get

lim
k→∞
〈−∇xf(z̃(zk, tk), yα(zktk))− α∇xh(z̃(zk, tk), yα(zktk)), yα(x)− x〉

= −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), d〉

since ∇xf is continuous. [12, Lemma 2] guarantees that Uα(z) is uniformly bounded on a

neighborhood of x and closed at x. Hence, taking a subsequence if necessary, there exists

û ∈ Uα(x) such that uα(zk)→ û. Moreover, we get

lim
k→∞

−〈uα(zk), wα(x, zktk , tk)〉 = −〈û,∇xg(x, yα(x)) d〉

= −
m∑
i=1

ûi〈d,∇2ci(x) d〉 ≤ 0,

since z̃′i(z
k, tk) → xi, ∇xg is continuous, and all the ci’s are convex functions. Therefore,

ϕ◦α(x; d) ≤ −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), d〉.
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Theorem 2.1 allows to formulate (EP) as the global optimization problem

min{ ϕα(x) : x ∈ C }. (7)

However, most optimization algorithms lead only to a stationary point. Actually, any stationary

point of ϕα solves (7) and therefore (EP) under suitable assumptions on f , which anyway do

not guarantee the convexity of ϕα.

Theorem 2.3. Suppose

〈∇xf(x, y) +∇yf(x, y), y − x〉 > 0, ∀ x, y ∈ D with x 6= y. (8)

a) If x ∈ C is not a solution of (EP), then yα(x)− x is a descent direction for ϕα at x, i.e.

ϕ◦α(x; yα(x)− x) < 0.

b) If x∗ ∈ C is a stationary point of ϕα over C, i.e.

ϕ◦α(x∗; y − x∗) ≥ 0, ∀ y ∈ C,

then x∗ solves (EP).

Proof. a) By Lemma 2.1 yα(x)− x 6= 0. Therefore, considering (5), (8) and any (λ, µ) ∈ Λα(x)

we have

ϕ◦α(x; yα(x)− x) ≤ 〈−∇xf(x, yα(x))− α∇xh(x, yα(x)), yα(x)− x〉

< 〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), yα(x)− x〉

= 〈−
m∑
i=1

λi∇ci(x)−
r∑
j=1

µj aj , yα(x)− x〉

= −
m∑
i=1

λi 〈∇ci(x), yα(x)− x〉+

r∑
j=1

µj [〈aj , x〉 − bj ]

=

m∑
i=1

λi ci(x) +

r∑
j=1

µj [〈aj , x〉 − bj ] ≤ 0.

b) Since there exists ŷ ∈ Rn such that ci(ŷ) < 0 for any i = 1, ...,m, the Bouligand tangent cone

of C̃ at x∗ is the set

T (C̃, x∗) = {y ∈ Rn : 〈∇ci(x∗), y〉 ≤ 0, i s.t. ci(x
∗) = 0}.

Since ŷ ∈ D, the Bouligand tangent cone of C at x∗ is the set

T (C, x∗) = T (C̃, x∗) ∩ cone (D − x∗),
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where cone denotes the cone generated by a set. Theferore, we have

P (x∗) ⊆ x∗ + T (C, x∗).

Since C̃ is convex, T (C̃, x∗) = cl cone (C̃ − x∗) and therefore C = D ∩ C̃ guarantees

P (x∗) ⊆ x∗ + cl {τ (y − x∗), y ∈ C, τ > 0},

where cl denotes the closure of a set. Moreover, the stationarity of x∗ for ϕα over C and the

positive homogeneity of ϕ◦α(x∗; ·) imply

ϕ◦α(x∗, y − x∗) ≥ 0, ∀ y ∈ P (x∗).

If x∗ were not a solution of (EP), then ϕ◦α(x∗; yα(x∗)−x∗) < 0 would hold by a) in contradiction

with the above inequality for y = yα(x∗).

Condition (8) was introduced in [18], and named strict ∇-monotonicity later [1], in order

to obtain the same properties of Theorem 2.3 for the gap function (1). When (EP) is actually

a variational inequality, i.e. f(x, y) = 〈F (x), y − x〉 for some F : Rn → Rn, condition (8) is

equivalent to require that ∇F is positive definite. Therefore, Theorem 2.3 generalizes Theorem

2.11 of [21], which stated the analogous result for variational inequalities only.

Replacing strict ∇-monotonicity with ∇-monotonicity, i.e. the condition

〈∇xf(x, y) +∇yf(x, y), y − x〉 ≥ 0, ∀x, y ∈ D, (9)

which means weakening the assumption to positive semidefiniteness in the case of variational

inequalities, Theorem 2.3 is no longer true as the following example shows.

Example 2.1. Consider (EP) with n = 2, m = 1, f(x, y) = x1−y1 +x2−y2, c1(x) = x2
1 +x2

2−1

and D = [−1, 1]× [−1, 1]. Therefore, the feasible region C is the unit ball, which is a subset of

the given box D, and x∗ = (
√

2/2,
√

2/2) is the unique solution of (EP). Notice that f satisfies

(9) but not (8) since

∇xf(x, y) +∇yf(x, y) = (1, 1) + (−1,−1) = (0, 0) ∀ x, y ∈ R2.

Furthermore, we have

P (x) = {y ∈ [−1, 1]2 : 2x1y1 + 2x2y2 ≤ 1 + x2
1 + x2

2}.

Considering h(x, y) = [(x1 − y1)2 + (x2 − y2)2]/2, we have

ϕα(x) = max{y1 + y2 − α[(y1 − x1)2 + (y2 − x2)2)]/2 : y ∈ P (x)} − x1 − x2.

Since ŷα(x) = (x1 + 1/α, x2 + 1/α) maximizes the objective function over the whole R2, it is

easy to check that yα(x) = ŷα(x) and ϕα(x) = 1/α if α ∈ [1/2,
√

2] and x ∈ [−1−1/α, 1−1/α]2.

Therefore, considering any fixed α ∈ (2 −
√

2,
√

2], there exists no descent direction for ϕα at

any point x ∈ (−1, 1− 1/α)2 ∩ C, as x is stationary for ϕα though it does not solve (EP).

10



Different descent methods for solving (EP) have been proposed, relying on the minimiza-

tion of the gap function (1) for some fixed parameter α [4, 15, 18] or the minimization of the

corresponding D-gap function for some fixed pair of parameters [16, 23, 24]. Combinations of

∇-monotonicity and strict ∇-monotonicity assumptions on f and the auxiliary bifunctions have

been considered in order to guarantee the so-called “stationarity property” of Theorem 2.3 b),

i.e., that all the stationary points of the considered gap function are actually solutions of (EP).

Indeed, under such assumptions any suitable (local) minimization algorithm could be applied

for solving (EP). Furthermore, the classical monotonicity condition

f(x, y) + f(y, x) ≤ 0 (10)

or suitable reinforcements have also been exploited in some papers [4, 15, 18].

In the next section we propose a solution method which does not need this stationarity

property, though our assumptions are not stronger than those in the above papers. Our key

assumption is a concavity type condition1 [1], namely

f(x, y) + 〈∇xf(x, y), y − x〉 ≥ 0, ∀ x, y ∈ D, (11)

which, for instance, is satisfied in Example 2.1. Actually, no relationship holds between the

strict ∇-monotonicity condition (8) and our assumption (see also Examples 3.2 in [1]), while it

implies the ∇-monotonicity condition (9) [1, Theorem 3.1]. Furthermore, no relationships holds

also with the monotonicity condition (10) as the bifunctions of Example 2.2 in [1] show.

3 Solution method

We aim at developing a solution method based on a descent type procedure related to the

family of gap functions ϕα, following the approach developed in [1, 25] without considering any

approximation of the feasible region C. The basic idea is to use the vector yα(x)−x as a search

direction at the current point x. However, yα(x) belongs to the approximating polyhedral set

P (x) while it does not necessarily lie in C and thus the new point could be unfeasible. Following

the penalization approach proposed in [21] for variational inequalities, an exact penalty function

can be exploited instead of the function ϕα itself, namely

ψα,ε,p(x) = ϕα(x) +
1

ε
‖c+(x)‖p

where c+(x) = (c+
1 (x), . . . , c+

m(x)) with c+
i (x) = max{0, ci(x)}, ε > 0 and p ∈ [1,∞]. Given any

ᾱ > 0, the exactness of the penalization is achieved (and therefore the penalty function is a gap

function) when the parameter ε is sufficiently small [7]. Actually, the penalty function keeps

being a gap function for the same range of ε also decreasing the parameter α.

Lemma 3.1. Given any ᾱ > 0 and any p ∈ [1,∞], there exists ε̄ > 0 such that

a) ψα,ε,p(x) ≥ 0 for all x ∈ D,

1if f(·, y) is concave for all y ∈ D, then f satisfies (11).
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b) x∗ solves (EP) if and only if x∗ ∈ D and ψα,ε,p(x
∗) = 0,

for all α ∈ [0, ᾱ] and ε ∈ (0, ε̄).

Proof. Consider any compact set D′ such that it contains D in its interior, namely D ⊂ intD′,

and the penalty function

ψ̃α,ε,p(x) = ϕα(x) +
1

ε
‖(c+(x), d+(x), e(x))‖p,

where d+(x) = (d+
1 (x), . . . , d+

r1(x)) with d+
j (x) = max{0, 〈aj , x〉−bj} and e(x) = (er1+1, . . . , er(x))

with ej(x) = 〈aj , x〉 − bj . By [7, Proposition 8 and Theorems 11 and 12] there exists ε̄ > 0 such

that

argmin{ ϕᾱ(x) : x ∈ C } = argmin{ ψ̃ᾱ,ε,p(x) : x ∈ intD′ }

holds for any ε ∈ (0, ε̄). Take any global minimizer x̂ of ϕᾱ or equivalently of ψ̃ᾱ,ε,p. Since

x̂ ∈ C, then ϕᾱ(x̂) = 0 guarantees also ψ̃ᾱ,ε,p(x̂) = 0. Therefore, ψ̃ᾱ,ε,p(x) ≥ 0 for all x ∈ intD′

and Theorem 2.1 implies that x∗ ∈ intD′ and ψ̃ᾱ,ε,p(x
∗) = 0 if and only if x∗ solves (EP). Taken

any α ∈ [0, ᾱ], then ϕα(x) ≥ ϕᾱ(x) and thus ψ̃α,ε,p(x) ≥ ψ̃ᾱ,ε,p(x) for any x ∈ Rn. Note that

ψ̃α,ε,p coincides with ψα,ε,p on D, and thus a) and b) follow immediately.

Lemma 3.1 provides a whole family of gap functions to exploit within a descent framework.

While yα(x) is computed through ϕα (see (2) and (3)), the descent of the direction is tested on

the penalized gap function ψα,ε,p checking whether or not

ψ◦α,ε,p(x; yα(x)− x) < 0 (12)

holds. Computing the value of the generalized directional derivative may be not easy. Anyway,

condition (11) allows to achieve an upper estimate for the generalized directional derivative.

Lemma 3.2. If f satisfies (11), then

ψ◦α,ε,p(x; yα(x)− x) ≤ −ψα,ε,p(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉]

holds for any x ∈ D, α > 0, ε > 0 and p ∈ [1,∞].

Proof. Since it is convex, the function v(x) = ‖c+(x)‖p is regular in the Clarke sense, i.e.

v◦(x; ·) = v′(x; ·) where v′(x; ·) denotes the standard directional derivative. Moreover, it holds

12



(see [6]):

v′(x; yα(x)− x) =



m∑
i=1

ξi(x) if p = 1,

[
m∑
i=1

(c+
i (x))p−1ξi(x)

]
· ‖c+(x)‖1−pp if p ∈ (1,∞), x /∈ C,

[
m∑
i=1

(ξi(x))p

]1/p

if p ∈ (1,∞), x ∈ C,

max
i∈I∞(x)

ξi(x) if p =∞,

where

ξi(x) =



0 if i ∈ I−(x) := {i : ci(x) < 0},

max{0, 〈∇ci(x), yα(x)− x〉} if i ∈ I0(x) := {i : ci(x) = 0},

〈∇ci(x), yα(x)− x〉 if i ∈ I+(x) := {i : ci(x) > 0},

and I∞(x) = {i : c+
i (x) = ‖c+(x)‖∞}. Moreover, yα(x) ∈ P (x) implies that 〈∇ci(x), yα(x)− x〉 ≤

−ci(x), and hence ξi(x) = 0 if i ∈ I0(x) and ξi(x) ≤ −ci(x) if i ∈ I+(x). If p = 1, then

v′(x; yα(x)− x) =

m∑
i=1

ξi(x) ≤ −
∑

i∈I+(x)

ci(x) = −
m∑
i=1

c+
i (x) = −v(x).

If p ∈ (1,∞) and x /∈ C, then

v′(x; yα(x)− x) =

[
m∑
i=1

(c+
i (x))p−1ξi(x)

]
/‖c+(x)‖p−1

p

≤ −

 ∑
i∈I+(x)

(c+
i (x))p−1ci(x)

 /‖c+(x)‖p−1
p

= −‖c+(x)‖p = −v(x).

If p ∈ (1,∞) and x ∈ C, then

v′(x; yα(x)− x) =

[
m∑
i=1

(ξi(x))p

]1/p

= 0 = −v(x).

Finally, if p =∞ then

v′(x; yα(x)− x) = max
i∈I∞(x)

ξi(x) ≤ max
i∈I∞(x)

−c+
i (x) = −‖c+‖∞ = −v(x).
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Hence, we have v◦(x; yα(x)− x) = v′(x; yα(x)− x) ≤ −v(x). Moreover, we obtain

ϕ◦α(x; yα(x)− x) ≤ −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), yα(x)− x〉

≤ f(x, yα(x))− α〈∇xh(x, yα(x)), yα(x)− x〉

= −ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] ,

where the first inequality follows from Theorem 2.2b) and the second one from condition (11).

Therefore, we have

ψ◦α,ε,p(x; yα(x)− x) ≤ ϕ◦α(x; yα(x)− x) + 1
ε v
◦(x; yα(x)− x)

≤ −ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉]− 1
ε v(x)

= −ψα,ε,p(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] .

One way to force the decrease of the gap function along a descent direction is to compare

the above upper estimate with the value of the gap function itself, i.e.

−ψα,ε,p(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] ≤ −η ψα,ε,p(x) (13)

where η ∈ (0, 1) is a fixed parameter. If x is feasible and does not solve (EP), then (13)

guarantees that yα(x)− x is a descent direction for ψα,ε,p at x. Indeed, inequality (13) holds at

a feasible point x whenever the regularization parameter α is small enough. On the contrary, if

x is not feasible, it may happen ψα,ε,p(x) < 0 when the penalization parameter ε is not below

the threshold of exactness, and therefore (13) may be useless. Anyway, yα(x) − x is a descent

direction also in this case regardless of (13) if ε is small enough. Any (λ, µ) ∈ Λα(x) provides

an upper bound for the appropriate ε, relying on the vector λ+ ∈ Rm, whose components are

given by

λ+
i =

{
λi if ci(x) > 0

0 otherwise.

Theorem 3.1. Suppose that f satisfies (11).

a) If x ∈ C does not solve (EP) and η ∈ (0, 1), then (13) holds for any ε > 0, p ∈ [1,∞], and

any sufficiently small α.

b) If x ∈ D \C and (λ, µ) ∈ Λα(x), then (12) holds for any α > 0, p ∈ [1,∞] and ε such that

1/ε > ‖λ+‖q, where ‖ · ‖q is the dual norm of ‖ · ‖p.

Proof. a) Since x ∈ C, then ψα,ε,p(x) = ϕα(x) > 0 for any α > 0, ε > 0 and p ∈ [1,∞]. By

contradiction, suppose that there exists a sequence αk ↓ 0 such that (13) does not hold for
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α = αk. Thus,

ψα1,ε,p(x) ≤ ψαk,ε,p(x)

≤ − αk
1− η

[h(x, yαk
(x)) + 〈∇xh(x, yαk

(x)), yαk
(x)− x〉] .

Since D is bounded and yαk
(x) ∈ D for all k , then we obtain the contradiction ψα1,ε,p(x) ≤ 0

simply taking the limit in the above inequalities.

b) Since f(x, ·) is convex, then

0 = f(x, x) ≥ f(x, y) + 〈∇yf(x, y), x− y〉

holds for all y ∈ D, and hence (11) implies that also

〈∇xf(x, y) +∇yf(x, y), y − x〉 ≥ 0

holds for all y ∈ D. Exploiting the upper estimate provided by Theorem 2.2 b), we get

ϕ◦α(x; yα(x)− x) ≤ −〈∇xf(x, yα(x)) + α∇xh(x, yα(x)), yα(x)− x〉

≤ 〈∇yf(x, yα(x)) + α∇yh(x, yα(x)), yα(x)− x〉

= −
m∑
i=1

λi 〈∇ci(x), yα(x)− x〉 −
r∑
j=1

µj 〈aj , yα(x)− x〉

=

m∑
i=1

λi ci(x) +

r∑
j=1

µj [〈aj , x〉 − bj ]

≤
m∑
i=1

λ+
i c

+
i (x) = 〈λ+, c+(x)〉.

Considering the function v(x) = ‖c+(x)‖p, the above inequalities together with v◦(x; yα(x)−x) ≤
−v(x) (see the proof of Lemma 3.2) allow to get

ψ◦α,ε,p(x; yα(x)− x) ≤ ϕ◦α(x; yα(x)− x) + 1
ε v
◦(x; yα(x)− x)

≤ 〈λ+, c+(x)〉 − 1
ε ‖c

+(x)‖p

≤ ‖λ+‖q ‖c+(x)‖p − 1
ε ‖c

+(x)‖p

=
(
‖λ+‖q − 1

ε

)
‖c+(x)‖p < 0

where the last inequality follows from the assumption 1/ε > ‖λ+‖q.
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The above results provide the key tools to devise a solution method. Given values for α and

ε, the corresponding penalty function ψα,ε,p is exploited as long as three conditions hold: its

value at the current point is positive; the penalization parameter ε is small enough with respect

to the magnitude of a vector of multipliers corresponding to the linearized constraints at the

current point; the search direction is indeed a descent direction and the decrease of the value of

the penalty function is large enough according to (13). When any of the three conditions fails

to hold, a null step is performed simply decreasing both parameters simultaneously.

Algorithm

(0) Choose p ∈ [1,∞], β, γ, δ, η ∈ (0, 1), sequences αk, εk ↓ 0, x0 ∈ D and set k = 1.

(1) Set z0 = xk−1 and j = 0.

(2) Compute yj = arg min{f(zj , y) + αkh(zj , y) : y ∈ P (zj)} and λj any Lagrange multiplier

vector corresponding to the linearized constraints.

(3) If dj := yj − zj = 0, then STOP.

(4) If the following relations hold

a) ψαk,εk,p(z
j) > 0,

b) 1/εk ≥ ‖(λj)+‖q + δ,

c) −ψαk,εk,p(z
j)− αk

[
h(zj , yj) + 〈∇xh(zj , yj), yj − zj〉

]
≤ −η ψαk,εk,p(z

j)

then compute the smallest non-negative integer s such that

ψαk,εk,p(z
j + γs dj)− ψαk,εk,p(z

j) ≤ −β γ2s ‖dj‖2,

set tj = γs, zj+1 = zj + tjd
j , j = j + 1 and goto Step 2

else set xk = zj , k = k + 1 and goto Step 1.

Convergence to a solution of (EP) is achieved considering separetely the case in which the

parameters actually go to zero from the case in which they are updated a finite number of times.

Theorem 3.2. If f satisfies (11), then either the algorithm stops at a solution of (EP) after a

finite number of iterations, or it produces either an infinite sequence {xk} or an infinite sequence

{zj} such that any of its cluster points solves (EP).

Proof. First, we prove that the line search procedure in step 4 is always finite. By contradiction,

assume that there exist k and j such that

ψαk,εk,p(z
j + γs dj)− ψαk,εk,p(z

j) > −β γ2s ‖dj‖2

holds for all s ∈ N. Therefore, we have

ψ◦αk,εk,p
(zj ; dj) ≥ lim sup

s→∞
γ−s(ψαk,εk,p(z

j + γs dj)− ψαk,εk,p(z
j)) ≥ 0,
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which is impossible since Theorem 3.1 guarantees ψ◦αk,εk,p
(zj ; dj) < 0.

If the algorithm stops at zj after a finite number of iterations, then the stopping criterion

and Lemma 2.1 guarantee that zj solves (EP).

Now, suppose that the algorithm generates an infinite sequence {xk}. Let x∗ be a cluster

point of {xk}: taking the appropriate subsequence {xk`}, we have xk` → x∗. Since αk, εk ↓ 0,

Lemma 3.1 guarantees that there exists k′ such that ψαk,εk,p is a gap function for all k ≥ k′ and in

particular there exists `′ such that ψαk`
,εk` ,p

(xk`) > 0 for all ` ≥ `′. Lemma 2 in [12] guarantees

that {λk`} is bounded for ` sufficiently large, thus there exists `′′ such that 1/εk` ≥ ‖(λk`)+‖q+δ

for all ` ≥ `′′. Choosing ¯̀ := max{`′, `′′}, then we have both 1/εk` ≥ ‖(λk`)+‖q + δ and

ψαk`
,εk` ,p

(xk`) > 0 for all ` ≥ ¯̀. By the rule in step 4 condition c) fails at zj = xk` for ` ≥ ¯̀ and

hence

0 < ψαk¯̀,εk¯̀,p
(xk`) ≤ ψαk`

,εk` ,p
(xk`)

< − αk`
(1− η)

[
h(xk` , yk`) + 〈∇xh(xk` , yk`), yk` − xk`〉

]
.

Since xk` and yk` belong to the bounded set D, the continuity of h and ∇xh guarantee that

the sequence {h(xk` , yk`) + 〈∇xh(xk` , yk`), yk` − xk`〉} is bounded from above. Thus, we get

ψαk¯̀,εk¯̀,p
(x∗) = 0 taking the limit as `→ +∞, and therefore x∗ solves (EP).

Now, suppose that the algorithm generates an infinite sequence {zj} for some fixed k. There-

fore, we can set α = αk and ε = εk as these values do not change anymore, and let z∗ be a

cluster point of {zj}: taking the appropriate subsequence {zj`}, we have zj` → z∗. Expoiting

Lemma 2.2, zj` → z∗ implies also dj` → d∗ = yα(z∗)− z∗.
By contradiction, suppose that z∗ does not solve (EP), or equivalently d∗ 6= 0. The step size

rule implies

ψα,ε,p(z
j`)− ψα,ε,p(zj`+1) ≥ β t2j` ‖d

j`‖2 ≥ 0.

Taking the limit as `→ +∞, we get tj` → 0 since d∗ 6= 0. Moreover, the inequality

ψα,ε,p
(
zj` + tj` γ

−1 dj`
)
− ψα,ε,p(zj`) > −β (tj` γ

−1)2 ‖dj`‖2

holds for all ` ∈ N. Since ψα,ε,p is locally Lipschitz continuous, the mean value theorem guaran-

tees that there exists θj` ∈ (0, 1) such that

ψα,ε,p
(
zj` + tj` γ

−1 dj`
)
− ψα,ε,p(zj`) = 〈ξj` , tj` γ

−1 dj`〉

where ξj` is a generalized gradient of ψα,ε,p at zj` + θj` tj` γ
−1 dj` . Hence, we get

〈ξj` , dj`〉 > −β tj` γ
−1 ‖dj`‖2.

On the other hand, we also have

〈ξj` , dj`〉 ≤ ψ◦α,ε,p
(
zj` + θj` tj` γ

−1 dj` ; dj`
)
.

Thus, we get

ψ◦α,ε,p
(
zj` + θj` tj` γ

−1 dj` ; dj`
)
> −β tj` γ

−1 ‖dj`‖2.
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Moreover, zj` +θj` tj` γ
−1 dj` → z∗ as `→ +∞. Since ψ◦α,ε,p is upper semicontinuous as function

of (z; d) (see e.g. [5]), we get

ψ◦α,ε,p(z
∗; d∗) ≥ lim sup

`→+∞
ψ◦α,ε,p

(
zj` + θj` tj` γ

−1 dj` ; dj`
)
≥ 0. (14)

On the other hand, if z∗ ∈ C then ψα,ε,p(z
∗) = ϕα(z∗) > 0 since z∗ does not solve (EP).

Moreover, the three conditions at step 4 are satisfied for all `, hence we have

−ψα,ε,p(zj`)− α
[
h(zj` , yj`) + 〈∇xh(zj` , yj`), yj` − zj`〉

]
≤ −η ψα,ε,p(zj`).

Thus, taking the limit the upper estimate provided in Lemma 3.2 gives

ψ◦α,ε,p(z
∗; d∗) ≤ −ψα,ε,p(z∗)− α [h(z∗, yα(z∗)) + 〈∇xh(z∗, yα(z∗)), d∗〉]

≤ −η ψα,ε,p(z∗) < 0,

which contradicts (14). Therefore, z∗ /∈ C. Since 1/ε ≥ ‖(λj`)+‖q + δ, then taking the limit

as ` → +∞ (eventually considering a subsequence) provides 1/ε ≥ ‖(λ∗)+‖q + δ for some

(λ∗, µ∗) ∈ Λα(z∗). Thus, Theorem 3.1b) guarantees ψ◦αk,εk,p
(z∗; d∗) < 0, contradicting again

(14). Therefore, z∗ solve (EP).

When (EP) is the variational inequality associated to the operator F , condition (11) is

equivalent to require that ∇F is positive semidefinite, while the algorithm presented in [21]

for variational inequalities requires positive definiteness. Updating the parameters α and ε,

which on the contrary are kept fixed in [21], is the key feature to devise a solution method that

converges under weaker assumptions. Furthermore, the above algorithm involves an inexact line

search while the algorithm in [21] needs the rather theoretical exact line search.

4 Numerical tests

We applied the algorithm to solve a problem of production competition over a network under the

Nash-Cournot equilibrium framework. We considered a modification of the oligopolistic model

originally proposed in [17]. The same commodity is produced by n firms, which compete over

quantity in a noncooperative fashion. Given a transportation network (N,A), the firms and the

markets are located at some sets of nodes I ⊂ N and J ⊂ N , respectively. Each firm i ∈ I

chooses the quantity xij to supply to each market j ∈ J and how to ship it, by choosing the

quantities via to be sent on each arc a ∈ A; the goal of the firm i is to maximize its profit given

by ∑
j∈J

xijpj

(∑
`∈I

x`j

)
−
∑
a∈A

sa v
i
a − πi

∑
j∈J

xij

 ,

where pj : R+ → R+ is the inverse demand function for market j, that is pj(z) denotes the

unitary price at which the market j requires a total quantity z, sa is the unitary transportation
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cost on arc a, and πi : R+ → R+ is the production cost function of firm i. On the other hand,

each firm is subject to flow-conservation constraints

(Evi)k =


−
∑
j∈J

xkj if k = i

0 if k /∈ J
xik if k ∈ J

k ∈ N, (15)

where E is the node-arc incidence matrix of the network and vi = (via)a∈A. Moreover, it has a

bounded production capacity, i.e. ∑
j∈J

xij ≤ qi, (16)

where qi denotes the maximum quantity that firm i may produce. Finally, a public authority

selects a set R of paths and imposes upper bounds on the congestion of these selected paths,

namely ∑
a∈r

ta(v) ≤ Tr ∀ r ∈ R, (17)

where ta denotes the (convex) travel time function on arc a and Tr is the maximum travel time

on path r.

An equilibrium state is reached when the production levels and the flows are such that no

firm would increase its profit by changing its own production and shipping choices while the

other firms keep the same ones. Finding such an equilibrium can be formulated as a Generalized

Nash Equilibrium Problem (GNEP), i.e. a noncooperative game in which the strategy set of each

player (firm), as well as his payoff function, depends on the strategies of all players (see [8] and

references therein). More precisely, the congestion constraints (17), which are shared by all the

players, make the problem a jointly convex GNEP. It is well known that normalized equilibria of

a jointly convex GNEP, as introduced in [20], are the solutions of a suitable equilibrium problem

(see e.g. [22]). In our case, setting x = (xij)i∈I,j∈J , v = (vi)i∈I and analogously y and w,

normalized equilibria coincide with the solutions of (EP) where the feasible set C is defined by

constraints (15)–(17) and the bifunction f is given by:

f((x, v), (y, w)) =
∑
i∈I

[∑
j∈J

xijpj

(∑̀
∈I
x`j

)
−
∑
j∈J

yijpj

(
yij +

∑
`∈I,` 6=i

x`j

)

+
∑
a∈A

sa (wia − via) + πi

(∑
j∈J

yij

)
− πi

(∑
j∈J

xij

)]
We applied our algorithm to a problem with 3 firms, 2 markets, and the transportation

network of Figure 1 with I = {1, 2, 3} and J = {13, 14}.
We assumed that both markets have the same inverse demand function

pj(z) = p(z) = ρ1/τ (z + σ)−1/τ ,

and that the cost functions have the form

πi(xi) = πi xi + (1 + δi)
−1K−δii x1+δi

i ,
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Figure 1: Transportation network.
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where ρ = 5000 and τ = 1.1 have been selected as in [19] as well as the values for the parameters

of the cost functions, which are shown in Table 1. We chose σ = 0.01 rather than σ = 0: while

the effect on the equilibrium values is negligible, the problem is well defined also for a zero total

production, which could be selected as the starting point of the algorithm.

Table 1: Parameters of cost functions.

i πi Ki δi

1 10 5 5/6

2 6 5 1

3 2 5 5/4

Since the functions πi and p have been chosen convex and differentiable, the function z 7→
z p(z) is therefore concave. Thus, the bifunction f(·, (y, w)) turns out to be concave for any

(y, w) and hence assumption (11) of the algorithm is satisfied.

Regarding the constraints, we set production bounds qi of the firms all equal to 40. Moreover,

we considered the travel time functions introduced by the U.S. Bureau of Public Roads [3]

ta(v) = fa

[
1 + 0.15

(∑
i∈I v

i
a

Ca

)4
]
,

where fa denotes the free flow time and Ca the capacity of arc a. The values of fa are displayed
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in Figure 1 and the capacity Ca has been set to 5 for all the arcs. Congestion constraints have

been set on the 8 paths listed in Table 2, and the values Tr have been chosen equal to 50 for all

the paths.

Table 2: Paths with congestion constraint.

1 2 3 4 5 6 7 8

path 4-5-6 7-8-9 10-11-12 10-7-4 5-8-11 6-9-12 4-8-12 6-8-10

The algorithm has been implemented in MATLAB 7.10.0; the built-in function fmincon from

the Optimization Toolbox was exploited to evaluate the gap function ϕα and to compute the

direction yα(x)− x. The value 10−2 was used as the threshold for the stopping criterion of the

algorithm at step 3. We chose the regularizing bifunction h(x, y) = ‖y − x‖22/2.

After some preliminary tests we set parameters of the algorithm as follows: β = 0.1, γ = 0.7,

η = 0.9, αk = 1/3k, εk = 1/k2, and p = ∞. Running the algorithm with these values of

parameters and a zero total production and flow as the starting point, it performed 11 iterations,

3 just updated the parameters α and ε (null steps), and the gap function had to be evaluated

14 times. The solution found is given in Tables 3 and 4. As shown in the Tables some bounds

on production and travel times are tight.

Table 3: Equilibrium solution found (supplied quantities).

markets total

firms 13 14 production

1 20.2087 15.6148 35.8235

2 27.9749 12.0251 40.0000

3 13.5517 26.4483 40.0000

Table 4: Equilibrium solution found (path flows and travel times).

path 4-5-6 7-8-9 10-11-12 10-7-4 5-8-11 6-9-12 4-8-12 6-8-10

flow 27.89 0.00 27.70 0.00 0.90 23.48 12.75 13.03

travel time 50.00 5.00 50.00 5.00 4.00 50.00 50.00 50.00

Subsequently, we randomly selected 50 starting points and we ran the algorithm for different

choices of the parameters β, γ, η, αk, εk, and p. Results with respect to different values of β and

γ are given in Table 5: in each row the minimum, average and maximum number of iterations,
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null steps and solved optimization problems are given. The results suggest to choose β < γ. A

good choice seems to be a small value of β, close to zero, and a value of γ close to one.

The impact of different values of η is shown in Table 6, in which the minimum, average and

maximum number of iterations, null steps and solved optimization problems are given. Results

show that the closer η is to one, the better is the behaviour of the algorithm.

Table 7 reports the results with respect to different values of parameters αk and εk. According

to the results, it is better to choose an exponentially decreasing sequence for αk, while εk should

be a polynomially decreasing one.

Table 8 shows the impact of different choice of the value of p, which seems not to have a

significant impact on the behaviour of the algorithm.

Table 5: Results with different values of parameters β and γ.

iterations null steps opt. problems

β γ min avg max min avg max min avg max

0.1 0.1 9 19.36 44 2 2.94 4 10 30.46 79

0.1 0.3 9 12.74 19 2 2.84 4 10 17.5 29

0.1 0.5 9 10.66 14 2 2.68 4 10 13.24 20

0.1 0.7 9 9.94 14 2 2.62 4 10 13.22 19

0.1 0.9 9 10.22 13 2 2.62 4 10 16.16 23

0.3 0.1 10 21.94 52 2 2.94 4 11 36.48 96

0.3 0.3 9 13 22 2 2.84 4 11 18.82 36

0.3 0.5 9 10.5 15 2 2.68 4 11 13.86 23

0.3 0.7 9 9.94 13 2 2.62 4 11 14.74 25

0.3 0.9 9 10.08 13 2 2.62 4 11 19.28 46

0.5 0.1 10 23.46 52 2 2.94 4 13 40.06 96

0.5 0.3 9 13.38 22 2 2.84 4 11 20.14 36

0.5 0.5 9 10.72 16 2 2.68 4 11 14.84 25

0.5 0.7 9 10.22 14 2 2.62 4 11 16.72 40

0.5 0.9 9 10.16 13 2 2.62 4 12 23.2 77

0.7 0.1 12 25.48 52 2 2.94 4 15 45.18 122

0.7 0.3 9 13.62 22 2 2.84 4 11 20.96 36

0.7 0.5 9 11.1 17 2 2.68 4 12 16.64 46

0.7 0.7 9 10.56 15 2 2.62 4 11 19.32 59

0.7 0.9 9 10.32 14 2 2.62 4 12 27.8 123

Finally, we selected production capacities for each firm in the range [20, 50] and congestion

bounds for any path in the range [30, 100] and we ran the algorithm with the original values
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Table 6: Results with different values of parameter η.

iterations null steps opt. problems

η min avg max min avg max min avg max

0.1 10 22.66 33 1 1.40 3 13 83.68 157

0.2 11 21.48 33 1 1.44 3 13 77.38 157

0.3 10 20.42 33 1 1.54 3 12 71.44 157

0.4 10 22.28 32 1 1.48 3 12 82.46 157

0.5 10 20.20 32 1 1.58 4 12 68.76 157

0.6 9 13.30 27 1 1.92 3 10 25.30 111

0.7 9 11.82 24 1 2.12 3 12 16.96 93

0.8 9 11.22 14 1 2.46 3 11 14.66 33

0.9 9 9.94 14 2 2.62 4 10 13.22 19

Table 7: Results with different values of parameters αk and εk.

iterations null steps opt. problems

αk εk min avg max min avg max min avg max

1/k 1/k 21 31.12 71 7 20.52 61 24 39.32 101

1/k 1/k2 24 28.30 40 4 4.36 7 33 57.70 152

1/k 1/3k 34 51.54 79 2 2.12 3 77 176.18 333

1/k2 1/k 11 16.76 23 4 9.26 16 12 20.12 27

1/k2 1/k2 11 13.70 20 2 3.38 7 13 19.92 51

1/k2 1/3k 14 15.80 28 2 2.14 4 17 25.86 140

1/3k 1/k 9 17.24 23 2 9.24 16 10 20.82 27

1/3k 1/k2 9 9.94 14 2 2.62 4 10 13.22 19

1/3k 1/3k 9 12.08 19 1 1.88 3 12 18.60 68

Table 8: Results with different values of parameter p.

iterations null steps opt. problems

p min avg max min avg max min avg max

1 9 10.2 14 2 2.66 4 11 13.92 21

2 9 10.08 14 2 2.66 4 10 13.58 21

3 9 10.02 14 2 2.64 4 10 13.42 19

4 9 9.92 14 2 2.62 4 10 13.22 19

5 9 9.94 14 2 2.62 4 10 13.22 19

10 9 9.94 14 2 2.62 4 10 13.22 19

∞ 9 9.94 14 2 2.62 4 10 13.22 19
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of parameters: β = 0.1, γ = 0.7, η = 0.9, αk = 1/3k, εk = 1/k2, p = ∞, and the zero vector

as starting point. The results are shown in Table 9, which shows the effect of capacity and

congestion bounds on the production values, path flows, and path travel times at the equilibrium

solution. In particular, for each given value of the capacities and of the congestion bounds, the

quantities supplied by the firms to each markets are reported on the first line, the total quantities

supplied on the second line, and the path flows on the third line, where a bold font denotes that

the congestion constraint is active on the correponding path.
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